+

WO2003030521A1 - Bildaufnehmer, insbesondere zur dreidimensionalen erfassung von objekten oder szenen - Google Patents

Bildaufnehmer, insbesondere zur dreidimensionalen erfassung von objekten oder szenen Download PDF

Info

Publication number
WO2003030521A1
WO2003030521A1 PCT/DE2002/003671 DE0203671W WO03030521A1 WO 2003030521 A1 WO2003030521 A1 WO 2003030521A1 DE 0203671 W DE0203671 W DE 0203671W WO 03030521 A1 WO03030521 A1 WO 03030521A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmd
pixel elements
scenes
image recorder
dimensionally
Prior art date
Application number
PCT/DE2002/003671
Other languages
English (en)
French (fr)
Inventor
Helmut Riedel
Original Assignee
Conti Temic Microelectronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic Gmbh filed Critical Conti Temic Microelectronic Gmbh
Publication of WO2003030521A1 publication Critical patent/WO2003030521A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels

Definitions

  • Image recorder in particular for the three-dimensional detection of objects or scenes
  • the invention relates to an image recorder, in particular for the three-dimensional detection of objects or scenes, according to the preamble of patent claim 1.
  • PMD image sensors for taking distance images (3D images) can be realized.
  • PMD image sensors which are known, for example, from WO 99/60629 A1, are currently being developed in order to be able to detect the vehicle interior as well as the environment of the vehicle in three-dimensional fashion in traffic engineering applications.
  • the recording process requires active, modulated scene lighting, but the available light output is limited.
  • the limitation is on the one hand given by physical boundary conditions such as e.g. the performance of the lighting sources used, but also by legal regulations regarding the safety of the eyesight of the lighting.
  • the available light power in a PMD P ⁇ xel not enough to ensure sufficiently high signal / noise ratios in the measurement can.
  • One way to improve this situation is to increase the integration time of the PMD pixels in order to use more scene lighting photons. In applications where short measurement times are required, such as in the detection of moving scenes, but eliminates this possibility.
  • the invention has for its object to provide an image sensor according to the preamble of claim 1, which can be adjusted to existing environmental parameters such as the outgoing of an object brightness or light output.
  • the imager of claim 1 has the advantages of being capable of transition from low lateral resolution images to higher lateral resolution images. It can go from exposures with a higher lateral resolution to images with a lower lateral resolution as well, for example, for a detail resolution, the existing light output is not sufficient, so in favor of a good
  • Signal to noise ratio is changed to a lower resolution.
  • the invention is particularly suitable for recording range images (3D images), for example, in order to capture the vehicle interior and the environment of the vehicle three-dimensionally in traffic engineering applications.
  • Advantageous embodiments of the article according to claim 1 are specified in the subclaims.
  • FIG. 1 shows the basic wiring of photosensitive pixel elements for signal readout using the example of a PMD pixel
  • Fig. 5 the change of the lateral image resolution by Caribbeanfas-. sen of the photosensitive, arranged in a hexagonal lattice structure pixel elements.
  • FIG. 1 shows the basic connection of photosensitive pixel elements for signal readout on the example of a PMD pixel 1 as a photoelement.
  • a PMD pixel 1 represents a so-called "active pixel", ie the charge carriers generated by the photo effect are further processed directly in the pixel 1 by active electronic components for the signal readout.
  • a transistor T1 is used to reset the PMD pixel 1
  • a transistor T2 is used to sample the photovoltage, which is held on a capacitor C during the readout phase.
  • a transistor T3 is connected as a source follower, which buffers the photosignal during the readout phase.
  • N1 Between the drain-source path of the transistor T1 and the drain-source path of the transistor T2 is a network node N1, and between the drain-source path of the transistor T2 and the gate of the transistor T3 is a network node N2.
  • N1' and N2 ' For the second half of symmetrically constructed PMD pixels 1 are the corresponding components with T1 ', T2', T3 'and C and the corresponding network nodes denoted by N1' and N2 '.
  • switches S1 For parallel connection of individual PMD pixels 1, their respective nodes N1 are connected to one another via switch S1 (FIG. 2). Further switches S2 ( Figure 2) also connect the respective nodes N2, so that also the integration capacity can be adapted to the increased pixel area. Corresponding designations for the corresponding switches of the second half of a PMD pixel 1 are S1 'and S2'.
  • the switches S1 and S2 can be operated independently.
  • all the photosensitive surfaces may be connected via the switches S1
  • only a smaller number of integration capacitances C or C may be connected via the switches S2 and S2 '. This procedure makes it possible to increase the signal swing at the connected integration capacitors C and C, respectively
  • an image sensor 2 in particular a PMD image sensor, a plurality of PMD pixel elements 1 are arranged orthogonally and each PMD pixel element 1 is connected to its orthogonally adjacent PMD pixel elements 1. Since each network node N1, N2, N1 'or N2' of a first PMD pixel 1 via a respective switch S1,
  • S2, S1 'or S2' is connected to the network nodes N1, N2, N1 'or N2' of a second, a third and a fourth adjacent PMD pixel 1, resulting in 16 switchable connections between a PMD pixel 1 and the four PMD pixels 1 adjacent to it.
  • Pixel 1 according to FIG. 2, the addressing of the individual PMD pixels 1 as well as the connection of the individual connections between the network nodes N1, N2, N1 'or N2' can take place via horizontal and vertical address registers, as shown in FIG.
  • a horizontal address register 3 and a vertical address register 4 take over the signal readout of the PMD pixels 1, while two more horizontal and vertical address registers 5 and 6 or 7 and 8, the switches S1 and S1 'and S2 and S2' for the lines and columns of Actuate the array arrangement of the PMD pixels 1.
  • any desired pixel pattern can be configured.
  • FIGS. 4a-d show, by way of example, how a PMD imager 2 with 8x8 PMD pixels 1 in FIG. 4a can be converted into the 4x4 resolutions in FIG. 4b, 2x2 in FIG. 4c and into a large single pixel in FIG. 4d can be converted, for example, to be able to measure the distance to a lit object despite low radiation power.
  • the summary of the PMD pixels 1 does not need to follow a regular pattern, but can also be made freely selectable and adapted to the respective scene to be examined. Thus, e.g. also individual clusters of PMD pixels 1 are formed in a so-called "region of interest (ROI)".
  • ROI region of interest
  • a PMD imager 2 with e.g. In extreme cases, 32x16 pixels can be converted into a single PMD pixel 1, which has 512 times the detector area, by an electrical parallel connection of all the photosensitive areas of the PMD pixels 1. This increase in area directly causes the 512-fold photocurrent and thus a dramatically increased electrical detector signal. If fewer PMD pixels 1 are connected in parallel, the said PMD image recorder 2 can be varied in its lateral resolution within wide limits.
  • the PMD pixels 1 of a PMD image sensor 2 can also be arranged hexagonally, as shown in FIG. 5. Even in such an embodiment, PMD pixels 1 can be combined in pairs or in blocks. Moreover, the hexagonal arrangement also offers the advantage of being able to realize a likewise hexagonal "superlattice" by combining in each case seven PMD pixels 1 according to FIG. 5. Circles 9 in FIG. 5 show the PMD pixels 1, which are each arranged around a central PMD pixel 1 in the superlattice. In a hexagonal arrangement according to FIG. 5, a connection with the neighboring pixels 1 results in a total of 24 switchable connections per PMD pixel 1.
  • a dynamic adaptation of the pixel area of an image recorder 2 makes it possible, for example, first to roughly scan a scene to be examined with a very low lateral resolution in a first image clock. By successively increasing the resolution in the following image clocks, further detail information about the scene can then be obtained.
  • a signal threshold of the individual PMD pixels 1 are defined, which is required for reliable measurement of the distance values.
  • the further dynamic increase of the lateral resolution is then ended in favor of a better signal-to-noise ratio.
  • the invention shows a euartigen image sensor, which is particularly suitable for the three-dimensional detection of objects or scenes and which comprises a plurality of two-dimensionally arranged photosensitive pixel elements.
  • a programmable circuit arrangement any number of adjacent pixel elements can be connected together in a static or dynamic manner in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

