WO2003031320A1 - Thin film structural member, method of manufacturing the member, and switching element using the member - Google Patents
Thin film structural member, method of manufacturing the member, and switching element using the member Download PDFInfo
- Publication number
- WO2003031320A1 WO2003031320A1 PCT/JP2002/009680 JP0209680W WO03031320A1 WO 2003031320 A1 WO2003031320 A1 WO 2003031320A1 JP 0209680 W JP0209680 W JP 0209680W WO 03031320 A1 WO03031320 A1 WO 03031320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- structural member
- thin
- film structural
- switching element
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims description 146
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 claims description 60
- 238000004544 sputter deposition Methods 0.000 claims description 16
- 238000007747 plating Methods 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 7
- 238000001947 vapour-phase growth Methods 0.000 claims description 5
- 238000001771 vacuum deposition Methods 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 11
- 229910045601 alloy Inorganic materials 0.000 description 54
- 239000000956 alloy Substances 0.000 description 54
- 239000000696 magnetic material Substances 0.000 description 41
- 239000010410 layer Substances 0.000 description 40
- 239000010408 film Substances 0.000 description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 28
- 230000005415 magnetization Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 17
- 229920002120 photoresistant polymer Polymers 0.000 description 15
- 229910003271 Ni-Fe Inorganic materials 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 9
- 229910000531 Co alloy Inorganic materials 0.000 description 8
- 239000011241 protective layer Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 229910017881 Cu—Ni—Fe Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910001172 neodymium magnet Inorganic materials 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 3
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- 229910001362 Ta alloys Inorganic materials 0.000 description 3
- 229910000756 V alloy Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017104 Fe—Al—Ni—Co Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0841—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12104—Mirror; Reflectors or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3564—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
- G02B6/3568—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
- G02B6/357—Electrostatic force
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3564—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
- G02B6/3584—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details constructional details of an associated actuator having a MEMS construction, i.e. constructed using semiconductor technology such as etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/50—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
- H01H1/54—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
- H01H2059/0054—Rocking contacts or actuating members
Definitions
- the present invention relates to a thin-film structural member in which occurrence of warpage or the like is suppressed, a method of manufacturing the same, and a switching element using the same.
- the switching element turns on / off signals of a wide frequency range from DC to gigahertz or more.
- the present invention relates to a microselect port-to-mechanical system (MEMS) switch applicable to wavelength-convertible semiconductor lasers, optical filters, optical switches, and the like.
- MEMS microselect port-to-mechanical system
- the MEMS switch includes, for example, a fixed structure and a movable structure, and the movable structure has a support member and a movable member, and the movable member is connected to the support member by a spring member.
- the MEMS switch configured as described above includes a switch that performs a switching operation when the movable member is moved by an attractive force or a repulsive force acting between the fixed structure and the movable member, and a switch that performs a switching operation. It has been proposed to be applied to optical switches and the like, which consist of a movable member and a movable member whose surface reflects light. For example, “US Pat. No. 6,044,705, US Pat. No. 5,969,465, US Pat. No. 5,960,132, US Pat. 6,201,629, US Pat. Among these, the prior art will be described using the example of the invention described in “USP 6 201 629” as an example.
- FIG. 10a is a plan view of the MEMS switch disclosed in “US Pat. No. 6,020,629”, and FIG. 10b is a cross-sectional view.
- a support 102 is provided on a base 101.
- a mirror 104 is arranged on the support 102 via a hinge spring 103.
- the conventional MEM switch was configured as shown above.
- FIG. 2 there is a problem that the hinge spring 103 and the mirror 104 are warped. When such warpage occurs, it becomes difficult to control the torsion angle of the hinge panel 103, and a fatal obstacle occurs in which light reflected by the mirror 104 is scattered.
- the above-mentioned warpage is caused by using a hinge panel 103 composed of one plane as shown in FIG. 13 and a mirror 104 composed of one plane as shown in FIG. That is. Since it is composed of one plane, it is easily bent by external force.
- the warpage is caused by the internal stress of the thin film, which is generated when a MEMS device is manufactured using a thin film manufacturing process.
- the internal stress of the thin film is compressive
- the movable parts that are formed on the sacrificial layer, here the hinge panel 103 and the mirror 104 expand after the sacrificial layer is removed.
- the deformation shown in FIGS. 11 and 12 is likely to occur.
- the hinge panel 103 and the mirror 104 are extended by thermal expansion due to a rise in the temperature of the element, so that warpage occurs.
- the electromagnetic force is used as the force for operating the movable portion, the above-described warpage occurs.
- the electromagnetic force is about three times stronger than the electrostatic force, and both the attractive force and the repulsive force can be increased.
- the hinge panel is not only twisted, but is also easily attracted by the electromagnetic force and easily warps.
- the present invention has been made to solve the above problems, and an object of the present invention is to suppress the occurrence of warpage in a movable portion such as a hinge, a spring, and a mirror, and to realize a highly reliable switching operation. And
- a thin film structural member is formed of a thin film including one or more surfaces and another one or more surfaces continuous with the surfaces at a predetermined angle. According to this thin-film structural member, there is a surface provided at an angle different from that of one surface in a direction in which one surface warps.
- the surface is, for example, a flat surface or a curved surface.
- the predetermined angle may be approximately 90 °.
- Ma The thin film structural member functions as a torsion spring. Further, the thin film structural member may be provided with a reflecting surface that reflects light.
- the thin film is formed by any one of a vapor phase growth method and a liquid phase growth method
- the vapor phase growth method includes a sputtering method, a vacuum evaporation method, and a chemical vapor deposition method. Any of the growth methods may be used, and the liquid phase growth method may be a plating method.
- a method of manufacturing a thin film structural member comprising: forming a sacrificial layer having a concave portion formed of at least one other surface continuous at a predetermined angle with respect to a main surface on a fixed structure.
- the method comprises the steps of: This is to form a thin film structural member composed of a thin film having one or more other surfaces continuous at an angle.
- a switching element is a switching element including a fixed structure and a movable structure disposed thereon, and includes a support member disposed on the movable structure, and a spring mounted on the support member.
- a movable member connected by a member, and driving means formed on the fixed structure to apply a predetermined force to the movable member, wherein the spring member has at least one surface and a predetermined angle with the surface.
- It is a thin film structural member composed of a thin film consisting of at least one other surface and a continuous force.
- the spring member supporting the movable portion has a structure in which one surface is provided at a different angle from the other surface in a direction in which one surface is warped.
- the predetermined angle may be approximately 90 °.
- the driving means is, for example, an electromagnet for applying a magnetic force to the movable part.
- a switching element is a switching element including a fixed structure and a movable structure disposed thereon, wherein the support element is disposed on the movable structure, A movable member connected to the movable member by a spring member, and a driving means formed on the fixed structure to apply a predetermined force to the movable member.
- the movable member has a flat reflecting surface for reflecting light. And a thin-film structural member comprising the reflecting surface and at least one other surface continuous at a predetermined angle.
- the movable portion is connected to the reflecting surface in a direction in which the reflecting surface is warped. Has a structure in which surfaces provided at different angles exist.
- the predetermined angle may be approximately 90 °.
- the driving means is, for example, an electromagnet for applying a magnetic force to the movable part.
- FIG. 1A is a plan view showing a configuration example of the switching element according to the embodiment of the present invention.
- FIG. 1B is a sectional view showing a configuration example of the switching element according to the embodiment of the present invention.
- FIG. 2a to 2e are perspective views schematically showing configuration examples of the spring portions 3c, 3c. 3a to 3j are process diagrams showing a process for manufacturing the switching element of FIG. 4a to 4f are process diagrams showing a manufacturing process of the switching element of FIG. 1 subsequent to FIG. 3j.
- FIG. 5A is a plan view showing a configuration example of a switching element according to another embodiment of the present invention.
- FIG. 5B is a cross-sectional view showing a configuration example of a switching element according to another embodiment of the present invention.
- FIG. 6A is a plan view showing a configuration example of a switching element according to another embodiment of the present invention.
- FIG. 6B is a cross-sectional view illustrating a configuration example of a switching element according to another embodiment of the present invention.
- FIG. 7 is a perspective view schematically showing a configuration example of the movable section 3a.
- FIG. 8 is a process diagram showing a manufacturing process of the movable part 3a.
- FIG. 9 is a plan view a and a cross-sectional view b showing a configuration example of a switching element according to another embodiment of the present invention.
- FIG. 10a is a plan view showing a configuration example of a conventional switching element.
- FIG. 10b is a cross-sectional view showing a configuration example of a conventional switching element.
- FIG. 11 is a cross-sectional view for explaining a problem of a conventional switching element.
- FIG. 12 is a cross-sectional view for explaining a problem of a conventional switch element.
- FIG. 13 is a perspective view illustrating the configuration of a hinge panel of a conventional switch element.
- FIG. 14 is a perspective view illustrating the configuration of a conventional switch element mirror. Detailed description of the embodiment
- FIG. 1A is a plan view showing a configuration example of a switching element according to the first embodiment of the present invention
- FIG. 1B is a sectional view.
- This switching element includes lower magnetic yokes 2a and 2a 'on a substrate la, and further includes thin-film coils 2c and 2c' and upper magnetic yokes 2b and 2b '.
- the upper magnetic yokes 2b, 2b ' pass through the center of the windings of the thin-film coils 2c, 2c'.
- the upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected.
- the magnetic yoke When a current flows through the thin-film coils 2c and 2c ', the magnetic yoke is magnetized, and N (S) and S (N) magnetic poles are formed, for example, above the upper magnetic yokes 2b and 2b'.
- the thin-film electromagnet composed of the lower magnetic yokes 2a, 2a, the thin-film coils 2c, 2c 'and the upper magnetic yokes 2b, 2b' forms a protective layer 1b on the substrate 1a.
- the upper magnetic yokes 2 b and 2 b ′ which are flattened by the magnetic poles and are exposed on the flat surface of the protective layer lb, constitute the base 1.
- the switching element shown in FIGS. La and 1b includes a movable portion 3a provided with electrical contacts 4, 4, and electrical contacts 5, 5 'disposed on the base 1, and a movable portion 3a.
- a movable portion 3a provided with electrical contacts 4, 4, and electrical contacts 5, 5 'disposed on the base 1, and a movable portion 3a.
- the spring portions 3 c and 3 c ′ are, as shown in FIG. 2 a, one or more planes and another one or more planes continuous with this plane at an angle of about 90 °, for example.
- a thin film structural member made of In addition, two adjacent flats The angle of the plane is not limited to 90 °.
- the spring portions 3c and 3c ' By using the spring portions 3c and 3c 'having such a structure, the bending of the spring portion as shown in FIG. 11 is suppressed.
- the structure of the spring portions 3c and 3c ' is effective not only in the structure shown in Fig. 2a but also in the structures shown in Figs. 2b, 2c, 2d and 2e.
- the movable portion 3a is supported by the support portions 3b, 3b 'from both sides of the central portion via the spring portions 3c, 3c', and the fulcrum is set at the contact point with the spring portions 3c, 3c '. And extends to both sides of the fulcrum.
- Electric contacts 5, 5 ' are arranged at the end of the movable portion 3a, and electric contacts 4, 4' facing the electric contacts 5, 5 'of the movable portion are arranged on the base 1.
- the electrical contacts 4, 4 are arranged via the insulating layers 6, 6 ', the insulating layers 6, 6' may be provided as needed.
- the movable portion 3a When the movable portion 3a is made of a magnetic material, an electromagnetic force acts between the end of the movable portion 3a and the upper surfaces of the upper magnetic yokes 2b and 2b ', which are the magnetic poles of the thin-film electromagnet.
- a soft magnetic material As the magnetic material of the movable portion 3a, a soft magnetic material can be used. Soft magnetic materials include Ni-Fe alloys, Co-Ni-Fe alloys, Fe microcrystalline alloys such as Fe_Ta_N, Co- amorphous alloys such as Co-Ta-Zr, Soft iron is suitable.
- Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys, Co—Cr—Ta alloys, Sm—Co alloys, Nd—Fe—B alloys, and Fe A1—Ni—Co alloy, Fe—Cr—Co alloy, Co—Fe—V alloy, Cu—Ni—Fe alloy, etc. are suitable.
- the movable portion 3a When the movable portion 3a is made of a magnetic material that easily forms remanent magnetization, the movable portion 3a is magnetized in the left and right directions in FIGS. La and 1b.
- the left side has an N pole and the right side has an S pole.
- the thin-film electromagnet is operated such that the surfaces of the left and right upper magnetic yokes 2b, 2b 'are simultaneously N-pole or S-pole. This allows, for example, When the N pole is used, the attractive force is applied between the thin film electromagnet on the right side and the right side of the movable section 3a shown in Figs.
- a substrate 1a made of a ceramic mainly composed of alumina is prepared.
- the substrate la may be made of another crystal such as ceramic or silicon.
- lower magnetic yokes 2a and 2a ' are formed on the substrate 1a.
- the lower magnetic yokes 2 a and 2 a ′ are a 5 m-thick Ni—Fe alloy and are formed by an electroplating method.
- the lower magnetic yokes 2a and 2a ' may be made of a material having a large saturation magnetization and a high magnetic permeability, and a Fe-based microcrystalline alloy such as a Co—Ni—Fe-based alloy or Fe—Ta—N-based alloy. Alternatively, a Co-based amorphous alloy such as Co—Ta—Zr or soft iron may be used. As a film forming method, a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method.
- the thickness of the lower magnetic yokes 2a and 2a ' may be from 0.1 / zm to 500 im, more preferably from 1 m to 200 ⁇ m.
- thin film coils 2c and 2c ' are formed on the lower magnetic yokes 2a and 2a', respectively.
- insulating layers 2e and 2e ' for insulating the lower magnetic yokes 2a and 2a' from the thin-film coils 2c and 2c are formed.
- known photolithography A pattern of a photoresist is formed by a graphic technique, and the pattern is heated to 250 ° C. or more and cured to form the insulating layers 2 e and 2 e ′.
- the insulating layers 2 e and 2 e ′ may be formed by processing a sputtered film of alumina or Si 2 .
- thin-film coils 2c and 2c ' are formed on the insulating layers 2e and 2a'.
- a photoresist mask having a pattern with a groove in the coil shape is formed in advance, and Cu is selectively grown in the groove of the mask by the electroplating method.
- a desired coil shape is formed.
- insulating layers 2f and 2f 'for insulating and protecting the thin-film coils 2c and 2c' are formed.
- the insulating layers 2f and 2f ' may be formed by forming a photoresist pattern by a known photolithography technique, and heating and curing the photoresist pattern at 250 ° C. or higher.
- the insulating layers 2 f and 2 f ′ may be formed by processing an alumina or Si 2 sputtered film.
- upper magnetic yokes 2b and 2b ' are formed.
- the upper and magnetic yokes 2b and 2b ' may be made of, for example, a Ni-Fe alloy having a thickness of 20 ⁇ m, and may be formed by an electroplating method.
- the upper magnetic yokes 2b and 2b ' may be made of a material having a large saturation magnetization and a high magnetic permeability.
- Fe-based alloys such as Co-Ni-Fe-based alloys and Fe-Ta-N It may be composed of a microcrystalline alloy, a Co amorphous alloy such as Co_Ta_Zr, or soft iron.
- a sputtering method, a vapor deposition method, or the like can be used in addition to the electroplating method.
- the thickness of the upper magnetic yokes 2b and 2b ' should be 0.1 ⁇ m to 50 ° ⁇ m, more preferably 1 ⁇ m to 200 m.
- the entire area is coated with an alumina film 1b by the Spack method, and subsequently, as shown in FIG. 3f, the alumina film 1b is flattened and polished to form a protective layer 1b.
- the upper magnetic yokes 2b and 2b 'serving as magnetic poles are exposed on a flat surface.
- the base 1 having two thin-film electromagnets including the lower magnetic yokes 2a, 2a, the upper magnetic yokes 2b, 2b, and the thin-film coils 2c, 2c ' is completed.
- the upper magnetic yokes 2b and 2b 'serving as magnetic poles are exposed on the surface, In both cases, the surface is flat, making it easier to construct structures on top.
- manufacturing an electromagnet using a thin process enables a plurality of electromagnets to be manufactured in an arbitrary arrangement on a substrate la, and also enables the manufacture of small electromagnets that are impossible with conventional machining. Make it possible.
- insulating layers 6, 6 'for insulating the pole faces are formed on the upper magnetic yokes 2b, 2b' and the thin-film coils 2c, 2c '.
- the insulating layers 6 and 6 ′ may be formed by processing a film formed by sputtering alumina with a known photolithography technique and etching technique. As the etching technique, for example, ion beam etching can be used.
- the insulating layers 6 and 6 ' are not always necessary, and may be formed as necessary.
- electric contacts 4, 4 ' are formed on the upper magnetic yokes 2b, 2b' and the thin-film coils 2c, 2c.
- a metal containing at least one of rhodium, palladium, gold, and ruthenium can be used as a material of the electrical contact.
- a sacrifice layer 10 having an opening is formed at a position where a pillar 3b described later is formed.
- a photoresist pattern is formed on the column 3 b forming portion by a known photolithography technique, and in this state, a copper film is selectively formed to a thickness of 50 ⁇ m by an electroplating method. It may be formed by depositing to about ⁇ .
- the thickness of the sacrificial layer 10 can be adjusted from about 0.05 ⁇ to about 500 ⁇ .
- the sacrifice layer 10 may be made of a photoresist.
- a support film 3b is formed by growing an Au film in the opening of the sacrificial layer 10 by plating.
- a flat layer 11 made of a partially plated copper film on the support portion 3b is formed.
- a spring material is deposited on the flattening layer 11 including the open portion by sputtering to form a thin film, and this thin film is processed by a known photolithography technique and etching technique, as shown in FIG.
- the spring portion 3c is formed.
- a spring material may be formed by sputtering, and the shape of the spring portion may be formed by lift-off.
- the formation of the thin film is not limited to the sputtering method, and another vapor phase growth method such as a vacuum evaporation method may be used. Needless to say, the thin film may be formed by a liquid phase growth method such as a plating method.
- a CoTaZrCr amorphous alloy may be used.
- an amorphous metal containing Ta or W as a main component, or a shape memory metal such as a Ni_Ti alloy can be used.
- phosphor bronze, beryllium copper, aluminum alloy, or the like having various compositions can be used.
- the advantage of using amorphous metal is that since there is no crystal grain boundary, metal fatigue from the grain boundary does not occur in principle, and a highly reliable and long-lasting spring can be realized.
- An advantage of using a shape memory metal is that an initial shape can be maintained against repeated deformation. As described above, according to the present embodiment, each of them can be properly used according to the purpose.
- the electrical contacts 5, 5 ' are formed on the flattening layer 11 corresponding to the upper portions of the electrical contacts 4, 4'.
- This can be formed by forming a photoresist mask in advance, forming a film by sputtering, and forming a shape of an electrical contact by lift-off. Platinum sputtered films are used as the electric contacts 5 and 5 '. Further, a metal containing at least one of platinum, rhodium, palladium, gold, and ruthenium can be used.
