+

WO2003031060A1 - Mince film transparent et procede de production de celui-ci - Google Patents

Mince film transparent et procede de production de celui-ci Download PDF

Info

Publication number
WO2003031060A1
WO2003031060A1 PCT/JP2001/008812 JP0108812W WO03031060A1 WO 2003031060 A1 WO2003031060 A1 WO 2003031060A1 JP 0108812 W JP0108812 W JP 0108812W WO 03031060 A1 WO03031060 A1 WO 03031060A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
transparent thin
titania
producing
transparent
Prior art date
Application number
PCT/JP2001/008812
Other languages
English (en)
French (fr)
Inventor
Tsutomu Minami
Masahiro Tatsumisago
Kiyoharu Tadanaga
Atsunori Matsuda
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000289528A priority Critical patent/JP2002097013A/ja
Priority claimed from JP2000289528A external-priority patent/JP2002097013A/ja
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to PCT/JP2001/008812 priority patent/WO2003031060A1/ja
Priority to US10/491,752 priority patent/US20050129927A1/en
Priority to EP01974722A priority patent/EP1449582A4/en
Publication of WO2003031060A1 publication Critical patent/WO2003031060A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention of this application relates to a transparent thin film and a method for producing the same. More specifically, the invention of this application relates to a novel transparent thin film having high photocatalytic activity and superhydrophilicity, and a method for producing the transparent thin film at a low temperature.
  • Titania has three types of crystals, anatase type, rutile type, and wurtzite type, and amorphous type (amorphous type).
  • anatase type titania is known to exhibit the highest photocatalytic activity. ing.
  • fine crystals with a large specific surface area show higher photocatalytic activity than bulk crystals. Therefore, in the field of photocatalysis, materials in which anatase-type titania fine crystals are dispersed are used for photodecomposition of air pollutants such as acetate aldehyde and nitrogen oxide, and photodecomposition of water pollutants represented by halides. It is used for the purpose of sterilization or antibacterial against harmful microorganisms, etc., and its application is also expected.
  • the sol-gel method is one of the most suitable technologies for producing crystalline and amorphous thin films because of their relatively low temperature processes and their ability to be adjusted to any desired shape.
  • a thin film prepared by the sol-gel method is an amorphous body, and in order to crystallize the amorphous thin film, it is necessary to subsequently perform a heat treatment of about 300 to 80 (about TC).
  • a heat treatment of about 300 to 80 (about TC).
  • an amorphous titania thin film is prepared by a sol-gel method, and further subjected to a heat treatment at a high temperature of 300 ° C. or more. I needed to. For this reason, materials having poor heat resistance, such as organic polymers, cannot be used as the substrate, and the material of the substrate has been limited.
  • the invention of this application has been made in view of the above circumstances, and requires a novel transparent thin film exhibiting high photocatalytic activity and superhydrophilicity in addition to high light transmittance, and high-temperature treatment. It is an object of the present invention to provide a method for producing such a transparent thin film without using the same. Disclosure of the invention
  • the invention of this application is a transparent thin film mainly composed of silica and titania, and is characterized in that anatase-type titania microcrystals are highly dispersed on the surface of the thin film. And a transparent thin film.
  • the invention of this application is a transparent thin film mainly composed of silica and titania, and has a crystal-type titania fine particle having a lattice spacing of 0.7 nm or near on the surface of the thin film.
  • the invention of this application is based on silicon alkoxide and hydrolysis.
  • a gel film containing a composite metal oxide or hydroxide of a titanium compound and a silicon alkoxide is formed from a solution containing a titanium compound having a property, and then water or hot water is brought into contact with the solution to form titania microcrystals on the surface of the thin film.
