WO2003018524A1 - Vapor phase carbonylation process using iridium-gold co-catalysts - Google Patents
Vapor phase carbonylation process using iridium-gold co-catalysts Download PDFInfo
- Publication number
- WO2003018524A1 WO2003018524A1 PCT/US2001/024512 US0124512W WO03018524A1 WO 2003018524 A1 WO2003018524 A1 WO 2003018524A1 US 0124512 W US0124512 W US 0124512W WO 03018524 A1 WO03018524 A1 WO 03018524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iridium
- gold
- carbonylation
- catalyst
- carbon atoms
- Prior art date
Links
- 238000005810 carbonylation reaction Methods 0.000 title claims abstract description 100
- 230000006315 carbonylation Effects 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000008569 process Effects 0.000 title claims abstract description 49
- 239000012808 vapor phase Substances 0.000 title claims abstract description 42
- UYVZCGGFTICJMW-UHFFFAOYSA-N [Ir].[Au] Chemical compound [Ir].[Au] UYVZCGGFTICJMW-UHFFFAOYSA-N 0.000 title description 8
- 239000003426 co-catalyst Substances 0.000 title description 3
- 239000003054 catalyst Substances 0.000 claims abstract description 118
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 66
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 62
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000010931 gold Substances 0.000 claims abstract description 54
- 229910052737 gold Inorganic materials 0.000 claims abstract description 52
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 239000007787 solid Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 34
- 150000002148 esters Chemical class 0.000 claims abstract description 22
- -1 aliphatic alcohols Chemical class 0.000 claims abstract description 13
- 150000002170 ethers Chemical class 0.000 claims abstract description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 123
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 66
- 150000004820 halides Chemical class 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 21
- 229910001868 water Inorganic materials 0.000 claims description 21
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical group CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 18
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 18
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 18
- 150000002739 metals Chemical class 0.000 claims description 13
- 239000000376 reactant Substances 0.000 claims description 12
- 125000005233 alkylalcohol group Chemical group 0.000 claims description 10
- 239000007791 liquid phase Substances 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000008246 gaseous mixture Substances 0.000 claims description 9
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 claims description 6
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 6
- 239000010457 zeolite Substances 0.000 claims description 6
- 150000001350 alkyl halides Chemical class 0.000 claims description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910000043 hydrogen iodide Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 3
- 150000001502 aryl halides Chemical class 0.000 claims description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 3
- 239000011630 iodine Substances 0.000 claims description 3
- 229940102396 methyl bromide Drugs 0.000 claims description 3
- 229920005862 polyol Polymers 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- IQRUSQUYPCHEKN-UHFFFAOYSA-N 2-iodobutane Chemical compound CCC(C)I IQRUSQUYPCHEKN-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 239000005909 Kieselgur Substances 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001570 bauxite Inorganic materials 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 claims description 2
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 150000002497 iodine compounds Chemical class 0.000 claims description 2
- XJTQJERLRPWUGL-UHFFFAOYSA-N iodomethylbenzene Chemical compound ICC1=CC=CC=C1 XJTQJERLRPWUGL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 239000008262 pumice Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- 150000001805 chlorine compounds Chemical class 0.000 claims 1
- 239000004927 clay Substances 0.000 claims 1
- 229910052570 clay Inorganic materials 0.000 claims 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 claims 1
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 9
- 229910052703 rhodium Inorganic materials 0.000 description 19
- 239000010948 rhodium Substances 0.000 description 19
- 239000000047 product Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000010453 quartz Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 10
- 238000006555 catalytic reaction Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000002638 heterogeneous catalyst Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000002815 homogeneous catalyst Substances 0.000 description 5
- 229910052762 osmium Inorganic materials 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 229910052702 rhenium Inorganic materials 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 4
- 229940071240 tetrachloroaurate Drugs 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- FHKNFXAIEAYRKQ-UHFFFAOYSA-N [Cu].[Ir] Chemical compound [Cu].[Ir] FHKNFXAIEAYRKQ-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 150000002344 gold compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- YFKIWUQBRSMPMZ-UHFFFAOYSA-N methane;nickel Chemical compound C.[Ni] YFKIWUQBRSMPMZ-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 2
- MJRFDVWKTFJAPF-UHFFFAOYSA-K trichloroiridium;hydrate Chemical compound O.Cl[Ir](Cl)Cl MJRFDVWKTFJAPF-UHFFFAOYSA-K 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 102100033210 CUGBP Elav-like family member 2 Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 101000944448 Homo sapiens CUGBP Elav-like family member 1 Proteins 0.000 description 1
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- AHTSCRNWVSEMPI-UHFFFAOYSA-N gold;methane Chemical compound C.[Au] AHTSCRNWVSEMPI-UHFFFAOYSA-N 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- SRXJGJOFTDNSGJ-UHFFFAOYSA-N iodoethane;iodomethane Chemical compound IC.CCI SRXJGJOFTDNSGJ-UHFFFAOYSA-N 0.000 description 1
- 150000002504 iridium compounds Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical class SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
Definitions
- the present invention relates to a method for the vapor phase carbonylation of alkyl alcohols, ethers and ester-alcohol mixtures to produce esters and carboxylic acids, and particularly the carbonylation of methanol to produce acetic acid and methyl acetate. More particularly, the present invention relates to a vapor phase carbonylation using a supported catalyst which includes a catalytically effective amount of iridium and gold.