- a flattening layer 11 ′ is formed, and the steps between the spring portion 3c and the electric contacts 5, 5 ′ are flattened.
- the flattening layer 1 1 ′ is formed by forming a photoresist mask on the spring portion 3 c and the electrical contacts 5, 5, and forming a Cu film by a highly directional sputtering method using an ion beam sputtering method. It may be formed by lift-off by removing the photoresist mask.
- a method of applying a photoresist film and then removing the photoresist film in the portions of the spring portions 3c and the electrical contacts 5, 5 ' is possible. In any case, The planarization layer 11 'is finally removed together with the sacrificial layer 10 and the planarization layer 11.
- the movable portion 3a is formed.
- the movable section 3a is formed by forming a film of the movable section material by sputtering and then performing patterning by a known photolithography technique.
- a film of the movable portion material may be formed, and the shape of the movable portion may be formed by lift-off.
- the thickness of the movable part 3a is 1 inch.
- the thickness of the movable part 3a can be adjusted from 0.1 ⁇ m to 100 ⁇ m. More preferably, it is 0,5 ⁇ m3 ⁇ 4 and 10 / zm.
- the material used for the movable portion 3a has a magnetic material.
- a soft magnetic material can be used.
- Soft magnetic materials include Fe-based microcrystalline alloys such as Ni-Fe alloy, Co-Ni-Fe alloy, Fe-Ta-N, and Co-based materials such as Co-Ta-Zr. Amorphous alloy, soft iron, etc. are suitable.
- the magnetic material of the movable portion 3a a magnetic material that easily forms residual magnetization can be used.
- the magnetic material that easily forms remanent magnetization include: 0— ⁇ 1—curan 1 alloy, J 0— (): — Cho alloy, Sm—Co alloy, Nd—Fe—B alloy, Fe—A 1—N i _Co alloy , Fe_Cr-Co alloy, Co-Fe-V alloy, Cu-Ni-Fe alloy, etc.
- the portion 3a is magnetized in the left-right direction in FIG. 4e, for example, the left side is an N pole, and the right side is an S pole.
- a movable part 3a is formed on the support part 3b via the spring part 3c as shown in Fig. 4f.
- the obtained state is obtained.
- the sacrificial layer 10 and the planarizing layers 11 and 11 ′ are made of Cu, they are removed by chemical etching.
- the sacrificial layer 10 and the planarizing layers 11 and 11 ′ are photoresists, they can be removed by oxygen asshing.
- FIG. 5A is a plan view showing a configuration example of the switching element in the present embodiment
- FIG. 5B is a cross-sectional view.
- the chucking element has a lower magnetic yoke 12a disposed on a base 11a, and further includes a thin-film coil 12c and an upper magnetic yoke 12b. At the center of the winding of the thin film coil 12c, the upper magnetic yoke 12b crosses the thin film coil. In other words, the upper magnetic yoke 12b passes through the center of the winding of the thin-film coil 12c.
- the upper magnetic yoke 12b and the lower magnetic yoke 12a are magnetically connected.
- the magnetic yoke When a current flows through the thin film coil 12c, the magnetic yoke is magnetized to form N (S) and S (N) magnetic poles.
- the lower magnetic yoke 12a can be formed sufficiently large in the plane, the demagnetizing field can be reduced, and the magnetic yoke is easily magnetized even with a small coil current.
- the lower magnetic yoke 12a can be expanded up to the end of the base 11a.
- the connection portion 12d is formed of the same magnetic material as the upper magnetic yoke 12b.
- the upper magnetic yoke 12b is made of a Ni-Fe alloy having a thickness of 100 ⁇ m, and can be formed by an electroplating method.
- the upper magnetic yoke 12b may be made of a material having high saturation magnetization and high magnetic permeability, such as a Co-Ni-Fe-based alloy, an Fe-based microcrystalline alloy such as Fe-Ta-N, or a Co- A Co-based amorphous alloy such as Ta—Zr or soft iron may be used.
- a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method.
- the monthly thickness of the upper magnetic yoke 12b is 0.1 ⁇ m to 200 ⁇ m, more preferably ⁇ to 100 ⁇ m.
- the lower magnetic yoke 12a may be made of a soft magnetic material. Specifically, any material having a high saturation magnetization and a high magnetic permeability may be used. A 6-system alloy, a Fe-based microcrystalline alloy such as Fe—Ta—N, a Co-based amorphous alloy such as Co—Ta—Zr, or a soft iron may be used. As a method for forming a film of these materials, a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method. The film thickness of the lower magnetic yoke 2a is 0.1 ⁇ to 500 im, more preferably 1 ⁇ m to 200 m.
- the thin-film electromagnet including the lower magnetic yoke 12a, the upper magnetic yoke 12b, the thin-film coil 12c, and the connection portion 12d is applied to the protective layer 11 on the base 11a. Therefore, the upper magnetic yoke 12b, which is flattened and becomes a magnetic pole, is exposed on the flat surface.
- An electrical contact 14 is provided on 1 lb of the protection, and is fixed via an insulating film 13 b on a support 13 d formed by connecting to the connection 12 d.
- the movable portion 13a is fixed via the spring portion 13c.
- the movable part 13 a is provided with an electric contact 15 at a position facing the electric contact 14.
- the spring portion 13c has a thin film structure composed of one or more planes and another one or more planes continuous with this plane at a predetermined angle.
- the predetermined angle may be, for example, approximately 90 °.
- the structure of the spring portion 31c not only the structure shown in FIG. 2A but also the structures shown in FIGS. 2B, 2C, 2D, and 2E are effective.
- the connection portion 13d can be formed of the same magnetic material as the upper magnetic yoke 12b.
- the movable portion 13a By making the movable portion 13a a magnetic material, an electromagnetic force acts between the end of the movable portion 13a and the upper surface of the upper magnetic yoke 12b.
- a soft magnetic material can be used as the magnetic material of the movable portion 13a.
- Soft magnetic materials include Fe microcrystalline alloys such as Ni_Fe alloy, Co—Ni—Fe alloy, Fe—Ta—N, and Co such as Co—Ta—Zr. Amorphous alloys, soft iron, etc. are suitable.
- Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys. 0- J 1: Alloy and alloy, Sm-Co alloy, Nd-Fe-B alloy, Fe-A1-Ni-C0 alloy, Fe_Cr-Co alloy, Co-F e-V alloys, Cu-Ni-Fe alloys, etc. are suitable.
- the operation of the movable portion 13a made of a magnetic material that easily forms residual magnetization is as follows.
- the movable portion 13a is magnetized in the left-right direction in FIG. 5a.
- the left side is an N pole
- the right side is an S pole.
- the surface of the upper magnetic yoke 12 b is Or operate to be S pole.
- an attractive force acts between the upper magnetic yoke 12b and the right end of the movable portion 13a, and the right end of the movable portion 13a faces the upper magnetic yoke 12b. It falls down and the electrical contacts turn on.
- FIG. 6A is a plan view illustrating a configuration example of the switching element according to the present embodiment
- FIG. 6B is a cross-sectional view.
- This switching element includes a lower magnetic yoke 2a, 2a 'on a substrate 1a, a thin-film coil 2c, 2c' and an upper magnetic yoke 2b, 2b '.
- the upper magnetic yokes 2b, 2b ' At the center of the winding of the thin film coil 2c2c, the upper magnetic yokes 2b, 2b 'intersect with the thin film coil 2c, 2c.
- the upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected, and when a current flows through the thin-film coils 2c, 2c ', these magnetic yokes are magnetized. , S form a magnetic pole.
- the switching element in FIG. 6 has a reflective surface for reflecting light on the protective layer lb, and a movable part 3a functioning as a mirror for reflecting light is provided via spring parts 3c and 3c '. And are fixed to the support portions 3b, 3b '.
- the movable portion 3a is supported from both sides by support portions 3b, 3b 'via spring portions 3c, 3c, and a spring portion 3c, 3b.
- the point of contact with 3 c ′ is a fulcrum, and extends on both sides of the fulcrum.
- the spring portions 3c, 3c ' are composed of one or more planes as shown in FIG. A thin-film structural member consisting of one or more other continuous planes at a fixed angle. It is also assumed that the predetermined angle is approximately 90 °. By doing so, the bending of the spring portion as shown in FIG. 11 described above is suppressed.
- the structure of the spring portions 3c and 3c ' is not limited to the structure shown in FIG. 2a, but is also effective in the structures shown in FIGS. 2b, 2c, 2d and 2e.
- the surface of the movable part 3a is coated with a material suitable for reflecting light. Specifically, the entire surface of the movable portion 3a, or at least a region to which light is applied, is coated with a thin film of gold or silver.
- the gold or silver thin film may be formed by a sputtering method or a vapor deposition method.
- the movable part 3a is composed of one or more planes as shown in FIG. 7a, FIG. 7b, FIG. 7c, and FIG. A thin-film structural member composed of one or more flat surfaces. It is also assumed that the predetermined angle is approximately 90 °. With this configuration, the curvature of a part of the mirror as shown in FIG. 12 is suppressed.
- the movable portion 3a may be a thin film structural member composed of one or more planes and another curved surface continuous with this plane at 90 °, for example. good. Even with such a structure, the bending of the mirror section as shown in FIG. 12 is suppressed.
- the spring portion which is a thin film structural member composed of a thin film having one or more surfaces and another one or more surfaces continuous with this surface at a predetermined angle. , The above-described bending and the like can be suppressed.
- a method of manufacturing the movable portion 3a will be described with reference to FIG. In FIG. 8, the base part is omitted.
- a mask pattern 22 having an opening in a predetermined region is formed.
- the sacrificial film 21 is selectively etched using the mask pattern 22 to form a concave portion in the sacrificial film 21.
- a thin film 23 serving as a movable portion is formed on the sacrificial film 21 along the concave portion, and as shown in FIG. 8 e, A mask pattern 24 is formed on the thin film 23.
- the thin film 23 is selectively etched using the mask pattern 24 as a mask, and as shown in FIG. To form Thereafter, by removing the mask pattern 24 and the sacrificial film 21, the movable portion 3a is obtained as shown in FIG. 8g.
- the thin film 23 may be formed by a vapor deposition method such as a sputtering method and a vacuum evaporation method. Further, the thin film may be formed by a liquid phase growth method such as a plating method.
- the movable portion 3a may be made of a soft magnetic material.
- Soft magnetic materials constituting the corner 3a include Fe microcrystalline alloys such as Ni_Fe alloy, Co—Ni—Fe alloy, Fe—Ta—N, and Co—Ta—Z. Suitable are Co-based amorphous alloys such as r, and soft iron.
- the movable portion 3a may be made of a magnetic material that easily forms residual magnetization.
- Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys, CoCr—Ta alloys, Sm—Co alloys, Nd—Fe—B alloys, Fe-A1-Ni-Co-based alloys, Fe-Cr-Co-based alloys, Co-Fe-V-based alloys, and Cu-Ni-Fe-based alloys are suitable.
- the movable portion 3a When the movable portion 3a is made of a magnetic material that easily forms residual magnetization, it can be operated as described below.
- magnetization is performed in the left-right direction in FIG. 6, for example, the left side is an N pole, and the right side is an S pole.
- the left and right upper magnetic yokes 2b, 2b ' are operated so that their surfaces become N pole or S pole at the same time.
- N poles an attractive force acts between the upper magnetic yoke 2 b on the right and the movable part 3 a
- a repulsive force acts between the upper magnetic yoke 2 b on the left and the movable part
- the movable part 3a falls to the right.
- by adjusting the current amount of the thin film coils 2 c and 2 c ′ The inclination angle of the moving part 3a can be controlled. In other words, an optical switch capable of controlling a single port is realized.
- the movable portion 3 a remains. Due to demagnetization, an attractive force acts between the magnetic pole of the upper magnetic yoke 2 b ′ on the right side and the movable part 3 a, so that the movable part 3 a remains to the right.
- the left and right thin-film electromagnets are alternately operated while the left and right poles are magnetized in the left and right directions in Fig. 6 with the N pole on the left side and the S pole on the right side.
- analog control that achieves a stable and large swing angle is realized.
- the attractive force between the magnetic poles if the magnetic pole interval is narrowed to some extent, the attractive force between the two magnetic poles increases rapidly, and it becomes impossible to control the angle of the movable part.
- using repulsive force between magnetic poles can solve this problem.
- the movable portion 3a is supported by the spring portions 3c and 3c' and is kept horizontal.
- a current is applied to the thin-film coil 2c so that the upper surface of the upper left magnetic yoke 2b becomes the N pole.
- a repulsive force is generated at the left ends of the upper magnetic yoke 2b and the movable portion 3a, and the movable portion 3a is inclined rightward and inclined until the right end contacts the upper surface of the right upper magnetic yoke 2b '.
- the right end of the movable portion 3a is an S pole, and when the right end of the movable portion 3a and the upper surface of the upper magnetic yoke 2b 'on the right approach, the attractive force of both increases.
- the current of the thin-film coil 2c ' is adjusted so that no magnetic pole is generated on the upper surface of the upper right magnetic yoke 2b' so as to cancel the attractive force of both. This allows analog control until the right end of the movable portion 3a contacts the upper surface of the right upper magnetic yoke 2b '.
- the current of the thin film coil 2c is adjusted so that no magnetic pole is generated on the upper surface of the upper left magnetic yoke 2b.
- analog aperture control it is possible to perform analog aperture control until the left end of the movable portion 3a contacts the upper surface of the upper magnetic yoke 2b.
- FIG. 9A is a plan view showing a configuration example of the switching element in this embodiment
- FIG. 9B is a cross-sectional view.
- This switching element has lower magnetic yokes 2a and 2a 'on a substrate 1a, and thin-film coils 2c and 2c' and upper magnetic yokes 2b and .2b on this.
- the upper magnetic yokes 2 b and 2 b ′ are at the center of the windings of the thin film coils 2 c and 2 c ′.
- the upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected, and when a current flows through the thin-film coils 2c, 2c ', these magnetic yokes are magnetized.
- Form N S magnetic poles.
- the lower magnetic yokes 2 a and 2 a ′, the upper magnetic yokes 2 b and 2 b ′, and the thin-film coils 2 c and 2 c ′ are flattened by a protective layer 1 b on the substrate la.
- FIGS. 9a and 9b are provided with a spring part 3c,
- the movable portion 3a is supported on the support portions 3b, 3b, via spring portions 3c, 3c 'on both sides of the center portion, and contacts the spring portions 3c, 3c'. With the position as a fulcrum, it extends on both sides of the fulcrum.
- the movable portion 3a is configured such that the spring portions 3c, 3c 'are formed by one or more planes as shown in FIG. 2a and another one or more planes formed at a predetermined angle with this plane.
- a thin film structural member composed of Also, when the predetermined angle is approximately 90 °, Suppose there is.
- the structure of the spring portions 3c and 3c ' is effective not only in the structure shown in FIG. 2A but also in the structures shown in FIGS. 2B, 2C, 2D and 2E.
- the switching element of the present embodiment includes a mirror structure 9 for reflecting light on the upper surface of the movable portion 3a.
- the mirror structure 9 may be manufactured by forming a metal film or an insulating film to be a mirror structure on a sacrificial layer formed in advance by sputtering or the like, and patterning this.
- the mirror structure 9 has one or more surfaces as shown in FIGS. 7a, 7b, 7c, 7d, and 7e, and another surface that is continuous at a predetermined angle to the surfaces.
- a thin film structural member comprising at least one surface.
- the predetermined angle may be, for example, approximately 90 °. With such a configuration, the bending of the mirror section as shown in FIG. 12 is suppressed.
- the movable portion 3a By using the movable part 3a as a magnetic 1 "living body, an electromagnetic force acts between the end of the movable part and the upper surfaces of the upper magnetic yokes 2b and 2b ', which are the magnetic poles of the thin film electromagnets 2 and 2'.
- the movable portion 3a may be made of a soft magnetic material, such as] ⁇ 1-6 alloy, Co-Ni-Fe alloy, Fe-Ta- ⁇ , any Fe type. Microcrystalline alloys, Co-based amorphous alloys such as Co-Ta_Zr, and soft iron are suitable.
- the movable portion 3a may be made of a magnetic material that easily forms a remanent magnet.
- a magnetic substance that easily forms residual magnetization ⁇ 0 _ ⁇ 1: ⁇ ? 1: Alloy, Co—Cr—Ta alloy, Sm_Co alloy, Nd—Fe—B alloy, Fe—Al—Ni—Co alloy, Fe—Cr—Co Alloys, ⁇ 0-6- ⁇ alloys, Cu-Ni-Fe alloys, etc. are suitable.
- the operation of the switching element configured as described above will be described.
- the movable part 3a made of a magnetic material that easily forms residual magnetization is 9a and 9b are magnetized in the left and right direction.
- the left side is the N pole
- the right side is the S pole.
- the attractive force is applied between the upper magnetic yoke 2 b ′ on the right and the movable part 3 a, and the attractive force is generated between the upper magnetic yoke 2 b and the movable part 3 a on the left.
- the repulsive force acts, and the movable part 3a falls to the right.
- the inclination angle of the movable portion 3a can be controlled. That is, an optical switch capable of analog control is realized.
- the residual magnetization of the movable part 3 a causes Since an attractive force acts between the magnetic poles of the magnetic yokes 2b and 2 and the movable portion a, the movable portion 3a remains to the right.
- the movable part 3a is magnetized in the left and right directions in FIGS. 9a and 9b, and the left and right electromagnets 2 and 2 'are alternately arranged with the left side having the N pole and the right side having the S pole.
- analog control that can obtain a stable and large swing angle is realized.
- repulsive force between magnetic poles can solve this problem.
- the movable portion 3 a is supported by the spring portions 3 c and 3 c ′ and keeps a horizontal position.
- a current is supplied to the thin-film coil 2c so that the upper surface of the upper left magnetic yoke 2b becomes the N pole.
- a repulsive force is generated between the upper magnetic yoke 2b and the left end of the movable portion 3a, the movable portion 3a is inclined rightward, and the right end of the movable portion 3a is positioned on the right upper magnetic yoke 2b, the upper surface. Slanting until it touches.
- the right end of the movable portion 3a is an S pole, and when the right end of the movable portion 3a and the upper surface of the right magnetic yoke approach, the attractive force of both increases. At this time, strike both gravitational forces The current of the thin-film coil 2c 'is adjusted so that no magnetic pole is generated on the upper surface of the upper right magnetic yoke 2b'. Thus, analog control is possible until the right end of the movable portion 3a contacts the upper surface of the upper right magnetic yoke 2b.
- the current of the thin-film coil 2c is adjusted so that no magnetic pole is generated on the upper surface of the upper magnetic yoke 2b on the left side. bAnalog control until touching the top surface is possible.
- an analog-controlled optical switch that can obtain a stable and large swing angle is realized.
- the above-described magnetic material can be partially applied to the movable portion 3a.
