+

WO2003031392A1 - Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires - Google Patents

Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires Download PDF

Info

Publication number
WO2003031392A1
WO2003031392A1 PCT/FR2002/003385 FR0203385W WO03031392A1 WO 2003031392 A1 WO2003031392 A1 WO 2003031392A1 FR 0203385 W FR0203385 W FR 0203385W WO 03031392 A1 WO03031392 A1 WO 03031392A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrile
compounds
nitriles
methyl
hydrocyanation
Prior art date
Application number
PCT/FR2002/003385
Other languages
English (en)
Inventor
Alex Chamard
Jean-Christophe Galland
Blaise Didillon
Original Assignee
Rhodia Polyamide Intermediates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Polyamide Intermediates filed Critical Rhodia Polyamide Intermediates
Publication of WO2003031392A1 publication Critical patent/WO2003031392A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups

Definitions

  • the present invention relates, in particular, to a process for hydrocyanation of organic ethylenically unsaturated compounds into compounds comprising at least one nitrile function, as well as to a process for isomerization of branched nitriles into linear nitriles.
  • hydrocyanation of diolefins such as butadiene or of substituted olefins such as aicenes nitriles such as pentenenitriles.
  • diolefins such as butadiene or of substituted olefins such as aicenes nitriles such as pentenenitriles.
  • the hydrocyanation of butadiene to pentenenitrile is an important reaction, which has been used industrially for many years, in particular in the process for the manufacture of adiponitrile, a large chemical intermediate allowing in particular access to the monomers of numerous polymers, including polyamides.
  • a process has been described for the preparation of nitriles by adding hydrocyanic acid to organic compounds having at least one ethylenic double bond, in the presence of a nickel catalyst and of a triaryl phosphite. This reaction can be carried out in the presence or not of a solvent.
  • a solvent is preferably a hydrocarbon, such as benzene or xylenes or a nitrile such as acetonitrile.
  • the catalyst used is an organic nickel complex, containing ligands such as phosphines, arsines, stibines, phosphites, arsenites or antimonites.
  • a promoter to activate the catalyst such as a boron compound or a metal salt, generally a Lewis acid, is also recommended in said patent.
  • nitrile compounds are formed. The most important are, for example, 3-pentenenitrile; 4-pentenenitrile, and 2-methyl 3-butenitrile. Only the linear nitrile pentenes are capable of giving adiponitrile, in a second hydrocyanation stage. The 2-methyl-3-butenitrie which represents the most important branched compound will lead in a second hydrocyanation step, inter alia, to 2-methylglutaronitrile which is a difficult-to-recover by-product. To limit the amount of branched mononitriles, a step has been proposed for isomerizing these branched mononitriles into linear nitriles, for example 3-pentenenitrile or 4-pentenenitrile.
  • the patent US Pat. -cf in particular examples XXV, XXVI, XXVII, XXVIII-.
  • Patent FR-A-2 338 253 has proposed carrying out the hydrocyanation of compounds having at least one ethylenic unsaturation, in the presence of an aqueous solution of a compound of a transition metal, in particular nickel, palladium or iron, and a sulfonated phosphine.
  • the sulfonated phosphines described in this patent are sulfonated triarylphosphines and more particularly sulfonated triphenylphosphines.
  • This process allows a correct hydrocyanation, in particular of butadiene and pentenenitriles, an easy separation of the catalytic solution by simple decantation and consequently avoids as much as possible the rejection of effluents or waste containing the metals used as catalyst.
  • French patent application No. 2,230,654 discloses halogenated rhodium complexes comprising as ligands diphosphines.
  • One of the essential aims of the present invention is to propose a process for the transformation, on the one hand, of ethylenically unsaturated compounds into mono or di nitriles and, on the other hand, of nitriles branched into linear nitriles, more efficient than the systems known in terms:
  • the present invention which relates, first of all, to a process for the conversion, on the one hand, of ethylenically unsaturated compounds into nitriles and, on the other hand, of branched nitriles into linear nitriles, and in particular a process for hydrocyanation of a hydrocarbon compound comprising at least one ethylenic unsaturation, by reaction with hydrogen cyanide in the presence of a catalyst comprising a metallic element chosen from transition metals and a ligand organophosphorus characterized in that the organophosphorus ligand comprises at least one diphosphine unit corresponding to the general formula (I):
  • - L is a radical comprising: • a linking chain between the phosphorus atoms L ⁇ hydrocarbon, linear, divalent and of the following formula:
  • radicals R ⁇ R 2 which are identical or different, represent a hydrogen atom, an alkyl or cycloalkyl radical
  • - x represents an integer> 3, preferably between 3 and 6;
  • hydrocarbon is meant any molecule at least made up of carbon atoms and hydrogen atoms, and which may include other atoms of different nature called heteroatoms.
  • alkyl is meant a saturated, linear or branched hydrocarbon chain, optionally substituted (eg by one or more alkyls), preferably from 1 to 10 carbon atoms, for example from 1 to 8 carbon atoms, better still from 1 to 7 carbon atoms.
  • alkyl groups include methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n-butyl, n-pentyl, isoamyl and 1,1-dimethylpropyl.
  • the alkyl part of the alkoxy radical is as defined above.
  • cycloalkyl is meant a saturated hydrocarbon radical mono- or polycyclic, preferably mono- or bicyclic, preferably having from 3 to 10 carbon atoms, better still from 3 to 8.
  • aryl denotes an aromatic hydrocarbon group , having from 2 to 18 carbon atoms, monocyclic or polycyclic and preferably monocyclic or bicyclic.
  • polycyclic aromatic radical means a radical having two or more aromatic rings in condensed form or not.
  • aryl is optionally substituted, for example, by one or more CC 3 alkyls, one or more halogenated hydrocarbon radicals (eg CF 3 ), one or more alkoxy (eg CH 3 O) or one or more radicals hydrocarbons comprising a carbonyl function (eg CH 3 CO-).
  • aryl mention may be made of the phenyl, naphthyl, anthryl, phenanthryl, tolyl and xylyl, furyy, thienyl, pyridyl radicals.
  • the organophosphorus ligand corresponds to formula (1.1):
  • radicals R 1 are identical or different from each other and are as defined above,
  • radicals R 2 are identical to or different from Ri and between them and are as defined above;
  • the organophosphorus ligand (1.1) preferably comprises a single diphosphine motif in which the phosphorus atoms are separated by a linear hydrocarbon skeleton comprising at least three carbon atoms, preferably between 3 and 6, and more preferably still four carbon atoms.
  • substituents Rj, R 2 of the linear hydrocarbon backbone are hydrogen.
  • R 3 , R 4 corresponding to the same definition as that given above for
  • (+) - DIOP (4, S, 5S) - (+) - O-isopropylidene-2,3-di-hydroxy-1, 4- bis (diphenylphosphino) butane.
  • (+) - CBD [(+) 1S, 2S] -fra ⁇ s-bis (diphenylphosphinomethyl) -1, 2-cyclobutane.
  • DPPX ⁇ , ⁇ '-diphenylphosphino-o-xylene.
  • (+) - BDPMCH Bis (diphenylphosphino) - [(1 R, 2R) -1, 2-cyclohexane-diylbis (methylene)]
  • the catalyst advantageously corresponds to the general formula (II): M [L,] t (II) in which:
  • L f represents the organophosphorus ligand of formula L-, or L 2 ,
  • - t represents a number between 1 and 6 (limits included).
  • Diphosphines make it possible to prepare organometallic complexes which comprise at least one diphosphine of formula (I) or of formula (1.1) and at least one metal.
  • the metals which can be complexed by diphosphines are generally all the transition metals of groups 1b, 2b, 3b, 4b, 5b, 6b, 7b and 8 of the Periodic Table of the Elements, as published in “Handbook of Chemistry and Physics, 66st Edition (1985-1986) "from The Chemical Rubber Company.
  • metals which can be used as catalysts for hydrocyanation reactions.
  • organometallic complexes comprising the diphosphines (I) & (1.1) can be carried out by bringing a solution of a compound of the chosen metal into contact with a solution of the diphosphine of formula (I) or (1.1).
  • the metal compound can be dissolved in a solvent.
  • the metal can be found in the compound used, either at the degree of oxidation that it will have in the organometallic complex, or at a higher degree of oxidation.
  • rhodium is at the oxidation state (I)
  • ruthenium is at the oxidation state
  • the metal is used at a higher degree of oxidation, it can be reduced in situ.
  • organometallic complexes comprising the diphosphines of formula (I) or (1.1) can be used as catalysts in the hydrocyanation reactions of olefins and in isomerization reactions of nitriles branched into linear nitriles.
  • the compounds of the transition metals are preferably used.
  • the most preferred compounds are those of nickel.
  • nickel is at zero oxidation state
  • potassium tetracyanonickelate K4 [Ni (CN) 4]
  • bis (acrylonitrile) zero nickel bis ( cyclooctadiene-1,5) nickel (also called Ni (cod) 2 )
  • derivatives containing ligands such as tetrakis (triphenyl phosphine) zero nickel
  • - nickel compounds such as carboxylates (especially acetate), carbonate, bicarbonate, borate, bromide, chloride, citrate, thiocyanate, cyanide, formate, hydroxide, hydrophosphite, phosphite, phosphate and derivatives, iodide, nitrate, sulfate, sulfite , aryl- and alkyl-sulfonates.
  • a reducing agent for nickel reacting preferentially with the latter under the reaction conditions is added to the reaction medium.
  • This reducing agent can be organic or mineral.
  • borohydrides such as Bh ⁇ a, BH4K, Zn powder, magnesium or hydrogen can be cited.
  • the nickel compound used corresponds to the oxidation state 0 of nickel, it is also possible to add a reducing agent of the type of those mentioned above, but this addition is not imperative.
  • the reducing agents can also be elements of the reaction medium (phosphine, solvent, olefin).
  • the organic compounds comprising at least one ethylenic double bond more particularly used in the hydrocyanation process are the diolefins such as butadiene, isoprene, 1,5-hexadiene, 1,5-cyclooctadiene, aliphatic nitriles ethylenically unsaturated, particularly the linear pentene-nitriles such as pentene-3-nitrile, pentene-4-nitrile, the monoolefins such as styrene, methyl-styrene, vinyl-naphthalene, cyclohexene, methyl-cyclohexene as well mixtures of several of these compounds.
  • Pentene-nitriles in particular may contain amounts, generally in the minority, of other compounds, such as methyl-2-butene-3-nitrile, methyl-2-butene-2-nitrile, pentene-2-nitrile, vaiéronitrile , adiponitrile, methyl-2-glutaronitrile, ethyl-