  • the present invention provides a method for producing a transparent thin film according to any one of the above inventions, characterized in that
  • the invention of this application is directed to a method for producing a transparent thin film according to the seventh invention, wherein the hydrolyzable titanium compound is a titanium alkoxide.
  • the blending of the silicon alkoxide and titanium compound, a molar ratio, S i 0 2: T i 0 2 5:!
  • ⁇ 1 a transparent thin film, which is a range of 3, the first 0 , blending of Shirikona Rukokishido and titanium compound, a molar ratio
  • S i 0 2: T i 0 2 3: a method for producing a transparent thin film, which is a 1, the first 1, transparency film
  • FIG. 1 is a diagram exemplifying how the concentration of methylene blue changes when the transparent thin film of the present invention is irradiated with ultraviolet light.
  • Figure 2 shows the change in methylene blue concentration when the transparent thin film (a) of the present invention, the transparent thin film (X) before hot water treatment, and the conventional anatase titania thin film (y) were irradiated with ultraviolet light. It is the figure which illustrated the situation.
  • FIG. 3 is a diagram exemplifying an FE-SEM image obtained by observing the surfaces of the transparent thin films (a) to (d) of the invention of the present application from obliquely above.
  • the transparent thin film provided by the first and second inventions of this application is a transparent thin film containing silica and titania as main components, and has an anatase-type titania microcrystal or 0.7 on the surface of the thin film. It is characterized by a high dispersion of crystalline titania microcrystals having a lattice spacing of or near nm, and titania microcrystals having phases of both crystal types.
  • a crystal phase having a lattice spacing of about 0.7 nm other than the anatase type is not known so far, and is characterized as being included in the titania microcrystals of the invention of this application.
  • “highly dispersed” means that the titania microcrystals generally use water or hot water as described below until the titania microcrystals give a clear unevenness on the film surface. 30% or more, and more than 50% or more, of the surface area of the film subjected to the contact treatment means that the titania microcrystals are used. .
  • the transparent thin film of the invention of this application has high light transmittance and durability.
  • the titania exhibiting high photocatalytic activity is highly dispersed as microcrystals on the surface of the transparent thin film. Titania microcrystals have a particle size of several 10 to 1 O Onm and have a large specific surface area. Therefore, the transparent thin film of the invention of this application exhibits extremely high photocatalytic activity.
  • it since it can be manufactured at a low temperature of 100 ° C. or less, it can be directly formed on various materials.
  • the transparent thin film provided by the third invention of this application is characterized in that, in the first or second invention, it exhibits superhydrophilicity with a contact angle with water of 5 ° or less.
  • the titania microcrystals as described above are highly dispersed, and a fine uneven structure is formed on the film surface.
  • the unevenness is sufficiently small with respect to the wavelength of light. Therefore, the thin film is transparent and has excellent design
  • due to the unevenness it exhibits superhydrophilicity with a contact angle to water of 5 ° or less, and also exhibits self-cleaning properties (self-cleaning properties).
  • This can provide a novel transparent thin film exhibiting high photocatalytic activity and superhydrophilicity in addition to high light transmittance.
  • the transparent thin film provided by the sixth invention of this application is characterized in that, in the fifth invention, the transparent thin film has a superhydrophilic / superhydrophobic pattern comprising a superhydrophilic portion and a superhydrophobic portion.