- an optical switch of analog control that can obtain a stable and large swing angle is realized.
- the above-described magnetic material can be partially applied to the movable portion 3a.
- the thin film structural member according to the present invention is capable of turning on / off a signal having a wide frequency range from DC to gigahertz or more, and capable of wavelength conversion. It is suitable for micro 'electronics' mechanical system (MEMS) switches applicable to various semiconductor lasers, optical filters and optical switches.
- MEMS micro 'electronics' mechanical system
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
A switching element, comprising electrical contacts (4, 4') disposed on a substrate (1) and a movable part (3a) having electrical contacts (5, 5') disposed thereon, wherein the movable part (3a) is fixed to support parts (3b, 3b') through spring parts (3c, 3c') formed of a thin structural member having one or more flat surfaces and the other one or more flat surfaces continued with the flat surfaces at an angle of, for example, approximately 90°.
Description
明 細 書 薄膜構造部材とその製造方法およびこれを用いたスイッチング素子 発明の背景 Description Thin film structural member, method of manufacturing the same, and switching element using the same Background of the invention
本発明は、 反りなどの発生を抑制した薄膜構造部材とその製造方法およびこれ を用いたスイッチング素子に関するものであり、 スイッチング素子は、 直流から ギガへルツ以上の幅広い周波数の信号をオン/オフすることが可能で、 波長変換 可能な半導体レーザや光学フィルタ、 光スィッチなどに適用可能なマイクロ 'ェ レク ト口-タス . メカニカル . システム (MEMS) スィッチに関するものであ る。 The present invention relates to a thin-film structural member in which occurrence of warpage or the like is suppressed, a method of manufacturing the same, and a switching element using the same. The switching element turns on / off signals of a wide frequency range from DC to gigahertz or more. The present invention relates to a microselect port-to-mechanical system (MEMS) switch applicable to wavelength-convertible semiconductor lasers, optical filters, optical switches, and the like.
微細化高技術における薄膜製造プロセスを利用して作製された、 MEMS (Mi cro Electro Mechanical System) スィッチがある。 この MEMSスィッチは、 例 えば、 固定構造体と可動構造体とから構成され、 可動構造体は、 支持材と可動部 材を有し、 可動部材が、 ばね部材によって支持部材に接続されている。 There is a MEMS (Micro Electro Mechanical System) switch that is manufactured using the thin film manufacturing process in the miniaturization technology. The MEMS switch includes, for example, a fixed structure and a movable structure, and the movable structure has a support member and a movable member, and the movable member is connected to the support member by a spring member.
このように構成された M EMSスィツチは、 固定構造体と可動部材との間に働 く引力、 あるいは反発力によ όて可動部材が可動することで、 スイッチング動作 を行うスィツチや、 固定構造体と可動構造体とからなり、 可動部材の表面が光を 反射する光スィッチなどに応用することが提案されている。 例えば、 「US P 6 044705、 US P 5969465, US P 5960132、 USP 6201 629、 US P 61 78284」 などである。 これらの中から 「U S P 6 201 629」 に記載の発明を例にして、 従来技術を説明する。 The MEMS switch configured as described above includes a switch that performs a switching operation when the movable member is moved by an attractive force or a repulsive force acting between the fixed structure and the movable member, and a switch that performs a switching operation. It has been proposed to be applied to optical switches and the like, which consist of a movable member and a movable member whose surface reflects light. For example, “US Pat. No. 6,044,705, US Pat. No. 5,969,465, US Pat. No. 5,960,132, US Pat. 6,201,629, US Pat. Among these, the prior art will be described using the example of the invention described in “USP 6 201 629” as an example.
図 10 aは、 「US P 620 1 629」 に開示された MEMSスィッチの平面 図であり、 図 10 bは、 断面図である。 図 10 a, 図 10 bにおいて、 基体 10 1上には、 支柱 102が設けられている。 そして、 支柱 102の上にはヒンジバ ネ 103を介してミラー 104が配置されている。 ヒンジパネ 1 03が外力を受 けてねじれることによってミラーが傾斜し、 この結果スィツチングが行われる。 従来の MEMスィッチは、 以上に示すように構成されていたので、 図 1 1, 1
2に示すように、 ヒンジバネ 1 0 3やミラー 1 0 4に反りが生じるという問題が あった。 このように反りが生じると、 ヒンジパネ 1 0 3のねじり角度の制御が困 難になり、 また、 ミラー 1 0 4により反射される光が散乱するという致命的な障 害が発生する。 FIG. 10a is a plan view of the MEMS switch disclosed in “US Pat. No. 6,020,629”, and FIG. 10b is a cross-sectional view. In FIGS. 10A and 10B, a support 102 is provided on a base 101. A mirror 104 is arranged on the support 102 via a hinge spring 103. When the hinge panel 103 is twisted by receiving an external force, the mirror is tilted, and as a result, switching is performed. The conventional MEM switch was configured as shown above. As shown in FIG. 2, there is a problem that the hinge spring 103 and the mirror 104 are warped. When such warpage occurs, it becomes difficult to control the torsion angle of the hinge panel 103, and a fatal obstacle occurs in which light reflected by the mirror 104 is scattered.
上述した反りが生じる原因として、 図 1 3に示すように 1つの平面から構成さ れたヒンジパネ 1 0 3や、 図 1 4に示すように 1つの平面から構成されたミラー 1 0 4を用いていることがあげられる。 1つの平面から構成されているために、 外力が加わることにより容易に湾曲が発生してしまう。 The above-mentioned warpage is caused by using a hinge panel 103 composed of one plane as shown in FIG. 13 and a mirror 104 composed of one plane as shown in FIG. That is. Since it is composed of one plane, it is easily bent by external force.
反りの発生は、 第 1に、 薄膜製造プロセスを用いて MEM S素子を作成する際 に発生する、 薄膜の内部応力に起因する。 特に、 薄膜の内部応力が圧縮の場合、 犠牲層上に形成されることになる可動部、 ここではヒンジパネ 1 0 3やミラー 1 0 4は、 犠牲層を除去した後には伸ぴを生じることから、 図 1 1および図 1 2に 示す変形を生じやすい。 First, the warpage is caused by the internal stress of the thin film, which is generated when a MEMS device is manufactured using a thin film manufacturing process. In particular, when the internal stress of the thin film is compressive, the movable parts that are formed on the sacrificial layer, here the hinge panel 103 and the mirror 104, expand after the sacrificial layer is removed. The deformation shown in FIGS. 11 and 12 is likely to occur.
第 2に、 素子の温度上昇による熱膨張によってヒンジパネ 1 0 3やミラー 1 0 4が延びることにより、 反りが生じる。 第 3に、 特に、 可動部を稼動させる力と して電磁力を用いた場合、 上述した反りが発生する。 電磁力は、 静電力に比べて 3析程度力が強く、 吸引力も反発力も大きくすることができる。 この力の強い特 長を生かした電磁力を用いた場合、 ヒンジパネはねじられるだけでなく、 電磁力 に吸引されて反りを生じやすい。 発明の概要 Second, the hinge panel 103 and the mirror 104 are extended by thermal expansion due to a rise in the temperature of the element, so that warpage occurs. Third, in particular, when the electromagnetic force is used as the force for operating the movable portion, the above-described warpage occurs. The electromagnetic force is about three times stronger than the electrostatic force, and both the attractive force and the repulsive force can be increased. When an electromagnetic force is used that takes advantage of this strong feature, the hinge panel is not only twisted, but is also easily attracted by the electromagnetic force and easily warps. Summary of the Invention
本発明は、 以上のような問題点を解消するためになされたものであり、 ヒンジ バネゃミラーなどの可動部における反りの発生を抑制し、 信頼生の高いスィツチ ング動作を実現することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to suppress the occurrence of warpage in a movable portion such as a hinge, a spring, and a mirror, and to realize a highly reliable switching operation. And
本発明の一形態における薄膜構造部材は、 1つ以上の面とこの面と所定の角度 をなして連続した別の 1つ以上の面とを備えた薄膜から構成されものである。 この薄膜構造部材によれば、 1つの面が反る方向にこの面とは異なる角度で設 けられた面が存在している。 なお、 上記面は、 例えば平面や曲面である。 A thin film structural member according to one embodiment of the present invention is formed of a thin film including one or more surfaces and another one or more surfaces continuous with the surfaces at a predetermined angle. According to this thin-film structural member, there is a surface provided at an angle different from that of one surface in a direction in which one surface warps. The surface is, for example, a flat surface or a curved surface.
上記薄膜構造部材において、 例えば、 所定の角度は略 9 0 ° であればよい。 ま
た、 薄膜構造部材は、 ねじりばねとして機能するものである。 また、 薄膜構造部 材は、 光を反射する反射面を備えたものであっても良い。 In the thin film structural member, for example, the predetermined angle may be approximately 90 °. Ma The thin film structural member functions as a torsion spring. Further, the thin film structural member may be provided with a reflecting surface that reflects light.
また、 上記薄膜構造部材において、 薄膜は、 気相成長法もしくは液相成長法の いずれかにより形成されたものであり、 また、 気相成長法は、 スパッタ法, 真空 蒸着法, 化学的気相成長法のいずれかであればよく、 液相成長法は、 めっき法で あればよい。 In the above-mentioned thin film structural member, the thin film is formed by any one of a vapor phase growth method and a liquid phase growth method, and the vapor phase growth method includes a sputtering method, a vacuum evaporation method, and a chemical vapor deposition method. Any of the growth methods may be used, and the liquid phase growth method may be a plating method.
本発明の一形態における薄膜構造部材の製造方法は、 固定構造体に、 主 ¾面に 対して所定の角度をなして連続した別の 1つ以上の面からなる凹部を備えた犠牲 層を形成する工程と、 犠牲層表面に凹部に沿った状態で薄膜を形成する工程と、 薄膜下の犠牲層を除去する工程とを備え、 固定構造体上に 1つ以上の面とこの面 と所定の角度をなして連続した別の 1つ以上の面とを備えた薄膜からなる薄膜構 造部材を形成するものである。 According to one embodiment of the present invention, there is provided a method of manufacturing a thin film structural member, comprising: forming a sacrificial layer having a concave portion formed of at least one other surface continuous at a predetermined angle with respect to a main surface on a fixed structure. A step of forming a thin film on the surface of the sacrificial layer along the concave portion, and a step of removing the sacrificial layer under the thin film. The method comprises the steps of: This is to form a thin film structural member composed of a thin film having one or more other surfaces continuous at an angle.
本発明の一形態におけるスィツチング素子は、 固定構造体とこの上に配置され た可動構造体とからなるスィツチング素子であって、 可動構造体上に配置された 支持部材と、 この支持部材上にばね部材によって接続された可動部材と、 固定構 造体上に形成されて可動部材に所定の力を作用させる駆動手段とを備え、 ばね部 材は、 1つ以上の面とこの面と所定の角度をなして連続した別の 1つ以上の面と 力 らなる薄膜から構成された薄膜構造部材である。 A switching element according to one embodiment of the present invention is a switching element including a fixed structure and a movable structure disposed thereon, and includes a support member disposed on the movable structure, and a spring mounted on the support member. A movable member connected by a member, and driving means formed on the fixed structure to apply a predetermined force to the movable member, wherein the spring member has at least one surface and a predetermined angle with the surface. It is a thin film structural member composed of a thin film consisting of at least one other surface and a continuous force.
このスイッチング素子によれば、 可動部を支えるばね部材が、 1つの面が反る 方向にこの面とは異なる角度で設けられた面が存在している構造となっている。 上記スイッチング素子において、 所定の角度は、 略 9 0 ° であればよい。 また 駆動手段は、 例えば、 可動部に対して磁力を作用させる電磁石である。 According to this switching element, the spring member supporting the movable portion has a structure in which one surface is provided at a different angle from the other surface in a direction in which one surface is warped. In the above switching element, the predetermined angle may be approximately 90 °. The driving means is, for example, an electromagnet for applying a magnetic force to the movable part.
本発明の他の形態におけるスィツチング素子は、 固定構造体とこの上に配置さ れた可動構造体とからなるスィツチング素子であって、 可動構造体上に配置され た支持部材と、 この支持部材上にばね部材によって接続された可動部材と、 固定 構造体上に形成されて可動部材に所定の力を作用させる駆動手段とを備えたもの であり、 可動部材は、 光を反射する平坦な反射面を備え、 かつ、 この反射面と所 定の角度をなして連続した別の 1つ以上の面とを備えた薄膜構造部材である。 このスイッチング素子によれば、 可動部が、 反射面が反る方向にこの反射面と
は異なる角度で設けられた面が存在している構造となっている。 A switching element according to another embodiment of the present invention is a switching element including a fixed structure and a movable structure disposed thereon, wherein the support element is disposed on the movable structure, A movable member connected to the movable member by a spring member, and a driving means formed on the fixed structure to apply a predetermined force to the movable member. The movable member has a flat reflecting surface for reflecting light. And a thin-film structural member comprising the reflecting surface and at least one other surface continuous at a predetermined angle. According to this switching element, the movable portion is connected to the reflecting surface in a direction in which the reflecting surface is warped. Has a structure in which surfaces provided at different angles exist.
上記スイッチング素子において、 所定の角度は、 略 9 0 ° であればよい。 また 駆動手段は、 例えば、 可動部に対して磁力を作用させる電磁石である。 図面の簡単な説明 In the above switching element, the predetermined angle may be approximately 90 °. The driving means is, for example, an electromagnet for applying a magnetic force to the movable part. BRIEF DESCRIPTION OF THE FIGURES
図 1 aは、 本発明の実施の形態におけるスイッチング素子の構成例を示す平面 図である。 FIG. 1A is a plan view showing a configuration example of the switching element according to the embodiment of the present invention.
図 1 bは、 本発明の実施の形態におけるスィツチング素子の構成例を示す断面 図である。 FIG. 1B is a sectional view showing a configuration example of the switching element according to the embodiment of the present invention.
図 2 a〜図 2 eは、 ばね部 3 c, 3 c, の構成例を概略的に示す斜視図である。 図 3 a〜図 3 jは、 図 1のスィツチング素子の製造過程を示す工程図である。 図 4 a〜図 4 f は、 図 3 jに続く、 図 1のスィツチング素子の製造過程を示す 工程図である。 2a to 2e are perspective views schematically showing configuration examples of the spring portions 3c, 3c. 3a to 3j are process diagrams showing a process for manufacturing the switching element of FIG. 4a to 4f are process diagrams showing a manufacturing process of the switching element of FIG. 1 subsequent to FIG. 3j.
図 5 aは、 本発明の他の形態におけるスィツチング素子の構成例を示す平面図 である。 FIG. 5A is a plan view showing a configuration example of a switching element according to another embodiment of the present invention.
図 5 bは、 本発明の他の形態におけるスィツチング素子の構成例を示す断面図 である。 FIG. 5B is a cross-sectional view showing a configuration example of a switching element according to another embodiment of the present invention.
図 6 aは、 本発明の他の形態におけるスィツチング素子の構成例を示す平面図 である。 FIG. 6A is a plan view showing a configuration example of a switching element according to another embodiment of the present invention.
図 6 bは、 本発明の他の形態におけるスイッチング素子の構成例を示す断面図 である。 FIG. 6B is a cross-sectional view illustrating a configuration example of a switching element according to another embodiment of the present invention.
図 7は、 可動部 3 aの構成例を概略的に示す斜視図である。 FIG. 7 is a perspective view schematically showing a configuration example of the movable section 3a.
図 8は、 可動部 3 aの製造過程を示す工程図である。 FIG. 8 is a process diagram showing a manufacturing process of the movable part 3a.
図 9は、 本発明の他の形態におけるスィツチング素子の構成例を示す平面図 a と断面図 bである。 FIG. 9 is a plan view a and a cross-sectional view b showing a configuration example of a switching element according to another embodiment of the present invention.
図 1 0 aは、 従来よりあるスィツチング素子の構成例を示す平面図である。 図 1 0 bは、 従来よりあるスィツチング素子の構成例を示す断面図である。 図 1 1は、 従来よりあるスイッチング素子の問題点を説明するための断面図で ある。
図 1 2は、 従来よりあるスィ 素子の問題点を説明するための断面図で ある。 FIG. 10a is a plan view showing a configuration example of a conventional switching element. FIG. 10b is a cross-sectional view showing a configuration example of a conventional switching element. FIG. 11 is a cross-sectional view for explaining a problem of a conventional switching element. FIG. 12 is a cross-sectional view for explaining a problem of a conventional switch element.
図 1 3は、 従来よりあるスィ 素子のヒンジパネの構成を説明する斜視 図である。 FIG. 13 is a perspective view illustrating the configuration of a hinge panel of a conventional switch element.
図 14は、 従来よりあるスィ 素子のミラーの構成を説明する斜視図で ある。 実施例の詳細な説明 FIG. 14 is a perspective view illustrating the configuration of a conventional switch element mirror. Detailed description of the embodiment
以下、 本発明の実施例について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<実施例 1 > <Example 1>
図 1 aは、 本発明の第 1の実施例におけるスイッチング素子の構成例を示す平 面図であり、 図 l bは、 断面図である。 このスイッチング素子は、 基板 l a上に、 下部磁気ヨーク 2 a, 2 a ' を備え、 さらに、 薄膜コイル 2 c, 2 c' および上 部磁気ヨーク 2 b, 2 b' を備える。 図 1 aに示すように、 上部磁気ヨーク 2 b, 2 b ' は、 薄膜コイル 2 c, 2 c ' の卷線中心部を貫通している。 また、 上部磁 気ヨーク 2 b, 2 b ' と下部磁気ヨーク 2 a, 2 a ' とは、 磁気的に接続してい る。 FIG. 1A is a plan view showing a configuration example of a switching element according to the first embodiment of the present invention, and FIG. 1B is a sectional view. This switching element includes lower magnetic yokes 2a and 2a 'on a substrate la, and further includes thin-film coils 2c and 2c' and upper magnetic yokes 2b and 2b '. As shown in FIG. 1A, the upper magnetic yokes 2b, 2b 'pass through the center of the windings of the thin-film coils 2c, 2c'. The upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected.
薄膜コイル 2 c, 2 c ' に電流を流すことで磁気ヨークは磁化し、 例えば上部 磁気ヨーク 2 b, 2 b' 上部において、 N (S) 、 S (N) の磁極を形成する。 これら下部磁気ヨーク 2 a, 2 a, 、 薄膜コイル 2 c, 2 c ' および上部磁気ョ ーク 2 b, 2 b' によつて構成される薄膜電磁石は、 基板 1 a上で保護層 1 bに よって平坦化され、 磁極となる上部磁気ヨーク 2 b, 2 b' 、 保護層 l bの平 坦面に露出し、 これらで基体 1を構成している。 When a current flows through the thin-film coils 2c and 2c ', the magnetic yoke is magnetized, and N (S) and S (N) magnetic poles are formed, for example, above the upper magnetic yokes 2b and 2b'. The thin-film electromagnet composed of the lower magnetic yokes 2a, 2a, the thin-film coils 2c, 2c 'and the upper magnetic yokes 2b, 2b' forms a protective layer 1b on the substrate 1a. The upper magnetic yokes 2 b and 2 b ′, which are flattened by the magnetic poles and are exposed on the flat surface of the protective layer lb, constitute the base 1.