  • 2-succinonitrile or butadiene for example from the previous hydrocyanation reaction of butadiene to unsaturated nitriles.
  • the catalytic system used for hydrocyanation according to the process of the invention can be prepared before its introduction into the reaction zone, for example by addition to the diphosphine of formula (I) or (1.1) alone or dissolved in a solvent, the appropriate amount of compound of the transition metal chosen and optionally the reducing agent. It is also possible to prepare the catalytic system "in situ" by simple addition of the phosphine and of the transition metal compound in the hydrocyanation reaction medium before or after the addition of the compound to be hydrocyanated.
  • the amount of nickel compound or of another transition metal used is chosen to obtain a concentration in mole of transition metal per mole of organic compounds to be hydrocyanated between KH and 1, and preferably between 0.005 and 1 mole of nickel or the other transition metal used.
  • the quantity of phosphine of formula (I) or (1.1) used to form the catalyst is chosen such that the number of moles of this compound, relative to 1 mole of transition metal, is from 0.5 to 500 and preferably from 2 to 100.
  • reaction is generally carried out without solvent, it may be advantageous to add an inert organic solvent.
  • hydrocyanation reaction is generally carried out at a temperature of
  • the process of the invention can be carried out continuously or discontinuously.
  • the hydrogen cyanide used can be prepared from metallic cyanides, in particular sodium cyanide, or cyanhydrins, such as acetone cyanohydrin or by any other known synthesis process.
  • the hydrogen cyanide is introduced into the reactor in gaseous form or in liquid form. It can also be previously dissolved in an organic solvent.
  • a reactor In the context of a discontinuous implementation, it is in practice possible to charge into a reactor, previously purged using an inert gas (such as nitrogen, argon), either a solution containing all or part of the various constituents such as the compound to be hydrocyanated, diphosphine, the transition metal compound, the optional reducing agent and solvent, or separately said constituents. Generally the reactor is then brought to the chosen temperature. The hydrogen cyanide is then itself introduced, preferably continuously and regularly.
  • an inert gas such as nitrogen, argon
  • reaction mixture is withdrawn after cooling and the products of the reaction are isolated, for example, by distillation.
  • An improvement to the process for hydrocyanation of ethylenically unsaturated compounds according to the present invention relates in particular to the hydrocyanation of said ethylenically unsaturated nitrile compounds, by reaction with hydrogen cyanide and consists in using a catalytic system in accordance with the present invention with a cocatalyst consisting of at least one Lewis acid.
  • the ethylenically unsaturated compounds which can be used in this improvement are generally those which have been mentioned for the basic process. However, it is more particularly advantageous to apply it to the hydrocyanation reaction in dinitriles of ethylenically unsaturated aliphatic nitriles, in particular to linear pentenenitriles such as pentene-3-nitrile, pentene-4-nitrile and their mixtures.
  • pentenenitriles may contain quantities, generally in the minority, of other compounds, such as methyl-2-butene-3-nitrile, methyl-2-butene-2-nitrile, pentene-2-nitrile, vaiéronitrile, adiponitrile, methyl-2-glutaronitrile, ethyl-2-succinonitrile or butadiene, originating from the previous hydrocyanation reaction of butadiene and / or from the isomerization of methyl-2-butene-3-nitrite into pentenenitriles.
  • other compounds such as methyl-2-butene-3-nitrile, methyl-2-butene-2-nitrile, pentene-2-nitrile, vaiéronitrile, adiponitrile, methyl-2-glutaronitrile, ethyl-2-succinonitrile or butadiene, originating from the previous hydrocyanation reaction of butadiene and / or from the isomerization of
  • the Lewis acid used as cocatalyst makes it possible in particular, in the case of the hydrocyanation of aliphatic nitriles with ethylenic unsaturation, to improve the linearity of the dinitriles obtained, that is to say the percentage of linear dinitrile relative to the all of the dinitriles formed, and / or to increase the activity and the lifetime of the catalyst.
  • Lewis acid is meant in the present text, according to the usual definition, compounds that accept electronic doublets.
  • the Lewis acids which can be used as cocatalysts in the present process are chosen from the compounds of the elements of groups Ib, llb, Nia, lllb, IVa, IVb, Va, Vb, Vlb, Vllb and VIII of the Periodic Table elements.
  • halides such as chlorides or bromides
  • Lewis acids By way of nonlimiting examples of such Lewis acids, mention may be made of zinc chloride, zinc bromide, zinc iodide, manganese chloride, manganese bromide, cadmium chloride, bromide cadmium, stannous chloride, stannous bromide, stannous sulfate, stannous tartrate, indium trifluoromethylsulfonate, indium trifluoromethylacetate, chlorides or bromides of rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, hafnium, erbium, thailium, ytterbium and lutetium, cobalt chloride, ferrous chloride, yttrium chloride .
  • rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium
  • Organometallic compounds such as triphenylborane or titanium isopropylate can also be used as the Lewis acid. It is of course possible to use mixtures of several Lewis acids. Among the Lewis acids, zinc chloride, zinc bromide, stannous chloride, stannous bromide, triphenylborane and zinc chloride / stannous chloride mixtures are particularly preferred.
  • the Lewis acid cocatalyst used generally represents from 0.01 to 50 moles per mole of transition metal compound, more particularly of nickel compound, and preferably from 1 to 10 moles per mole.
  • the catalytic solution used for hydrocyanation in the presence of Lewis acid can be prepared before its introduction into the reaction zone, for example by adding to the reaction medium diphosphine of formula (I) or (1.1), of the appropriate quantity of compound of the transition metal chosen, Lewis acid and optionally the reducing agent. It is also possible to prepare the catalytic solution "in situ" by simple mixing of these various constituents.
  • the present invention also relates to a process for isomerizing nitriles branched into linear nitriles, using a catalytic system comprising at least one metal complex including a ligand of formula (I) or (1.1).
  • the branched nitriles concerned can be by-products of hydrocyanation as defined above.
  • methyl-2-butene-3-nitrile subjected to the isomerization according to the invention can be used alone or as a mixture with other compounds.
  • methyl-2-butene-3-nitrile can be used in admixture with methyl-2-butene-2 nitrile, pentene-4-nitrile, pentene-3-nitrite, pentene-2-nitrile, butadiene. , adiponitrile, methyl-2-glutaroronitrile, ethyl-2-succinonitrile or vaiononitrile.
  • reaction mixture originating from the hydrocyanation of butadiene with HCN in the presence of at least one diphosphine of formula (I) or (1.1) and at least one compound of a transition metal, more preferably a nickel compound with an oxidation state of 0, as defined above.
  • the isomerization reaction is generally carried out at a temperature of 10 ° C to 200 ° C and preferably from 60 ° C to 180 ° C.
  • the catalytic system used for isomerization can be prepared before its introduction into the reaction zone, for example by adding diphosphine of formula (I) to the reaction medium or (1.1), the appropriate amount of compound of the transition metal chosen and optionally the reducing agent. he is also possible to prepare the catalytic system "in situ" by simple mixing of these various constituents.
  • the quantity of transition metal compound and more particularly of nickel used, as well as the quantity of diphosphine of formula (I) or (1.1) are the same as for the hydrocyanation reaction.
  • the amount of phosphine of formula (I) or (1.1) used to form the catalyst is chosen so that the number of moles of this compound, based on 1 mole of transition metal, is from 0.5 to 500 and preferably from 2 to 100.
  • the isomerization reaction is generally carried out without solvent, it may be advantageous to add an inert organic solvent which may be that of the subsequent extraction. This is particularly the case when such a solvent has been used in the hydrocyanation reaction of the butadiene which served to prepare the medium subjected to the isomerization reaction.
  • solvents can be chosen from those which have been mentioned above for hydrocyanation.
  • the preparation of dinitrile compounds by hydrocyanation of an olefin such as butadiene can be carried out using a catalytic system in accordance with the invention for the stages of formation of the unsaturated nitriles and the stage of isomerization above, the reaction hydrocyanation of the nitriles unsaturated in dinitriles which can be used with a catalytic system according to the invention or any other catalytic system already known for this reaction.
  • the hydrocyanation reaction of the olefin to unsaturated nitriles and the isomerization of these can be carried out with a catalytic system different from that of the invention, the step of hydrocyanation of the unsaturated nitriles into dinitriles being carried out. works with a catalytic system according to the invention.
  • the following examples illustrate the invention.
  • DNA adiponitrile
  • (+) - BDPMCH Bis (diphenylphosphino) - [(1 R, 2R) -1, 2-cyclohexanediylbis (methylene)]
  • (+) - CBD [(+) 1S, 2S] -fra /? S-bis (diphenylphosphinomethyl) -1,2-cyclobutane.
  • (+) - DIOP (4, S, 5S) - (+) - O-isopropylidene-2,3-di-hydroxy-1, 4- bis (diphenylphosphino) butane.
  • DPPX ⁇ , ⁇ '-diphenylphosphino-o-xylene.
  • ESN 2-ethylsuccinonitrile. mmol: millimole.
  • MGN 2-methylglutaronitrile.
  • OTf trifluoromethanesulfonate (triflate).
  • TTP Tritolylphosphite
  • GC gas chromatography. ml: milliliter. mmol: millimole.
  • Diphosphine (+) - DIOP is commercially available.
  • reaction medium is then heated with stirring to 55 ° C.
  • Liquid HCN is supplied to the reactor at a flow rate of 1.92 ml / h. After 5 hours of reaction, the composition of the reaction medium is determined by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé d'hydrocyanation de composés organiques à insaturation éthylénique en composés comprenant au moins une fonction nitrile. La présente invention propose un procédé d'hydrocyanation d'un composé hydrocarboné comprenant au moins une insaturation éthylénique par réaction en milieu liquide avec le cyanure d'hydrogène en présence d'un catalyseur comprenant un élément métallique choisi parmi les métaux de transition et un ligand organophosphoré caractérisé en ce que le ligand organophosphoré est une phosphine, par exemple de formules suivantes. La présente invention est notamment utile pour la synthèse de l'adiponitrile à partir du butadiène.