- Acetic acid is used in the manufacture of a variety of intermediary and end-products.
- an important derivative is vinyl acetate which can be used as monomer or co-monomer for a variety of polymers.
- Acetic acid itself is used as a solvent in the production of terephthalic acid, which is widely used in the container industry, and particularly in the formation of PET beverage containers.
- Carbonylation of methanol is a well known reaction and is typically carried out in the liquid phase with a catalyst.
- a thorough review of these commercial processes and other approaches to accomplishing the formation of acetyl from a single carbon source is described by Howard et al. in Catalysis Today, 18 (1993) 325-354.
- liquid phase carbonylation reaction for the preparation of acetic acid using methanol is performed using homogeneous catalyst systems comprising a Group VIII metal and iodine or an iodine-containing compound such as hydrogen iodide and/or methyl iodide.
- Rhodium is the most common Group VIII metal catalyst and methyl iodide is the most common promoter.
- These reactions are conducted in the presence of water to prevent precipitation of the catalyst.
- solid heterogeneous carbonylation catalysts offer the potential advantages of easier product separation, lower cost materials of construction, facile recycle, and even higher rates.
- Rhodium was the first heterogeneous catalyst used in vapor phase carbonylation.
- Schultz in U.S. Patent 3,689,533, discloses using a supported rhodium heterogeneous catalyst for the carbonylation of alcohols to form carboxylic acids in a vapor phase reaction.
- Schultz further discloses the presence of a halide promoter.
- Schultz in U. S . Patent 3,717,670 goes further to describe a similar supported rhodium catalyst in combination with promoters selected from Groups IB, IIIB, IVB, VB, VIB, VE-I, lanthanide and actinide elements of the Periodic Table.
- Iridium is also an active catalyst for methanol carbonylation reactions but normally provides reaction rates lower than those offered by rhodium catalysts when used under otherwise similar conditions.
- European Patent Application EP 0752406 Al teaches that ruthenium, osmium, rhenium, zinc, cadmium, mercury, gallium, indium, or tungsten improve the rate and stability of the liquid phase Ir-I catalyst system.
- the homogeneous carbonylation processes presently being used to prepare acetic acid provide relatively high production rates and selectivity.
- heterogeneous catalysts offer the potential advantages of easier product separation, lower cost materials of construction, facile recycle, and even higher rates.
- EP 0 759419 Al discloses a carbonylation process comprising a first carbonylation reactor wherein an alcohol is carbonylated in the liquid phase in the presence of a homogeneous catalyst system and the off gas from this first reactor is then mixed with additional alcohol and fed to a second reactor containing a supported catalyst.
- the homogeneous catalyst system utilized in the first reactor comprises a halogen component and a Group VIII metal selected from rhodium and iridium.
- the homogeneous catalyst system also may contain an optional co-promoter selected from the group consisting of ruthenium, osmium, rhenium, cadmium, mercury, zinc, indium and gallium.
- the supported catalyst employed in the second reactor comprises a Group VHI metal selected from the group consisting of iridium, rhodium, and nickel, and an optional metal promoter on a carbon support.
- the optional metal promoter may be iron, nickel, lithium and cobalt.
- Nickel on activated carbon has been studied as a heterogeneous catalyst for the halide-promoted vapor phase carbonylation of methanol, and increased rates are observed when hydrogen is added to the feed mixture.
- Relevant references to the nickel-on-carbon catalyst systems are provided by Fujimoto et al. in Chemistry Letters (1987) 895-898 and in Journal of Catalysis, 133 (1992) 370-382 and in the references contained therein. Liu et al., in
- U.S. Patent 5,218,140 to Wegman, describes a vapor phase process for converting alcohols and ethers to carboxylic acids and esters by the carbonylation of alcohols and ethers with carbon monoxide in the presence of a metal ion exchanged heteropoly acid supported on an inert support.