また、 図 l a, 図 1 bに示すスイッチング素子は、 基体 1上に配設された電気 接点 4, 4, と、 電気接点 5, 5' を配備した可動部 3 aを備え、 可動部 3 aは、 ばね部 3 c, 3 c' を介して支持部 3 b, 3 b' に固定され、 これらで可動構造 体を構成している。 ここで、 ばね部 3 c, 3 c ' は、 図 2 aに示すように、 1つ 以上の平面と、 この平面と例えば略 90° の角度をなして連続した別の 1つ以上 の平面とからなる薄膜構造部材から構成する。 なお、 連続して隣り合う二つの平
面の角度は、 90° に限るものではない。 The switching element shown in FIGS. La and 1b includes a movable portion 3a provided with electrical contacts 4, 4, and electrical contacts 5, 5 'disposed on the base 1, and a movable portion 3a. Are fixed to the support portions 3b, 3b 'via the spring portions 3c, 3c', and these constitute a movable structure. Here, the spring portions 3 c and 3 c ′ are, as shown in FIG. 2 a, one or more planes and another one or more planes continuous with this plane at an angle of about 90 °, for example. And a thin film structural member made of In addition, two adjacent flats The angle of the plane is not limited to 90 °.
このような構造としたばね部 3 c, 3 c ' を用いることで、 図 1 1に示したよ うな、 ばね部の湾曲が抑制される。 ばね部 3 c, 3 c ' の構造としては、 図 2 a に示す構造のみならず、 図 2 bや図 2 c、 図 2 d、 図 2 eに示す構造でも有効で ある。 By using the spring portions 3c and 3c 'having such a structure, the bending of the spring portion as shown in FIG. 11 is suppressed. The structure of the spring portions 3c and 3c 'is effective not only in the structure shown in Fig. 2a but also in the structures shown in Figs. 2b, 2c, 2d and 2e.
可動部 3 aは、 この中央部の両側から、 ばね部 3 c, 3 c ' を介して支持部 3 b, 3 b' に支えられ、 ばね部 3 c, 3 c' との接点位置を支点とし、 支点の両 側に延在している。 可動部 3 aの端部には電気接点 5, 5' が配置されており、 基体 1には、 可動部の電気接点 5, 5' に対向した電気接点 4, 4' が配置され ている。 電気接点 4, 4, は、 絶縁層 6, 6 ' を介して配設されているが、 絶縁 層 6, 6 ' は必要に応じて設けるようにすればよい。 The movable portion 3a is supported by the support portions 3b, 3b 'from both sides of the central portion via the spring portions 3c, 3c', and the fulcrum is set at the contact point with the spring portions 3c, 3c '. And extends to both sides of the fulcrum. Electric contacts 5, 5 'are arranged at the end of the movable portion 3a, and electric contacts 4, 4' facing the electric contacts 5, 5 'of the movable portion are arranged on the base 1. Although the electrical contacts 4, 4, are arranged via the insulating layers 6, 6 ', the insulating layers 6, 6' may be provided as needed.
可動部 3 aを磁性体とすることで、 可動部 3 aの端部と、 薄膜電磁石の磁極で ある上部磁気ヨーク 2 b, 2 b' 上面との間に電磁力が働く。 可動部 3 aの磁性 体としては、 軟磁性体を使用することができる。 軟磁性体としては、 N i _F e 合金、 Co_N i— F e合金、 F e _T a _Nなどの F e系微結晶合金、 C o— Ta— Z rなどの C o系非晶質合金、 軟鉄などが適当である。 When the movable portion 3a is made of a magnetic material, an electromagnetic force acts between the end of the movable portion 3a and the upper surfaces of the upper magnetic yokes 2b and 2b ', which are the magnetic poles of the thin-film electromagnet. As the magnetic material of the movable portion 3a, a soft magnetic material can be used. Soft magnetic materials include Ni-Fe alloys, Co-Ni-Fe alloys, Fe microcrystalline alloys such as Fe_Ta_N, Co- amorphous alloys such as Co-Ta-Zr, Soft iron is suitable.
薄膜電磁石のコイル 2 c, 2 c ' に交互に電流を流すことによって、 上部磁気 ヨーク 2 b, 2 b ' に互に磁束が発生し、 磁束の発生している上部磁気ヨーク 2 b, 2 b ' 側に可動部 3 aが引き寄せられる。 これによつて電気接点 4, 4' と 電気接点 5, 5, とが接触し、 スイッチングが行われる。 By passing current alternately through the coils 2 c and 2 c ′ of the thin-film electromagnet, magnetic flux is generated in the upper magnetic yokes 2 b and 2 b ′, and the upper magnetic yokes 2 b and 2 b where the magnetic flux is generated The movable part 3a is drawn to the 'side. As a result, the electrical contacts 4, 4 'and the electrical contacts 5, 5, come into contact, and switching is performed.
可動部 3 aの磁性体としては、 残留磁化を形成しやすい磁性体を使用すること ができる。 残留磁化を形成しやすい磁性体としては、 C o— C r一 P t系合金、 C o— C r _Ta系合金、 Sm— C o系合金、 N d— F e— B系合金、 F e一 A 1— N i _C o系合金、 F e—C r— Co系合金、 C o— F e— V系合金、 Cu -N i -F e系合金などが適当である。 As the magnetic material of the movable portion 3a, a magnetic material that easily forms residual magnetization can be used. Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys, Co—Cr—Ta alloys, Sm—Co alloys, Nd—Fe—B alloys, and Fe A1—Ni—Co alloy, Fe—Cr—Co alloy, Co—Fe—V alloy, Cu—Ni—Fe alloy, etc. are suitable.
可動部 3 aを残留磁化を形成しやすい磁性体により構成した場合、 可動部 3 a を、 図 l a, 図 1 bの左右方向に着磁し、 例えば、 左側を N極、 右側を S極とす る。 このとき、 薄膜電磁石の動作としては、 左右の上部磁気ヨーク 2 b, 2 b' 表面を同時に N極、 あるいは S極となるよう動作させる。 これにより、 例えば、
N極とした場合は、 図 1 a, 図 1 bに示す右側の薄膜電磁石と可動部 3 aの右側 との間には引力、 左側の薄膜電磁石と可動部 3 aの右側との間には反発力が働き、 可動部 3 aは右側に倒れ、 右側の電気接点がオン、 左側の電気接点がオフとなる。 この状態で薄膜コイルに対する電流を遮断しても、 可動部 3 aの残留磁化によ つて、 右側の薄膜電磁石の磁極 (上部磁気ヨーク 2 b' 上部) と可動部 3 a右側 の間には引力が働いているので、 可動部 3 aは右側に倒れたままとなり、 右側の 電気接点がオンの状態が保たれる。 When the movable portion 3a is made of a magnetic material that easily forms remanent magnetization, the movable portion 3a is magnetized in the left and right directions in FIGS. La and 1b. For example, the left side has an N pole and the right side has an S pole. You. At this time, the thin-film electromagnet is operated such that the surfaces of the left and right upper magnetic yokes 2b, 2b 'are simultaneously N-pole or S-pole. This allows, for example, When the N pole is used, the attractive force is applied between the thin film electromagnet on the right side and the right side of the movable section 3a shown in Figs. 1a and 1b, and the attractive force is applied between the thin film electromagnet on the left side and the right side of the movable section 3a. The repulsive force acts, and the movable part 3a falls to the right, the right electrical contact turns on, and the left electrical contact turns off. Even if the current to the thin-film coil is cut off in this state, due to the residual magnetization of the movable part 3a, an attractive force is generated between the magnetic pole of the right thin-film electromagnet (upper part of the upper magnetic yoke 2b ') and the right side of the movable part 3a. , The movable part 3a remains tilted to the right, and the electrical contact on the right remains on.
これらのことに対し、 左右の上部磁気ヨーク 2 b, 2 b' 表面を同時に S極と すると、 今度は右側の薄膜電磁石と可動部 3 aの右側との間には反発力、 左側の 薄膜電磁石と可動部 3 aの左側との間には引力が働き、 可動部 3 aは左側に倒れ、 左側の電気接点がオン、 右側の電気接点がオフとなる。 なお、 可動部 3 aとして は、 上記の磁性体を部分的に適用することも可能である。 On the other hand, if the surfaces of the left and right upper magnetic yokes 2 b and 2 b 'are simultaneously S poles, then the repulsive force is applied between the right thin film electromagnet and the right side of the movable part 3 a, and the left thin film electromagnet An attractive force acts between the movable part 3a and the left side of the movable part 3a, the movable part 3a falls down to the left side, and the left electric contact is turned on and the right electric contact is turned off. In addition, it is also possible to partially apply the above magnetic material as the movable portion 3a.
つぎに、 図 l a, 図 1 bに示すスイッチング素子の製造方法について説明する。 まず、 図 3 aに示すように、 アルミナを主成分とするセラミックからなる基板 1 aを用意する。 基板 l aとしては、 その他のセラミックやシリコンなどの結晶体 から構成するようにしても良い。 Next, a method of manufacturing the switching element shown in FIGS. First, as shown in FIG. 3A, a substrate 1a made of a ceramic mainly composed of alumina is prepared. The substrate la may be made of another crystal such as ceramic or silicon.
つぎに、 図 3 bに示すように、 基板 1 a上に下部磁気ヨーク 2 a, 2 a ' を形 成する。 下部磁気ヨーク 2 a, 2 a ' は、 膜厚 5 mの N i— F e合金であり、 電気めつき法により形成する。 Next, as shown in FIG. 3b, lower magnetic yokes 2a and 2a 'are formed on the substrate 1a. The lower magnetic yokes 2 a and 2 a ′ are a 5 m-thick Ni—Fe alloy and are formed by an electroplating method.
下部磁気ヨーク 2 a, 2 a ' は、 飽和磁化が大きく透磁率の高い材料から構成 すれば良く、 Co— N i— F e系合金、 F e _T a— Nなどの F e系微結晶合金、 C o— Ta— Z rなどの C o系非晶質合金、 軟鉄などを用いるようにしても良い。 また、 膜形成方法としては、 電気めつき法の他にも、 スパッタ法、 蒸着法などを 使用することができる。 下部磁気ヨーク 2 a, 2 a ' の膜厚は、 0. l /zmから 500 im, より好ましくは 1 mから 200 μ mとすればよレヽ。 The lower magnetic yokes 2a and 2a 'may be made of a material having a large saturation magnetization and a high magnetic permeability, and a Fe-based microcrystalline alloy such as a Co—Ni—Fe-based alloy or Fe—Ta—N-based alloy. Alternatively, a Co-based amorphous alloy such as Co—Ta—Zr or soft iron may be used. As a film forming method, a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method. The thickness of the lower magnetic yokes 2a and 2a 'may be from 0.1 / zm to 500 im, more preferably from 1 m to 200 μm.
つぎに、 図 3 cに示すように、 下部磁気ヨーク 2 a, 2 a ' 上に、 各々薄膜コ ィル 2 c, 2 c ' を形成する。 以下、 薄膜コイル 2 c, 2 c ' の形成についてよ り詳細に説明する。 まず、 下部磁気ヨーク 2 a, 2 a ' と薄膜コイル 2 c, 2 c , とを絶縁するための絶縁層 2 e , 2 e ' を形成する。 例えば公知のフォトリソ
グラフィ技術によりフォトレジストのパターンを形成し、 これを 250°C以上に 加熱して硬化させることで、 絶縁層 2 e, 2 e ' を形成すればよい。 また、 アル ミナや S i〇2のスパッタ膜を加工することで、 絶縁層 2 e, 2 e ' 形成するよう にしても良い。 Next, as shown in FIG. 3c, thin film coils 2c and 2c 'are formed on the lower magnetic yokes 2a and 2a', respectively. Hereinafter, the formation of the thin-film coils 2c and 2c 'will be described in more detail. First, insulating layers 2e and 2e 'for insulating the lower magnetic yokes 2a and 2a' from the thin-film coils 2c and 2c are formed. For example, known photolithography A pattern of a photoresist is formed by a graphic technique, and the pattern is heated to 250 ° C. or more and cured to form the insulating layers 2 e and 2 e ′. Also, the insulating layers 2 e and 2 e ′ may be formed by processing a sputtered film of alumina or Si 2 .
次いで、 絶縁層 2 e、 2 a ' 上に薄膜コイル 2 c, 2 c ' を形成する。 薄膜コ ィル 2 c, 2 c ' は、 予めコイルの形状に溝を備えたパターンのフォトレジス ト マスクを形成し、 電気めつき法によりマスクの溝部分に選択的に Cuを成長させ ることで、 所望のコイル形状に形成する。 さらに薄膜コイル 2 c, 2 c' を絶縁 しかつ保護するための絶縁層 2 f , 2 f ' を形成する。 例えば公知のフォトリソ グラフィ技術によりフォ トレジストのパターンを形成し、 これを 250°C以上に 加熱して硬化させることで、 絶縁層 2 f , 2 f ' を形成すればよい。 なお、 アル ミナや S i〇2のスパッタ膜を加工することで、 絶縁層 2 f , 2 f ' を形成しても 良い。 Next, thin-film coils 2c and 2c 'are formed on the insulating layers 2e and 2a'. For the thin film coils 2c and 2c ', a photoresist mask having a pattern with a groove in the coil shape is formed in advance, and Cu is selectively grown in the groove of the mask by the electroplating method. Then, a desired coil shape is formed. Further, insulating layers 2f and 2f 'for insulating and protecting the thin-film coils 2c and 2c' are formed. For example, the insulating layers 2f and 2f 'may be formed by forming a photoresist pattern by a known photolithography technique, and heating and curing the photoresist pattern at 250 ° C. or higher. The insulating layers 2 f and 2 f ′ may be formed by processing an alumina or Si 2 sputtered film.
つぎに、 図 3 dに示すように、 上部磁気ヨーク 2 b, 2 b' を形成する。 上部, 磁気ヨーク 2 b, 2 b' は、 例えば、 膜厚 20 μ mの N i— F e合金から抗せす ればよく、 電気めつき法により形成すればよい。 上部磁気ヨーク 2 b, 2 b' は、 飽和磁化が大きく透磁率の高い材料から構成すれば良く、 例えば、 C o— N i— F e系合金、 F e— T a—Nなどの F e系微結晶合金、 C o_T a_Z rなどの C o系非晶質合金、 軟鉄などから構成すればよい。 Next, as shown in FIG. 3D, upper magnetic yokes 2b and 2b 'are formed. The upper and magnetic yokes 2b and 2b 'may be made of, for example, a Ni-Fe alloy having a thickness of 20 µm, and may be formed by an electroplating method. The upper magnetic yokes 2b and 2b 'may be made of a material having a large saturation magnetization and a high magnetic permeability. For example, Fe-based alloys such as Co-Ni-Fe-based alloys and Fe-Ta-N It may be composed of a microcrystalline alloy, a Co amorphous alloy such as Co_Ta_Zr, or soft iron.
これら材料の膜形成方法としては、 電気めつき法の他にも、 スパッタ法、 蒸着 法などを使用することができる。 上部磁気ヨーク 2 b, 2 b' の膜厚は、 0. 1 μ mから 50◦ μ m、 より好ましくは 1 μ から 200 mとすればよレヽ。 As a method for forming a film of these materials, a sputtering method, a vapor deposition method, or the like can be used in addition to the electroplating method. The thickness of the upper magnetic yokes 2b and 2b 'should be 0.1 μm to 50 ° μm, more preferably 1 μm to 200 m.
つぎに、 図 3 eに示すように、 スパック法により全域にアルミナ膜 1 bを被覆 し、 引き続いて、 図 3 f に示すように、 アルミナ膜 1 bを平坦ィ匕研磨して保護層 1 bとすることによって、 磁極となる上部磁気ヨーク 2 b, 2 b' を平坦な表面 に露出させる。 Next, as shown in FIG. 3e, the entire area is coated with an alumina film 1b by the Spack method, and subsequently, as shown in FIG. 3f, the alumina film 1b is flattened and polished to form a protective layer 1b. By doing so, the upper magnetic yokes 2b and 2b 'serving as magnetic poles are exposed on a flat surface.
以上の工程により、 下部磁気ヨーク 2 a, 2 a, 、 上部磁気ヨーク 2 b, 2 b , 、 薄膜コイル 2 c, 2 c ' からなる二つの薄膜電磁石を有する基体 1が完成す る。 基体 1は、 磁極となる上部磁気ヨーク 2 b, 2 b' が表面に露出していると
共に、 表面が平坦ィヒされており、 上部に構造物を構築しやすい状態となっている。 また、 薄莫工程を用いて電磁石を作製することは、 基板 l a上に複数の電磁石 を任意の配列で作製することを可能とし、 かつ、 従来の機械加工では不可能な小 さい電磁石の作製を可能とする。 Through the above steps, the base 1 having two thin-film electromagnets including the lower magnetic yokes 2a, 2a, the upper magnetic yokes 2b, 2b, and the thin-film coils 2c, 2c 'is completed. When the upper magnetic yokes 2b and 2b 'serving as magnetic poles are exposed on the surface, In both cases, the surface is flat, making it easier to construct structures on top. In addition, manufacturing an electromagnet using a thin process enables a plurality of electromagnets to be manufactured in an arbitrary arrangement on a substrate la, and also enables the manufacture of small electromagnets that are impossible with conventional machining. Make it possible.
つぎに、 以上の工程で作製した基体 1上に、 電気接点および可動構造体を作製 する工程を説明する。 まず、 図 3 gに示すように、 上部磁気ヨーク 2 b, 2 b ' および薄膜コイル 2 c, 2 c ' の上に、 磁極面を絶縁するための絶縁層 6, 6 ' を形成する。 絶縁層 6 , 6 ' は、 アルミナをスパッタ法により形成した膜を公知 のフォトリソグラフィ技術とエッチング技術とにより加工することで形成すれば よい。 エッチング技術としては、 例えば、 イオンビームエッチングを用いること ができる。 なお、 絶縁層 6, 6 ' は、 必ずしも必要なものではなく、 必要に応じ て作製すればよい。 Next, a process of manufacturing an electric contact and a movable structure on the base 1 manufactured in the above process will be described. First, as shown in FIG. 3g, insulating layers 6, 6 'for insulating the pole faces are formed on the upper magnetic yokes 2b, 2b' and the thin-film coils 2c, 2c '. The insulating layers 6 and 6 ′ may be formed by processing a film formed by sputtering alumina with a known photolithography technique and etching technique. As the etching technique, for example, ion beam etching can be used. The insulating layers 6 and 6 'are not always necessary, and may be formed as necessary.