1. Bildaufnehmer, insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen 2.1. Da die aus einer zu analysierenden Szene zurück reflektierte Lichtleistung quadratisch mit der Entfernung zu den einzelnen Objekten abnimmt, steht insbesondere bei der Aufnahme von 3D-Verkehrsszenen am Bildaufnehmer in der Regel nur eine sehr geringe Lichtleistung zur Erzeugung elektrischer Signale für die Entfernungsmessung zur Verfügung. Insbesondere bei entfernten Objekten mit schlechten Reflexionseigenschaften genügt die zur Verfügung stehende Lichtleistung nicht, um hinreichend hohe Signal-/Rauschabstände bei der Messung gewährleisten zu können. 2.2. Bildaufnehmer, insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen, der eine Vielzahl von zweidimensional angeordneten photoempfindlichen Pixelelementen umfasst und dadurch gekennzeichnet ist, dass eine programmierbare Schaltungsanordnung zum parallelen Zusammenschalten beliebig vieler benachbarter Pixelelemente vorhanden ist. 2.3. Die Erfindung eignet sich insbesondere zur Aufnahme von Entfernungsbildern (3D-Bilder), beispielsweise um in verkehrstechnischen Anwendungen den Fahrzeuginnenraum sowie die Umgebung des Fahrzeugs dreidimensional zu erfassen.