- the catalyst used in the reaction includes a polyoxometallate anion in which the metal is at least one of a Group V(a) and VI(a) is complexed with at least one Group Vi ⁇ cation such as Fe, Ru, Os, Co, Rh, Ir, Ni, Pd or Pt as catalysts for the halide-free carbonylation of alcohols and other compounds in the vapor phase.
- the present invention is a heterogeneous vapor phase carbonylation process wherein an iridium-gold solid supported catalyst is used.
- the process includes feeding a gaseous mixture of reactants comprising lower alkyl alcohols, ethers and ester-alcohol mixtures and carbon monoxide to a carbonylation zone containing a solid supported catalyst comprising a catalytically effective amount of iridium and gold associated with a solid support material that, desirably, is inert to the carbonylation reaction.
- Another aspect of the invention relates to a carbonylation catalyst for producing esters and carboxylic acids in a vapor phase carbonylation process having a solid supported catalyst component and further includes a halogen and/or halide containing compound, (collectively referred to herein as a "halide"). It is an object of the present invention to provide a solid phase catalyst composition for vapor phase carbonylation of methanol to form acetic acid or methyl acetate.
- It is another object of the invention is to provide a carbonylation method that results in higher yields of acetic acid with minimum formation of ethers, aldehydes, and other undesirable by-products.
- the solid supported catalyst used in the present vapor phase carbonylation process includes a catalytically effective amount of iridium and gold associated with a solid support material.
- the solid supported catalyst of the present invention is particularly useful in the continuous production of carboxylic acids and esters by reacting lower alkyl alcohols, polyols, ethers, esters or a mixture thereof with carbon monoxide during carbonylation, especially vapor-phase carbonylation.
- the vapor phase carbonylation method of the present invention is particularly useful for the continuous production of acetic acid, methyl acetate and mixtures thereof.
- the carbonylation process of the present invention comprises feeding a gaseous mixture of an alkyl alcohol, ether, ester, or mixture thereof and carbon monoxide to a carbonylation zone and recovering a gaseous carboxylic acid, ester, or mixture product.
- the carbonylation zone is maintained under vapor-phase carbonylation conditions of temperature and pressure and contains a supported catalyst comprising a catalytically effective amount of iridium and gold associated with a solid support material.
- a catalytically effective amount of iridium and gold are associated with a solid support material that is inert in a carbonylation reaction environment.
- catalytically effective is used herein to refer to catalysis of the carbonylation of a carbonylatable compound.
- iridium and gold atoms are "associated" with the solid support material when the iridium and gold atoms are disposed on, through, and/or near the solid support as a result of any type of chemical and/or physical relationship.
- a material suitable for use as the solid catalyst support material in the present invention is a porous solid having a size of from about 400 mesh per inch to about 0.5 mesh per inch.
- the shape of the solid support is not particularly important and can be regular or irregular and include extrudates, rods, balls, broken pieces and the like disposed within the reactor.
- the support is preferably carbon, or activated carbon, having a high surface area.
- Activated carbon is well known in the art and may be derived from a variety of sources including coal, peat, and coconut shells having a density of from about 0.03 grams/cubic centimeter (g/cm 3 ) to about 2.25 g/cm 3 .
- the carbon can have a surface area of from about 200 square meters/gram (m 2 /g) to about 1200 m 2 /g.
- solid support materials may be used, either alone or in combination, in accordance with the present invention include pumice, alumina, silica, silica-alumina, magnesia, diatomaceous earth, bauxite, titania, zirconia, clays, magnesium silicate, silicon carbide, zeolites, ceramics, and combinations thereof.
- the compound or form of iridium used to prepare the catalyst is not critical, and the catalyst may be prepared from any of a wide variety of iridium containing compounds. Indeed, iridium compounds containing myriad combinations of halide, trivalent nitrogen, organic compounds of trivalent phosphorous, carbon monoxide, hydrogen, and 2,4-pentane- dione, either alone or in combination. Such materials are available commercially and may be used in the preparation of the catalysts utilized in the present invention. In addition, the oxides of iridium may be used if dissolved in the appropriate medium.
- the iridium used in this invention is preferably an iridium chloride, such as iridium trichloride or hydrated trichloride, hexacholoro-iridate and any of the various salts of hexachloro-iridate (IV).
- the compound or form of gold used to prepare the catalyst generally is not critical, and may be selected from any of a variety of compounds containing gold, their respective salts, and mixtures thereof.
- Particularly useful gold compounds include gold halides, cyanides, hydroxides, oxides, sulfides, and phosphine complexes either alone or in combination. Such materials are available commercially and may be used in the preparation of the catalysts used in the process of the present invention.
- Gold oxide may be used if dissolved in the appropriate medium.
- the compound used to provide the gold component is preferably in a water soluble form.
- Preferred water soluble gold sources include halides, particularly the tetrahaloaurates.