  • the super water-repellent portion is realized by forming a water-repellent film on the transparent thin film of the invention of this application.
  • the shape of the water-repellent film and the superhydrophilic super-water-repellent pattern can be arbitrary.
  • the method for producing a transparent thin film is a method for producing the above transparent thin film, comprising the steps of: forming a titanium compound from a solution containing a silicon alkoxide and a hydrolyzable titanium compound; A gel film containing a complex metal oxide or hydroxide of silicon alkoxide is formed, and by contacting the gel film with water or warm water, titanium microcrystals are deposited on the surface of the thin film. .
  • silicon alkoxide as a starting material, for example, various compounds represented by the general formula S i (OR) 4 can be used.
  • the organic group R constituting the alkoxy group include, for example, methyl having 1 to 6 carbon atoms and methyl.
  • the same or different lower alkyl groups such as a group, an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group. More specifically, for example, the use of silicon tetraethoxide is shown as a preferable example.
  • Silicon alkoxide is dissolved in an organic solvent to prepare a silicon alkoxide solution.
  • a catalyst for promoting hydrolysis of the alkoxyl group or promoting the dehydration condensation reaction and water may be added.
  • the molar ratio of the organic solvent and water to be added to the silicon alkoxide is preferably about 1 to 8, and about 1 to 6, respectively.
  • organic solvents examples include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-ptanol, 2-butanol, isobutyl alcohol, ter-butyl alcohol, 1-pentanol, 2-pentanol, and 3 — Pennol or the like can be exemplified.
  • Examples of the catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, acetic acid, and ammonia. '
  • titanium alkoxide and titanium oxalate which are metal organic compounds, and titanium nitrate and titanium tetrachloride as metal and inorganic compounds.
  • titanium alkoxide can be used. Is preferably used.
  • examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra n-propoxy titanium, tetraisopropoxy titanium, tetra n-butoxy titanium, tetraisobutoxy titanium and the like.
  • the titanium compound is also dissolved in the aforementioned organic solvent to prepare a titanium solution.
  • the molar ratio of the organic solvent to be added to the titanium compound is preferably about 20.
  • Silicon alkoxide solution and titanium solution prepared as described above To form a gel film containing a composite metal oxide or hydroxide of a titanium compound and silicon alkoxide.
  • the gel film can be formed on a substrate made of various materials.
  • various glass materials, metal materials, inorganic materials, plastic materials, paper, wood materials, and the like may be used.
  • Various methods such as a dip coating method, a spray method, and a spin coating method can be used as a method of coating on a substrate.
  • the gel film is treated with water or warm water to precipitate the titania microcrystals as described above on the surface of the thin film.
  • the temperature of the hot water can be 10 (TC or less, for example, about 50 to 100 ° C.)
  • the processing time when using the hot water is as follows. Although it depends on the temperature, about one hour is enough for boiling water.
  • the titania microcrystals precipitated by the above-mentioned hot water treatment are composed of anatase type or titania microcrystals having a crystal phase with a lattice spacing of about 0.7 nm, or both, and have a textured structure on the surface of the transparent thin film. Is formed. Therefore, this transparent thin film exhibits superhydrophilicity with a contact angle to water of 5 ° or less. This makes it possible to produce a transparent thin film exhibiting high photocatalytic activity and superhydrophilicity in addition to high light transmittance, without requiring high-temperature treatment.
  • the method of the invention of this application can be carried out at a low temperature of 100 ° C. or less, and a transparent anatase thin film can be formed even on a substrate having poor heat resistance. Very effective for practical use of titania photocatalyst Technology.