Description

Bildaufnehmer, insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen
Die Erfindung betrifft einen Bildaufnehmer, insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen, nach dem Oberbegriff des Patentanspruchs 1.
Mit Hilfe von sogenannten Photonic Mixer Devices PMD lassen sich Bildsensoren zur Aufnahme von Entfernungsbildern (3D-Bilder) realisieren. PMD- Bildsensoren, die beispielsweise aus der WO 99/60629 A1 bekannt sind, werden zur Zeit entwickelt, um in verkehrstechnischen Anwendungen den Fahrzeuginnenraum sowie die Umgebung des Fahrzeuges dreidimensional erfas- sen zu können.
Das Aufnahmeverfahren erfordert eine aktive, modulierte Szenenbeleuchtung, bei der die verfügbare Lichtleistung allerdings begrenzt ist. Die Begrenzung ist einerseits gegeben durch physikalische Randbedingungen wie z.B. die Leistungsfähigkeit der verwendeten Beleuchtungsquellen, andererseits jedoch auch durch gesetzliche Vorschriften hinsichtlich der Augensicherheit der Beleuchtung.
Da die aus der zu analysierenden Szene zurück reflektierte Lichtleistung quadratisch mit der Entfernung zu den einzelnen Objekten abnimmt, steht insbesondere bei der Aufnahme von 3D-Verkehrsszenen am PMD-Bildaufnehmer in der Regel nur eine sehr geringe Lichtleistung zur Erzeugung der elektrischen Signale für die Entfernungsmessung zur Verfügung. Insbesondere bei entfernten Objekten mit schlechten Reflexionseigenschaften genügt die zur Verfügung stehende Lichtleistung in einem PMD-PΪxel nicht, um hinreichend hohe Signal-/Rauschabstände bei der Messung gewährleisten zu können. Eine Möglichkeit zur Verbesserung dieser Situation besteht darin, die Integrationszeit der PMD-Pixel zu erhöhen, um mehr Photonen der Szenenbeleuchtung nutzen zu können. In Anwendungsfällen, bei denen kurze Meßzeiten erforderlich sind, wie z.B. bei der Erfassung von bewegten Szenen, scheidet diese Möglich- keit jedoch aus.
Als zweite Möglichkeit bietet sich eine Vergrößerung der PMD-Pixelfläche an, um ebenfalls mehr Photonen für die Signalwandlung zu erhalten. Dies bedeutet allerdings, daß die PMD-Pixelfläche auf die schlechtesten vorkommenden Beleuchtungsverhältnisse ausgelegt werden muss. Ein solcher PMD-Bildaufnehmer hätte bei einer Vielzahl von Pixeln somit eine große Fläche und wäre teuer in der
Herstellung. Darüber hinaus könnte mit einer gegebenen Pixelanzahl bei besser werdenden Beleuchtungsverhältnissen nicht die tatsächlich mögliche laterale Bildauflösung erzielt werden.
Der Erfindung liegt die Aufgabe zugrunde, einen Bildaufnehmer nach dem Oberbegriff des Anspruchs 1 anzugeben, der auf vorhandene Umgebungsparameter wie die von einem Objekt ausgehende Helligkeit oder Lichtleistung eingestellt werden kann.
Gelöst wird diese Aufgabe durch eine Anordnung mit den im Anspruch 1 angegebenen Merkmalen.
Der Bildaufnehmer nach Anspruch 1 weist die Vorteile auf, dass er von Aufnahmen mit einer niedrigen lateralen Auflösung zu Aufnahmen mit einer höheren lateralen Auflösung übergehen kann. Er kann genauso von Aufnahmen mit einer höheren lateralen Auflösung zu Aufnahmen mit einer niedrigeren lateralen Auflösung übergehen, wenn beispielsweise für eine Detailauflösung die vorhandene Lichtleistung nicht ausreicht, so dass zugunsten eines guten
Signal-/Rauschverhältnisses auf eine geringere Auflösung übergegangen wird.
Die Erfindung eignet sich insbesondere zur Aufnahme von Entfernungsbildern (3D-Bilder), beispielsweise um in verkehrstechnischen Anwendungen den Fahrzeuginnenraum sowie die Umgebung des Fahrzeugs dreidimensional zu erfassen. Vorteilhafte Ausgestaltungen des Gegenstands nach Anspruch 1 sind in den Unteransprüchen angegeben.