Description

PROCEDE DE TRANSFORMATION, D'UNE PART, DE COMPOSES A
INSATURATION ETHYLENIQUE EN NITRILES ET, D'AUTRE PART, DE NITRILES
BRANCHES EN NITRILES LINEAIRES
La présente invention concerne, notamment, un procédé d'hydrocyanation de composés organiques à insaturation éthylénique en composés comprenant au moins une fonction nitrile, ainsi qu'un procédé d'isomérisation de nitriles ramifiés en nitriles linéaires.
Elle se rapporte plus particulièrement à l'hydrocyanation de dioléfines telles que le butadiene ou d'oléfines substituées telles que des aicènesnitriles comme les pentènenitriles. L'hydrocyanation du butadiene en pentènenitrile est une réaction importante, qui est mise en oeuvre industriellement depuis de nombreuses années, notamment dans le procédé de fabrication de l'adiponitrile, un grand intermédiaire chimique permettant notamment d'accéder aux monomères de nombreux polymères, dont les polyamides.
Il a été décrit un procédé de préparation de nitriles par addition d'acide cyanhydrique sur des composés organiques ayant au moins une double liaison éthylénique, en présence d'un catalyseur au nickel et d'une phosphite de triaryle. Cette réaction peut être conduite en présence ou non d'un solvant.
Lorsqu'un solvant est utilisé dans ce procédé de l'art antérieur, il s'agit de préférence d'un hydrocarbure, tel que le benzène ou les xylènes ou d'un nitrile tel que l'acétonitrile. Le catalyseur mis en œuvre est un complexe organique de nickel, contenant des ligands tels que les phosphines, les arsines, les stibines, les phosphites, les arsénites ou les antimonites.
La présence d'un promoteur pour activer le catalyseur, tel qu'un composé du bore ou un sel métallique, généralement un acide de Lewis, est également préconisée dans ledit brevet.
Dans cette réaction d'hydrocyanation, plusieurs composés nitriles sont formés. Les plus importants sont, par exemple, le 3-pentènenitrile ; 4-pentènenitrile, et 2-méthyl 3-butènitrile. Seuls les pentènes nitriles linéaires sont susceptibles de donner de l'adiponitrile, dans une seconde étape d'hydrocyanation. Le 2-méthyl-3-butènitriIe qui représente le composé ramifié le plus important conduira dans une seconde étape d'hydrocyanation, entre autres, au 2-méthylglutaronitrile qui est un sous-produit difficilement valorisable. Pour limiter la quantité de mononitriles ramifiés, il a été proposé une étape d'isomérisation de ces mononitriles ramifiés en nitriles linéaires, par exemple en 3-pentènenitrile ou 4-pentènenitrile. Le brevet US 3,766,237 décrit notamment l'hydrocyanation de 3-pentènenitrile, en adiponitrile, en 2-méthylglutaronitrile, et en éthylsuccinonitrile, à l'aide d'un complexe de Nickel "0" et d'un ligand constitué de tritotylphosphite (TTP) -cf notamment exemples XXV, XXVI, XXVII, XXVIII-.
Il a été proposé dans le brevet US-A-5,440,067 et la demande de brevet W0-97/36856 de réaliser cette isomérisation en phase gazeuse à une température comprise entre 135°C et 170°C, en présence soit d'un catalyseur à base de nickel à l'état d'oxydation zéro dispersé sur un support tel que silice, alumine ou carbone, soit d'utiliser un catalyseur supporté dont la phase dispersée est une composition comprenant du nickel à l'état d'oxydation zéro et un ligand phosphite multidentate. Toutefois, ce système catalytique présente certains inconvénients liés à la stabilité du catalyseur dans le domaine de températures de mise en oeuvre de la réaction d'isomérisation en phase gaz.
Le brevet FR-A-2 338 253 a proposé de réaliser l'hydrocyanation des composés ayant au moins une insaturation éthylénique, en présence d'une solution aqueuse d'un composé d'un métal de transition, notamment le nickel, le palladium ou le fer, et d'une phosphine sulfonée. Les phosphines sulfonées décrites dans ce brevet sont des triarylphosphines sulfonées et plus particulièrement des triphénylphosphines sulfonées.
Ce procédé permet une hydrocyanation correcte, notamment du butadiene et des pentènenitriles, une séparation aisée de la solution catalytique par simple décantation et par conséquent évite au maximum le rejet d'effluents ou de déchets contenant les métaux utilisés comme catalyseur.
Toutefois, ces systèmes catalytiques restent perfectibles en termes :
• d'activité catalytique,
• de stabilité,
• de sélectivité, • et de linéarité : rapport nitriles linéaires/totalité des nitriles obtenus.
Pour une toute autre réaction que l'hydrocyanation d'oléfines ou l'isomérisation de nitriles branchés en nitriles linéaires, la demande de brevet français N° 2.230.654 divulgue des complexes de rhodium halogènes comportant comme ligands des diphosphines.
Ces complexes de rhodium dont le ligand est une diphosphine asymétrique, sont décrits comme étant d'excellents catalyseurs d'hydrogénation asymétrique des acides acryliques substitués, précurseurs d'aminoacides. Dans cette demande FR-A-2.230.654, il n'est nullement question de catalyse d'hydrocyanation d'oléfines ou d'isomérisation de nitriles branchés en nitriles linéaires.
Un des buts essentiels de la présente invention est de proposer un procédé de transformation, d'une part, de composés à insaturation éthylénique en mono ou di nitriles et, d'autre part, de nitriles branchés en nitriles linéaires, plus performants que les systèmes connus en termes :
• d'activité catalytique,
• de stabilité,
• de sélectivité, • et de linéarité : rapport nitriles linéaires/totalité des nitriles obtenus.
Ce but, parmi d'autres, est atteint par la présente invention qui concerne, tout d'abord, un procédé de transformation, d'une part, de composés à insaturation éthylénique en nitriles et, d'autre part, de nitriles branchés en nitriles linéaires, et en particulier un procédé d'hydrocyanation d'un composé hydrocarboné comprenant au moins une insaturation éthylénique, par réaction avec le cyanure d'hydrogène en présence d'un catalyseur comprenant un élément métallique choisi parmi les métaux de transition et un ligand organophosphoré caractérisé en ce que le ligand organophosphoré comprend au moins un motif diphosphine répondant à la formule générale (I):
r
Figure imgf000005_0001
P
/ \
Ar Ar
(I ) dans laquelle : - Ar représente un groupement aromatique ou hétéroaromatique, substitué ou non
- L est un radical comprenant : • une chaîne de liaison entre les atomes de phosphore L^ hydrocarbonée, linéaire, divalente et de formule suivante :
— fCR1R - ( ) dans laquelle:
- les radicaux R^ R2 identiques ou différents représentent un atome d'hydrogène, un radical alkyle, cycloalkyle ;
- x représente un nombre entier > 3, de préférence compris entre 3 et 6 ;
• au moins un radical L2 saturé ou non, cyclique ou acyclique, pouvant comprendre des hétéroatomes et lié à au moins deux carbones de U pour former un cycle, avec la condition selon laquelle au moins l'un des deux carbones terminaux de Lj situés en α de P, ne fait pas partie dudit cycle formé.
Par le terme "hydrocarboné", on désigne toute molécule au moins constituée d'atomes de carbone et d'atomes d'hydrogène, et pouvant comprendre d'autres atomes de nature différente appelés hétéroatomes. Par "alkyle", on désigne une chaîne hydrocarbonée saturée, linéaire ou ramifiée, éventuellement substituée (e.g. par un ou plusieurs alkyles), de préférence de 1 à 10 atomes de carbone, par exemple de 1 à 8 atomes de carbone, mieux encore de 1 à 7 atomes de carbone. Des exemples de groupes alkyle sont notamment méthyle, éthyle, isopropyle, n-propyle, tert-butyle, isobutyle, n-butyle, n-pentyle, isoamyle et 1 ,1-diméthylpropyle. La partie alkyle du radical alcoxy est telle que définie ci-dessus.