次いで、 図 3 hに示すように、 上部磁気ヨーク 2 b, 2 b ' および薄膜コイル 2 c , 2 c, の上部に、 電気接点 4, 4 ' を作製する。 電気接点 4 , 4 ' は、 白 金のスパッタ膜を所定の形状の加工して形成すればょレ、。 この加工においても、 公知のフォトリソグラフィ技術により作製したフォトレジストのマスクを用い、 イオンビームエッチングで所望の形状に加工すればよい。 なお、 電気接点の材料 としては、 白金の他に、 ロジウム、 パラジウム、 金、 ルテニウムの少なくとも 1 つを含有する金属を用いることができる。 Next, as shown in FIG. 3h, electric contacts 4, 4 'are formed on the upper magnetic yokes 2b, 2b' and the thin-film coils 2c, 2c. The electric contacts 4 and 4 'are formed by processing a sputtered gold film into a predetermined shape. Also in this processing, a desired shape may be formed by ion beam etching using a photoresist mask manufactured by a known photolithography technique. In addition, as a material of the electrical contact, in addition to platinum, a metal containing at least one of rhodium, palladium, gold, and ruthenium can be used.
つぎに、 図 3 iに示すように、 後述する支柱部 3 bを形成する箇所に開口部を 備えた犠牲層 1 0を形成する。 犠牲層 1 0は、 まず、 支柱部 3 b形成部に公知の フォトリソグラフィ技術によりフォトレジストのパターンを形成し、 この状態で、 電気めつき法で銅の膜を選択的に厚さ 5 0 μ πι程度に析出堆積させることで形成 すればよい。 犠牲層 1 0の厚さとしては 0 . 0 5 μ πιから 5 0 0 μ πι程度で調整 可能である。 なお、 犠牲層 1 0は、 フォトレジストから構成するようにしても良 い。 Next, as shown in FIG. 3i, a sacrifice layer 10 having an opening is formed at a position where a pillar 3b described later is formed. In the sacrificial layer 10, first, a photoresist pattern is formed on the column 3 b forming portion by a known photolithography technique, and in this state, a copper film is selectively formed to a thickness of 50 μm by an electroplating method. It may be formed by depositing to about πι. The thickness of the sacrificial layer 10 can be adjusted from about 0.05 μπι to about 500 μπι. The sacrifice layer 10 may be made of a photoresist.
次いで、 図 3 dに示すように、 犠牲層 1 0の開口部にめっき法により A u膜を 成長させることで、 支持部 3 bを形成する。 次いで、 図 4 aに示すように、 支持 部 3 b上の一部が開放した銅のめっき膜による平坦ィヒ層 1 1を形成する。 この後、
開放部を含めた平坦化層 1 1上にスパッタ法によりばね材料を堆積して薄膜を形 成し、 この薄膜を公知のフォトリソグラフィ技術とエッチング技術とにより加工 し、 図 4 bに示すように、 ばね部 3 cを形成する。 なお、 予めフォトレジストマ スクを形成した後に、 ばね材料のスパッタ成膜を行い、 リフトオフによりばね部 の形状を作製するようにしてもよい。 Next, as shown in FIG. 3D, a support film 3b is formed by growing an Au film in the opening of the sacrificial layer 10 by plating. Next, as shown in FIG. 4A, a flat layer 11 made of a partially plated copper film on the support portion 3b is formed. After this, A spring material is deposited on the flattening layer 11 including the open portion by sputtering to form a thin film, and this thin film is processed by a known photolithography technique and etching technique, as shown in FIG. The spring portion 3c is formed. After a photoresist mask is formed in advance, a spring material may be formed by sputtering, and the shape of the spring portion may be formed by lift-off.
なお、 上記薄膜の形成は、 スパッタ法に限るものではなく、 真空蒸着法などの 他の気相成長法を用いるようにしても良い。 また、 めっき法などの液相成長法に よって上記薄膜を形成するようにしても良いことは言うまでもない。 The formation of the thin film is not limited to the sputtering method, and another vapor phase growth method such as a vacuum evaporation method may be used. Needless to say, the thin film may be formed by a liquid phase growth method such as a plating method.
ばね材料としては、 C o T a Z r C r非晶質合金を用いればよい。 また、 ばね 材料としては、 T aや Wを主成分とした非晶質金属や、 N i _T i合金などの形 状記憶金属を使用することができる。 また、 各種組成のりん青銅、 ベリリウム銅、 アルミニウム合金などを適用することができる。 非晶質金属を用いることの利点 は、 結晶粒界が存在しないために、 粒界からの金属疲労が原理的に発生しないた め、 信頼性の高い長寿命なばね部を実現できる点である。 また、 形状記憶金属を 用いることの利点は、 繰り返し変形に対して初期の形状を保持できる点である。 このように、 本実施例によれば、 各々、 目的に応じた使い分けが可能である。 ばね部 3 cを形成したら、 図 4 cに示すように、 電気接点 4, 4 ' 上部に当た る平坦化層 1 1上に電気接点 5 , 5 ' を形成する。 これは、 予めフォトレジスト マスクを形成した後に、 スパッタ成膜を行い、 リフトオフにより電気接点の形状 を作製することで形成できる。 電気接点 5 , 5 ' としては白金スパッタ膜を用い る。 また、 白金、 ロジウム、 パラジウム、 金、 ルテニウムの少なくとも 1つを含 有する金属を使用することができる。 As the spring material, a CoTaZrCr amorphous alloy may be used. As the spring material, an amorphous metal containing Ta or W as a main component, or a shape memory metal such as a Ni_Ti alloy can be used. Further, phosphor bronze, beryllium copper, aluminum alloy, or the like having various compositions can be used. The advantage of using amorphous metal is that since there is no crystal grain boundary, metal fatigue from the grain boundary does not occur in principle, and a highly reliable and long-lasting spring can be realized. . An advantage of using a shape memory metal is that an initial shape can be maintained against repeated deformation. As described above, according to the present embodiment, each of them can be properly used according to the purpose. After forming the spring portion 3c, as shown in FIG. 4c, the electrical contacts 5, 5 'are formed on the flattening layer 11 corresponding to the upper portions of the electrical contacts 4, 4'. This can be formed by forming a photoresist mask in advance, forming a film by sputtering, and forming a shape of an electrical contact by lift-off. Platinum sputtered films are used as the electric contacts 5 and 5 '. Further, a metal containing at least one of platinum, rhodium, palladium, gold, and ruthenium can be used.
つぎに、 図 4 dに示すように、 平坦化層 1 1 ' を形成し、 ばね部 3 cおよび電 気接点 5 , 5 ' の段差を平坦化する。 平坦化層 1 1 ' は、 ばね部 3 cおよび電気 接点 5 , 5, 上にフォトレジストマスクを形成し、 イオンビームスパッタ法によ る指向性の高いスパッタ法により C u膜を形成した後、 フォトレジストマスクを 除去することによるリフトオフ方で形成すればよい。 また、 平坦化層の他の形成 方法として、 フォトレジスト膜を塗布した後に、 ばね部 3 cおよび電気接点 5 , 5 ' の部分のフォトレジスト膜を除去する方法が可能である。 いずれにしても、
平坦化層 1 1 ' は、 犠牲層 10および平坦化層 1 1とともに最終的には除去され る。 Next, as shown in FIG. 4D, a flattening layer 11 ′ is formed, and the steps between the spring portion 3c and the electric contacts 5, 5 ′ are flattened. The flattening layer 1 1 ′ is formed by forming a photoresist mask on the spring portion 3 c and the electrical contacts 5, 5, and forming a Cu film by a highly directional sputtering method using an ion beam sputtering method. It may be formed by lift-off by removing the photoresist mask. As another method of forming the flattening layer, a method of applying a photoresist film and then removing the photoresist film in the portions of the spring portions 3c and the electrical contacts 5, 5 'is possible. In any case, The planarization layer 11 'is finally removed together with the sacrificial layer 10 and the planarization layer 11.
つぎに、 図 4 eに示すように、 可動部 3 aを形成する。 可動部 3 aは、 可動部 材料の膜をスパッタにより形成した後に、 公知のフォトリソグラフィ技術により パターニングを行うことで形成する。 また、 予めフォ トレジストマスクを平坦ィ匕 層 1 1 ' 上に形成した後に可動部材料の膜を形成し、 リフトオフにより可動部の 形状を形成するようにしても良い。 可動部 3 aの厚さとしては 1 inである。 可 動部 3 aの厚さは、 0. 1 μ mから 100 μ mで調整できる。 より好ましくは 0 , 5 μ m¾、ら 1 0 /z mである。 Next, as shown in FIG. 4e, the movable portion 3a is formed. The movable section 3a is formed by forming a film of the movable section material by sputtering and then performing patterning by a known photolithography technique. Alternatively, after forming a photoresist mask on the flattening layer 11 'in advance, a film of the movable portion material may be formed, and the shape of the movable portion may be formed by lift-off. The thickness of the movable part 3a is 1 inch. The thickness of the movable part 3a can be adjusted from 0.1 μm to 100 μm. More preferably, it is 0,5 μm¾ and 10 / zm.
可動部 3 aに用いる材料は、 磁性体を有するものとする。 可動部 3 aに用いる 磁性体としては、 軟磁性体を使用することができる。 軟磁性体としては、 N i - F e合金、 C o— N i _F e合金、 F e— T a— Nなどの F e系微結晶合金、 C o-Ta-Z rなどの C o系非晶質合金、 軟鉄などが適当である。 The material used for the movable portion 3a has a magnetic material. As the magnetic material used for the movable portion 3a, a soft magnetic material can be used. Soft magnetic materials include Fe-based microcrystalline alloys such as Ni-Fe alloy, Co-Ni-Fe alloy, Fe-Ta-N, and Co-based materials such as Co-Ta-Zr. Amorphous alloy, soft iron, etc. are suitable.
また、 可動部 3 aの磁性体としては、 残留磁化を形成しやすい磁性体を使用す ることができる。 残留磁化を形成しやすい磁性体としては、 。0—〇 1—卩 1系 合金、 じ 0—( ]:—丁&系合金、 Sm— C o系合金、 Nd— F e—B系合金、 F e—A 1— N i _C o系合金、 F e_C r— C o系合金、 C o—F e— V系合金、 Cu-N i一 F e系合金などが適当である。 残留磁化を形成しやすい磁性体によ り構成された可動部 3 aを、 図 4 eの左右方向に着磁し、 例えば、 左側を N極、 右側を S極とする。 Further, as the magnetic material of the movable portion 3a, a magnetic material that easily forms residual magnetization can be used. Examples of the magnetic material that easily forms remanent magnetization include: 0—〇 1—curan 1 alloy, J 0— (): — Cho alloy, Sm—Co alloy, Nd—Fe—B alloy, Fe—A 1—N i _Co alloy , Fe_Cr-Co alloy, Co-Fe-V alloy, Cu-Ni-Fe alloy, etc. Movable made of magnetic material that easily forms remanent magnetization The portion 3a is magnetized in the left-right direction in FIG. 4e, for example, the left side is an N pole, and the right side is an S pole.
最後に、 犠牲層 1 0および平坦化層 1 1, 1 1 ' を除去することで、 図 4 f に 示すように、 支持部 3 b上にばね部 3 cを介して可動部 3 aが形成された状態が 得られる。 犠牲層 1 0および平坦化層 1 1, 1 1 ' が Cuの場合、 ケミカルエツ チングにより除去する。 また、 犠牲層 10および平坦化層 1 1, 1 1' がフォト レジストの場合、 酸素アツシングで除去することができる。 以上の工程により、 図 1 a, 図 1 bに示したスィツチング素子を形成することができる。 Finally, by removing the sacrificial layer 10 and the flattening layers 11 and 11 ', a movable part 3a is formed on the support part 3b via the spring part 3c as shown in Fig. 4f. The obtained state is obtained. When the sacrificial layer 10 and the planarizing layers 11 and 11 ′ are made of Cu, they are removed by chemical etching. When the sacrificial layer 10 and the planarizing layers 11 and 11 ′ are photoresists, they can be removed by oxygen asshing. Through the above steps, the switching element shown in FIGS. 1A and 1B can be formed.
<実施例 2 > <Example 2>
つぎに、 本発明の他の形態につて説明する。 図 5 aは、 本実施例におけるスィ ツチング素子の構成例を示す平面図であり、 図 5 bは断面図である。 このスイツ
チング素子は、 まず、 基体 1 1 a上に、 下部磁気ヨーク 1 2 aを配置し、 さらに、 薄膜コイル 1 2 cおよび上部磁気ヨーク 1 2 bを備えている。 薄膜コイル 12 c の卷線中心部において、 上部磁気ヨーク 1 2 bが薄膜コイルと交差する。 言い換 えると、 薄膜コイル 12 cの巻線中心部を、 上部磁気ヨーク 12 bが貫通してい る。 Next, another embodiment of the present invention will be described. FIG. 5A is a plan view showing a configuration example of the switching element in the present embodiment, and FIG. 5B is a cross-sectional view. This sweet The chucking element has a lower magnetic yoke 12a disposed on a base 11a, and further includes a thin-film coil 12c and an upper magnetic yoke 12b. At the center of the winding of the thin film coil 12c, the upper magnetic yoke 12b crosses the thin film coil. In other words, the upper magnetic yoke 12b passes through the center of the winding of the thin-film coil 12c.
上部磁気ヨーク 1 2 bと下部磁気ヨーク 12 aとは、 磁気的に接続している。 薄膜コイル 1 2 cに電流を流すことで磁気ヨークは磁化し、 N (S) 、 S (N) の磁極を形成する。 下部磁気ヨーク 1 2 aは、 面内で十分大きく形成することが できるので、 反磁界を低減でき、 少ないコイル電流でも磁気ヨークは磁化しやす い構造となっている。 下部磁気ヨーク 12 aは、 最大では基体 1 1 a端まで拡大 できる。 また、 接続部 1 2 dは、 上部磁気ヨーク 1 2 bと同様の磁性体で形成さ れている。 The upper magnetic yoke 12b and the lower magnetic yoke 12a are magnetically connected. When a current flows through the thin film coil 12c, the magnetic yoke is magnetized to form N (S) and S (N) magnetic poles. Since the lower magnetic yoke 12a can be formed sufficiently large in the plane, the demagnetizing field can be reduced, and the magnetic yoke is easily magnetized even with a small coil current. The lower magnetic yoke 12a can be expanded up to the end of the base 11a. The connection portion 12d is formed of the same magnetic material as the upper magnetic yoke 12b.
上部磁気ヨーク 1 2 bは、 膜厚 100 μmのN i一 F .e合金から構成されたも のであり、 電気めつき法により形成することができる。 上部磁気ヨーク 12 bは、 飽和磁化が大きく透磁率の高い材料から構成すればよく、 C o_N i _F e系合 金、 F e— T a— Nなどの F e系微結晶合金、 C o— T a— Z rなどの C o系非 晶質合金、 軟鉄などを用いればよい。 これら材料の膜形成方法としては、 電気め つき法の他にも、 スパッタ法、 蒸着法などを使用することができる。 上部磁気ョ ーク 1 2 bの月莫厚としては、 0. 1 μ mから 200 m、 より好ましくは Ι μπι から 1 00 μ mである。 The upper magnetic yoke 12b is made of a Ni-Fe alloy having a thickness of 100 µm, and can be formed by an electroplating method. The upper magnetic yoke 12b may be made of a material having high saturation magnetization and high magnetic permeability, such as a Co-Ni-Fe-based alloy, an Fe-based microcrystalline alloy such as Fe-Ta-N, or a Co- A Co-based amorphous alloy such as Ta—Zr or soft iron may be used. As a method for forming a film of these materials, a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method. The monthly thickness of the upper magnetic yoke 12b is 0.1 μm to 200 μm, more preferably Ιμπι to 100 μm.
下部磁気ヨーク 1 2 aは、 軟磁性材料から構成すればよい。 具体的には、 飽和 磁化が大きく透磁率の高い材料であれば良く、 じ 0_^[ 1—? 6系合金、 F e— Ta— Nなどの F e系微結晶合金、 C o— Ta— Z rなどの C o系非晶質合金、 軟鉄などを用いるようにすればよい。 これら材料の膜形成方法としては、 電気め つき法の他にも、 スパッタ法、 蒸着法などを使用することができる。 下部磁気ョ ーク 2 aの膜厚としては、 0. 1 μπιから 500 im、 より好ましくは 1 μ mか ら 200 mである。 The lower magnetic yoke 12a may be made of a soft magnetic material. Specifically, any material having a high saturation magnetization and a high magnetic permeability may be used. A 6-system alloy, a Fe-based microcrystalline alloy such as Fe—Ta—N, a Co-based amorphous alloy such as Co—Ta—Zr, or a soft iron may be used. As a method for forming a film of these materials, a sputtering method, an evaporation method, or the like can be used in addition to the electric plating method. The film thickness of the lower magnetic yoke 2a is 0.1 μπι to 500 im, more preferably 1 μm to 200 m.
これら下部磁気ヨーク 1 2 a , 上部磁気ヨーク 1 2 b, 薄膜コイル 1 2 c, お よび接続部 1 2 dからなる薄膜電磁石は、 基体 1 1 a上において保護層 1 1 に
よって平坦ィ匕され、 磁極となる上部磁気ヨーク 12 bが平坦面に露出した状態と なっている。 保護増 1 l b上には、 電気接点 14が配設され、 また、 接続部 1 2 dに接続して形成された支持部 1 3 d上に、 絶縁膜 1 3 bを介して固定されたば ね部 1 3 cを介して可動部 13 aが固定されている。 また、 可動部 13 aには、 電気接点 14に対向する位置に電気接点 1 5が設けられている。 The thin-film electromagnet including the lower magnetic yoke 12a, the upper magnetic yoke 12b, the thin-film coil 12c, and the connection portion 12d is applied to the protective layer 11 on the base 11a. Therefore, the upper magnetic yoke 12b, which is flattened and becomes a magnetic pole, is exposed on the flat surface. An electrical contact 14 is provided on 1 lb of the protection, and is fixed via an insulating film 13 b on a support 13 d formed by connecting to the connection 12 d. The movable portion 13a is fixed via the spring portion 13c. The movable part 13 a is provided with an electric contact 15 at a position facing the electric contact 14.
ばね部 1 3 cは、 図 2 aに示すように、 1つ以上の平面と、 この平面と所定の 角度をなして連続した別の 1つ以上の平面とからなる薄膜構造とする。 この所定 の角度としては、 例えば、 略 90° であればよい。 このように構成することで前 述した図 1 1に示したような、 ばね部の湾曲が抑制される。 ばね部 31 cの構造 としては、 図 2 aに示す構造のみならず、 図 2 b, 図 2 c, 図 2 d, 図 2 eに示 す構造でも有効である。 ところで、 可動部 1 3 aと基体 1 1の間には、 接続部 1 3 dがない状態としても良い。 接続部 1 3 dは、 上部磁気ヨーク 1 2 bと同様の 磁性体で形成することができる。 As shown in FIG. 2A, the spring portion 13c has a thin film structure composed of one or more planes and another one or more planes continuous with this plane at a predetermined angle. The predetermined angle may be, for example, approximately 90 °. With this configuration, the bending of the spring portion as shown in FIG. 11 described above is suppressed. As the structure of the spring portion 31c, not only the structure shown in FIG. 2A but also the structures shown in FIGS. 2B, 2C, 2D, and 2E are effective. By the way, there may be no connection part 13d between the movable part 13a and the base body 11. The connection portion 13d can be formed of the same magnetic material as the upper magnetic yoke 12b.