Die Erfindung wird nun anhand eines Ausführungsbeispiels unter Zuhilfenahme der Zeichnung erläutert.
Es zeigen
Fig. 1 : die prinzipielle Beschaltung photoempfindlicher Pixelelemente zur Signalauslesung am Beispiel eines PMD-Pixels,
Fig. 2: die Verschaltung einzelner photoempfindlicher PMD-Pixelele- mente miteinander,
Fig. 3: die Adressierung der einzelnen photoempfindlichen Pixelelemente,
Fig. 4a-d: die Veränderung der lateralen Bildauflösung durch Zusammenfassen vom photoempfindlichen, in einer orthogonalen Gitterstruktur angeordneten Pixelelementen und
Fig. 5: die Veränderung der lateralen Bildauflösung durch Zusammenfas- . sen vom photoempfindlichen, in einer hexagonalen Gitterstruktur angeordneten Pixelelementen.
Die Fig. 1 zeigt die prinzipielle Beschaltung photoempfindlicher Pixelelemente zur Signalauslesung am Beispiel eines PMD-Pixels 1 als Photoelement. Ein PMD-Pixel 1 stellt ein sogenanntes "aktives Pixel" dar, d.h. die durch den Photoeffekt erzeugten Ladungsträger werden direkt im Pixel 1 durch aktive elektronische Bauelemente für die Signalauslesung weiterverarbeitet. Ein Transistor T1 wird zum Reset des PMD-Pixels 1 eingesetzt, ein Transistor T2 dient zum Abtasten der Photospannung, die auf einem Kondensator C während der Auslesephase gehalten wird. Ein Transistor T3 ist als Sourcefolger geschaltet, der das Photosignal während der Auslesephase puffert. Zwischen der Drain-Source-Strecke des Transistors T1 und der Drain-Source-Strecke des Transistors T2 befindet sich ein Netzknoten N1, und zwischen der Drain- Source-Strecke des Transistors T2 und dem Gate des Transistors T3 befindet sich ein Netzknoten N2. Für die zweite Hälfte des symmetrisch aufgebauten PMD-Pixels 1 sind die entsprechenden Bauelemente mit T1', T2', T3' und C und die entsprechenden Netzknoten mit N1' und N2' bezeichnet.
Zur Parallelschaltung einzelner PMD-Pixel 1 werden deren jeweilige Knoten N1 über Schalter S1 (Fig. 2) miteinander verbunden. Weitere Schalter S2 (Fig. 2) verbinden auch die jeweiligen Knoten N2, so dass auch die Integrationskapazität an die vergrößerte Pixelfläche angepaßt werden kann. Entsprechende Bezeichnungen für die entsprechenden Schalter der zweiten Hälfte eines PMD-Pixels 1 lauten S1' und S2'.
Die Schalter S1 und S2 können unabhängig voneinander betätigt werden. Insbesondere können in einem Verbund von Pixeln 1 zwar sämtliche photoempfindlichen Flächen über die Schalter S1 verbunden sein, jedoch nur eine geringere Anzahl von Integrationskapazitäten C bzw. C über die Schalter S2 bzw. S2'. Dieses Vorgehen ermöglicht eine Erhöhung des Signalhubes an den verbundenen Integrationskapazitäten C bzw. C
In Fig. 2 ist die Verschaltung einzelner photoempfindlicher PMD-
Pixelelemente 1 miteinander dargestellt. In einem Bildaufnehmer 2, insbesondere einem PMD-Bildaufnehmer, sind mehrere PMD-Pixelelemente 1 orthogonal angeordnet und jedes PMD-Pixelelement 1 ist mit seinen orthogonal benachbarten PMD-Pixelelementen 1 verschaltet. Da jeder Netzknoten N1, N2, N1 ' bzw. N2' eines ersten PMD-Pixels 1 über jeweils einen Schalter S1,
S2, S1' bzw. S2' mit den Netzknoten N1, N2, N1' bzw. N2' eines zweiten, eines dritten und eines vierten benachbarten PMD-Pixels 1 verbunden ist, ergeben sich daraus 16 schaltbare Verbindungen zwischen einem PMD-Pixel 1 und den vier zu ihm benachbarten PMD-Pixeln 1.
In einem PMD-Bildaufnehmer 2 mit orthogonaler Array-Anordnung der PMD-