- the most preferred hydrogen tetrahaloaurates are hydrogen tetrachloroaurate (III) and hydrogen tetrabromoaurate (HI).
- the amount of iridium and gold on the support can vary from about 0.01 weight percent to about 10 weight percent, with from about 0.1 weight percent to about 2 weight percent of each component being preferred.
- the weight percent of each said metal is determined as the weight of atoms of that particular metal compared to the total weight of the solid supported catalyst composition.
- the molar ratio of iridium to gold is preferably in a range from about 0.1 : 1 to about 10:1, with a molar ratio of about 0.5:1 to about 3:1 iridium to gold being more preferred.
- the catalyst of the present invention is very effective in carbonylation when there are essentially no other metals associated with the support besides iridium and gold.
- other metals may be associated with the support as part of the catalyst composition, either as promoters, as co-catalysts, or as inert metals, as long as the amount of iridium and gold present is a sufficient amount so that the iridium and gold effectively catalyze carbonylation in the presence of the other associated metal.
- the ratio of the weight of gold to the weight of the metals other than iridium and gold is preferably greater than 1:1, with a ratio of at least about 2: 1 being more preferable.
- Suitable metals for association with the support besides iridium and gold are most likely alkaline or alkaline earth metals, tin, vanadium, molybdenum, and tungsten.
- the present solid supported catalyst may be prepared by depositing iridium and gold on the solid support material to form a composition wherein a catalytically effective amount of iridium and gold are associated with the solid support material.
- the iridium and gold may be deposited concurrently or separately.
- the deposition of iridium and gold may be conducted by any means sufficient to cause the iridium and gold to associate with the support including but not limited to methods employing heat, electrolyzing, physical embedding, sonification, impregnating, co-precipitation.
- the preferred method of depositing the iridium and gold on the support is by dissolving or dispersing iridium and gold compounds in an appropriate solvent, either in one solution together or in two separate solutions, and contacting, preferably impregnating, the support with the iridium and gold containing solutions to provide a wet solid support material.
- the iridium and gold atoms are then associated with the support when the solvent is removed by drying the wet support material.
- Various methods of contacting the support material with the iridium and gold may be employed as long as the contacting method provides association between the iridium and gold atoms and the support.
- an iridium containing solution can be admixed with a gold solution prior to impregnating the support material.
- the respective solutions can be impregnated separately into or associated with the support material prior to impregnating the support material with the second solution.
- the gold component may be deposited on a previously prepared catalyst support having the iridium component already incorporated thereon.
- the support is dried prior to contacting the second solution.
- the iridium and gold may be associated with the support material in a variety of forms. For example, slurries of the iridium and gold can be poured over the support material. Alternatively, the support material may be immersed in excess solutions of the active components with the excess being subsequently removed using techniques known to those skilled in the art. The solvent or liquid is evaporated, i.e.
- the solid support is dried so that at least a portion of the iridium and gold is associated with the solid support. Drying temperatures can range from about 100°C to about 600°C. One skilled in the art will understand that the drying time is dependent upon the temperature, humidity, and solvent. Generally, lower temperatures require longer heating periods to effectively evaporate the solvent from the solid support.
- the liquid used to deliver the iridium and gold in the form of a solution, dispersion, or suspension is a liquid having a low boiling point, i.e., high vapor pressure at a temperature of from about 10°C to about 140°C.
- suitable solvents include carbon tetrachloride, benzene, acetone, methanol, ethanol, isopropanol, isobutanol, pentane, hexane, cyclohexane, heptane, toluene, pyridine, diethylamine, acetaldehyde, acetic acid, tetrahydrofuran and water.
- the carbonylation catalyst further includes a halide promoter.
- halide is used generically and interchangeably with “halogen”, “halide” or “halide containing compound” and includes both the singular or plural forms. It is preferable that the halide is promoter is present as a vapor. However, the halide may also be present as a liquid or as a solid, as long as the halide component is in sufficient contact with the iridium and gold components so as to provide iridium-halide and gold-halide complex formation.
- the halide promoter is a catalyst component instead of a reactant, in that it is essentially non-consumed in the present carbonylation process.
- the halide may be introduced at the catalyst preparation step or, preferably, is introduced into the carbonylation reactor with the gaseous reactants.
- the halide promoter may include one or more of chlorine, bromine and/or iodine compounds and is preferably vaporous under vapor-phase carbonylation conditions of temperature and pressure.
- Suitable halides include hydrogen halides such as hydrogen iodide and gaseous hydriodic acid; alkyl and aryl halides having up to 12 carbon atoms such as, methyl iodide ethyl iodide, 1-iodopropane, 2-iodobutane, 1-iodobutane, methyl bromide, ethyl bromide, and benzyl iodide.