Par "cycloalkyle", on entend un radical hydrocarboné saturé mono- ou polycyclique, de préférence mono- ou bicyclique, présentant préférabiement de 3 à 10 atomes de carbone, mieux encore de 3 à 8. Le terme "aryle" désigne un groupe hydrocarboné aromatique, ayant de 2 à 18 atomes de carbone, monocyclique ou polycyclique et de préférence monocyclique ou bicyclique. Il doit être entendu que, dans le cadre de l'invention, par radical aromatique polycyclique, on entend un radical présentant deux ou plusieurs noyaux aromatiques sous forme condensée ou non. Ce groupe hydrocarboné aromatique ("aryle") est éventuellement substitué par exemple par un ou plusieurs alkyles en C C3, un ou plusieurs radicaux hydrocarbonés halogènes (e.g. CF3), un ou plusieurs alcoxy (e.g. CH3O) ou un ou plusieurs radicaux hydrocarbonés comprenant une fonction carbonyle (e.g. CH3CO-). A titre d'exemple d'aryle, on peut mentionner les radicaux phényie, naphtyle, anthryle, phénanthryle, tolyle et xylyle, furyie, thiényle, pyridyle.
Conformément au mode préféré de mise en œuvre du procédé selon l'invention, le ligand organophosphoré répond à la formule (1.1):
Figure imgf000007_0001
.i) dans laquelle:
- les radicaux R1 sont identiques ou différents entre eux et sont tels que définis ci-dessus,
- les radicaux R2 sont identiques ou différents de Ri et entre eux et sont tels que définis ci-dessus;
- Ar, sont tels que définis ci-dessus.
- Cy correspond au cycle formé par les radicaux L1 et L2 définis ci-dessus.
Ainsi, le ligand organophosphoré (1.1) comprend, de préférence, un seul motif diphosphine dans lequel les atomes de phosphore sont séparés par un squelette linéaire hydrocarboné comprenant au moins trois atomes de carbone, de préférence entre 3 et 6, et plus préférentiellement encore quatre atomes de carbone.
L'usage d'un tel système catalytique permet d'améliorer significativement la linéarité de l'hydrocyanation
En pratique sans que cela ne soit limitatif, les substituants Rj,R2 du squelette linéaire hydrocarboné sont l'hydrogène.
Il est particulièrement avantageux conformément à l'invention, de choisir le cycle Cy formé par et L2 sélectionné dans le groupe de radicaux divalents comprenant :
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
avec : R3, R4 répondant à la même définition que celle donnée ci-dessus pour
R1, R2;
R5, R6, R7, R8, R9 identiques ou différents et représentant un atome d'hydrogène, un radical alkyle linéaire ou ramifié ayant de 1 à 12 atomes de carbone pouvant comprendre des hétéroatomes, un radical aromatique ou cycloaliphatique substitué ou non pouvant comprendre des hétéroatomes, un radical carbonyle, alcoxycarbonyle ou alcoxy, un atome d'halogène, un groupe nitrile ou un groupe halogénoalkyle ayant 1 à 12 atomes de carbone; p, q, t = 1-4; r, s = 1-6.
Comme exemples de composés de formules générales (I) ou (1.1) convenables, on peut citer :
Figure imgf000009_0001
(+)-DIOP DPPX (+)-CBD (+)-BDPMCH avec Ph = phényie.
(+)-DIOP :(4,S,5S)-(+)-O-isopropylidène-2,3-di-hydroxy-1 ,4- bis(diphénylphosphino)butane.
(+)-CBD : [(+) 1S, 2S]-fraπs-bis(diphénylphosphinométhyl)-1 ,2-cyclobutane.
DPPX : α,α'-diphénylphosphino-o-xylène.
(+)-BDPMCH :Bis(diphénylphosphino)-[(1 R,2R)-1 ,2-cyclohexane-diylbis(méthylène)]
Les systèmes comprenant ces diphosphines présentent une activité catalytique remarquable.
Selon l'invention, le catalyseur correspond, avantageusement, à la formule générale (II) : M [L,]t (II) dans laquelle:
- M est un métal de transition,
- Lf représente le ligand organophosphoré de formule L-, ou L2,
- t représente un nombre compris entre 1 et 6 (bornes incluses).
Les diphosphines permettent de préparer des complexes organométalliques qui comprennent au moins une diphosphine de formule (I) ou de formule (1.1) et au moins un métal.
Les métaux qui peuvent être complexés par les diphosphines sont de manière générale tous les métaux de transition des groupes 1b, 2b, 3b, 4b, 5b, 6b, 7b et 8 de la Classification périodique des éléments, telle que publiée dans "Handbook of Chemistry and Physics, 66st Edition (1985-1986)" de The Chemical Rubber Company.
Parmi ces métaux, on peut citer plus particulièrement les métaux pouvant être utilisés comme catalyseurs des réactions d'hydrocyanation. Ainsi on peut mentionner à titre d'exemples non limitatifs, le nickel, le cobalt, le fer, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium, le platine, le cuivre, l'argent, l'or, le zinc, le cadmium, le mercure.
La préparation des complexes organométalliques comprenant les diphosphines (I) & (1.1) peut être effectuée en mettant en contact une solution d'un composé du métal choisi avec une solution de la diphosphine de formule (I) ou (1.1).
Le composé du métal peut être dissous dans un solvant. Le métal peut se trouver dans le composé mis en œuvre, soit au degré d'oxydation qu'il aura dans le complexe organométallique, soit à un degré d'oxydation supérieur.
A titre d'exemple, on peut indiquer que dans les complexes organométalliques de l'invention, le rhodium est au degré d'oxydation (I), le ruthénium au degré d'oxydation
(II), le platine au degré d'oxydation (0), le palladium au degré d'oxydation (0), l'osmium au degré d'oxydation (II), l'iridium au degré d'oxydation (I), le nickel au degré d'oxydation
(0).
Si lors de la préparation du complexe organométallique, le métal est mis en œuvre à un degré d'oxydation plus élevé, il pourra être réduit in situ.
Les complexes organométalliques comprenant les diphosphines de formule (I) ou (1.1) peuvent être utilisés comme catalyseurs dans les réactions d'hydrocyanation d'oléfines et dans des réactions d'isomérisation de nitriles branchés en nitriles linéaires.
Comme métal de transition, les composés des métaux de transition, plus particulièrement les composés du nickel, du palladium du fer ou du cuivre sont de préférence utilisés.
Parmi les composés précités, les composés les plus préférés sont ceux du nickel.
On peut citer à titre d'exemples non limitatifs : - les composés dans lesquels le nickel est au degré d'oxydation zéro comme le tétracyanonickelate de potassium K4 [Ni(CN)4], le bis (acrylonitrile) nickel zéro, le bis (cyclooctadiène-1 ,5) nickel (appelé également Ni(cod)2 ) et les dérivés contenant des ligands comme le tétrakis (triphényl phosphine) nickel zéro,
- les composés du nickel comme les carboxylates (notamment l'acétate), carbonate, bicarbonate, borate, bromure, chlorure, citrate, thiocyanate, cyanure, formiate, hydroxyde, hydrophosphite, phosphite, phosphate et dérivés, iodure, nitrate, sulfate, sulfite, aryl- et alkyl-sulfonates.
Quand le composé du nickel utilisé correspond à un état d'oxydation du nickel supérieur à 0, on ajoute au milieu réactionnel un réducteur du nickel réagissant préférentiellement avec celui-ci dans les conditions de la réaction. Ce réducteur peut être organique ou minéral. On peut citer comme exemples non limitatifs les borohydrures comme le Bh^ a, le BH4K, la poudre de Zn, le magnésium ou l'hydrogène.
Quand le composé du nickel utilisé correspond à l'état d'oxydation 0 du nickel, on peut également ajouter un réducteur du type de ceux précités, mais cet ajout n'est pas impératif.
Quand on utilise un composé du fer, les mêmes réducteurs conviennent.
Dans le cas du palladium, les réducteurs peuvent être, en outre, des éléments du milieu réactionnel (phosphine, solvant, oléfine). Les composés organiques comportant au moins une double liaison éthylénique plus particulièrement mis en œuvre dans le procédé d'hydrocyanation sont les dioléfines comme le butadiene, l'isoprène, l'hexadiène-1,5, le cyclooctadiène-1,5, les nitriles aliphatiques à insaturation éthylénique, particulièrement les pentène-nitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile, les monooléfines comme le styrène, le méthyl-styrène, le vinyl-naphtalène, le cyclohexène, le méthyl-cyclohexène ainsi que les mélanges de plusieurs de ces composés.