Pixel 1 gemäß Fig. 2 kann die Adressierung der einzelnen PMD-Pixel 1 sowie die Schaltung der einzelnen Verbindungen zwischen den Netzknoten N1, N2, N1' bzw. N2' über horizontale und vertikale Adressregister erfolgen, wie dies in Fig. 3 dargestellt ist. Ein horizontales Adressregister 3 und ein vertikales Adressregister 4 übernehmen die Signalauslesung der PMD-Pixel 1 , während jeweils zwei weitere horizontale bzw. vertikale Adressregister 5 und 6 bzw. 7 und 8 die Schalter S1 und S1' bzw. S2 und S2' für die Zeilen und Spalten der Array-Anordnung der PMD-Pixel 1 betätigen. Über die Ansteuerung der Adressregister 3 bis 8 läßt sich jedes gewünschte Pixelmuster konfigurieren.
In den Fig. 4a-d ist beispielhaft dargestellt, wie ein PMD-Bildaufnehmer 2 mit 8x8 PMD-Pixeln 1 in Fig. 4a in die Auflösungen 4x4 in Fig. 4b, 2x2 in Fig. 4c und in ein großes Einzelpixel in Fig. 4d überführt werden kann, um beispielsweise die Entfernung zu einem beleuchteten Objekt trotz schwacher Strahlungsleistung messen zu können. Die Zusammenfassung der PMD-Pixel 1 braucht keinem regelmäßigen Muster zu folgen, sondern kann ebenso frei wählbar und angepasst an die jeweils zu untersuchende Szene vorgenom- men werden. So können z.B. auch einzelne Cluster von PMD-Pixeln 1 in einer sogenannten "Region of Interest (ROI)" geformt werden.
Ein PMD-Bildaufnehmer 2 mit z.B. 32x16 Pixeln kann im Extremfall durch eine elektrische Parallelschaltung sämtlicher photoempfindlicher Flächen der PMD-Pixel 1 zu einem einzigen PMD-Pixel 1 umgewandelt werden, das die 512-fache Detektorfläche aufweist. Diese Flächenvergrößerung bewirkt unmittelbar den 512-fachen Photostrom und damit ein drastisch gesteigertes elektrisches Detektorsignal. Werden weniger PMD-Pixel 1 parallelgeschaltet, so lässt sich der genannte PMD-Bildaufnehmer 2 in seiner lateralen Auflösung innerhalb weiter Grenzen variieren.
Im Unterschied zu der in Fig. 2 gezeigten orthogonalen Anordnung können die PMD-Pixel 1 eines PMD-Bildaufnehmers 2 auch hexagonal angeordnet sein, wie aus Fig. 5 hervor geht. Auch in einer solchen Ausführungsform können PMD-Pixel 1 paarweise oder blockweise zusammengefasst werden. Darüber hinaus bietet die hexagonale Anordnung auch den Vorteil, durch Zu- sammenfassen von jeweils sieben PMD-Pixeln 1 gemäß Fig. 5 ein ebenfalls hexagonales "Übergitter" realisieren zu können. Kreise 9 in Fig. 5 zeigen die PMD-Pixel 1 , die jeweils um ein zentrales PMD-Pixel 1 im Übergitter angeordnet sind. In einer hexagonalen Anordnung gemäß Fig. 5 ergibt eine Ver- schaltung mit den Nachbarpixeln 1 insgesamt 24 schaltbare Verbindungen pro PMD-Pixel 1.
Sämtliche Zusammenfassungen von PMD-Pixeln 1 , beispielsweise in einer orthogonalen Gitterstruktur nach Fig. 2 oder in einer hexagonalen Gitterstruktur nach Fig. 5 können sowohl statisch realisiert als auch dynamisch von einem Bildtakt zum nächsten vorgenommen werden. Eine dynamische Anpassung der Pixelfläche eines Bildaufnehmers 2 ermöglicht es beispielsweise, eine zu untersuchende Szene mit sehr geringer lateraler Auflösung in einem ersten Bildtakt zunächst grob abzutasten. Durch sukzessive Steigerung der Auflösung in den folgenden Bildtakten können dann weitere Detailinformationen über die Szene gewonnen werden.
In schwach reflektierenden Szenen kann z.B. eine Signalschwelle der einzelnen PMD-Pixel 1 definiert werden, die zur sicheren Messung der Entfernungswerte erforderlich ist. Bei Erreichen dieser Signalschwelle wird die weitere dynamische Steigerung der lateralen Auflösung zugunsten eines besseren Signal-/Rauschverhältnisses dann beendet.
Die Erfindung zeigt einen euartigen Bildaufnehmer, der insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen geeignet ist und der eine Vielzahl von zweidimensional angeordneten photoempfindlichen Pixel- elementen umfasst. Mit Hilfe einer programmierbaren Schaltungsanordnung lassen sich statisch oder dynamisch beliebig viele benachbarte Pixelelemente parallel zusammenschalten.