  • the method for producing a transparent thin film provided by the tenth invention of the present application is a method of coating a transparent thin film of the above invention with a fluoroalkylsilane and irradiating the transparent thin film with ultraviolet light through a mask.
  • a super hydrophilic and super water repellent pattern is formed on the substrate.
  • Fluoroalkylsilane is used as a material for the water-repellent film.
  • the full-chain alkylsilane include a single polycondensation compound of 3,3,3-trifluoropropyltrialkoxysilane, more specifically, 3,3,3-tripropylpropyltrimethoxysilane, Or, 3,3,3-trifluoropropyltriethoxysilane and the like can be exemplified.
  • the oligomer or a polycondensate obtained from the oligomer may be used.
  • a method of applying the full-length alkyl silane to the transparent thin film a commonly used method such as solution coating or vapor deposition can be adopted.
  • photomask various types of commonly used photomasks can be used depending on the purpose.
  • a metal mesh mask having an opening in a metal such as gold, silver, copper, stainless steel, chromium, titanium, and aluminum is exemplified.
  • the transparent thin film coated with fluoroalkylsilane is irradiated with ultraviolet light through a mask having a desired pattern in the opening.
  • the transparent thin film corresponding to the opening of the photomask is irradiated with ultraviolet rays. Therefore, on the surface of the transparent thin film exposed to ultraviolet light, anatase-type or titania microcrystals in a crystalline phase with a lattice spacing of about 0.7 nm show a photocatalytic effect, and Decompose. This makes it possible to form a super-hydrophilic / super-water-repellent pattern in which a portion irradiated with ultraviolet light exhibits super hydrophilicity and a portion masked with ultraviolet light exhibits super water repellency.
  • a bulging pattern using the difference in solid surface energy can be produced.
  • This bulge shape pattern By fabricating on a substrate, a micro-optical element having functions of condensing, demultiplexing, and multiplexing a microlens, a waveguide, and the like is realized. It can also be used as a printing plate.
  • sol-like solutions were applied to the surface of an inorganic glass substrate by dip coating and heat-treated at 90 ° C for 1 hour to form a thin film. Furthermore these films, 1 0 0 e C in by applying warm water for 1 hour to obtain S i 0 2 ⁇ T i 0 2 of transparent thin film (a) ⁇ (d).
  • Example 2 In the same manner as in Example 1, the contact angles with respect to water were measured for the transparent thin films (1) to (8) in which the blend of silica and titania was produced as shown in Table 1. The contact angle was measured the first time on the thin film as it was, the second time on the thin film after the application of a full-length alkyl silane, and the third time on the thin film after irradiation with ultraviolet light.
  • the transparent thin films (2) to (8) having photocatalytic activity exhibited superhydrophilicity again after irradiation with ultraviolet light.
  • the transparent thin film (2) It was confirmed that (8) decomposes the full-length alkyl silane by irradiation with ultraviolet light.
  • the present invention provides a novel transparent thin film having high photocatalytic activity and superhydrophilicity, and a method for producing the transparent thin film at a low temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 書 透明薄膜とその製造方法 技術分野
この出願の発明は、 透明薄膜とその製造方法に関するものである。 さら に詳しくは、 この出願の発明は、 高い光触媒活性と超親水性を示す新規な 透明薄膜と、 その透明薄膜を低温で製造方法に関するものである。 背景技術
チタニアには、 アナターゼ型、 ルチル型、 ブルツカイ卜型の 3種類の結 晶体とアモルファス体 (無定形) とがあり、 これらのうちで、 アナターゼ 型のチタニアが最も高い光触媒活性を示すことが知られている。 アナター ゼ型のチタニアについても、 比表面積の大きい微細結晶が、 バルク結晶よ りも高い光触媒活性を示す。 そのため、 光触媒の分野では、 アナターゼ型 のチタニア微細結晶を分散させた材料等が、 ァセ卜アルデヒドゃ窒素酸化 物等の大気汚染物質の光分解、 ハロゲン化物に代表される水質汚染物質の 光分解、 および有害微生物等に対する殺菌または抗菌等を目的として用い られており、 またその応用が期待されてもいる。
一方で、 結晶およびアモルファス薄膜の製造方法としては、 比較的低温 でのプロセスであること、 任意の形状に調整できること等から、 ゾル-ゲ ル法が最も適した技術の一つとして挙げられる。
しかしながら、 一般には、 ゾル ·ゲル法によって調製される薄膜はァモ ルファス体であって、 そのアモルファス薄膜を結晶化させるには、 次いで 、 3 0 0〜 8 0 (TC程度の熱処理を施す必要があった。 たとえば、 アナタ ーゼ型のチタニア微細結晶を作製するには、 まずゾル ·ゲル法でァモルフ ァス体のチタニア薄膜を調製し、 さらに 3 0 0 °C以上の高温で熱処理を施 す必要があった。 そのため、 従来より、 有機ポリマー等の耐熱性に乏しい 材料等を基板として用いることはできず、 基板の材質が制限されてしまつ ていた。