Les pentène-nitriles notamment peuvent contenir des quantités, généralement minoritaires, d'autres composés, comme le méthyl-2-butène-3-nitrile, le méthyl-2-butène- 2-nitrile, le pentène-2-nitrile, le vaiéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-
2-succinonitrile ou le butadiene, provenant par exemple de la réaction antérieure d'hydrocyanation du butadiene en nitriles insaturés.
En effet, lors de l'hydrocyanation du butadiene, il se forme avec les pentène- nitriles linéaires des quantités non négligeables de méthyl-2-butène-3-nitrile et de méthyl-2-butène-2-nitrile.
Le système catalytique utilisé pour l'hydrocyanation selon le procédé de l'invention peut être préparé avant son introduction dans la zone de réaction, par exemple par addition à la diphosphine de formule (I) ou (1.1) seule ou dissoute dans un solvant, la quantité appropriée de composé du métal de transition choisi et éventuellement du réducteur. Il est également possible de préparer le système catalytique "in situ" par simple addition de la phosphine et du composé du métal de transition dans le milieu réactionnel d'hydrocyanation avant ou après l'addition du composé à hydrocyaner.
La quantité de composé du nickel ou d'un autre métal de transition utilisée est choisie pour obtenir une concentration en mole de métal de transition par mole de composés organiques à hydrocyaner comprise entre KH et 1 , et de préférence entre 0,005 et 1 mole de nickel ou de l'autre métal de transition mis en œuvre.
La quantité de phosphine de formule (I) ou (1.1) utilisée pour former le catalyseur est choisie de telle sorte que le nombre de moles de ce composé rapporté à 1 mole de métal de transition soit de 0,5 à 500 et de préférence de 2 à 100.
Bien que la réaction soit conduite généralement sans solvant, il peut être avantageux de rajouter un solvant organique inerte.
A titre d'exemples de tels solvants, on peut citer les hydrocarbures aromatiques, aliphatiques ou cycloaliphatiques. La réaction d'hydrocyanation est généralement réalisée à une température de
10°C à 200°C et de préférence de 30°C à 120°C.
Le procédé de l'invention peut être mis en œuvre de manière continue ou discontinue. Le cyanure d'hydrogène mis en œuvre peut être préparé à partir des cyanures métalliques, notamment le cyanure de sodium, ou des cyanhydrines, comme la cyanhydrine de l'acétone ou par tout autre procédé de synthèse connu.
Le cyanure d'hydrogène est introduit dans le réacteur sous forme gazeuse ou sous forme liquide. Il peut également être préalablement dissous dans un solvant organique.
Dans le cadre d'une mise en œuvre discontinue, on peut en pratique charger dans un réacteur, préalablement purgé à l'aide d'un gaz inerte (tel qu'azote, argon), soit une solution contenant la totalité ou une partie des divers constituants tels que le composé à hydrocyaner, la diphosphine, le composé de métal de transition, les éventuels réducteur et solvant, soit séparément lesdits constituants. Généralement le réacteur est alors porté à la température choisie. Le cyanure d'hydrogène est alors lui- même introduit, de préférence de manière continue et régulière.
Quand la réaction (dont on peut suivre l'évolution par dosage de prélèvements) est terminée, le mélange réactionnel est soutiré après refroidissement et les produits de la réaction sont isolés, par exemple, par distillation.
Un perfectionnement au procédé d'hydrocyanation de composés à insaturation éthylénique selon la présente invention concerne notamment l'hydrocyanation desdits composés nitriles à insaturation éthylénique, par réaction avec le cyanure d'hydrogène et consiste à utiliser un système catalytique conforme à la présente invention avec un cocatalyseur consistant en au moins un acide de Lewis.
Les composés à insaturation éthylénique qui peuvent être mis en œuvre dans ce perfectionnement sont de manière générale ceux qui ont été cités pour le procédé de base. Cependant il est plus particulièrement avantageux de l'appliquer à la réaction d'hydrocyanation en dinitriles des nitriles aliphatiques à insaturation éthylénique, notamment aux pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile et leurs mélanges.
Ces pentènenitriles peuvent contenir des quantités, généralement minoritaires, d'autres composés, comme le méthyl-2-butène-3-nitrile, le méthyl-2-butène-2-nitrile, le pentène-2-nitrile, le vaiéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-2- succinonitrile ou le butadiene, provenant de la réaction antérieure d'hydrocyanation du butadiene et/ou de l'isomérisation du méthyl-2-butène-3-nitriIe en pentènenitriles.
L'acide de Lewis utilisé comme cocatalyseur permet notamment, dans le cas de l'hydrocyanation des nitriles aliphatiques à insaturation éthylénique, d'améliorer la linéarité des dinitriles obtenus, c'est-à-dire le pourcentage de dinitrile linéaire par rapport à la totalité des dinitriles formés, et/ou d'augmenter l'activité et la durée de vie du catalyseur. Par acide de Lewis, on entend dans le présent texte, selon la définition usuelle, des composés accepteurs de doublets électroniques.
On peut mettre en œuvre notamment les acides de Lewis cités dans l'ouvrage édité par G.A. OLAH "Friedel-Crafts and related Reactions", tome I, pages 191 à 197 (1963).
Les acides de Lewis qui peuvent être mis en œuvre comme cocatalyseurs dans le présent procédé sont choisis parmi les composés des éléments des groupes Ib, llb, Nia, lllb, IVa, IVb, Va, Vb, Vlb, Vllb et VIII de la Classification périodique des éléments. Ces composés sont le plus souvent des sels, notamment des halogénures, comme chlorures ou bromures, sulfates, sulfonates, halogenosulfonates, perhalogénoalkyl sulfonates, halogenoacétates, perhalogénoalkylacétates, notamment fluoroalkylsulfonates, perfluoroalkylsulfonates, fluoroalkylacétates ou perfluoroalkylacétates, carboxylates et phosphates.
A titre d'exemples non limitatifs de tels acides de Lewis, on peut citer le chlorure de zinc, le bromure de zinc, l'iodure de zinc, le chlorure de manganèse, le bromure de manganèse, le chlorure de cadmium, le bromure de cadmium, le chlorure stanneux, le bromure stanneux, le sulfate stanneux, le tartrate stanneux, le trifluorométhylsulfonate d'indium, le trifluorométhylacétate d'indium, les chlorures ou bromures des éléments des terres rares comme le lanthane, le cérium, le praséodyme, le néodyme, le samarium, l'europium, le gadolinium, le terbium, le dysprosium, l'hafnium, l'erbium, le thailium, l'ytterbium et le lutétium, le chlorure de cobalt, le chlorure ferreux, le chlorure d'yttrium.
On peut également utiliser comme acide de Lewis des composés organométalliques comme le triphénylborane, l'isopropylate de titane. On peut bien entendu mettre en œuvre des mélanges de plusieurs acides de Lewis. Parmi les acides de Lewis, on préfère tout particulièrement le chlorure de zinc, le bromure de zinc, le chlorure stanneux, le bromure stanneux le triphénylborane et les mélanges chlorure de zinc/chlorure stanneux.
Le cocatalyseur acide de Lewis mis en œuvre représente généralement de 0,01 à 50 moles par mole de composé de métal de transition, plus particulièrement de composé du nickel, et de préférence de 1 à 10 mole par mole.
Comme pour la mise en œuvre du procédé de base de l'invention, la solution catalytique utilisée pour l'hydrocyanation en présence d'acide de Lewis peut être préparée avant son introduction dans la zone de réaction, par exemple par addition au milieu réactionnel de la diphosphine de formule (I) ou (1.1), de la quantité appropriée de composé du métal de transition choisi, de l'acide de Lewis et éventuellement du réducteur. Il est également possible de préparer la solution catalytique "in situ" par simple mélange de ces divers constituants. La présente invention concerne également un procédé d'isomérisation de nitriles branchés en nitriles linéaires, à l'aide d'un système catalytique comprenant au moins complexe métallique incluant un ligand de formule (I) ou (1.1).