- the halide is a hydrogen halide or an alkyl halide having up to 6 carbon atoms.
- preferred halides are hydrogen iodide, methyl bromide and methyl iodide.
- the halide may also be a molecular halide such as I 2 , Br 2 , or Cl 2 .
- the vapor phase carbonylation process of the present invention is conducted by contacting the vapor phase reactants with the catalyst by flowing them through or over the catalyst. This is accomplished by feeding a gaseous mixture comprising the reactants to a carbonylation zone containing the solid supported iridium-gold catalyst of the present invention.
- the present heterogeneous vapor-phase process preferably operates entirely in the gas phase, i.e., none of the compounds or materials present in the carbonylation zone or reactor exists in a mobile liquid phase.
- a gaseous product comprising a carboxylic acid, an ester thereof, or a mixture thereof are recovered from the carbonylation zone.
- Vapor-phase carbonylation is typically operated at temperatures above the dew point of the product mixture, i.e., the temperature at which condensation occurs.
- the dew point is a complex function of dilution, product composition and pressure, and particularly with respect to non-condensable gases such as unreacted carbon monoxide, hydrogen, or inert diluent gas
- the process may still be operated over a wide range of temperatures, provided the temperature exceeds the dew point of the product effluent. In practice, this generally dictates a temperature range of about 100°C to 500°C, with temperatures in the range of 100°C to 325°C being preferred and temperature of about 150°C to 275°C being particularly useful.
- the useful pressure range is limited by the dew point of the product mixture.
- a wide range of pressures may be used, e.g., pressures in the range of about 0.1 to 100 bars absolute.
- the process preferably is carried out at a pressure in the range of about 1 to 50 bars absolute, most preferably, about 3 to 30 bar absolute.
- Suitable feedstocks for carbonylation using the present catalyst include lower alkyl alcohols, ethers, ester and esters-alcohol mixtures which may be carbonylated using the catalyst of the present invention.
- feedstocks include alcohols and ethers in which an aliphatic carbon atom is directly bonded to an oxygen atom of either an alcoholic hydroxyl group in the compound or an ether oxygen in the compound and may further include aromatic moieties.
- the feedstock is one or more lower alkyl alcohols having from 1 to 10 carbon atoms and preferably having from 1 to 6 carbon atoms, alkane polyols having 2 to 6 carbon atoms, alkyl alkylene polyethers having 3 to 20 carbon atoms and alkoxyalkanols having from 3 to 10 carbon atoms.
- the most preferred reactant is methanol.
- methanol is the preferred feedstock to use with the solid supported catalyst of the present invention and is normally fed as methanol, it can be supplied in the form of a combination of materials which generate methanol. Examples of such materials include (i) methyl acetate and water and (ii) dimethyl ether and water.
- both methyl acetate and dimethyl ether are formed within the reactor and, unless methyl acetate is the desired product, they are recycled with water to the reactor where they are converted to acetic acid. Accordingly, one skilled in the art will further recognize that it is possible to utilize the catalyst of the present invention to produce a carboxylic acid from an ester feed material.
- the molar ratio ofwaterto methanol can be 0:1 to 10:1, but preferably is in the range of 0.01:1 to 1:1.
- the amount of water fed usually is increased to account for the mole of water required for hydrolysis of the methanol alternative. Accordingly, when using either methyl acetate or dimethyl ether, the mole ratio of water to ester or ether is in the range of 1 : 1 to 10 : 1 , but preferably in the range of 1 : 1 to 3 : 1.
- the mole ratio of water to ester or ether is in the range of 1 : 1 to 10 : 1 , but preferably in the range of 1 : 1 to 3 : 1.
- acetic acid it is apparent that combinations of methanol, methyl ester, and/or dimethyl ether are equivalent, provided the appropriate amount of water is added to hydrolyze the ether or ester to provide the methanol reactant.
- a gaseous mixture having at least one of lower alkyl alcohol, ether and ester-alcohol mixture, either alone or in combination; carbon monoxide; and a halide are fed to a carbonylation reactor containing the iridium and gold supported catalyst described above.
- the reactant in the vapor phase, is allowed to contact the solid supported catalyst.
- the reactor is maintained under carbonylation conditions of temperature and pressure. If acetic acid is the desired product, the feedstock may consist of methyl alcohol, dimethyl ether, methyl acetate, a methyl halide or any combination thereof. If it is desired to increase the proportion of acid produced, the ester may be recycled to the reactor together with water or introduced into a separate reactor with water to produce the acid in a separate zone.
- the carbon monoxide can be a purified carbon monoxide or include other gases.