そこで、 この出願の発明は、 以上の通りの事情に鑑みてなされたもので あり、 高い光透過性に加えて、 高い光触媒活性と超親水性を示す、 新規な 透明薄膜と、 高温処理を必要とせずにその透明薄膜を製造する方法を提供 することを課題としている。 発明の開示
そこで、 この出願の発明は、 上記の課題を解決するものとして、 以下の 通りの発明を提供する。
すなわち、 まず第 1 には、 この出願の発明は、 シリカとチタニアを主成 分とする透明の薄膜であって、 薄膜の表面にアナターゼ型のチタニア微結 晶が高分散されていることを特徴とする透明薄膜を提供する。
そして、 第 2には、 この出願の発明は、 シリカとチタニアを主成分とす る透明の薄膜であって、 薄膜の表面に 0 . 7 n mもしくはその近傍の格子 間隔を持つ結晶型のチタニア微結晶が高分散されていることを特徴とする 透明薄膜を提供する。
さらに、 この出願の発明は、 上記第 1 または第 2の発明について、 第 3 には、 水に対する接触角が 5 ° 以下の超親水性を示すことを特徴とする透 明薄膜を、 第 4には、 シリカとチタニアの配合が、 モル比で、 S i 0 2 : T i 0 2 = 5 : 1 〜 1 : 3の範囲であることを特徴とする透明薄膜を、 第 5には、 シリカとチタニアの配合が、 モル比で、 S i 0 2 : T i 0 2 = 3 : 1であることを特徴とする透明薄膜を、 第 6には、 超親水性部分と超撥 水性部分とからなる超親水一超撥水パターンを有することを特徴とする透 明薄膜を提供する。
また、 第 7には、 この出願の発明は、 シリコンアルコキシドと加水分解 性を有するチタニウム化合物を含む溶液から、 チタニウム化合物とシリコ ンアルコキシドの複合金属酸化物あるいは水酸化物を含むゲル膜を形成し 、 次いで、 水または温水を接触させて、 薄膜の表面にチタニア微結晶を析 出させることを特徴とする上記いずれかの発明の透明薄膜の製造方法を提 供する。
加えて、 第 8には、 この出願の発明は、 上記第 7の発明において、 加水 分解性を有するチタニウム化合物が、 チタニウムアルコキシドであること を特徴とする透明薄膜の製造方法を、 第 9には、 シリコンアルコキシドと チタニウム化合物の配合が、 モル比で、 S i 02 : T i 02= 5 : "! 〜 1 : 3の範囲であることを特徴とする透明薄膜を、 第 1 0には、 シリコンァ ルコキシドとチタニウム化合物の配合が、 モル比で、 S i 02 : T i 02 = 3 : 1であることを特徴とする透明薄膜の製造方法を、 第 1 1 には、 透 明薄膜にフルォロアルキルシランを塗布し、 フ才卜マスクを介して紫外線 照射することで、 透明薄膜に超親水一超撥水パターンを形成することを特 徴とする透明薄膜の製造方法をも提供する。 図面の簡単な説明
図 1 は、 この出願の発明の透明薄膜に紫外線を照射した際の、 メチレン ブルーの濃度変化の様子を例示した図である。
図 2は、 この出願の発明の透明薄膜 (a) と、 温水処理を施す前の透明 薄膜 (X ) 、 従来のアナターゼ型チタニア薄膜 (y ) に紫外線を照射した 際の、 メチレンブルーの濃度変化の様子を例示した図である。
図 3は、 この出願の発明の透明薄膜 (a) ~ (d) の表面を斜め上から 観察した F E— S E M像を例示した図である。 発明を実施するための最良の形態
この出願の発明は、 上記の通りの特徴を持つものであるが、 以下にその 実施の形態について説明する。
まず、 この出願の第 1 および第 2の発明が提供する透明薄膜は、 シリカ とチタニアを主成分とする透明の薄膜であって、 薄膜の表面にアナターゼ 型のチタニア微結晶、 または、 0 . 7 n mもしくはその近傍の格子間隔を 持つ結晶型のチタニア微結晶、 さらにはこれら両方の結晶型の相を有する チタニア微結晶が高分散されていることを特徴としている。
アナターゼ型以外の約 0 . 7 n mの格子間隔を持つ結晶相は、 これまで に知られていないものであって、 この出願の発明のチタニア微結晶に含ま れるものとして特徴がある。
そして、 この出願の発明において、 「高分散されている」 とのことは、 前記チタニア微結晶が膜表面に明瞭な凹凸状態を与えるまでに、 一般的に は、 後述の通りの水または温水による接触処理が施された膜の表面の平面 積に対し、 3 0 %以上が、 さらには 5 0 %以上がチタニア微結晶であるこ とを意味している。 .
この出願の発明の透明薄膜は、 光透過率が高く、 耐久性を備えている。 また、 この透明薄膜の表面には、 高い光触媒活性を示す前記のチタニアが 、 微結晶として高分散されている。 チタニア微結晶は、 粒径が数 1 0〜 1 O O n m程度であり、 大きな比表面積を有している。 そのため、 この出願 の発明の透明薄膜は、 極めて高い光触媒活性を示す。 また、 1 0 0 °C以下 の低温で製造可能であるため、 様々な材料上に直接形成することも可能と される。
そして、 この出願の第 3の発明が提供する透明薄膜は、 上記第 1 または 第 2の発明について、 水に対する接触角が 5 ° 以下の超親水性を示すこと を特徴としている。
この出願の発明の透明薄膜は、 前記の通りのチタニア微結晶が高分散さ れており、 膜表面に微細な凹凸組織が形成され、 この凹凸は光の波長に対 して十分に小さいものであるため、 薄膜は透明であり、 意匠性に優れてい るとともに、 凹凸により、 水に対する接触角が 5 ° 以下の超親水性を示し 、 自己浄化性 (セルフクリーニング特性) をも示す。
この出願の第 4の発明が提供する透明薄膜では、 シリカとチタニアの配 合が、 モル比で、 S i 02 : T i 02= 5 : 1〜1 : 3の範囲と、 広い範 囲で設定することができる。 これによつて、 高い光透過性に加えて、 高い 光触媒活性と超親水性を示す、 新規な透明薄膜を提供することができる。 この出願の第 5の発明が提供する透明薄膜は、 シリ力とチタニアの配合 が、 モル比で、 S i 02 : T i 02= 3 : 1であることを特徴としている 。 S i 02 : T i 02= 3 : 1 およびその付近とすることで、 光触媒活性 をより高めることができる。
この出願の第 6の発明が提供する透明薄膜は、 上記第 5の発明において 、 超親水性部分と超撥水性部分とからなる超親水一超撥水パターンを有す ることを特徴としている。 超撥水性部分は、 この出願の発明の透明薄膜上 に撥水性を示す膜を形成することで実現される。 撥水性膜および超親水一 超撥水パターン形状は、 任意のものとすることができる。
また、 この発明の透明薄膜上に親水性流体を接触させて、 その親水性流 体を超親水性部分にのみ配置させ、 固化させることで、 任意の膨らみ形状 パターンを得ることもできる。
この出願の第 7の発明が提供する透明薄膜の製造方法は、 上記の透明薄 膜を製造するための方法であって、 シリコンアルコキシドと加水分解性を 有するチタニウム化合物を含む溶液から、 チタニウム化合物とシリコンァ ルコキシドの複合金属酸化物あるいは水酸化物を含むゲル膜を形成し、 そ のゲル膜を、 水または温水と接触させることによって、 薄膜の表面にチタ ニァ微結晶を析出させることを特徴としている。
この場合の出発物質としてのシリコンアルコキシドは、 たとえば一般式 S i (O R) 4で表される各種のものを使用することができる。 アルコキ シル基を構成する有機基 Rとしては、 たとえば、 炭素数 1〜6の、 メチル 基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 イソブチル基等 の同一または別異の低級アルキル基が挙げられる。 より具体的には、 たと えば、 シリコンテ卜ラエ卜キシドを用いることが、 好ましい例として示さ れる。
シリコンアルコキシドは、 有機溶媒に溶解させて、 シリコンアルコキシ ド溶液を調製する。 このとき、 必要に応じて、 アルコキシル基の加水分解 を促進したり脱水縮合反応を促進するための触媒と、 水を添加してもよい 。 シリコンアルコキシドに加える有機溶媒および水は、 モル比で、 それぞ れ 1 〜8, 1 〜6程度とすることが好ましい。
有機溶媒としては、 たとえば、 メタノール、 エタノール、 1 —プロパノ ール、 イソプロピルアルコール、 1 ープタノール、 2—プ夕ノール、 イソ プチルアルコール、 t e r—ブチルアルコール、 1一ペン夕ノール、 2— ペンタノール、 3—ペン夕ノール等を例示することができる。
触媒としては、 たとえば、 硝酸、 塩酸、 硫酸、 憐酸、 酢酸、 アンモニア 等を例示することができる。 '
出発物質としての加水分解性を有するチタニウム化合物は、 一例として 、 金属有機化合物であるチタニウムアルコキシド、 しゅう酸チタン、 金属 無機化合物として硝酸チタン、 四塩化チタン等を用いることができるが、 なかでもチタニウムアルコキシドを用いることが好ましい例として示され る。 チタニウムアルコキシドとしては、 例えば、 テ卜ラメ 卜キシチタン、 テ卜ラエ卜キシチタン、 テ卜ラ n—プロポキシチタン、 テ卜ライソプロボ キシチタン、 テ卜ラ n—ブトキシチタン、 テ卜ライソブトキシチタン等が 挙げられる。
チタニウム化合物についても、 前記の有機溶媒に溶解させて、 チタニゥ 厶溶液を調製する。 チタニウム化合物に加える有機溶媒は、 モル比で 2 0 程度とすることが好ましい。