Les nitriles branchés concernés peuvent être des sous-produits de l'hydrocyanation telle que définie ci-dessus.
Ainsi, il est donc possible dans les conditions du procédé d'hydrocyanation de la présente invention, et notamment en opérant en présence du catalyseur décrit précédemment comportant au moins une diphosphine de formule (I) ou (1.1) et au moins un composé d'un métal de transition, de réaliser, en absence de cyanure d'hydrogène, l'isomérisation du méthyl-2-butène-3-nitrile en pentènenitriles, et plus généralement des nitriles insaturés ramifiés en nitriles insaturés linéaires.
Le méthyl-2-butène-3-nitrile soumis à l'isomérisation selon l'invention peut être mis en œuvre seul ou en mélange avec d'autres composés.
Ainsi on peut engager du méthyl-2-butène-3-nitrile en mélange avec du méthyl- 2-butène-2 nitrile, du pentène-4-nitrile, du pentène-3-nitriIe, du pentène-2-nitrile, du butadiene, de l'adiponitrile, du méthyl-2-glutaroronitrile, de l'éthyl-2-succinonitrile ou du vaiéronitrile.
Il est particulièrement intéressant de traiter le mélange réactionnel provenant de l'hydrocyanation du butadiene par HCN en présence d'au moins une diphosphine de formule (I) ou (1.1) et d'au moins un composé d'un métal de transition, plus préférentiellement d'un composé du nickel au degré d'oxydation 0, tel que défini précédemment.
Dans le cadre de cette variante préférée, le système catalytique étant déjà présent pour la réaction d'hydrocyanation du butadiene, il suffit d'arrêter toute introduction de cyanure d'hydrogène, pour laisser se produire la réaction d'isomérisation.
On peut, le cas échéant, dans cette variante faire un léger balayage du réacteur à l'aide d'un gaz inerte comme l'azote ou l'argon par exemple, afin de chasser l'acide cyanhydrique qui pourrait être encore présent.
La réaction d'isomérisation est généralement réalisée à une température de 10°C à 200°C et de préférence de 60°C à 180°C.
Dans le cas préféré d'une isomérisation suivant immédiatement la réaction d'hydrocyanation du butadiene, il sera avantageux d'opérer à la température à laquelle l'hydrocyanation a été conduite.
Comme pour le procédé d'hydrocyanation de composés à insaturation éthylénique, le système catalytique utilisé pour l'isomérisation peut être préparé avant son introduction dans la zone de réaction, par exemple par addition dans le milieu réactionnel de la diphosphine de formule (I) ou (1.1), de la quantité appropriée de composé du métal de transition choisi et éventuellement du réducteur. Il est également possible de préparer le système catalytique "in situ" par simple mélange de ces divers constituants. La quantité de composé du métal de transition et plus particulièrement du nickel utilisée, ainsi que la quantité de diphosphine de formule (I) ou (1.1) sont les mêmes que pour la réaction d'hydrocyanation. La quantité de phosphine de formule (I) ou (1.1) utilisée pour former le catalyseur est choisie de telle sorte que le nombre de moles de ce composé rapporté à 1 mole de métal de transition soit de 0,5 à 500 et de préférence de 2 à 100.
Bien que la réaction d'isomérisation soit conduite généralement sans solvant, il peut être avantageux de rajouter un solvant organique inerte qui pourra être celui de l'extraction ultérieure. C'est notamment le cas lorsqu'un tel solvant a été mis en œuvre dans la réaction d'hydrocyanation du butadiene ayant servi à préparer le milieu soumis à la réaction d'isomérisation. De tels solvants peuvent être choisis parmi ceux qui ont été cités précédemment pour l'hydrocyanation.
Toutefois, la préparation de composés dinitriles par hydrocyanation d'une oléfine comme le butadiene peut être réalisée en utilisant un système catalytique conforme à l'invention pour les étapes de formation des nitriles insaturés et l'étape d'isomérisation ci-dessus, la réaction d'hydrocyanation des nitriles insaturés en dinitriles pouvant être mis en œuvre avec un système catalytique conforme à l'invention ou tout autre système catalytique déjà connu pour cette réaction. De même, la réaction d'hydrocyanation de Poléfine en nitriles insaturés et l'isomérisation de ceux-ci peuvent être réalisées avec un système catalytique différent de celui de l'invention, l'étape d'hydrocyanation des nitriles insaturés en dinitriles étant mis en œuvre avec un système catalytique conforme à l'invention. Les exemples qui suivent illustrent l'invention.
EXEMPLES
ABREVIATIONS
ADN : adiponitrile.
(+)-BDPMCH : Bis(diphénylphosphino)-[(1 R,2R)-1 ,2-cyclohexanediylbis(méthylène)]
COD : 1 ,5-cyclooctadiène.
CPG : chomatographie en phase gazeuse.
(+)-CBD : [(+) 1S, 2S]-fra/?s-bis(diphénylphosphinométhyl)-1,2-cyclobutane. (+)-DIOP : (4,S,5S)-(+)-O-isopropylidène-2,3-di-hydroxy-1 ,4- bis(diphénylphosphino)butane.
DPPX : α,α'-diphénylphosphino-o-xylène.
DN : dinitriles = ADN + MGN + ESN. eq : équivalent.
ESN : 2-éthylsuccinonitrile. mmol : millimole.
MGN : 2-méthylglutaronitrile. OTf : trifluorométhanesulfonate (triflate).
TTP : Tritolylphosphite.
2M3BN : 2-méthyl-3-butènenitrile.
2M2BN : 2-méthyl-2-butènenitriie.
2PN : 2-pentènenitrile. 3PN : 3-pentènenitrile.
4PN : 4-pentènenitrile.
3+4PN : 3PN + 4PN.
TT : taux de transformation du produit de départ.
RR (X) : rendement réel du composé X = nb de mole formé de X / nb de mole maximale de X.
RT (X) : sélectivité du composé X = RR (X) / TT.
L : Linéarité = RT(ADN) / RT(DN)
CPG : chromatographie phase gazeuse. ml : millilitre. mmol : millimole.
SYNTHESE DES LIGANDS
La diphosphine (+)-DIOP est disponible commercialement.
Les préparations des autres ligands sont décrites dans les articles et brevets suivants
(+)-CDB : Brevet N° FR 2.230.654 (+)-BDPMCH : J. Mol. Catal. 1979, 5, p.41. DPPX : Helv. Chim. Acta. 1990, 73, p. 2263. ISOMERISATION DU 2M3BN EN 3PN
Protocole général des essais :
Sous argon, dans un pilulier en verre muni d'un barreau aimanté sont chargés 20 mg (0,073 mmol ; 1,0 eq) de Ni(COD)2 et 2,1 eq de ligand. Environ 1 ml (7,8 mmol; 107 eq) de 2M3BN (78% molaire) dégazé est ajouté. Le mélange est agité à 100°C en système fermé pendant 1 heure, ramené à température ambiante et analysé par CPG.
Résultats
Figure imgf000017_0001
HYDROCYANATION DU 3PN EN DINITRILES
Protocole général des essais :
Sous argon, dans un tube de verre contenant un barreau aimanté sont chargés 1,36 mmol (2,5 eq) de ligand. Environ 1,8 ml (17,3 mmol ; 30 eq) de 3PN anhydre sont ajoutés et la solution est agitée à température ambiante jusqu'à dissolution optimale. 150 mg (0,54 mmol; 1 eq) de Ni(COD)2 sont introduits. Le mélange est agité quelques minutes à température ambiante puis 0,54 mmol (1 eq) d'acide de Lewis est ajouté. Le tube est fermé par un bouchon équipé d'un septum puis placé sous agitation dans un bain d'eau à 70°C. La cyanhydrine de l'acétone est injectée dans le tube à un débit de 0,42 ml/h. Après 3h de réaction, l'injection est stoppée et le tube est ramené à température ambiante. Le mélange est dilué à l'acétone et dosé par chromatographie en phase gazeuse.
Résultats :
Figure imgf000018_0001
* L'essai a été réalisé en présence de 12 ml de diméthylformamide (DMF) a les essais ont été réalisés à une température de 55°C
Exemple XI :
Sous gaz inerte, un réacteur inox de 100ml est chargé successivement de
- 5.9g de DPPX (12.5mmol, 2.65 eq / Ni) ;
- 30g de 3-pentènenitrile (360mmol, 75 eq / Ni) ;
- 1.30g de bis(1 , 5-cyclooctadiène)2 (4.7mmol) ;
- 2.14g de ln(CF3COO)3 (4.7mmol, 1 eq / Ni). Le milieu réactionnel est alors chauffé sous agitation à 55°C. HCN liquide est alimenté dans le réacteur à un débit de 1.92ml/h. Après 5h de réaction, la composition du milieu réactionnel est déterminée par chromatographie en phase gazeuse.
Les résultats de rendement sont donnés ci-dessous : RR (DN) : 31 % et linéarité (L) : 92 %