- the carbon monoxide need not be of a high purity and may contain from about 1 % by volume to about 99 % by volume carbon monoxide, and preferably from about 70 % by volume to about 99 % by volume carbon monoxide.
- the remainder of the gas mixture may include such gases as nitrogen, hydrogen, carbon dioxide, water and paraffinic hydrocarbons having from one to four carbon atoms.
- hydrogen is not part of the reaction stoichiometry, hydrogen may be useful in maintaining optimal catalyst activity.
- the preferred ratio of carbon monoxide to hydrogen generally ranges from about 99: 1 to about 2: 1, but ranges with even higher hydrogen levels are also likely to be useful.
- the amount of halide present in the gaseous feed to produce an effective carbonylation is based on the amount of alcohol or alcohol equivalents.
- the molar ratio of alcohol to halide ranges from about 1:1 to about 10,000:1, with the preferred range being from about 5:1 to about 1000:1.
- the vapor-phase carbonylation catalyst of the present invention may be used for making acetic acid, methyl acetate or a mixture thereof.
- the process includes the steps of contacting a gaseous mixture comprising methanol and carbon monoxide with the iridium-gold catalyst described above in a carbonylation zone and recovering a gaseous product from the carbonylation zone.
- the main gaseous products recovered include methyl acetate, acetic acid, unreacted methanol, and methyl iodide.
- the present invention is illustrated in greater detail by the specific examples present below. It is to be understood that these examples are illustrative embodiments and are not intended to be limiting of the invention, but rather are to be construed broadly within the scope and content of the appended claims.
- the iridium-gold catalyst was prepared using a sequential impregnation technique. The steps are described below.
- Hydrogen tetrachloroaurate (III) hydrate (50.11% gold, 0.458 grams, 1.16 mmol) was dissolved in 30 mL of distilled water. The solution was then added to 20 grams of 12 X 40 mesh activated carbon granules (20.0 g, obtained from Calgon) having a BET surface area in excess of 800 m 2 /g contained in an evaporating dish. The mixture was heated on the steam bath with continuous stirring until it became free flowing and then transferred to a quartz tube measuring 106 cm long by 25 mm outer diameter. The quartz tube containing the mixture was placed in a three-element electric tube furnace so that the mixture was located in the approximate center of the 61 cm long heated zone of the furnace.
- Nitrogen 100 standard cubic centimeters per minute was continuously passed through the catalyst bed, and the tube was heated from ambient temperature to 300°C over a 2 hour period, held at 300°C for 2 hours and then allowed to cool back to ambient temperature.
- the gold on carbon thus prepared was used in the subsequent step.
- Iridium (HI) chloride hydrate (0.412 g, 1.16 mmol) was dissolved in 30 mL of distilled water and the solution was then added to the gold/activated carbon pellets (from the above step) in an evaporating dish.
- the mixture was heated on the steam bath with continuous stirring until it became free flowing and then transferred to a quartz tube measuring 106 cm long by 25 mm outer diameter.
- the quartz tube containing the mixture was placed in a three- element electric tube furnace so that the mixture was located in the approximate center of the
- Hydrogen tetrachloroaurate (LTE) hydrate (50.11% gold, 0.458 grams, 1.16 mmol) was dissolved in 30 mL of distilled water. The solution was then added to 20 grams of 12 X 40 mesh activated carbon granules (20.0 g, obtained from Calgon) having a BET surface area in excess of 800 m 2 /g contained in an evaporating dish. The mixture was heated on the steam bath with continuous stirring until it became free flowing and then transferred to a quartz tube measuring 106 cm long by 25 mm outer diameter. The quartz tube containing the mixture was placed in a three-element electric tube furnace so that the mixture was located in the approximate center of the 61 cm long heated zone of the furnace. Nitrogen (100 standard cubic centimeters per minute) was continuously passed through the catalyst bed, and the tube was heated from ambient temperature to 300°C over a 2 hour period, held at 300°C for 2 hours and then allowed to cool back to ambient temperature.
- LTE Hydrogen tetrachloroaurate
- the catalyst prepared in this manner contained 1.10% iridium and had a density of 0.57 g per mL.
- An iridium-copper catalyst was prepared using a co-impregnation technique as described below.
- Iridium (III) chloride hydrate (0.419 g, 1.16 mmol) was dissolved in 30 mL of distilled water. Copper (H) chloride (0.157 g, 1.16 mmol) was then added and allowed to dissolve. The copper-iridium solution was then added to 20 grams of 12 X 40 mesh activated carbon granules (20.0 g, obtained from Calgon) having a BET surface area in excess of 800 m /g contained in an evaporating dish. The mixture was heated on the steam bath with continuous stirring until it became free flowing and then transferred to a quartz tube measuring 106 cm long by 25 mm outer diameter.