上記のように調製したシリコンアルコキシド溶液およびチタニウム溶液 を混合し、 チタニウム化合物とシリコンアルコキシドの複合金属酸化物あ るいは水酸化物を含むゲル膜を形成させる。 シリコンアルコキシドとチタ ニゥ厶化合物の配合は、 モル比で、 前記の通りの S i 0 2 : Τ ί 0 2 = 5 : 1 〜 1 : 3の範囲、 より好ましくは、 3 : 1付近とすることができる。 チタニウム化合物とシリコンアルコキシドのモル比を 3 : 1付近とするこ とで、 得られるこの出願の発明の透明薄膜の光触媒活性をより高めること ができる。
ゲル膜は、 各種の材料からなる基板の上に形成することができる。 基板 としては、 各種のガラス材料、 金属材料、 無機質材料、 プラスチック材料 、 紙、 木質材料などであってよい。 基板上への塗布方法は、 ディップコー ティング法、 スプレー法、 スピンコーティング法等の各種の方法を用いる ことができる。
この出願の発明の方法においては、 このゲル膜に対して、 水または温水 処理を施すことによって、 薄膜の表面に前記の通りのチタニア微結晶を析 出させる。 温水を用いることが特に好ましく、 この場合の温水の温度は、 1 0 (TC以下、 たとえば、 5 0〜 1 0 0 °C程度とすることができる。 温水 を用いる場合の処理時間は、 温水の温度によっても異なるが、 沸騰水であ れば約 1時間程度で充分である。
上記の温水処理によって析出される前記のチタニア微結晶は、 アナター ゼ型または約 0 . 7 n mの格子間隔の結晶相のチタニァ微結晶、 あるいは その両方とから構成され、 透明薄膜の表面に凹凸組織を形成している。 そ のため、 この透明薄膜は、 水に対する接触角が 5 ° 以下の超親水性を示す 。 これによつて、 高い光透過性に加えて、 高い光触媒活性と超親水性を示 す透明薄膜を、 高温処理を必要とせずに作製することができる。
また、 この出願の発明の方法は、 1 0 0 °C以下の低温で実施することが でき、 耐熱性に乏しい基板上であっても透明なアナターゼ薄膜を形成する ことが可能とされるため、 チタニア光触媒の現実的な使用にきわめて有効 となる技術である。
この出願の第 1 0の発明が提供する透明薄膜の製造方法は、 上記の発明 の透明薄膜にフル才ロアルキルシランを塗布し、 フ才卜マスクを介して紫 外線照射することで、 透明薄膜に超親水一超撥水パターンを形成すること を特徴としている。
フルォロアルキルシランは、 撥水性膜の材料として用いられる。 フル才 口アルキルシランとしては、 たとえば、 3, 3 , 3—トリフル才ロプロピ ル卜リアルコキシシランの単独重縮合化合物、 より具体的には、 3 , 3, 3—トリフル才ロプロピル卜リメ 卜キシシラン、 または 3, 3, 3—トリ フル才ロプロピルトリエトキシシラン等を例示することができる。 もちろ ん、 そのオリゴマーやそのオリゴマーとから得られる重縮合物等を用いて もよい。 フル才ロアルキルシランを透明薄膜に塗布する方法としては、 溶 液塗布や蒸着等の、 一般に利用されている方法を採用することができる。 フォトマスクは、 目的に応じて、 一般に使用ざれている各種のフォトマ スクを利用することができる。 たとえば、 金、 銀、 銅、 ステンレス、 クロ 厶、 チタン、 アルミニウム等の金属に開口部を設けた金属メッシュマスク 等が例示される。
フルォロアルキルシランを塗布した透明薄膜に、 所望のパターンを開口 したフ才卜マスクを介して紫外線を照射する。 すなわち、 フォトマスクの 開口部に一致する部分の透明薄膜に、 紫外線が照射される。 そのため、 紫 外線が照射された部分の透明薄膜の表面において、 アナターゼ型、 または 約 0 . 7 n mの格子間隔の結晶相のチタニア微結晶が光触媒効果を示し、 透明薄膜上のフル才ロアルキルシランを分解する。 これによつて、 紫外線 を照射された部分が超親水性を示し、 紫外線をマスクされた部分が超撥水 性を示す、 超親水一超撥水パターンを形成することが可能となる。
このパターンを利用して、 たとえば、 固体表面エネルギーの差を利用し た膨らみ形状パターンを作製することができる。 この膨らみ形状パターン を基板上に作製することで、 マイクロレンズ、 導波路等の集光や分波、 合 波の機能を有する微小光学素子が実現される。 また、 印刷版としての応用 も可能となる。
以下に実施例を示し、 この発明の実施の形態についてさらに詳しく説明 する。 実施例
(実施例 1 )
チタニウム化合物としてチタン (IV) テ卜ラー n—ブトキシド 〔丁 i ( O-n-B u) J を、 シリコンアルコキシドとしてシリコンエトキシド 〔 S i (0 E t) J を用い、 以下の手順で透明薄膜を製造した。
まず、 シリコンエトキシドに触媒として 3. 6 w t %の塩酸を加え、 ェ 夕ノールおよび水を、 S i (O E t ) 4 : E t O H : H 20= 1 : 5 : 4の 比で混合して、 室温で 3 0分間攪拌した。 この溶液に、 チタン (IV) テ卜 ラ n—ブトキシドをエタノールで Τ ί (0-n-B u) 4 : E t O H = 1 : 2 0となるように希釈した溶液を、 混合比を変化させて加えて、 ゾル状の溶 液を得た。
なお、 溶液は、 S ί 02 : Τ ί 02= (a) 5 : 1 , ( b) 3 : 1 , ( c ) 1 : 1 , (d) 1 : 3の 4通りとなるように混合した。
これらのゾル状の溶液を、 ディップコーティング法によって無機アル力 リガラス基板の表面に塗布し、 9 0°Cで 1時間の熱処理を施して薄膜とし た。 さらにこれらの薄膜を、 1 0 0eCで 1時間の温水処理を施すことで、 S i 02 ■ T i 02の透明薄膜 (a) 〜 (d) を得た。
<1> 得られた透明薄膜 (a) 〜 (d ) の光触媒活性の評価を、 以下の ようにして行った。
透明薄膜 ( a) 〜 ( d ) を 1 . 0 c m2にコーティングした基板を、 1 X I 0— 5 Mのメチレンブルー (M B) 水溶液が 2. 0 gずつ入ったパイ レックス製の光学セル中にそれぞれ挿入し、 透明薄膜に照度 6 7 mW/c m2の紫外光を照射した際のセル内の M B水溶液の濃度変化を、 紫外可視 吸収スペクトル測定法により測定した。 なお、 紫外光は、 M B水溶液の濃 度変化の測定開始から 3 0分後に、 照射を開始した。 その結果を、 図 1 に 示した。
図 1 より、 全てのセルにおいて、 紫外光照射を開始してから M B水溶液 の濃度が急激に低下することが分かった。 すなわち、 この透明薄膜 (a) 〜 (d) は、 紫外線を照射することで M Bを分解する、 光触媒活性を有す ることが確認された。
また、 この光触媒活性は、 透明薄膜 (b) について最も高くなることが 確認された。
比較のために、 (X ) 温水処理を施す前の透明薄膜、 (y ) T i (O- n-B u) 4のみから作製し、 温水処理を施さずに、 5 00°Cで 1時間の焼 成処理を施したアナターゼ型チタニア薄膜についても、 同様の光触媒活性 の評価を行なった。 その結果を図 2に示した。
図 2より、 温水処理を施さない薄膜では、 光触媒活性がほとんど示され ないことが分かった。 また、 温水処理を施すことによって、 従来の焼成処 理方法によって得られるアナターゼ型チタニア薄膜よりも、 光触媒活性の 高い透明薄膜が得られることが確認された。
<11> 透明薄膜 (a) ~ (d) の表面を、 電解放射走査電子顕微鏡 (F E - S EM) によって斜め上から観察した。 図 3に、 F E— S EM像を示 した。
図 3および高分解能透過型電子顕微鏡観察結果から、 透明薄膜 (a) 〜 (d) の表面には、 温水処理によって析出したアナターゼ結晶と、 約 0. 7 n mの格子間隔の結晶相のチタニアによって、 微細な凹凸が形成されて いることが確認された。 特に透明薄膜 ( b) については、 花弁状 A I 20 3に類似した微細な凹凸組織が形成されており、 高光触媒活性を示すだけ でなく、 超親水および超撥水薄膜としての応用が期待できることが分かつ た。
(実施例 2 )
実施例 1 と同様の方法で、 シリカとチタニアの配合を表 1の通りに製造 した透明薄膜 (1 ) ~ ( 8 ) について、 水に対する接触角を測定した。 接触角の測定は、 1 回目はそのままの薄膜について, 2回目はフル才ロ アルキルシラン塗布後の薄膜について, 3回目は紫外光照射後の薄膜につ いて行なった。
その結果を併せて表 1 に示した。
表 1
Figure imgf000013_0001
表 1 より、 この出願の発明の透明薄膜 (2 ) 〜 ( 7 ) は、 水に対する接 触角が 5 ° 以下の超親水性を示すことが確認された。
また、 全ての透明薄膜について、 フルォロアルキルシランを塗布するこ とによって疎水性が示されることが分かった。 なかでも、 S i 02 : T i 02= 3 : 1の透明薄膜 (4 ) については、 接触角が 1 4 5での超疎水性 を示すことが確認された。
光触媒活性を有する透明薄膜 (2 ) 〜 (8) については、 紫外光照射後 には再び超親水性を示すことがわかった。 これによつて、 透明薄膜 (2 ) 〜 (8 ) は紫外光照射によってフル才ロアルキルシランを分解することが 確認された。
もちろん、 この発明は以上の例に限定されるものではなく、 細部につい ては様々な態様が可能であることは言うまでもない。 産業上の利用可能性
以上詳しく説明した通り、 この発明によって、 高い光触媒活性と超親水 性を示す新規な透明薄膜と、 その透明薄膜を低温で作製することができる 方法が提供される。