可動部 1 3 aを磁性体とすることで、 可動部 13 aの端部と、 上部磁気ヨーク 12 b上面との間に電磁力が働く。 可動部 1 3 aの磁性体としては、 軟磁性体を 使用することができる。 軟磁性体としては、 N i _F e合金、 C o— N i— F e 合金、 F e—T a— Nなどの F e系微結晶合金、 C o— T a _ Z rなどの C o系 非晶質合金、 軟鉄などが適当である。 薄膜コイル 1 2 cに電流を流すことによつ て、 上部磁気ヨーク 1 2 bに磁束が発生し、 上部磁気ヨーク 12 b側に可動部 1 3 aが引き寄せられる。 これによつて電気接点 14と電気接点 1 5とが接触しス ィツチングが行われる。 By making the movable portion 13a a magnetic material, an electromagnetic force acts between the end of the movable portion 13a and the upper surface of the upper magnetic yoke 12b. As the magnetic material of the movable portion 13a, a soft magnetic material can be used. Soft magnetic materials include Fe microcrystalline alloys such as Ni_Fe alloy, Co—Ni—Fe alloy, Fe—Ta—N, and Co such as Co—Ta—Zr. Amorphous alloys, soft iron, etc. are suitable. By passing a current through the thin-film coil 12c, a magnetic flux is generated in the upper magnetic yoke 12b, and the movable portion 13a is attracted to the upper magnetic yoke 12b. As a result, the electrical contact 14 and the electrical contact 15 come into contact with each other and switching is performed.
また、 可動部 1 3 aの磁性体としては、 残留磁化を形成しやすい磁性体を使用 することができる。 残留磁化を形成しやすい磁性体としては、 C o— C r—P t 系合金、 。 0—じ 1:ー丁&系合金、 Sm— C o系合金、 Nd— F e_B系合金、 F e— A 1—N i—C 0系合金、 F e_C r _C o系合金、 Co— F e—V系合 金、 Cu— N i— F e系合金などが適当である。 Further, as the magnetic material of the movable portion 13a, a magnetic material that easily forms residual magnetization can be used. Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys. 0- J 1: Alloy and alloy, Sm-Co alloy, Nd-Fe-B alloy, Fe-A1-Ni-C0 alloy, Fe_Cr-Co alloy, Co-F e-V alloys, Cu-Ni-Fe alloys, etc. are suitable.
残留磁化を形成しやすい磁性体により構成された可動部 13 aの動作は、 つぎ に示すものとなる。 可動部 13 aを、 図 5 aの左右方向に着磁し、 例えば、 左側 を N極、 右側を S極とする。 この状態で、 上部磁気ヨーク 12 b表面を N極、 あ
るいは S極となるよう動作させる。 これにより、 例えば、 N極とした場合は、 上 部磁気ヨーク 1 2 bと可動部 13 a右端との間には引力が働き、 可動部 1 3 a右 端は上部磁気ヨーク 1 2 b側に倒れ、 電気接点がオンとなる。 The operation of the movable portion 13a made of a magnetic material that easily forms residual magnetization is as follows. The movable portion 13a is magnetized in the left-right direction in FIG. 5a. For example, the left side is an N pole, and the right side is an S pole. In this state, the surface of the upper magnetic yoke 12 b is Or operate to be S pole. Thus, for example, in the case of an N pole, an attractive force acts between the upper magnetic yoke 12b and the right end of the movable portion 13a, and the right end of the movable portion 13a faces the upper magnetic yoke 12b. It falls down and the electrical contacts turn on.
この状態でコイル電流を切っても、 可動部 1 3 aの残留磁化によって、 上部磁 気ヨーク 1 2 bの磁極と可動部 13 aとの間には引力が働いているので、 可動部 13 aは倒れたままとなり、 電気接点がオンの状態が保たれる。 この状態で、 上 部磁気ヨーク 1 2 b表面を S極とすると、 今度は上部磁気ヨーク 12 bと可動部 13 aとの間には反発力が働き、 可動部 1 3 aは元に戻って、 電気接点がオフと なる。 なお、 上述したの磁性体を、 部分的に可動部 1 3 aに適用することも可能 である。 Even if the coil current is turned off in this state, an attractive force acts between the magnetic pole of the upper magnetic yoke 12b and the movable part 13a due to the residual magnetization of the movable part 13a. Remains down and the electrical contacts remain on. In this state, assuming that the surface of the upper magnetic yoke 1 2 b is the S pole, a repulsive force acts between the upper magnetic yoke 12 b and the movable portion 13 a, and the movable portion 13 a returns to its original position. The electrical contacts are turned off. Note that the above-described magnetic material can be partially applied to the movable portion 13a.
く実施例 3 > Example 3>
つぎに、 本発明の他の形態について説明する。 図 6 aは、 本実施例におけるス イッチング素子の構成例を示す平面図であり、 図 6 bは断面図である。 このスィ ツチング素子は、 まず、 基板 1 a上に下部磁気ヨーク 2 a, 2 a' を備え、 薄膜 コイル 2 c, 2 c ' および上部磁気ヨーク 2 b, 2 b' を備える。 また、 薄膜コ ィル 2 c 2 c, の卷線中心部において、 上部磁気ヨーク 2 b, 2 b ' が薄膜コ ィル 2 c, 2 c, と交差している。 Next, another embodiment of the present invention will be described. FIG. 6A is a plan view illustrating a configuration example of the switching element according to the present embodiment, and FIG. 6B is a cross-sectional view. This switching element includes a lower magnetic yoke 2a, 2a 'on a substrate 1a, a thin-film coil 2c, 2c' and an upper magnetic yoke 2b, 2b '. At the center of the winding of the thin film coil 2c2c, the upper magnetic yokes 2b, 2b 'intersect with the thin film coil 2c, 2c.
また、 上部磁気ヨーク 2 b, 2 b ' と下部磁気ヨーク 2 a, 2 a ' とは磁気的 に接続し、 薄膜コイル 2 c, 2 c ' に電流を流すことでこれら磁気ヨークは磁化 し N, Sの磁極を形成する。 上部磁気ヨーク 2 b, 2 b' 、 下部磁気ヨーク 2 a, The upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected, and when a current flows through the thin-film coils 2c, 2c ', these magnetic yokes are magnetized. , S form a magnetic pole. Upper magnetic yoke 2b, 2b ', lower magnetic yoke 2a,
2 a, 、 および薄膜コイル 2 c, 2 c ' からなる二つの薄膜電磁石は、 基板 1 a 上で保護層 1 bによって平坦化され、 磁極となる上部磁気ヨーク 2 b, 213, カ 平坦面に露出した状態となっている。 The two thin-film electromagnets consisting of 2a,, and the thin-film coils 2c, 2c 'are flattened by the protective layer 1b on the substrate 1a, and the upper magnetic yokes 2b, 213, which become magnetic poles, It is in an exposed state.
また、 図 6のスイッチング素子は、 保護層 l b上に、 光を反射する反射面を備 え、 光を反射するミラーとして機能する可動部 3 aを、 ばね部 3 c, 3 c ' を介 して支持部 3 b, 3 b ' に固定して備えている。 可動部 3 aは、 この両側からば ね部 3 c, 3 c, を介して支持部 3 b, 3 b' に支えられており、 ばね部 3 c, In addition, the switching element in FIG. 6 has a reflective surface for reflecting light on the protective layer lb, and a movable part 3a functioning as a mirror for reflecting light is provided via spring parts 3c and 3c '. And are fixed to the support portions 3b, 3b '. The movable portion 3a is supported from both sides by support portions 3b, 3b 'via spring portions 3c, 3c, and a spring portion 3c, 3b.
3 c ' との接点位置を支点とし、 支点の両側に延在している。 The point of contact with 3 c ′ is a fulcrum, and extends on both sides of the fulcrum.
ばね部 3 c, 3 c ' は、 図 2 aに示すような 1つ以上の平面と、 この平面と所
定の角度をなして連続した別の 1つ以上の平面とからなる薄膜構造部材とする。 また、 この所定の角度が略 9 0 ° であるとする。 こうすることで前述した図 1 1 のような、 ばね部の湾曲が抑制される。 ばね部 3 c, 3 c ' の構造としては、 図 2 aに示す構造に限らず、 図 2 b, 図 2 c , 図 2 d , 図 2 eに示す構造でも有効 である。 The spring portions 3c, 3c 'are composed of one or more planes as shown in FIG. A thin-film structural member consisting of one or more other continuous planes at a fixed angle. It is also assumed that the predetermined angle is approximately 90 °. By doing so, the bending of the spring portion as shown in FIG. 11 described above is suppressed. The structure of the spring portions 3c and 3c 'is not limited to the structure shown in FIG. 2a, but is also effective in the structures shown in FIGS. 2b, 2c, 2d and 2e.
また、 可動部 3 aの表面は、 光を反射するために適した材料が被覆されている。 具体的には、 可動部 3 aの表面全体、 あるいは少なくとも光があたる領域に、 金 あるいは銀の薄膜が被覆されている。 金あるいは銀の薄膜は、 スパッタ法、 ある いは蒸着法で形成すればよい。 ここで、 可動部 3 aは、 図 7 a, 図 7 b, 図 7 c , 図 7 dに示すような、 1つ以上の平面と、 この平面と所定の角度をなして連続し た別の 1つ以上の平面とからなる薄膜構造部材とする。 また、 この所定の角度が 略 9 0 ° であるとする。 このように構成することで、 図 1 2に示すような、 ミラ 一部の湾曲が抑制される。 The surface of the movable part 3a is coated with a material suitable for reflecting light. Specifically, the entire surface of the movable portion 3a, or at least a region to which light is applied, is coated with a thin film of gold or silver. The gold or silver thin film may be formed by a sputtering method or a vapor deposition method. Here, the movable part 3a is composed of one or more planes as shown in FIG. 7a, FIG. 7b, FIG. 7c, and FIG. A thin-film structural member composed of one or more flat surfaces. It is also assumed that the predetermined angle is approximately 90 °. With this configuration, the curvature of a part of the mirror as shown in FIG. 12 is suppressed.
なお、 可動部 3 aは、 図 7 eに示すように、 1つ以上の平面とこの平面と例え ば 9 0 ° をなして連続した別の曲面とからなる薄膜構造部材とするようにしても 良い。 このような構造としても、 図 1 2に示したようなミラー部の湾曲が抑制さ れる。 これは、 ばね部についても同様であり、 これらが、 1つ以上の面とこの面 と所定の角度をなして連続した別の 1つ以上の面とを備えた薄膜から構成された 薄膜構造部材から構成されていれば、 上述した湾曲などを抑制できるようになる。 以下、 可動部 3 aの製造方法について、 図 8を用いて説明する。 なお、 図 8で は、 基台となる部分を省略している。 まず、 図 8 aに示すように、 図示しない基 台部分上に犠牲層 2 1を形成した後、 図 8 bに示すように、 所定領域に開口部を 備えたマスクパターン 2 2を形成する。 次いで、 図 8 cに示すように、 マスクパ ターン 2 2を用いて犠牲膜 2 1を選択的にエッチングし、 犠牲膜 2 1に凹部を形 成する。 As shown in FIG. 7e, the movable portion 3a may be a thin film structural member composed of one or more planes and another curved surface continuous with this plane at 90 °, for example. good. Even with such a structure, the bending of the mirror section as shown in FIG. 12 is suppressed. The same applies to the spring portion, which is a thin film structural member composed of a thin film having one or more surfaces and another one or more surfaces continuous with this surface at a predetermined angle. , The above-described bending and the like can be suppressed. Hereinafter, a method of manufacturing the movable portion 3a will be described with reference to FIG. In FIG. 8, the base part is omitted. First, as shown in FIG. 8A, after forming a sacrificial layer 21 on a base portion (not shown), as shown in FIG. 8B, a mask pattern 22 having an opening in a predetermined region is formed. Next, as shown in FIG. 8C, the sacrificial film 21 is selectively etched using the mask pattern 22 to form a concave portion in the sacrificial film 21.
マスクパターン 2 2を除去した後、 図 8 dに示すように、 上記凹部に沿うよう に、 犠牲膜 2 1上に可動部となる薄膜 2 3を形成した後、 図 8 eに示すように、 薄膜 2 3上にマスクパターン 2 4を形成する。 次いで、 マスクパターン 2 4をマ スクとして薄膜 2 3を選択的にエッチングし、 図 8 f に示すように、 可動部 3 a
を形成する。 この後、 マスクパターン 24および犠牲膜 21を除去することで、 図 8 gに示すように、 可動部 3 aを得る。 After removing the mask pattern 22, as shown in FIG. 8 d, a thin film 23 serving as a movable portion is formed on the sacrificial film 21 along the concave portion, and as shown in FIG. 8 e, A mask pattern 24 is formed on the thin film 23. Next, the thin film 23 is selectively etched using the mask pattern 24 as a mask, and as shown in FIG. To form Thereafter, by removing the mask pattern 24 and the sacrificial film 21, the movable portion 3a is obtained as shown in FIG. 8g.
なお、 薄膜 23の形成は、 スパッタ法ゃ真空蒸着法などの気相成長法を用いれ ばよい。 また、 めっき法などの液相成長法によって上記薄膜を形成するようにし ても良い。 The thin film 23 may be formed by a vapor deposition method such as a sputtering method and a vacuum evaporation method. Further, the thin film may be formed by a liquid phase growth method such as a plating method.
つぎに、 可動部 3 aの動作について説明する。 可動部 3 aを磁性体とすること で、 可動部端部と、 薄膜電磁石 2、 2, の磁極である上部磁気ョ一ク 2 b, 2 b ' 上面との間に、 電磁力が働く構成とすることができる。 可動部 3 aは、 軟磁性 体から構成すればよい。 角部 3 aを構成する軟磁性体としては、 N i _F e合金、 C o— N i— F e合金、 F e— T a— Nなどの F e系微結晶合金、 Co—Ta— Z rなどの C o系非晶質合金、 軟鉄などが適当である。 Next, the operation of the movable section 3a will be described. By using a magnetic material for the movable part 3a, an electromagnetic force acts between the end of the movable part and the upper surface of the upper magnetic contacts 2b, 2b ', which are the magnetic poles of the thin film electromagnets 2,2. It can be. The movable portion 3a may be made of a soft magnetic material. Soft magnetic materials constituting the corner 3a include Fe microcrystalline alloys such as Ni_Fe alloy, Co—Ni—Fe alloy, Fe—Ta—N, and Co—Ta—Z. Suitable are Co-based amorphous alloys such as r, and soft iron.
薄膜コイル 2 c, 2 c ' に交互に電流を流すことによって、 上部磁気ヨーク 2 b, 2 b ' に互に磁束を発生させることで、 磁束の発生している上部磁気ヨーク 側に可動部 3 aを引き寄せることができる。 このとき、 薄膜コイル 2 c, 2 c ' の電流量を調節することによって、 可動部 3 aの傾斜角度を制御することができ る。 従って、 図 6のスィツチング素子によれば、 アナログ制御の可能な光スィッ チを実現することができる。 By passing current alternately through the thin-film coils 2 c and 2 c ′, magnetic flux is generated between the upper magnetic yokes 2 b and 2 b ′, and the movable part 3 is moved to the upper magnetic yoke side where the magnetic flux is generated. a can be drawn. At this time, the inclination angle of the movable portion 3a can be controlled by adjusting the current amount of the thin film coils 2c and 2c '. Therefore, according to the switching element of FIG. 6, an optical switch capable of analog control can be realized.
また、 可動部 3 aは、 残留磁化を形成しやすい磁性体から構成するようにして も良い。 この、 残留磁化を形成しやすい磁性体としては、 C o— C r— P t系合 金、 C o-C r -Ta系合金、 Sm— C o系合金、 N d— F e— B系合金、 F e 一 A 1— N i— C 0系合金、 F e—C r—C o系合金、 Co— F e— V系合金、 C u -N i -F e系合金などが適当である。 Further, the movable portion 3a may be made of a magnetic material that easily forms residual magnetization. Magnetic materials that easily form remanent magnetization include Co—Cr—Pt alloys, CoCr—Ta alloys, Sm—Co alloys, Nd—Fe—B alloys, Fe-A1-Ni-Co-based alloys, Fe-Cr-Co-based alloys, Co-Fe-V-based alloys, and Cu-Ni-Fe-based alloys are suitable.
残留磁化を形成しやすい磁性体により可動部 3 aを構成した場合、 以下に示す ように動作させることができる。 まず、 図 6の左右方向に着磁し、 例えば、 左側 を N極、 右側を S極とする。 この状態で、 左右の上部磁気ヨーク 2 b, 2 b ' 表 面を同時に N極、 あるいは S極となるよう動作させる。 これにより、 例えば、 N 極とした場合は、 右側の上部磁気ヨーク 2 b, と可動部 3 aの間には引力、 左側 の上部磁気ヨーク 2 bと可動部の間には反発力が働き、 可動部 3 aは右側に倒れ る。 この状態で、 薄膜コイル 2 c, 2 c ' の電流量を調節することによって、 可
動部 3 aの傾斜角度を制御することができる。 すなわち、 ァ i1口グ制御の可能な 光スィッチが実現する。 When the movable portion 3a is made of a magnetic material that easily forms residual magnetization, it can be operated as described below. First, magnetization is performed in the left-right direction in FIG. 6, for example, the left side is an N pole, and the right side is an S pole. In this state, the left and right upper magnetic yokes 2b, 2b 'are operated so that their surfaces become N pole or S pole at the same time. Thus, for example, in the case of N poles, an attractive force acts between the upper magnetic yoke 2 b on the right and the movable part 3 a, and a repulsive force acts between the upper magnetic yoke 2 b on the left and the movable part, The movable part 3a falls to the right. In this state, by adjusting the current amount of the thin film coils 2 c and 2 c ′, The inclination angle of the moving part 3a can be controlled. In other words, an optical switch capable of controlling a single port is realized.