Claims

Patentansprüche
1. Bildaufnehmer (2), insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen, der eine Vielzahl von zweidimensional angeordneten photoempfindlichen Pixelelementen (1) umfasst, dadurch gekennzeichnet, dass eine programmierbare Schaltungsanordnung zum parallelen Zusammenschalten beliebig vieler benachbarter Pixelelemente (1) vorhanden ist.
2. Bildaufnehmer (2) nach Anspruch 1 , dadurch gekennzeichnet, dass die photoempfindlichen Pixelelemente (1) orthogonal zueinander angeordnet sind.
3. Bildaufnehmer (2) nach Anspruch 1 , dadurch gekennzeichnet, dass die photoempfindlichen Pixelelemente (1) hexagonal zueinander angeordnet sind.
4. Bildaufnehmer (2) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den photoempfindlichen Pixelelementen (1) um PMD-Pixelelemente (1) handelt.
5. Bildaufnehmer (2) nach Anspruch 4, dadurch gekennzeichnet, dass jedem PMD-Pixelelement (1) eine Kapazität (C, C) parallel geschaltet ist.
6. Bildaufnehmer (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nur die photoempfindlichen Pixelelemente (1) parallel geschaltet sind.
7. Bildaufnehmer (2) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zusätzlich zu den photoempfindlichen Pixelelementen (1) auch die Kapazitäten (C, C) parallel geschaltet sind.
8. Bildaufnehmer (2) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zur Bildung eines Übergitters photoempfindliche Pixelelemente (1) paarweise oder blockweise parallel geschaltet sind.
PCT/DE2002/003671 2001-09-27 2002-09-27 Bildaufnehmer, insbesondere zur dreidimensionalen erfassung von objekten oder szenen WO2003030521A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10147808.9 2001-09-27
DE10147808A DE10147808A1 (de) 2001-09-27 2001-09-27 Bildaufnehmer, insbesondere zur dreidimensionalen Erfassung von Objekten oder Szenen