- the quartz tube containing the mixture was placed in a three-element electric tube furnace so that the mixture was located in the approximate center of the 61 cm long heated zone of the furnace. Nitrogen (100 standard cubic centimeters per minute) was continuously passed through the catalyst bed, and the tube was heated from ambient temperature to 300°C over a 2 hour period, held at 300°C for 2 hours and then allowed to cool back to ambient temperature.
- the reactor system consisted of a 800 to 950 mm (31.5 and 37 inch) section of 6.35 mm (V inch) diameter tubing constructed of Hastelloy alloy.
- the upper portion of the tube constituted the preheat and reaction (carbonylation) zones which were assembled by inserting a quartz wool pad 410 mm from the top of the reactor to act as support for the catalyst, followed sequentially by (1) a 0.7 g bed of fine quartz chips (840 microns), (2) 0.5 g of one of the catalysts prepared as described in the preceding examples, and (3) an additional 6 g of fine quartz chips.
- the top of the tube was attached to an inlet manifold for introducing liquid and gaseous feeds.
- the gases were fed using Brooks flow controllers and liquids were fed using a high performance liquid chromatography pump.
- the gaseous products leaving the reaction zone were condensed using a vortex cooler operating at 0-5°C.
- the product reservoir was a tank placed downstream from the reactor system.
- the pressure was maintained using a Tescom 44-2300 Regulator on the outlet side of the reactor system and the temperature of the reaction section was maintained using heating tape on the outside of the reaction system.
- Feeding of hydrogen and carbon monoxide to the reactor was commenced while maintaining the reactor at a temperature of 240°C and a pressure of 17.2 bara (250 psia).
- the flow rate of hydrogen was set at 25 standard cubic cm.
- EXAMPLE 1 The composition and weight of the samples taken periodically during the procedure described above in which Catalyst 1 was used are set forth in Table 1 wherein “Time” is the total time of operation (in hours) of the carbonylation commencing with the feeding of the methanol until a particular sample was taken.
- “Time” is the total time of operation (in hours) of the carbonylation commencing with the feeding of the methanol until a particular sample was taken.
- the values set forth below “Mel” (methyl iodide), “MeOAc” (methyl acetate), “MeOH” (methanol) and “HOAc” (acetic acid) are the weight percentages of each of those compounds present in the sample. The weight of each sample is given in grams.
- “Production Rate” is the moles of Acetyl Produced per liter of catalyst volume per hour during each increment of Time (Time Increment), i.e., the time of operation between samples.
- the formula for determining moles of Acetyl Produced per liter of catalyst volume per hour is:
- the catalyst produced 8.07 moles of acetyl. This represents a rate of 227 moles of acetyl/kg cat -h or, 130 mol of acetyl L cat -h.
- Comparative Catalysts C-I, C-II, C-IH and C-IV were utilized in the carbonylation of methanol according to the above-described procedure.
- the Production Rate expressed in terms of moles of Acetyl Produced per kilogram of catalyst per hour and moles per liter of catalyst volume per hour, provided by each of Catalysts 1 and Comparative Catalysts C-1, C- 2, C-3, and C-4 is shown in Table 3.
- Table 3 shows that the rate of reaction of the (1.16 mol)iridium-(1.16 mol)gold catalyst is significantly more (49% more) than the summation of the reaction rates of a 1.17 mol iridium catalyst and a 1.16 mol gold catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/024512 WO2003018524A1 (en) | 2001-08-03 | 2001-08-03 | Vapor phase carbonylation process using iridium-gold co-catalysts |
EP01959524A EP1414777A1 (en) | 2001-08-03 | 2001-08-03 | Vapor phase carbonylation process using iridium-gold co-catalysts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/024512 WO2003018524A1 (en) | 2001-08-03 | 2001-08-03 | Vapor phase carbonylation process using iridium-gold co-catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003018524A1 true WO2003018524A1 (en) | 2003-03-06 |
Family
ID=21742756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/024512 WO2003018524A1 (en) | 2001-08-03 | 2001-08-03 | Vapor phase carbonylation process using iridium-gold co-catalysts |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1414777A1 (en) |
WO (1) | WO2003018524A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560607B2 (en) | 2004-04-16 | 2009-07-14 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US7579510B2 (en) | 2006-02-03 | 2009-08-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
US7847139B2 (en) | 2003-07-15 | 2010-12-07 | Grt, Inc. | Hydrocarbon synthesis |
US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
US8008535B2 (en) | 2004-04-16 | 2011-08-30 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9133078B2 (en) | 2010-03-02 | 2015-09-15 | Gtc Technology Us, Llc | Processes and systems for the staged synthesis of alkyl bromides |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
CN114539056A (en) * | 2020-11-24 | 2022-05-27 | 中国科学院大连化学物理研究所 | A kind of method for preparing methyl acetate by methanol carbonylation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396048B2 (en) * | 2002-10-15 | 2008-07-08 | Ncr Corporation | Internet stamp |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816337A (en) * | 1970-09-01 | 1974-06-11 | Toa Nenryo Kogyo Kk | Process for preparing a catalytic cobalt carbonyl reaction product |
US5705683A (en) * | 1994-07-13 | 1998-01-06 | Basf Aktiengesellschaft | Carbonylation of olefins |
DE19706876A1 (en) * | 1997-02-21 | 1998-08-27 | Basf Ag | Process for the preparation of carboxylic acids or their esters by carbonylation of olefins |
-
2001
- 2001-08-03 EP EP01959524A patent/EP1414777A1/en not_active Withdrawn
- 2001-08-03 WO PCT/US2001/024512 patent/WO2003018524A1/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816337A (en) * | 1970-09-01 | 1974-06-11 | Toa Nenryo Kogyo Kk | Process for preparing a catalytic cobalt carbonyl reaction product |
US5705683A (en) * | 1994-07-13 | 1998-01-06 | Basf Aktiengesellschaft | Carbonylation of olefins |
DE19706876A1 (en) * | 1997-02-21 | 1998-08-27 | Basf Ag | Process for the preparation of carboxylic acids or their esters by carbonylation of olefins |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8415512B2 (en) | 2001-06-20 | 2013-04-09 | Grt, Inc. | Hydrocarbon conversion process improvements |
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
US7847139B2 (en) | 2003-07-15 | 2010-12-07 | Grt, Inc. | Hydrocarbon synthesis |
US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
US7560607B2 (en) | 2004-04-16 | 2009-07-14 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7880041B2 (en) | 2004-04-16 | 2011-02-01 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US8008535B2 (en) | 2004-04-16 | 2011-08-30 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US7579510B2 (en) | 2006-02-03 | 2009-08-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
US8053616B2 (en) | 2006-02-03 | 2011-11-08 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8921625B2 (en) | 2007-02-05 | 2014-12-30 | Reaction35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8415517B2 (en) | 2008-07-18 | 2013-04-09 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US9133078B2 (en) | 2010-03-02 | 2015-09-15 | Gtc Technology Us, Llc | Processes and systems for the staged synthesis of alkyl bromides |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
CN114539056A (en) * | 2020-11-24 | 2022-05-27 | 中国科学院大连化学物理研究所 | A kind of method for preparing methyl acetate by methanol carbonylation |
CN114539056B (en) * | 2020-11-24 | 2023-03-14 | 中国科学院大连化学物理研究所 | Method for preparing methyl acetate by methanol carbonylation |
Also Published As
Publication number | Publication date |
---|---|
EP1414777A1 (en) | 2004-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1414777A1 (en) | Vapor phase carbonylation process using iridium-gold co-catalysts | |
US6353132B1 (en) | Vapor phase carbonylation process using group 5 metal promoted iridium catalyst | |
US6617471B2 (en) | Method for carbonylation of lower aliphatic alcohols using tin promoted iridium catalyst | |
US6355837B1 (en) | Vapor phase carbonylation process using group 4 metal promoted iridium catalyst | |
US6159896A (en) | Iridium catalyst for carbonylation of lower aliphatic alcohols | |
US6548444B2 (en) | Tin promoted iridium catalyst for carbonylation of lower alkyl alcohols | |
US6177380B1 (en) | Iridium-gold carbonylation co-catalysts | |
US6355595B1 (en) | Group 5 metal promoted iridium carbonylation catalyst | |
EP1216094B1 (en) | Group 4 metal promoted iridium carbonylation catalyst | |
US6509293B1 (en) | Gold based heterogeneous carbonylation catalysts | |
US6537944B1 (en) | Tungsten promoted catalyst for carbonylation of lower alkyl alcohols | |
US6441222B1 (en) | Vapor phase carbonylation process using iridium-gold co-catalysts | |
US6506933B1 (en) | Vapor phase carbonylation process using gold catalysts | |
WO2003014054A1 (en) | Vapor phase carbonylation process using gold catalysts | |
WO2003013721A1 (en) | Gold based hererogeneous carbonylation catalysts | |
US6646154B2 (en) | Method for carbonylation of lower alkyl alcohols using tungsten promoted group VIII catalyst | |
WO2003009937A1 (en) | Iridium-gold carbonylation co-catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP Kind code of ref document: A1 Designated state(s): CN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001959524 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20018236790 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2001959524 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001959524 Country of ref document: EP |