また、 可動部 3 aを右側に倒してこの端部を上部磁気ヨーク 2 b ' に接触させ た状態で、 薄膜コイル 2 c , 2 c ' に対する電流を遮断しても、 可動部 3 aの残 留磁化によって、 右側の上部磁気ヨーク 2 b ' の磁極と可動部 3 aの間には引力 が働いているので、 可動部 3 aは右側に倒れたままとなる。 つぎに、 左右の上部 磁気ヨーク 2 b , 2 b ' 表面を同時に S極とすると、 今度は右側の上部磁気ョー ク 2 b ' と可動部 3 aの間には反発力、 左側の上部磁気ヨーク 2 bと可動部 3 a の間には引力が働き、 可動部 3 aには左側に倒れる。 Further, even if the current to the thin-film coils 2 c and 2 c ′ is cut off with the movable portion 3 a tilted to the right and this end contacting the upper magnetic yoke 2 b ′, the movable portion 3 a remains. Due to demagnetization, an attractive force acts between the magnetic pole of the upper magnetic yoke 2 b ′ on the right side and the movable part 3 a, so that the movable part 3 a remains to the right. Next, assuming that the left and right upper magnetic yokes 2 b, 2 b ′ have the S-pole simultaneously, this time, the repulsive force is applied between the right upper magnetic yoke 2 b ′ and the movable part 3 a, and the left upper magnetic yoke An attractive force acts between 2b and the movable part 3a, and the movable part 3a falls to the left.
この状態で、 図 6の左右方向に着磁し、 左側を N極、 右側を S極とした状態で、 左右の薄膜電磁石を交互に動作させ、 可動体 3 aとの間の力を常に反発力とする ことで、 安定で大きな振れ角度が得られるアナログ制御が実現する。 磁極間の引 力を使った場合、 ある程度磁極間隔が狭くなると、 両磁極間の引力が急激に増大 し、 可動部の角度制御ができなくなる。 これに対して、 磁極間の反発力を使うと この問題を解決することができる。 In this state, the left and right thin-film electromagnets are alternately operated while the left and right poles are magnetized in the left and right directions in Fig. 6 with the N pole on the left side and the S pole on the right side. By using force, analog control that achieves a stable and large swing angle is realized. In the case of using the attractive force between the magnetic poles, if the magnetic pole interval is narrowed to some extent, the attractive force between the two magnetic poles increases rapidly, and it becomes impossible to control the angle of the movable part. On the other hand, using repulsive force between magnetic poles can solve this problem.
例えば、 薄膜コイル 2 c , 2 c ' に対する電流を遮断した状態では、 可動部 3 aは、 ばね部 3 c , 3 c ' に支えられ水平を保っている。 この状態で、 左側の上 部磁気ヨーク 2 bの上面が N極となるように薄膜コイル 2 cに電流を流す。 この ことにより、 上部磁気ヨーク 2 bと可動部 3 aの左端には反発力が生じ、 可動部 3 aは右側に傾斜して右端が右側の上部磁気ヨーク 2 b ' 上面に接するまで傾斜 する。 For example, in a state where the electric current to the thin film coils 2c and 2c 'is cut off, the movable portion 3a is supported by the spring portions 3c and 3c' and is kept horizontal. In this state, a current is applied to the thin-film coil 2c so that the upper surface of the upper left magnetic yoke 2b becomes the N pole. As a result, a repulsive force is generated at the left ends of the upper magnetic yoke 2b and the movable portion 3a, and the movable portion 3a is inclined rightward and inclined until the right end contacts the upper surface of the right upper magnetic yoke 2b '.
このとき、 可動部 3 aの右端は S極となっており、 可動部 3 a右端と右側の上 部磁気ヨーク 2 b ' の上面が接近すると、 両者の引力が増大する。 ここで、 両者 の引力を打ち消すべく、 右側の上部磁気ヨーク 2 b ' 上面に磁極が発生しないよ うに薄膜コイル 2 c ' の電流を調整する。 これにより、 可動部 3 aの右端が右側 の上部磁気ヨーク 2 b ' 上面に接するまでのアナログ制御が可能である。 At this time, the right end of the movable portion 3a is an S pole, and when the right end of the movable portion 3a and the upper surface of the upper magnetic yoke 2b 'on the right approach, the attractive force of both increases. Here, the current of the thin-film coil 2c 'is adjusted so that no magnetic pole is generated on the upper surface of the upper right magnetic yoke 2b' so as to cancel the attractive force of both. This allows analog control until the right end of the movable portion 3a contacts the upper surface of the right upper magnetic yoke 2b '.
逆に、 右側の上部磁気ヨーク 2 b ' 上面が N極となるように薄膜コイル 2 cに 電流を流すと、 上部磁気ヨーク 2 b ' と可動部 3 aの右端には反発力が生じ、 可 動部 3 aは左側に傾斜して左端が上部磁気ヨーク 2 b上面に接するまで傾斜する。
このとき、 可動部 3 aの左端は N極となっており、 可動部 3 a左端と上部磁気ョ ーク 2 bの上面が接近すると、 両者の引力が増大する。 ここで、 両者の引力を打 ち消すべく、 左側の上部磁気ヨーク 2 b上面に磁極が発生しないように薄膜コィ ル 2 cの電流を調整する。 これにより、 可動部 3 a左端が、 上部磁気ヨーク 2 b 上面に接するまでのアナ口グ制御が可能である。 Conversely, when a current is applied to the thin-film coil 2c so that the upper surface of the upper right magnetic yoke 2b 'on the right side becomes an N pole, a repulsive force is generated between the upper magnetic yoke 2b' and the right end of the movable portion 3a, and The moving part 3a inclines to the left and inclines until the left end contacts the upper surface of the upper magnetic yoke 2b. At this time, the left end of the movable portion 3a is an N pole, and when the left end of the movable portion 3a and the upper surface of the upper magnetic yoke 2b approach, the attractive force of both increases. Here, in order to cancel the attractive force of both, the current of the thin film coil 2c is adjusted so that no magnetic pole is generated on the upper surface of the upper left magnetic yoke 2b. Thus, it is possible to perform analog aperture control until the left end of the movable portion 3a contacts the upper surface of the upper magnetic yoke 2b.
以上に説明したように、 本実施例におけるスィツチング素子によれば、 安定で 大きな振れ角度が得られるアナログ制御の光スィッチが実現する。 なお、 可動部 3 aとしては、 上記の磁性体を可動部 3 aの部分的に適用することも可能である。 <実施例 4 > As described above, according to the switching element of the present embodiment, an analog controlled optical switch that can obtain a stable and large swing angle is realized. Note that as the movable portion 3a, the above-described magnetic material can be partially applied to the movable portion 3a. <Example 4>
以下、 本発明の他の形態について説明する。 図 9 aは、 この実施例におけるス イッチング素子の構成例を示す平面図であり、 図 9 bは断面図である。 このスィ ツチング素子は、 基板 1 a上に、 下部磁気ヨーク 2 a, 2 a ' を備え、 この上に 薄膜コイル 2 c, 2 c ' および上部磁気ヨーク 2 b, .2 b, を備えている。 薄膜 コイル 2 c, 2 c ' の卷線中心部で、 上部磁気ヨーク 2 b, 2 b ' は薄膜コイル Hereinafter, another embodiment of the present invention will be described. FIG. 9A is a plan view showing a configuration example of the switching element in this embodiment, and FIG. 9B is a cross-sectional view. This switching element has lower magnetic yokes 2a and 2a 'on a substrate 1a, and thin-film coils 2c and 2c' and upper magnetic yokes 2b and .2b on this. . The upper magnetic yokes 2 b and 2 b ′ are at the center of the windings of the thin film coils 2 c and 2 c ′.
2 c 2 c' と交差する。 言い換えると、 薄膜コイル 2 c, 2 c ' の巻線中心部 を、 上部磁気ヨーク 2 b, 2 b, が貫通している。 Intersects 2 c 2 c '. In other words, the upper magnetic yokes 2b, 2b, penetrate the center of the windings of the thin-film coils 2c, 2c '.
上部磁気ヨーク 2 b, 2 b' と下部磁気ヨーク 2 a, 2 a ' とは磁気的に接続 しており、 薄膜コイル 2 c, 2 c ' に電流を流すことで、 これら磁気ヨークは磁 化し、 N、 Sの磁極を形成する。 また、 これら下部磁気ヨーク 2 a , 2 a ' 、 上 部磁気ヨーク 2 b, 2 b' 、 および薄膜コイル 2 c, 2 c ' は、 基板 l a上で保 護層 1 bによって平坦ィ匕され、 磁極となる上部磁気ヨーク 2 b, 2 b' ヽ 保護 層 1 b表面の平坦面に露出している。 The upper magnetic yokes 2b, 2b 'and the lower magnetic yokes 2a, 2a' are magnetically connected, and when a current flows through the thin-film coils 2c, 2c ', these magnetic yokes are magnetized. Form N, S magnetic poles. The lower magnetic yokes 2 a and 2 a ′, the upper magnetic yokes 2 b and 2 b ′, and the thin-film coils 2 c and 2 c ′ are flattened by a protective layer 1 b on the substrate la. Upper magnetic yoke 2 b, 2 b 'な る serving as a magnetic pole ヽ Exposed on the flat surface of protective layer 1 b
また、 図 9 a , 図 9 bのスィツチング素子は、 保護増 1 b上に、 ばね部 3 c, In addition, the switching elements of FIGS. 9a and 9b are provided with a spring part 3c,
3 c ' を介して支持部 3 b, 3 b' に固定した可動構造部 3 aを備えている。 可 動部 3 aは、 この中央部の両側において、 ばね部 3 c, 3 c ' を介して支持部 3 b , 3 b, に支えられており、 ばね部 3 c, 3 c ' との接点位置を支点とし、 支 点の両側に延在している。 また、 可動部 3 aは、 ばね部 3 c, 3 c' を図 2 aに 示すような 1つ以上の平面と、 この平面と所定の角度をなして連続した別の 1つ 以上の平面とからなる薄膜構造部材とする。 また、 この所定の角度が略 90° で
あるとする。 こうすることで前述した図 1 1のような、 ばね部の湾曲が抑制され る。 ばね部 3 c, 3 c ' の構造としては、 図 2 aに示す構造のみならず、 図 2 b, 図 2 c, 図 2 d, 図 2 eに示す構造でも有効である。 It has a movable structure 3a fixed to the supports 3b, 3b 'via 3c'. The movable portion 3a is supported on the support portions 3b, 3b, via spring portions 3c, 3c 'on both sides of the center portion, and contacts the spring portions 3c, 3c'. With the position as a fulcrum, it extends on both sides of the fulcrum. In addition, the movable portion 3a is configured such that the spring portions 3c, 3c 'are formed by one or more planes as shown in FIG. 2a and another one or more planes formed at a predetermined angle with this plane. And a thin film structural member composed of Also, when the predetermined angle is approximately 90 °, Suppose there is. By doing so, the bending of the spring portion as shown in FIG. 11 described above is suppressed. The structure of the spring portions 3c and 3c 'is effective not only in the structure shown in FIG. 2A but also in the structures shown in FIGS. 2B, 2C, 2D and 2E.
加えて、 本実施例のスイッチング素子は、 可動部 3 aの上面に、 光を反射する ためのミラー構造体 9を備えている。 ミラー構造体 9は、 予め形成された犠牲層 上にスパッタ法などでミラー構造体となる金属膜、 あるいは絶縁膜を形成し、 こ れをパターニングすることで作製すればよい。 また、 ミラー構造体 9は、 図 7 a, 図 7 b, 図 7 c, 図 7 d, 図 7 eに示すような 1つ以上の面と、 この面と所定の 角度をなして連続した別の 1つ以上の面とからなる薄膜構造部材とする。 ここで、 上記所定の角度は、 例えば、 略 90° であればよい。 このように構成することで、 図 12に示すような、 ミラー部の湾曲が抑制される。 In addition, the switching element of the present embodiment includes a mirror structure 9 for reflecting light on the upper surface of the movable portion 3a. The mirror structure 9 may be manufactured by forming a metal film or an insulating film to be a mirror structure on a sacrificial layer formed in advance by sputtering or the like, and patterning this. In addition, the mirror structure 9 has one or more surfaces as shown in FIGS. 7a, 7b, 7c, 7d, and 7e, and another surface that is continuous at a predetermined angle to the surfaces. And a thin film structural member comprising at least one surface. Here, the predetermined angle may be, for example, approximately 90 °. With such a configuration, the bending of the mirror section as shown in FIG. 12 is suppressed.
以下、 可動部 3 aの動作について説明する。 可動部 3 aを磁 1"生体とすることで、 可動部端部と、 薄膜電磁石 2、 2' の磁極である上部磁気ヨーク 2 b, 2 b' 上 面との間に電磁力が働く。 なお、 可動部 3 aは、 軟磁性体から構成すればよい。 軟磁性体としては、 ]^ 1ー 6合金、 Co—N i—F e合金、 F e—Ta—^^ どの F e系微結晶合金、 C o—Ta_Z rなどの C o系非晶質合金、 軟鉄などが 適当である。 Hereinafter, the operation of the movable portion 3a will be described. By using the movable part 3a as a magnetic 1 "living body, an electromagnetic force acts between the end of the movable part and the upper surfaces of the upper magnetic yokes 2b and 2b ', which are the magnetic poles of the thin film electromagnets 2 and 2'. The movable portion 3a may be made of a soft magnetic material, such as] ^ 1-6 alloy, Co-Ni-Fe alloy, Fe-Ta-^^, any Fe type. Microcrystalline alloys, Co-based amorphous alloys such as Co-Ta_Zr, and soft iron are suitable.
薄膜コィノレ 2 c, 2 c ' に交互に電流を流すことによって、 上部磁気ヨーク 2 b, 2 b' に互に磁束が発生し、 磁束の発生している上部磁気ヨーク 2 b, 2 b , 側に可動部 3 aが引き寄せられる。 このとき、 薄膜コイル 2 c, 2 c' の電流 量を調節することによって、 可動部 3 aの傾斜角度を制御することができる。 従 つて、 薄膜コイル 2 c, 2 c ' の電流量の制御による、 アナログ制御の可能な光 スィツチが実現する。 By alternately passing a current through the thin film coils 2 c, 2 c ′, magnetic flux is generated mutually in the upper magnetic yokes 2 b, 2 b ′, and the upper magnetic yokes 2 b, 2 b, where the magnetic flux is generated The movable part 3a is drawn to the position. At this time, by adjusting the current amount of the thin-film coils 2c and 2c ', the inclination angle of the movable portion 3a can be controlled. Accordingly, an optical switch capable of analog control is realized by controlling the current amount of the thin-film coils 2c and 2c '.
また、 可動部 3 aは、 残留磁ィ匕を形成しやすい磁性体から構成しても良い。 残 留磁化を形成しやすい磁性体としては、 〇0 _〇 1:ー? 1:系合金、 Co— C r— Ta系合金、 Sm_C o系合金、 Nd— F e—B系合金、 F e—A l—N i—C o系合金、 F e—C r—C o系合金、 〇0— 6 —¥系合金、 Cu— N i—F e 系合金などが適当である。 このように構成したスィツチング素子の動作について 説明すると、 まず、 残留磁化を形成しやすい磁性体により構成した可動部 3 aを、
図 9 a , 図 9 bの左右方向に着磁し、 例えば、 左側を N極、 右側を S極とする。 一方、 左右の上部磁気ヨーク 2 b , 2 b ' 表面を同時に N極、 あるいは S極とな るよう動作させる。 Further, the movable portion 3a may be made of a magnetic material that easily forms a remanent magnet. As a magnetic substance that easily forms residual magnetization, 、 0 _〇 1: ー? 1: Alloy, Co—Cr—Ta alloy, Sm_Co alloy, Nd—Fe—B alloy, Fe—Al—Ni—Co alloy, Fe—Cr—Co Alloys, 〇0-6- ¥ alloys, Cu-Ni-Fe alloys, etc. are suitable. The operation of the switching element configured as described above will be described. First, the movable part 3a made of a magnetic material that easily forms residual magnetization is 9a and 9b are magnetized in the left and right direction. For example, the left side is the N pole, and the right side is the S pole. On the other hand, the surfaces of the left and right upper magnetic yokes 2b, 2b 'are operated so as to be N-pole or S-pole at the same time.
以上のことにより、 例えば、 N極とした場合は、 右側の上部磁気ヨーク 2 b ' と可動部 3 aの間には引力、 左側の上部磁気ヨーク 2 bと可動部 3 aとの間には 反発力が働き、 可動部 3 aは右側に倒れる。 この状態で、 薄膜コイル 2 c, 2 c ' の電流量を調節することによって、 可動部 3 aの傾斜角度を制御することがで きる。 すなわち、 アナログ制御の可能な光スィッチが実現する。 From the above, for example, when the N pole is used, the attractive force is applied between the upper magnetic yoke 2 b ′ on the right and the movable part 3 a, and the attractive force is generated between the upper magnetic yoke 2 b and the movable part 3 a on the left. The repulsive force acts, and the movable part 3a falls to the right. In this state, by adjusting the current amount of the thin-film coils 2c and 2c ', the inclination angle of the movable portion 3a can be controlled. That is, an optical switch capable of analog control is realized.
また、 可動部を右側に倒し、 上部磁気ヨーク 2 b ' に接触させた状態で、 薄膜 コイル 2 c , 2 c ' に対する電流を遮断しても、 可動部 3 aの残留磁化によって、 右側の上部磁気ヨーク 2 b, における磁極と可動部 aの間には引力が働いている ので、 可動部 3 aは右側に倒れたままとなる。 この後、 左右の上部磁気ヨーク 2 b , 2 b ' 表面を同時に S極とすると、 今度は右側の上部磁気ヨーク 2 a ' と可 動部 3 aの間には反発力、 左側の上部磁気ヨーク 2 aと可動部 aの間には引力が 働き、 可動部 aは左側に倒れる。 Further, even if the current to the thin-film coils 2 c and 2 c ′ is cut off while the movable part is tilted to the right and brought into contact with the upper magnetic yoke 2 b ′, the residual magnetization of the movable part 3 a causes Since an attractive force acts between the magnetic poles of the magnetic yokes 2b and 2 and the movable portion a, the movable portion 3a remains to the right. Thereafter, if the surfaces of the left and right upper magnetic yokes 2 b, 2 b ′ are simultaneously S poles, this time, a repulsive force is applied between the right upper magnetic yoke 2 a ′ and the movable part 3 a, and the left upper magnetic yoke An attractive force acts between 2a and movable part a, and movable part a falls to the left.
以上説明したように、 可動部 3 aを図 9 a , 図 9 bの左右方向に着磁し、 左側 を N極、 右側を S極とした状態で、 左右の電磁石 2、 2 ' を交互に動作させ、 可 動体 3 aとの間の力を常に反発力とすることで、 安定で大きな振れ角度が得られ るアナログ制御が実現する。 磁極間の引力を使った場合、 ある程度磁極間隔が狭 くなると、 両磁極間の引力が急激に増大し、 可動部の角度制御ができなくなる。 これに対して、 磁極間の反発力を使うとこの問題を解決することができる。 As described above, the movable part 3a is magnetized in the left and right directions in FIGS. 9a and 9b, and the left and right electromagnets 2 and 2 'are alternately arranged with the left side having the N pole and the right side having the S pole. By operating and always making the force between the movable body 3a and the movable body 3a a repulsive force, analog control that can obtain a stable and large swing angle is realized. When the attractive force between the magnetic poles is used, if the magnetic pole interval is narrowed to some extent, the attractive force between both magnetic poles increases rapidly, and the angle control of the movable part cannot be performed. On the other hand, repulsive force between magnetic poles can solve this problem.