Publications (1)

Publication Number Publication Date
WO2003030521A1 true WO2003030521A1 (de) 2003-04-10

Family

ID=7700581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003671 WO2003030521A1 (de) 2001-09-27 2002-09-27 Bildaufnehmer, insbesondere zur dreidimensionalen erfassung von objekten oder szenen

Country Status (2)

Country Link
DE (1) DE10147808A1 (de)
WO (1) WO2003030521A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953568A1 (de) * 2007-01-29 2008-08-06 Robert Bosch Gmbh Imager-Halbleiterbauelement, Kamerasystem und Verfahren zum Erstellen eines Bildes
WO2009089938A1 (de) * 2008-01-16 2009-07-23 Robert Bosch Gmbh Vorrichtung und verfahren zur vermessung einer parklücke
DE102010055865A1 (de) 2010-12-22 2011-07-28 Daimler AG, 70327 Kameravorrichtung für einen Kraftwagen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089629B4 (de) 2010-12-22 2022-08-04 pmdtechnologies ag Lichtlaufzeitkamera und Verfahren zum Betreiben einer solchen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563406A (en) * 1995-03-23 1996-10-08 Northrop Grumman Corporation Optical sensor and a method of operating an optical sensor having an electronic switching circuit
WO1996035372A2 (en) * 1995-05-11 1996-11-14 University Of Massachusetts Medical Center A system for quantitative radiographic imaging
WO1999060629A1 (de) * 1998-05-18 1999-11-25 Rudolf Schwarte Vorrichtung und verfahren zur erfassung von phase und amplitude elektromagnetischer wellen
EP1089555A1 (de) * 1999-09-29 2001-04-04 General Electric Company Verfahren und Vorrichtung zur Abtastung einer Detektormatrix in einem Röntgenabbildungssystem
WO2002028095A2 (en) * 2000-09-27 2002-04-04 Innovative Technology Licensing, Llc Imager with adjustable resolution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262871A (en) * 1989-11-13 1993-11-16 Rutgers, The State University Multiple resolution image sensor
FR2672989A1 (fr) * 1991-02-15 1992-08-21 Sodern Dispositif de determination de la direction d'une source emissive de faible luminosite et son application a la visee stellaire.
US5304790A (en) * 1992-10-05 1994-04-19 Irvine Sensors Corporation Apparatus and system for controllably varying image resolution to reduce data output
AU6608596A (en) * 1995-08-22 1997-03-19 Universite Laval Apparatus and method for addressing cells of interest in a solid state sensor
US5909244A (en) * 1996-04-15 1999-06-01 Massachusetts Institute Of Technology Real time adaptive digital image processing for dynamic range remapping of imagery including low-light-level visible imagery
US5880777A (en) * 1996-04-15 1999-03-09 Massachusetts Institute Of Technology Low-light-level imaging and image processing
GB2332585B (en) * 1997-12-18 2000-09-27 Simage Oy Device for imaging radiation
DE19933471A1 (de) * 1999-07-20 2001-02-01 Daimler Chrysler Ag Bildaufnehmer mit integrierter Signalverarbeitung und Bildaufnahmeverfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563406A (en) * 1995-03-23 1996-10-08 Northrop Grumman Corporation Optical sensor and a method of operating an optical sensor having an electronic switching circuit
WO1996035372A2 (en) * 1995-05-11 1996-11-14 University Of Massachusetts Medical Center A system for quantitative radiographic imaging
WO1999060629A1 (de) * 1998-05-18 1999-11-25 Rudolf Schwarte Vorrichtung und verfahren zur erfassung von phase und amplitude elektromagnetischer wellen
EP1089555A1 (de) * 1999-09-29 2001-04-04 General Electric Company Verfahren und Vorrichtung zur Abtastung einer Detektormatrix in einem Röntgenabbildungssystem
WO2002028095A2 (en) * 2000-09-27 2002-04-04 Innovative Technology Licensing, Llc Imager with adjustable resolution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOAHEN K: "RETINOMORPHIC VISION SYSTEMS I: PIXEL DESIGN", 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS). CIRCUITS AND SYSTEMS CONNECTING THE WORLD. ATLANTA, MAY 12 - 15, 1996, IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), NEW YORK, IEEE, US, vol. 1, 12 May 1996 (1996-05-12), pages S09 - S13, XP000825672, ISBN: 0-7803-3074-9 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953568A1 (de) * 2007-01-29 2008-08-06 Robert Bosch Gmbh Imager-Halbleiterbauelement, Kamerasystem und Verfahren zum Erstellen eines Bildes
WO2009089938A1 (de) * 2008-01-16 2009-07-23 Robert Bosch Gmbh Vorrichtung und verfahren zur vermessung einer parklücke
US8422737B2 (en) 2008-01-16 2013-04-16 Robert Bosch Gmbh Device and method for measuring a parking space
DE102010055865A1 (de) 2010-12-22 2011-07-28 Daimler AG, 70327 Kameravorrichtung für einen Kraftwagen