Claims

請求の範囲
1 . シリカとチタニアを主成分とする透明の薄膜であって、 薄膜の表面 にアナターゼ型のチタニア微結晶が高分散されていることを特徴とする透 明薄膜。
2. シリカとチタニアを主成分とする透明の薄膜であって、 薄膜の表面 に 0. 7 n mもしくはその近傍の格子間隔を持つ結晶型のチタニア微結晶 が高分散されていることを特徴とする透明薄膜。
3. 水に対する接触角が 5 ° 以下の超親水性を示すことを特徴とする請 求項 1 または 2の透明薄膜。
4. シリカとチタニアの配合が、 モル比で、 S i 02 : T i 02= 5 : 1 ~ 1 : 3の範囲であることを特徴とする請求項 1ないし 3いずれかの透 明薄膜。
5. シリカとチタニアの配合が、 モル比で、 S i 02 : T i 02= 3 : 1であることを特徴とする請求項 1ないし 4のいずれかの透明薄膜。
6. 超親水性部分と超撥水性部分とからなる超親水一超撥水パターンを 有することを特徴とする請求項 5の透明薄膜。
7. 超撥水性部分はフル才ロアルキルシランからなることを特徴とする 請求項 6の透明薄膜。
8. 請求項 1ないし 7のいずれかの透明薄膜の製造方法であって、 シリ コンアルコキシドと加水分解性を有するチタニウム化合物を含む溶液から 、 チタニウム化合物とシリコンアルコキシドの複合金属酸化物あるいは水 酸化物を含むゲル膜を形成し、 次いで、 水または温水と接触させて、 薄膜 の表面にチタニア微結晶を析出させることを特徴とする透明薄膜の製造方 法。
9. シリコンアルコキシドが、 シリコンテトラエ卜キシドであることを特 徴とする請求項 8の透明薄膜の製造方法。
1 0. 加水分解性を有するチタニウム化合物が、 チタニウムアルコキシ ドであることを特徴とする請求項 8または 9の透明薄膜の製造方法。
1 1 . シリコンアルコキシドとチタニウム化合物の配合が、 モル比で、 S i 02 : T i 02= 5 : 1 ~ 1 : 3の範囲であることを特徴とする請求 項 8ないし 1 0いずれかの透明薄膜の製造方法。
1 2. シリコンアルコキシドとチタニウム化合物の配合が、 モル比で、 S i 02 : T i 02= 3 : 1 であることを特徴とする請求項 8ないし 1 1 のいずれかの透明薄膜の製造方法。
1 3. 5 0- 1 00°Cの温水と接触させることを特徴とする請求項 8ない し 1 2いずれかの透明薄膜の製造方法。
1 4. 透明薄膜にフル才ロアルキルシランを塗布し、 フォトマスクを介 して紫外線照射することで、 透明薄膜に超親水一超撥水パターンを形成す ることを特徴とする請求項 8ないし 1 2のいずれかの透明薄膜の製造方法
PCT/JP2001/008812 2000-09-22 2001-10-05 Mince film transparent et procede de production de celui-ci WO2003031060A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000289528A JP2002097013A (ja) 2000-09-22 2000-09-22 透明薄膜とその製造方法
PCT/JP2001/008812 WO2003031060A1 (fr) 2000-09-22 2001-10-05 Mince film transparent et procede de production de celui-ci
US10/491,752 US20050129927A1 (en) 2000-09-22 2001-10-05 Transparent thin film and method for production thereof
EP01974722A EP1449582A4 (en) 2001-10-05 2001-10-05 TRANSPARENT THIN FILM AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000289528A JP2002097013A (ja) 2000-09-22 2000-09-22 透明薄膜とその製造方法
PCT/JP2001/008812 WO2003031060A1 (fr) 2000-09-22 2001-10-05 Mince film transparent et procede de production de celui-ci