Claims

REVENDICATIONS
1. Procédé d'hydrocyanation d'un composé hydrocarboné comprenant au moins une insaturation éthylénique par réaction en milieu liquide avec le cyanure d'hydrogène en présence d'un catalyseur comprenant un élément métallique choisi parmi les métaux de transition et un ligand organophosphoré caractérisé en ce que le ligand organophosphoré comprend au moins un motif diphosphine répondant à la formule générale (I):
Figure imgf000020_0001
P Ar Ar
(D dans laquelle :
- Ar représente un groupement aromatique ou hétéroaromatique, substitué ou non
- L est un radical comprenant : • une chaîne de liaison entre les atomes de phosphore L^ hydrocarbonée, linéaire, divalente et de formule suivante :
Figure imgf000020_0002
dans laquelle:
- les radicaux R^ R2 identiques ou différents représentent un atome d'hydrogène, un radical alkyle, cycloalkyle ;
- x représente un nombre entier > 3, de préférence compris entre 3 et 6 ; • au moins un radical L2 saturé ou non, cyclique ou acyclique, pouvant comprendre des hétéroatomes et lié à au moins deux carbones de Li pour former un cycle, avec la condition selon laquelle au moins l'un des deux carbones terminaux de situés en α de P, ne fait pas partie dudit cycle formé.
2. Procédé selon la revendication 1, caractérisé en ce que le ligand organophosphoré répond à la formule (1.1):
Figure imgf000021_0001
( ) dans laquelle: - les radicaux R^ sont identiques ou différents entre eux et sont tels que définis ci-dessus,
- les radicaux R2 sont identiques ou différents de Ri et entre eux et sont tels que définis ci-dessus;
- Ar sont tels que définis ci-dessus. - Cy correspond au cycle formé par les radicaux L1 et L2 définis ci-dessus.
3. Procédé selon la revendication 2, caractérisé en ce que caractérisé en ce que le cycle formé par ^ et L2 est sélectionné dans le groupe de radicaux divalents comprenant: r
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
avec :
R3, R4 répondant à la même définition que celle donnée ci-dessus pour
R1, R2;
R5, R6, R7, R8, R9 identiques ou différents et représentant un atome d'hydrogène, un radical alkyle linéaire ou ramifié ayant de 1 à 12 atomes de carbone pouvant comprendre des hétéroatomes, un radical aromatique ou cycloaliphatique substitué ou non pouvant comprendre des hétéroatomes, un radical carbonyle, alcoxycarbonyle ou alcoxy, un atome d'halogène, un groupe nitrile ou un groupe halogénoalkyle ayant 1 à 12 atomes de carbone; P, q, t = 1-4; r, s = 1-6.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la réaction est effectuée en milieu monophasique.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur correspond à la formule générale (II):
M [Lf]t (II) dans laquelle:
- M est un métal de transition,
- Lf représente le ligand organophosphoré de formule L-j ou L2,
- 1 représente un nombre compris entre 1 et 6 (bornes incluses).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le milieu réactionnel comprend un solvant du catalyseur miscible à la phase comprenant le composé à hydrocyaner à la température d'hydrocyanation.
7. Procédé selon la revendication 1 , caractérisé en ce que l'élément métallique est choisi dans le groupe comprenant le nickel, le cobalt, le fer, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium, le platine, le cuivre, l'argent, l'or, le zinc, le cadmium, le mercure.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés des métaux de transition sont ceux du nickel et sont choisis dans le groupe comprenant :
- les composés dans lesquels le nickel est au degré d'oxydation zéro comme le tétracyanonickelate de potassium K4 [(Ni(CN)4J, le bis(acrylonitrile) nickel zéro, le bis(cyciooctadiène-1 ,5) nickel et les dérivés contenant des ligands comme le tétrakis(triphényl-phosphine) nickel zéro ;
- les composés du nickel comme les carboxylates, carbonate, bicarbonate, borate, bromure, chlorure, citrate, thiocyanate, cyanure, formiate, hydroxyde, hydrophosphite, phosphite, phosphate et dérivés, iodure, nitrate, sulfate, sulfite, aryl- et alkyl-sulfonates.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés organiques comportant au moins une double liaison éthylénique sont choisis parmi les dioléfines comme le butadiene, l'isoprène, Phexadiène-1 ,5, le cyciooctadiène-1,5, les nitriles aliphatiques à insaturation éthylénique, particulièrement les pentènenitriles linéaires comme le pentène-3-nitriIe, le pentène-4-nitrile, les monooléfines comme le styrène, le méthyl-styrène, le vinyl-naphtalène, le cyclohexène, le méthyl-cyclohexène ainsi que les mélanges de plusieurs de ces composés.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la réaction d'hydrocyanation est réalisée à une température de 10°C à 200°C.
11. Procédé selon l'une des revendications précédentes d'hydrocyanation en dinitriles de composés nitriles à insaturation éthylénique, par réaction avec le cyanure d'hydrogène, caractérisé en ce que l'on opère en présence d'un système catalytique comprenant au moins un composé d'un métal de transition, au moins une phosphine de formule (I) ou (II) et un cocatalyseur consistant en au moins un acide de Lewis.
12. Procédé selon la revendication 11, caractérisé en ce les composés nitriles à insaturation éthylénique sont choisis parmi les nitriles aliphatiques à insaturation éthylénique comprenant les pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile et leurs mélanges.
13. Procédé selon la revendication 12, caractérisé en ce que les pentènenitriles linéaires contiennent des quantités d'autres composés choisis dans le groupe comprenant le méthyl-2-butène-3-nitrile, le méthyl-2-butène-2-nitri!e, le pentène-2-nitrile, le vaiéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-2-succinonitrile ou le butadiene.
14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que l'acide de Lewis mis en œuvre comme cocatalyseur est choisi parmi les composés des éléments des groupes Ib, llb, Nia, lllb, IVa, IVb, Va, Vb, Vlb, Vllb et VIII de la Classification périodique des éléments.
15. Procédé selon l'une des revendications 11 à 14, caractérisé en ce que l'acide de Lewis est choisi parmi les sels sélectionnés dans le groupe des halogénures, sulfates, sulfonates, halogenoalkylsulfonates, perhalogénoalkyl sulfonates, halogénoalkylacétates, perhalogénoalkylacétates, carboxylates et phosphates.
16. Procédé selon l'une des revendications 11 à 14, caractérisé en ce que l'acide de Lewis est choisi parmi le chlorure de zinc, le bromure de zinc, l'iodure de zinc, le chlorure de manganèse, le bromure de manganèse, le chlorure de cadmium, le bromure de cadmium, le chlorure stanneux, le bromure stanneux, le sulfate stanneux, le tartrate stanneux, le trifluorométhylsulfonate d'indium, le trifluorométhylacètate d'indium, les chlorures ou bromures des éléments des terres rares comme le lanthane, le cérium, le praséodyme, le néodyme, le samarium, l'europium, le gadoiinium, le terbium, le dysprosium, l'hafnium, l'erbium, le thallium, l'ytterbium et le lutétium, le chlorure de cobalt, le chlorure ferreux, le chlorure d'yttrium et leurs mélanges, les composés organométalliques.
17. Procédé selon l'une des revendications 11 à 16, caractérisé en ce que l'acide de Lewis mis en œuvre représente de 0,01 à 50 moles par mole de composé de métal de transition.
18. Procédé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que l'on réalise en absence de cyanure d'hydrogène l'isomérisation en pentènenitriles, du méthyl-2-butène-3-nitrile présent dans le mélange réactionnel provenant de l'hydrocyanation du butadiene, en opérant en présence d'un catalyseur comportant au moins une phosphine de formule (I) ou (1.1) et au moins un composé d'un métal de transition.
19. Procédé selon la revendication 16, caractérisé en ce que le méthyl-2- butène-3-nitrile soumis à l'isomérisation est mis en œuvre seul ou en mélange avec du méthyl-2-butène-2-nitrile, du pentène-4-nitrile, du pentène-3-nitrile, du pentène-2-nitriie, du butadiene, de l'adiponitrile, du méthyl-2-glutaroronitrile, de l'éthyl-2-succinonitrile ou du vaiéronitrile.
20. Procédé selon la revendication 16 ou 17, caractérisé en ce que la réaction d'isomérisation est réalisée à une température de 10°C à 200°C.
21. Procédé selon l'une quelconque des revendications 16 à 18, caractérisé en ce que l'isomérisation en pentène-nitriles du méthyl-2-butène-3-nitrile est réalisée en présence d'au moins un composé d'un métal de transition, d'au moins une phosphine de formule (I) ou (II) et un cocatalyseur consistant en au moins un acide de Lewis.
PCT/FR2002/003385 2001-10-08 2002-10-04 Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires WO2003031392A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/12932 2001-10-08
FR0112932A FR2830530B1 (fr) 2001-10-08 2001-10-08 Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires

Publications (1)

Publication Number Publication Date
WO2003031392A1 true WO2003031392A1 (fr) 2003-04-17

Family

ID=8868042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003385 WO2003031392A1 (fr) 2001-10-08 2002-10-04 Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires

Country Status (2)

Country Link
FR (1) FR2830530B1 (fr)
WO (1) WO2003031392A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046226A1 (fr) 2008-10-21 2010-04-29 Rhodia Operations Procede de fabrication de composes comprenant des fonctions nitriles
WO2010086246A1 (fr) 2009-01-29 2010-08-05 Rhodia Operations Procede de fabrication de composes comprenant des fonctions nitriles
US7777068B2 (en) 2001-07-27 2010-08-17 Basf Se Ni(0) -containing catalyst system
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US8247621B2 (en) 2008-10-14 2012-08-21 Invista North America S.A.R.L. Process for making 2-secondary-alkyl-4,5-di-(normal-alkyl)phenols
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds
US8906334B2 (en) 2007-05-14 2014-12-09 Invista North America S.A R.L. High efficiency reactor and process
US9061970B2 (en) 2008-01-25 2015-06-23 Invista North America S.A.R.L. Production of compounds comprising nitrile functional groups
US9233917B2 (en) 2008-06-17 2016-01-12 Invista North America S.A R.L. Preparation of nitriles from ethylenically unsaturated compounds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004682A1 (de) * 2004-01-29 2005-08-18 Basf Ag Verfahren zur Herstellung von Adipodinitril durch Hydrocyanierung von 1,3-Butadien
FR2932476B1 (fr) * 2008-06-17 2010-07-30 Rhodia Operations Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2338253A1 (fr) * 1976-01-13 1977-08-12 Rhone Poulenc Ind Procede d'hydrocyanation de composes organiques insatures comportant au moins une double liaison ethylenique
WO1996029303A1 (fr) * 1995-03-22 1996-09-26 E.I. Du Pont De Nemours And Company Procede d'hydrocyanatation en presence de nickel de valence zero, d'un compose phosphoreux bidente et d'un acide de lewis
WO1997012857A1 (fr) * 1995-09-29 1997-04-10 Rhodia Fiber And Resin Intermediates Procede d'hydrocyanation de composes organiques a insaturation ethylenique
WO1997023446A1 (fr) * 1995-12-22 1997-07-03 E.I. Du Pont De Nemours And Company Procede ameliore d'hydrocyanation de diolefines et d'isomerisation de 2-alkyl-3-mono-alcenenitriles non conjugues

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2338253A1 (fr) * 1976-01-13 1977-08-12 Rhone Poulenc Ind Procede d'hydrocyanation de composes organiques insatures comportant au moins une double liaison ethylenique
WO1996029303A1 (fr) * 1995-03-22 1996-09-26 E.I. Du Pont De Nemours And Company Procede d'hydrocyanatation en presence de nickel de valence zero, d'un compose phosphoreux bidente et d'un acide de lewis
WO1997012857A1 (fr) * 1995-09-29 1997-04-10 Rhodia Fiber And Resin Intermediates Procede d'hydrocyanation de composes organiques a insaturation ethylenique
WO1997023446A1 (fr) * 1995-12-22 1997-07-03 E.I. Du Pont De Nemours And Company Procede ameliore d'hydrocyanation de diolefines et d'isomerisation de 2-alkyl-3-mono-alcenenitriles non conjugues

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777068B2 (en) 2001-07-27 2010-08-17 Basf Se Ni(0) -containing catalyst system
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8394981B2 (en) 2006-07-14 2013-03-12 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8906334B2 (en) 2007-05-14 2014-12-09 Invista North America S.A R.L. High efficiency reactor and process
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US9061970B2 (en) 2008-01-25 2015-06-23 Invista North America S.A.R.L. Production of compounds comprising nitrile functional groups
US9233917B2 (en) 2008-06-17 2016-01-12 Invista North America S.A R.L. Preparation of nitriles from ethylenically unsaturated compounds
US8247621B2 (en) 2008-10-14 2012-08-21 Invista North America S.A.R.L. Process for making 2-secondary-alkyl-4,5-di-(normal-alkyl)phenols
WO2010046226A1 (fr) 2008-10-21 2010-04-29 Rhodia Operations Procede de fabrication de composes comprenant des fonctions nitriles
US9174207B2 (en) 2008-10-21 2015-11-03 Invista North America S.A.R.L. Process for producing compounds comprising nitrile functions
WO2010086246A1 (fr) 2009-01-29 2010-08-05 Rhodia Operations Procede de fabrication de composes comprenant des fonctions nitriles
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters

Also Published As

Publication number Publication date
FR2830530B1 (fr) 2004-07-02
FR2830530A1 (fr) 2003-04-11

Similar Documents

Publication Publication Date Title
EP1585722B1 (fr) Procede de synthese de composes comprenant des fonctions nitriles a partir de composes a insaturations ethyleniques
EP1324976B1 (fr) Procede d'hydrocyanation de composes organiques a insaturation ethylenique
EP1521738B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
WO2003031392A1 (fr) Procede de transformation, d'une part, de composes a insaturation ethylenique en nitriles et, d'autre part, de nitriles branches en nitriles lineaires
WO2002053527A1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
EP1521736B1 (fr) Fabrication de nitriles a partir de composes a insaturation ethylenique
EP1567478B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
EP2310358B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
FR2835833A1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
FR2845379A1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
WO2004007508A2 (fr) Fabrication de nitriles a partir de composes a insaturation ethylenique
EP2303834B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
EP2443086B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
EP2760824B1 (fr) Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
EP2477998B1 (fr) Composes organophosphores, systemes catalytiques comprenant ces composes et procede d'hydrocyanation utilisant ces systemes catalytiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载