Also Published As

Publication number Publication date
DE10147808A1 (de) 2003-04-10

Similar Documents

Publication Publication Date Title
DE69729648T2 (de) Aktivpixelsensormatrix mit mehrfachauflösungsausgabe
DE102007030985B4 (de) Bildsensor, Verfahren zum Betreiben eines Bildsensors und Computerprogramm
DE60131215T2 (de) Bildsensorpixellayout zur reduzierung von feststehenden störstrukturen
DE69930206T2 (de) Photodiode mit aktivem pixelsensor und gemeinsamen reset-und reihenauswahlsignalmitteln
DE69522013T2 (de) Ausleseschaltung für eine bildmatrix mit aktiver matrix
DE4440613C1 (de) Vorrichtung und Verfahren zur Detektion und Demodulation eines intensitätsmodulierten Strahlungsfeldes
DE102016218843A1 (de) Bilderzeugungspixel mit hohem Dynamikumfang mit verbesserter Auslesung
DE3806034A1 (de) Festkoerper-bildsensoren
DE3003992A1 (de) Festkoerper-abbildungsvorrichtung
DE112019001793T5 (de) 158festkörper-bildgebungsvorrichtung
EP0974226B1 (de) Bildsensor mit einer vielzahl von bildpunkt-sensorbereichen
DE102020125493A1 (de) Abbildungsvorrichtung, die gemeinsam genutzte Pixel enthält, und Betriebsverfahren derselben
DE102011053219A1 (de) Kombiniertes Pixel mit phasensensitivem und farbselektivem Subpixel
DE3230552C2 (de) Festkörper-Farbbildaufnahmesystem
WO2003029839A1 (de) Verfahren zur dreidimensionalen erfassung von objekten oder szenen
WO2003030521A1 (de) Bildaufnehmer, insbesondere zur dreidimensionalen erfassung von objekten oder szenen
DE102018221530A1 (de) LiDAR-System sowie Kraftfahrzeug
EP3485634B1 (de) Lichtsensormodul und verfahren zum betreiben eines lichtsensormoduls
DE69817901T2 (de) Bildsensor mit integrierter Signaldigitalisierung für Bewegungserfassung
DE102004009627A1 (de) Schaltung für einen aktiven Pixelsensor
WO2000052759A1 (de) Bildsensoreinrichtung
DE102020112983A1 (de) Schaltungsanordnung zum Auslesen von Pixeln und Verfahren zur Realisierung eines Pixel-Binnings von zwei Pixeln eines Bildsensors
DE102019213830A1 (de) Sensoranordnung und LIDAR-System mit Sensoranordnung
DE102009009070B4 (de) Verfahren zur Aufnahme bewegter Gegenstände
DE4443821A1 (de) Bildaufnahmevorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载