Publications (1)

Publication Number Publication Date
WO2003031060A1 true WO2003031060A1 (fr) 2003-04-17

Family

ID=32732624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008812 WO2003031060A1 (fr) 2000-09-22 2001-10-05 Mince film transparent et procede de production de celui-ci

Country Status (2)

Country Link
EP (1) EP1449582A4 (ja)
WO (1) WO2003031060A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097013A (ja) * 2000-09-22 2002-04-02 Japan Science & Technology Corp 透明薄膜とその製造方法
CN116875088A (zh) * 2023-07-03 2023-10-13 武汉理工大学 低温诱导具有光催化活性的硅钛复合超亲水涂层及其制备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334542B1 (es) * 2008-07-22 2011-01-10 Universidad Carlos Iii De Madrid Recubrimiento sol-gel con nanoparticulas de titania para la proteccion de un sustrato y procedimiento para su obtencion.
ES2613885T3 (es) 2009-11-04 2017-05-26 Ssw Holding Company, Inc. Superficies de aparatos de cocción que tienen un patrón de confinamiento de salpicaduras y procedimientos de fabricación de las mismas
CN102294253B (zh) * 2011-06-10 2013-04-17 上海师范大学 一种TiOF2光催化薄膜的低温制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146251A (ja) * 1995-03-20 1998-06-02 Toto Ltd 光触媒性親水性表面を備えた複合材
JP2000087016A (ja) * 1998-09-14 2000-03-28 Dainippon Printing Co Ltd 超撥水性から超親水性表面に変化する複合材料
JP2001104797A (ja) * 1999-09-20 2001-04-17 Lg Electronics Inc ナノサイズのアナターゼ型の二酸化チタン光触媒の製造方法並びに前記方法で製造された光触媒

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860511A1 (de) * 1998-12-28 2000-07-13 Fraunhofer Ges Forschung Verfahren zur Herstellung eines mikrostrukturierten SiO¶2¶/TiO¶2¶-Schichtsystems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146251A (ja) * 1995-03-20 1998-06-02 Toto Ltd 光触媒性親水性表面を備えた複合材
JP2000087016A (ja) * 1998-09-14 2000-03-28 Dainippon Printing Co Ltd 超撥水性から超親水性表面に変化する複合材料
JP2001104797A (ja) * 1999-09-20 2001-04-17 Lg Electronics Inc ナノサイズのアナターゼ型の二酸化チタン光触媒の製造方法並びに前記方法で製造された光触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1449582A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097013A (ja) * 2000-09-22 2002-04-02 Japan Science & Technology Corp 透明薄膜とその製造方法
CN116875088A (zh) * 2023-07-03 2023-10-13 武汉理工大学 低温诱导具有光催化活性的硅钛复合超亲水涂层及其制备

Also Published As

Publication number Publication date
EP1449582A1 (en) 2004-08-25
EP1449582A4 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
Matsuda et al. Transparent anatase nanocomposite films by the sol–gel process at low temperatures
US7858201B2 (en) Titanium oxide photocatalyst, method for producing same and use thereof
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
KR100696201B1 (ko) 산화티탄졸, 박막 및 그들의 제조법
KR100657229B1 (ko) 티타니아 나노시트 배향 박막과 그 제조 방법 및 티타니아나노시트 배향 박막을 구비한 물품
KR20050057346A (ko) 다공성의 계면활성제 매개 금속 산화물 필름
WO2010053459A1 (en) Preparation of tio2/sio2 sols and use thereof for deposition of self-cleaning anti- fogging coatings
JP2002097013A (ja) 透明薄膜とその製造方法
WO2010143425A1 (ja) 防汚ガラスの製造方法及び防汚ガラス
CN1699181A (zh) 锐钛矿型二氧化钛溶胶的制备方法
JP2001262007A (ja) チタニア塗布液及びその製造方法、並びにチタニア膜及びその形成方法
WO2002070413A1 (fr) Procede de fabrication d&#39;un element optique
KR20050056155A (ko) 도료 조성물, 광촉매 기능을 갖는 막의 형성 방법, 및광촉매 부재
WO2003031060A1 (fr) Mince film transparent et procede de production de celui-ci
KR102066527B1 (ko) 광촉매 제조용 졸 조성물, 이의 제조 방법 및 이를 이용한 광촉매 박막의 제조 방법
JP2001262008A (ja) チタニア塗布液及びその製造方法、並びにチタニア膜及びその形成方法
KR20080093483A (ko) 오염방지를 위한 코팅제 제조방법
JPH10128110A (ja) 光触媒組成物とその形成剤
JP2003012324A (ja) 酸化チタン被覆層付球状粒子および該酸化チタン被覆層付球状粒子の製造方法
JP2004091263A (ja) アナターゼ型チタニア膜、アナターゼ型チタニアゾルの製造方法およびアナターゼ型チタニア膜の製造方法
DE10235803A1 (de) Substrate mit photokatalytischer TIO2-Schicht
JP5255552B2 (ja) 親水性塗料組成物、親水性塗料組成物の調製方法、親水性塗膜層および建築材
Ohya et al. Effect of photoirradiation on the properties of layered titanate thin films from transparent aqueous titanate sols
JP4083036B2 (ja) チタニアナノ微結晶膜とこのパターンを備えた物品並びにその製造方法
JP2000001340A (ja) 親水性被膜の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001974722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10491752

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001974722

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001974722

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载