例えば、 薄膜コイル 2 c , 2 c ' に対する電流を遮断した状態では、 可動部 3 aは、 ばね部 3 c, 3 c ' に支えられ水平を保っている。 この状態で、 左側の上 部磁気ヨーク 2 b上面が N極となるように薄膜コイル 2 cに電流を流す。 このこ とにより、 上部磁気ヨーク 2 bと可動部 3 aの左端には反発力が生じ、 可動部 3 aは右側に傾斜し、 可動部 3 aの右端が右側の上部磁気ヨーク 2 b, 上面に接す るまで ί頃斜する。 For example, in a state in which the current to the thin film coils 2 c and 2 c ′ is cut off, the movable portion 3 a is supported by the spring portions 3 c and 3 c ′ and keeps a horizontal position. In this state, a current is supplied to the thin-film coil 2c so that the upper surface of the upper left magnetic yoke 2b becomes the N pole. As a result, a repulsive force is generated between the upper magnetic yoke 2b and the left end of the movable portion 3a, the movable portion 3a is inclined rightward, and the right end of the movable portion 3a is positioned on the right upper magnetic yoke 2b, the upper surface. Slanting until it touches.
このとき、 可動部 3 aの右端は S極となっており、 可動部 3 a右端と右側磁気 ヨーク上面が接近すると、 両者の引力が増大する。 このとき、 両者の引力を打ち
消すべく、 右側の上部磁気ヨーク 2 b ' 上面に磁極が発生しないように薄膜コィ ル 2 c ' の電流を調整する。 これにより、 可動部 3 aの右端が、 右側の上部磁気 ヨーク 2 b, 上面に接するまでのアナログ制御が可能である。 At this time, the right end of the movable portion 3a is an S pole, and when the right end of the movable portion 3a and the upper surface of the right magnetic yoke approach, the attractive force of both increases. At this time, strike both gravitational forces The current of the thin-film coil 2c 'is adjusted so that no magnetic pole is generated on the upper surface of the upper right magnetic yoke 2b'. Thus, analog control is possible until the right end of the movable portion 3a contacts the upper surface of the upper right magnetic yoke 2b.
以上のこととは逆に、 右側の上部磁気ヨーク 2 b, の上面が N極となるように 薄膜コイル 2 c ' に電流を流すと、 上部磁気ヨーク 2 b ' と可動部 3 aの右端に は反発力が生じ、 可動部 3 aは左側に傾斜して左端が左側の上部磁気ヨーク 2 b 上面に接するまで傾斜する。 この状態では、 可動部 3 aの左端は N極となってお り、 可動部 3 a左端と左側磁気ヨーク上面が接近すると、 両者の引力が増大する。 ここで、 両者の引力を打ち消すべく、 左側の上部磁気ヨーク 2 b上面に磁極が発 生しないように薄膜コイル 2 cの電流を調整すことで、 可動部 3 a左端が左側の 上部磁気ヨーク 2 b上面に接するまでのアナログ制御が可能となる。 Contrary to the above, when a current is applied to the thin-film coil 2c 'so that the upper surface of the upper right magnetic yoke 2b, on the right side becomes an N pole, the upper magnetic yoke 2b' and the right end of the movable portion 3a A repulsive force is generated, and the movable portion 3a inclines to the left and inclines until the left end contacts the upper surface of the upper left magnetic yoke 2b. In this state, the left end of the movable portion 3a has an N pole, and when the left end of the movable portion 3a and the upper surface of the left magnetic yoke approach each other, the attractive force of both increases. Here, in order to cancel the attractive force of both, the current of the thin-film coil 2c is adjusted so that no magnetic pole is generated on the upper surface of the upper magnetic yoke 2b on the left side. bAnalog control until touching the top surface is possible.
以上説明したように、 本実施例のスィツチング素子によれば、 安定で大きな振 れ角度が得られるアナログ制御の光スィツチが実現する。 なお、 可動部 3 aとし ては、 上記の磁性体を可動部 3 aの部分的に適用することも可能である。 As described above, according to the switching element of this embodiment, an analog-controlled optical switch that can obtain a stable and large swing angle is realized. In addition, as the movable portion 3a, the above-described magnetic material can be partially applied to the movable portion 3a.
以上説明したように、 本実施例のスイッチング素子によれば、 安定で大きな振 れ角度が得られるアナログ制御の光スィツチが実現する。 なお、 可動部 3 aとし ては、 上記の磁性体を可動部 3 aの部分的に適用することも可能である。 As described above, according to the switching element of the present embodiment, an optical switch of analog control that can obtain a stable and large swing angle is realized. In addition, as the movable portion 3a, the above-described magnetic material can be partially applied to the movable portion 3a.
以上説明したように、 本発明によれば、 ヒンジバネゃミラーなどの可動部にお ける反りの発生を抑制し、 信頼性の高いスィツチング動作を実現できるというす ぐれた効果が得られる。 As described above, according to the present invention, an excellent effect of suppressing the occurrence of warpage in a movable portion such as a hinge spring / mirror and realizing a highly reliable switching operation can be obtained.
以上のように、 本発明に係る薄膜構造部材とその製造方法およびこれを用いた スィツチング素子は、 直流からギガへルツ以上の幅広い周波数の信号をオン Zォ フすることが可能で、 波長変換可能な半導体レーザや光学フィルタ、 光スィッチ などに適用可能なマイクロ 'エレク トロニクス ' メカニカル · システム (ME M S ) スィツチに適している。
As described above, the thin film structural member according to the present invention, the method of manufacturing the same, and the switching element using the same are capable of turning on / off a signal having a wide frequency range from DC to gigahertz or more, and capable of wavelength conversion. It is suitable for micro 'electronics' mechanical system (MEMS) switches applicable to various semiconductor lasers, optical filters and optical switches.
Claims
請 求 の 範 囲 1 . 1つ以上の面とこの面と所定の角度をなして連続した別の 1つ以上の面と を備えた薄膜から構成されたことを特徴とする薄膜構造部材。 Scope of Claim 1. A thin film structural member comprising a thin film having at least one surface and at least one other surface continuous with the surface at a predetermined angle.
2 . 請求の範囲第 1項に記載の薄膜構造部材において、 2. The thin-film structural member according to claim 1,
前記 1つ以上の面と前記別の 1つ以上の面とは、 前記薄膜により一体に構成さ れたものであることを特徴とする薄膜構造部材。 The thin film structural member, wherein the one or more surfaces and the another one or more surfaces are integrally formed by the thin film.
3 . 請求の範囲第 1項に記載の薄膜構造部材において、 3. The thin-film structural member according to claim 1,
前記所定の角度が略 9 0 ° であることを特徴とする薄膜構造部材。 The thin film structural member, wherein the predetermined angle is approximately 90 °.
4 . 請求の範囲第 2項に記載の薄膜構造部材において、 4. The thin-film structural member according to claim 2,
前記所定の角度が略 9 0 ° であることを特徴とする薄膜構造部材。 The thin film structural member, wherein the predetermined angle is approximately 90 °.
5 . 請求の範囲第 1項に記載の薄膜構造部材において、 5. The thin film structural member according to claim 1,
前記薄膜構造部材が、 ねじりばねとして機能することを特徴とする薄膜構造部 材。 The thin film structural member, wherein the thin film structural member functions as a torsion spring.
6 . 請求の範囲第 2項に記載の薄膜構造部材において、 6. The thin-film structural member according to claim 2,
前記薄膜構造部材が、 ねじりばねとして機能することを特徴とする薄膜構造部 材。 The thin film structural member, wherein the thin film structural member functions as a torsion spring.
7 . 請求の範囲第 1項に記載の薄膜構造部材において、 7. The thin film structural member according to claim 1,
前記薄膜構造部材は、 光を反射する反射面を備えたことを特徴とする薄膜構造 部材。 The thin film structural member is provided with a reflecting surface for reflecting light.
8 . 請求の範囲第 2項に記載の薄膜構造部材において、 8. The thin film structural member according to claim 2,
前記薄膜構造部材は、 光を反射する反射面を備えたことを特徴とする薄膜構造 部材。 The thin film structural member is provided with a reflecting surface for reflecting light.
9 . 請求の範囲第 1項に記載の薄膜構造部材において、 9. The thin-film structural member according to claim 1,
前記薄膜は、 気相成長法もしくは液相成長法の何れかにより形成されたもので あることを特徴とする薄膜構造部材。 The thin film structural member, wherein the thin film is formed by any one of a vapor phase growth method and a liquid phase growth method.
1 0 . 請求の範囲第 2項に記載の薄膜構造部材において、 10. The thin film structural member according to claim 2,
前記薄膜は、 気相成長法もしくは液相成長法の何れかにより形成されたもので
あることを特徴とする薄膜構造部材。 The thin film is formed by either a vapor phase growth method or a liquid phase growth method. A thin film structural member, characterized in that:
1 1 . 請求の範囲第 9項に記載の薄膜構造部材において、 11. The thin-film structural member according to claim 9,
前記気相成長法は、 スパッタ法, 真空蒸着法, 化学的気相成長法の何れかであ ることを特徴とする薄膜構造部材。 The thin film structural member, wherein the vapor deposition method is any one of a sputtering method, a vacuum deposition method, and a chemical vapor deposition method.
1 2 . 請求の範囲第 9項に記載の薄膜構造部材において、 12. The thin-film structural member according to claim 9,
前記液相成長法は、 めっき法であることを特徴とする薄膜構造部材。 The said liquid phase growth method is a plating method, The thin film structural member characterized by the above-mentioned.
1 3 . 固定構造体に、 主表面に対して所定の角度をなして連続した別の 1っ以 上の面からなる凹部を備えた犠牲層を形成する工程と、 13. forming a sacrificial layer on the fixed structure having a recess formed of at least one other surface continuous at a predetermined angle with respect to the main surface;
前記犠牲層表面に前記凹部に沿った状態で薄膜を形成する工程と、 Forming a thin film on the surface of the sacrificial layer along the recesses;
前記薄膜下の前記犠牲層を除去する工程と Removing the sacrificial layer under the thin film;
を備え、 With
前記固定構造体上に 1つ以上の面とこの面と所定の角度をなして連続した別の 1つ以上の面とを備えた前記薄膜からなる薄膜構造部材を形成することを特徴と する薄膜構造部材の製造方法。 Forming a thin-film structural member comprising the thin film on the fixed structure, the thin-film member having one or more surfaces and another one or more surfaces continuous with this surface at a predetermined angle. A method for manufacturing a structural member.
1 4 . 固定構造体とこの上に配置された可動構造体とからなるスイッチング素 子であって、 1 4. A switching element comprising a fixed structure and a movable structure disposed thereon,
前記可動構造体上に配置された支持部材と、 A support member disposed on the movable structure,
この支持部材上にばね部材によつて接続された可動部材と、 A movable member connected to the support member by a spring member;
前記固定構造体上に形成されて前記可動部材に所定の力を作用させる駆動手段 と Driving means formed on the fixed structure to apply a predetermined force to the movable member;
を備え、 With
前記ばね部材は、 1つ以上の面とこの面と所定の角度をなして連続した別の 1 つ以上の面と力 らなる薄膜から構成された薄膜構造部材である The spring member is a thin film structural member composed of a thin film composed of one or more surfaces and another one or more surfaces continuous with a predetermined angle with this surface and a force.
ことを特徴とするスィッチング素子。 A switching element, characterized in that:
1 5 . 請求の範囲第 1 4項に記載のスィツチング素子において、 15. The switching element according to claim 14, wherein:
前記所定の角度が略 9 0 ° であることを特徴とするスィツチング素子。 The switching element, wherein the predetermined angle is approximately 90 °.
1 6 . 請求の範囲第 1 4項に記載のスイッチング素子において、 16. The switching device according to claim 14, wherein:
前記駆動手段は、 前記可動部材に対して磁力を作用させる電磁石であることを 特徴とするスィツチング素子。
The switching element, wherein the driving unit is an electromagnet for applying a magnetic force to the movable member.
1 7 . 固定構造体とこの上に配置された可動構造体とからなるスイッチング素 子であって、 17. A switching element comprising a fixed structure and a movable structure disposed thereon,
前記可動構造体上に配置された支持部材と、 A support member disposed on the movable structure,
この支持部材上にばね部材によつて接続された可動部材と、 A movable member connected to the support member by a spring member;
前記固定構造体上に形成されて前記可動部材に所定の力を作用させる駆動手段 と Driving means formed on the fixed structure to apply a predetermined force to the movable member;
を備え、 With
前記可動部材は、 光を反射する平坦な反射面を備え、 かつ、 この反射面と所定 の角度をなして連続した別の 1つ以上の面とを備えた薄膜構造部材である ことを特徴とするスィツチング素子。 The movable member is a thin-film structural member including a flat reflecting surface that reflects light, and further including one or more other surfaces that are continuous with the reflecting surface at a predetermined angle. Switching element.
1 8 . 請求の範囲第 1 7項に記載のスイッチング素子において、 18. The switching element according to claim 17,
前記所定の角度が略 9 0 ° であることを特徴とするスイッチング素子。 The switching element, wherein the predetermined angle is approximately 90 °.
1 9 . 請求の範囲第 1 7項に記載のスイッチング素子において、 1 9. The switching element according to claim 17,
前記駆動手段は、 前記可動部材に対して磁力を作用させる電磁石であることを 特徴とするスィッチング素子。 The switching element, wherein the driving unit is an electromagnet for applying a magnetic force to the movable member.
2 0 . 請求の範囲第 1 4に記載のスイッチング素子において、 20. The switching element according to claim 14,
前記固定構造体の上に配置された第 1の電気接点と A first electrical contact disposed on the fixed structure;
前記可動部材に前記第 1の電気接点と接触可能に設けられた第 2の電気接点と を備え A second electrical contact provided on the movable member so as to be able to contact the first electrical contact.
たことを特徴とするスィツチング素子。
A switching element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-306832 | 2001-10-02 | ||
JP2001306832A JP2003117896A (en) | 2001-10-02 | 2001-10-02 | Thin film structure member, manufacturing method thereof, and switching element using the thin film structure member |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003031320A1 true WO2003031320A1 (en) | 2003-04-17 |
Family
ID=19126405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/009680 WO2003031320A1 (en) | 2001-10-02 | 2002-09-20 | Thin film structural member, method of manufacturing the member, and switching element using the member |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2003117896A (en) |
TW (1) | TW569354B (en) |
WO (1) | WO2003031320A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113265644A (en) * | 2021-04-04 | 2021-08-17 | 上海尚享信息科技有限公司 | Chemical vapor deposition equipment based on sensitive element manufacturing |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009083018A (en) * | 2007-09-28 | 2009-04-23 | Fujitsu Ltd | Microstructure manufacturing method |
JP5630015B2 (en) * | 2009-12-28 | 2014-11-26 | 株式会社ニコン | Spatial light modulator, exposure apparatus and manufacturing method thereof |
WO2011080883A1 (en) * | 2009-12-28 | 2011-07-07 | 株式会社ニコン | Electro-mechanical converter, spatial optical modulator, exposure device, and methods for manufacturing them |
JP6640221B2 (en) * | 2015-07-23 | 2020-02-05 | オリンパス株式会社 | Optical scanning endoscope and optical fiber scanning device |
JP6973198B2 (en) * | 2018-03-12 | 2021-11-24 | オムロン株式会社 | Light deflector and rider device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317611A (en) * | 1980-05-19 | 1982-03-02 | International Business Machines Corporation | Optical ray deflection apparatus |
JPH08146035A (en) * | 1994-11-23 | 1996-06-07 | Tokyo Gas Co Ltd | Variable virtual mass accelerometer |
JP2001076605A (en) * | 1999-07-01 | 2001-03-23 | Advantest Corp | Integrated microswitch and its manufacture |
-
2001
- 2001-10-02 JP JP2001306832A patent/JP2003117896A/en active Pending
-
2002
- 2002-09-20 WO PCT/JP2002/009680 patent/WO2003031320A1/en active Application Filing
- 2002-09-26 TW TW091122125A patent/TW569354B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317611A (en) * | 1980-05-19 | 1982-03-02 | International Business Machines Corporation | Optical ray deflection apparatus |
JPH08146035A (en) * | 1994-11-23 | 1996-06-07 | Tokyo Gas Co Ltd | Variable virtual mass accelerometer |
JP2001076605A (en) * | 1999-07-01 | 2001-03-23 | Advantest Corp | Integrated microswitch and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113265644A (en) * | 2021-04-04 | 2021-08-17 | 上海尚享信息科技有限公司 | Chemical vapor deposition equipment based on sensitive element manufacturing |
Also Published As
Publication number | Publication date |
---|---|
TW569354B (en) | 2004-01-01 |
JP2003117896A (en) | 2003-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3750574B2 (en) | Thin film electromagnet and switching element using the same | |
JP3465940B2 (en) | Planar type electromagnetic relay and method of manufacturing the same | |
US20080100898A1 (en) | Electromagnetic micro-actuator | |
JP4205202B2 (en) | Magnetic microswitch and manufacturing method thereof | |
US5910856A (en) | Integrated hybrid silicon-based micro-reflector | |
US6201629B1 (en) | Torsional micro-mechanical mirror system | |
JP4613165B2 (en) | Switches for microelectromechanical systems | |
JP3443046B2 (en) | Micro electro mechanical device | |
JP3641018B2 (en) | Manufacturing method of magnetic micro contactor | |
US6256134B1 (en) | Microelectromechanical devices including rotating plates and related methods | |
US8724200B1 (en) | MEMS hierarchically-dimensioned optical mirrors and methods for manufacture thereof | |
US7688167B2 (en) | Contact electrode for microdevices and etch method of manufacture | |
WO2003031320A1 (en) | Thin film structural member, method of manufacturing the member, and switching element using the member | |
US20080043309A1 (en) | Micro-device and electrode forming method for the same | |
JPH11293486A (en) | Manufacture of microstructure | |
JPH11119123A (en) | Optical switch and manufacture thereof | |
JP5434004B2 (en) | Electromagnetic drive actuator and method for manufacturing electromagnetic drive actuator | |
JP5935099B2 (en) | Micro actuator | |
US7300815B2 (en) | Method for fabricating a gold contact on a microswitch | |
US20050127588A1 (en) | Microtechnically produced swiveling platform with magnetic drive and stop positions | |
JP2002228967A (en) | Galvano mirror, its manufacturing method, and optical scanner and image forming device equipped with galvano mirror | |
JP6270378B2 (en) | Oscillating element, actuator device, and optical scanning device | |
JP2009252598A (en) | Mems switch | |
JPH05114347A (en) | Electromagnetic relay | |
JPH0714483A (en) | Micro bi-metal relay and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |