+

WO2003015910A1 - Mikrokapseldispersion - Google Patents

Mikrokapseldispersion Download PDF

Info

Publication number
WO2003015910A1
WO2003015910A1 PCT/EP2002/008739 EP0208739W WO03015910A1 WO 2003015910 A1 WO2003015910 A1 WO 2003015910A1 EP 0208739 W EP0208739 W EP 0208739W WO 03015910 A1 WO03015910 A1 WO 03015910A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
groups
weight
microcapsule dispersion
diisocyanate
Prior art date
Application number
PCT/EP2002/008739
Other languages
English (en)
French (fr)
Inventor
Dirk Wulff
Ekkehard Jahns
Volker Schehlmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/485,266 priority Critical patent/US6890653B2/en
Priority to EP02767326A priority patent/EP1419006A1/de
Priority to KR1020047002107A priority patent/KR100886316B1/ko
Priority to JP2003520858A priority patent/JP2004538354A/ja
Priority to BR0211818-1A priority patent/BR0211818A/pt
Publication of WO2003015910A1 publication Critical patent/WO2003015910A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to microcapsule dispersions containing microcapsules with a capsule core containing water-soluble organic substances and a capsule shell which essentially consists of polyurethane and / or polyurea, in a hydrophobic solvent which consists of 50 to 100% by weight glycerol ester oils and 0 to 50% by weight. -% consists of solvents miscible with glycerol oils, and a process for their preparation.
  • Microcapsules are spherical particles which comprise a capsule core and a capsule shell surrounding the capsule core, also referred to as the capsule wall.
  • a capsule core and a capsule shell surrounding the capsule core
  • the wall material and the encapsulation process are also decisive for the properties.
  • Microcapsules are widely used in carbonless carbonless papers. Microcapsules containing core oils containing color formers have long been known.
  • the capsule walls based on melamine-formaldehyde resin (EP-A-0 026 914) or polyurea-based (EP-A-0 535 384) are formed by polycondensation or polyaddition at the interfaces of an oil-in-water emulsion.
  • encapsulation processes are also known in which the two phases are interchanged. These methods are also known as inverse microencapsulation.
  • German application 10120480.2 describes such an inverse encapsulation. She teaches microcapsules with a capsule core containing water-soluble substances and a capsule wall made of melamine / formaldehyde resins.
  • No. 5,859,075 also teaches microcapsules with diols and polyols as the capsule core and a polyurethane wall, which are produced in paraffins as a continuous phase.
  • the microcapsules thus obtained are suitable as a powder coating component.
  • water-sensitive substances can also be encapsulated using this method.
  • EP-A-0 148 169 describes microcapsules with a water-soluble core and a polyurethane wall, which are produced in a vegetable oil. In addition to herbicides, water-soluble dyes are mentioned as capsule core material.
  • Decorative cosmetics generally use organic or inorganic pigments as coloring components. Because of their insolubility, the pigments are largely inert towards the other constituents of the cosmetic composition, in contrast to soluble dyes. In addition, the
  • Insolubility of the pigments has the advantage that permanent discoloration of the parts of the body that have been treated with the cosmetic product can be avoided.
  • a disadvantage of using pigment, however, is its lower color brilliance compared to dyes.
  • the object of the present invention was to provide organic, water-soluble substances such as dyes for cosmetic products in a form in which they are inert towards solvents.
  • microcapsule dispersions described above and a process for their preparation have been found.
  • the capsules comprise a capsule shell and a capsule core.
  • the capsule core contains at least one water-soluble, organic substance as a solid and / or, due to the production process, as a solution in the hydrophilic solvent. Solutions of the water-soluble organic substance are preferred as capsule cores.
  • reactant is to be understood as meaning a compound carrying OH or NH 2 groups and reacting with di- and / or polyisocyanate groups.
  • the basic principle of microencapsulation is based on the so-called interfacial polymerization or addition.
  • boundary polyaddition the substances to be encapsulated and the so-called reactant are dissolved in a hydrophilic solvent in a first process step and then mixed with a hydrophobic solvent and processed into an emulsion.
  • the continuous phase of the emulsion usually contains surface-active substances in order to prevent the droplets from flowing together.
  • the hydrophilic solvent is the discontinuous later disperse phase and the hydrophobic solvent is the continuous phase. If the hydrophilic solvent is water, the term is also used Clear water-in-oil emulsion.
  • the emulsified droplets have a size that corresponds approximately to the size of the later microcapsules.
  • the emulsion is mixed with the isocyanate capable of wall formation in a second process step.
  • the reactant is able to react at the interface between the discontinuous and the continuous phase with the isocyanate dissolved in the continuous phase to form the polymeric film.
  • the third process step comprises the so-called after-treatment of the freshly produced capsule dispersion.
  • the reaction between the isocyanate and the reactant is brought to an end under control of the temperature and residence time and, if appropriate, using further auxiliaries.
  • a hydrophilic solvent is understood to mean both water and aqueous mixtures which, in addition to water, contain up to 20% by weight of a water-miscible organic solvent such as 0 ⁇ to C 4 alkanols, in particular methanol, ethanol, isopropanol or a cyclic ether such as tetrahydrofuran.
  • a water-miscible organic solvent such as 0 ⁇ to C 4 alkanols, in particular methanol, ethanol, isopropanol or a cyclic ether such as tetrahydrofuran.
  • the preferred hydrophilic solvent is water.
  • Suitable hydrophilic solvents are also ethylene glycol, glycerol, polyethylene glycols and butylene glycol, their mixtures and their mixtures with water or the above-mentioned aqueous mixtures. Mixtures of these solvents with water are preferred as the hydrophilic solvent.
  • pure glycerol ester oils or 50 to ⁇ 100% by weight glycerol ester oil are used as the hydrophobic solvent.
  • Glycerol ester oils are understood to mean esters of saturated or unsaturated fatty acids with glycerol. Mono-, di- and triglycerides and their mixtures are suitable. Fatty acid triglycerides are preferred.
  • fatty acids are C 6 -C 8 fatty acids such as hexane,
  • Preferred glycerol ester oils are C 1 -C 8 fatty acid triglycerides, in particular octanoic acid and decanoic acid triglycerides, and their mixtures.
  • Such an octanoylglyceride / decanoylglyceride mixture is, for example, Miglyol® 812 from Huls.
  • the hydrophobic solvent consists of 50 to 100 wt.%, Preferably 70 to 100 wt.%, Particularly preferably 90 to 100 wt.% Glycerol ester oils and 0 to 50, preferably 0 to 30, particularly preferably 0 to 10 wt. -% mixed with glycerol ester oils solvents. Glycerol ester oils which are used individually or in their mixtures are particularly preferred as the hydrophobic solvent.
  • Oils miscible with glycerol ester oils are, for example:
  • Hydrocarbon oils such as paraffin oil, purcellin oil, perhy- drosquale and solutions of microcrystalline waxes in these oils, - animal or vegetable oils, such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil, horse oil, pig oil, sesame oil, olive oil, Jojoba oil, karite oil, ho- plostethus oil, mineral oils whose distillation begins under atmospheric pressure at approx. 250 ° C and whose distillation end point is 410 ° C, such as.
  • B. Vaseline oil such as paraffin oil, purcellin oil, perhy- drosquale and solutions of microcrystalline waxes in these oils, - animal or vegetable oils, such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil, horse oil, pig oil, sesame oil, olive oil, Jojoba oil, karite oil, ho- plostethus oil, mineral oils whose distillation
  • Esters of saturated or unsaturated fatty acids such as alkyl myristates, e.g. B. i-propyl, butyl or cetyl myristate, hexadecyl stearate, ethyl or i-propyl palmitate and cetyl ricinolate.
  • Suitable compounds miscible with glycerol ester oils are silicone oils, such as dirnethylpolysiloxane, methylphenylpolysiloxane ... and the silicone glycol copolymer, fatty acids and fatty alcohols or waxes such as carnauba wax, candellila wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al -Oleates, -Myristates, -Linoleates and -Stearates.
  • a water-soluble, organic substance is to be understood as meaning a compound based on carbon which is at least partially soluble in water.
  • the organic substance must have a greater affinity for the hydrophilic than for the hydrophobic phase. This is usually guaranteed if the substance has a solubility in the hydrophilic solvent of at least 1 g / 1 at room temperature.
  • the organic substances preferably have a solubility 20 20 g / l in the hydrophilic solvent.
  • the water-soluble, organic substances are, for example, water-soluble dyes, agrochemicals, flavors, pharmaceutical active ingredients, fertilizers or cosmetic active ingredients.
  • the capsule is impermeable or poorly permeable to the water-soluble, organic substances. Controlled delivery is possible with capsules that are difficult to permeable achieve water-soluble, organic substances.
  • Water-soluble dyes are preferred.
  • dye here and below includes organic compounds or salts of organic compounds as well as charge transfer complexes of organic compounds with a chromophore that has an absorption maximum in the wavelength range from 400 to 850 n and thus produces a color impression for the human eye ( conventional dyes) and which may itself emit light in the visible range (fluorescent dyes).
  • Dyes in the sense of this invention are also compounds with an absorption maximum in the range from 250 to 400 nm, which when irradiated with UV light emit fluorescent radiation in the visible range (optical heaters).
  • Dyes in the sense of this invention are furthermore organic compounds which absorb light of the wavelength ⁇ 400 nm and deactivate without radiation (UV stabilizers).
  • the water-soluble dyes have ionic functional groups which indicate their solubility in aqueous
  • the modification can be cationic or anionic.
  • Suitable substituents are, for example, sulfonic acid, carboxylic acid, phosphoric acid residues and ammonium and alkylammonium residues.
  • Dyes suitable according to the invention include different dye classes with different chromophores, for example monoazo and disazo dyes, triarylmethane dyes, metal complex dyes, such as phthalocyanine dyes, quinophthalones and methine and azamethine dyes.
  • monoazo and disazo dyes for example monoazo and disazo dyes, triarylmethane dyes, metal complex dyes, such as phthalocyanine dyes, quinophthalones and methine and azamethine dyes.
  • metal complex dyes such as phthalocyanine dyes, quinophthalones and methine and azamethine dyes.
  • the dyes also include complexes of basic and acidic dyes or complexes of anionic and cationic dyes, for example the complex of chrysoidin base and metanilic yellow acid.
  • the dyes also include optical brighteners which are at least partially soluble in water.
  • organic dyes also include UV radiation-absorbing compounds (UV stabilizers) which deactivate the absorbed radiation without radiation.
  • UV absorbers include derivatives of p-aminobenzoic acid, especially their esters; Salicylates, cinnamates, benzophenones, 2-phenylbenzimidazole-4-sulfonic acid and their salts, urocainic acid, their salt and their esters, benzoxazoles, benzotriazoles, benzylidene cappers and their derivatives.
  • Dyes of the Color Index such as 42045, 42051, 42080, 42090, 42735, which are used in cosmetics, are also very suitable.
  • the microcapsule generally contains at least 0.1% by weight, based on the hydrophilic solvent, preferably 1 to 50% by weight and in particular 5 to 20% by weight of at least one dye.
  • the capsule wall according to the invention consists essentially of polyurethane and / or polyurea f.
  • Capsule walls are preferred which essentially consist of polyurea, ie reaction products of reactants containing NH groups, with di- and / or polyisocyanates.
  • di- and polyisocyanates such as aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic di- and polyisocyanates such as those from W. Siefken in Justus Liebigs Anna-len der Chemie, 562, pages 75 to 136, are described, for example ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,2-dodecane diisocyanate, cyclo - butane-1, 3-diisocyanate, cyclohexane-1, 3- and -1, 4-diisocyanate and any mixtures of these isomers, l-iso ⁇ yanato-3, 3, 5-trimethyl-5-isocyanatomethyl-cyclohexane, as described for example in DE-AS 1 202 785 and US Pat.
  • di- and polyisocyanates such as aliphatic, cycloaliphatic, araliphatic, aromatic and
  • polyisocyanates containing urethane groups as described, for example, in BE-PS 752 261 or in US Pat. No. 3,394 164 are described, polyisocyanates containing acylated urea groups according to DE-PS 1 230 778, polyisocyanates containing biuret groups, as described, for example, in DE-PS 1 101 394 and in GB-PS 889 050, polyisocyanates prepared by telomerization reactions, such as those described in US Pat described, for example, in US Pat. No.
  • ether groups polyisocyanates such as those mentioned in GB-PS 965 474 and 1 072 956, in US-PS 3 567 763 and in DE-PS 1 231 688, reaction products of the above-mentioned isocyanates with acetals according to the
  • distillation residues containing isocyanate groups obtained in the industrial production of isocyanate optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • Suitable modified, aliphatic isocyanates are, for example, those based on hexamethylene-1, 6-diisocyanate, m-xylylene diisocyanate, 4, '-diisocyanate-dicyclohexylmethane and isophorone diiso- cyanate, which have at least two isocyanate groups per molecule.
  • polyisocyanate-polyuretonimines such as those formed by carbodiimidization of hexamethylene-1, 6-diisocyanate containing biuret groups with organophosphorus catalysts, with primarily formed carbodiimide groups reacting with further isocyanate groups to form uretonimine groups.
  • Isocyanurate modified polyisocyanates with more than two terminal isocyanate groups can also be used, e.g. those whose production based on hexamethylene diisocyanate is described in DE-OS 2 839 133.
  • Other isocyanurate-modified polyisocyanates can be obtained analogously.
  • Mixtures of the isocyanates mentioned can also be used, e.g. Mixtures of aliphatic isocyanates, mixtures of aromati -__. shear isocyanates, mixtures of aliphatic and aromatic isocyanates, in particular mixtures which may contain modified diphenylmethane diisocyanates.
  • di- and / or polyisocyanates described here can also be used as mixtures with di- and polycarboxylic acid chlorides, such as sebacoyl chloride, terephthaloyl chloride, adipic acid dichloride, oxalic acid dichloride, tricarballylic acid trichloride and 1, 2,4, 5-benzene-carboxylic acid tetrachloride, with di- and Polysulfonic acid chlorides such as 1, 3-benzenesulfonic acid dichloride and 1,3, 5-benzenesulfonic acid trichloride, phosgene and with dichloro- and polychloroformic acid esters, such as 1, 3, 5-benzenetrichloroformate and ethylene bischloroformate are used.
  • di- and polycarboxylic acid chlorides such as sebacoyl chloride, terephthaloyl chloride, adipic acid dichloride, oxalic acid dichloride, tricarballylic
  • Preferred isocyanates are biuretic hexamethylene diisocyanate, optionally in admixture with 4,4'-diphenylmethane isocyanate and, if appropriate, 2,4-diphenylmethane isocyanate, trimerized hexamethylene diisocyanate, optionally in admixture with
  • diisocyanates are the alkylbenzene diisocyanates and alkoxybenzene diisocyanates specified in DE-OS 3 105 776 and 3 521 126, also in the form of their biuret isocyanana uretdione oligomers.
  • Preferred di- or polyisocyanates are 4, 4'-diphenylmethane diisocyanate, the mixtures of monomeric diphenylmethane diisocyanates and other diphenylmethane diisocyanates (polymer MDI), tetramethylene diisocyanate, tetramethylene diisocyanate tri eres, hexamethylene diisocyanate, hexamethylene diisocyanate, hexamethylene diisocyanate, hexamethylene diisocyanate and hexamethylene diisocyanate -Trimer, 4,4'-methylenebis (cyclohexyl) diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dodecyldiisocyanate, lysinalkyl ester diisocyanate, where alkyl is Ci to C ⁇ o, 2,2,4- or 2, 4, 4-trimethyl- 1, 6-hex
  • di- or polyisocyanates with NCO groups of different reactivity such as 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), triisocyanate toluene, isophorone diisocyanate (IPDI ), 2-butyl-2-ethylpentamethylene diisocyanate, 2-isocyanatopropylcyclohexyl isocyanate, 3 (4) -isocyanato-methyl-1-methylcyclohexyl isocyanate, 1,4-diisocyanate-4-methylpentane, 2,4 'methylene bis ( cyclo-hexyl) diisocyanate and 4-methyl-cyclohexane-1,3-diisocyanate (H-TDI).
  • 2,4-tolylene diisocyanate (2,4-TDI)
  • isocyanates are particularly preferred, the NCO groups of which are initially equally reactive, but in which a drop in reactivity in the second NCO group can be induced by first addition of an alcohol or amine to an NCO group.
  • isocyanates the NCO groups of which are delocalized
  • Electron system e.g. 1,3- and 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl diisocyanate, tolidine diisocyanate or 2,6-tolylene diisocyanate.
  • oligo- or polyisocyanates which are composed of the di- or polyisocyanates mentioned or their mixtures by linking using urethane, allophanate, urea, biuret, uretdione, amide, isocyanurate - Have carbodiimide, uretonimine, oxadiazinetrione or iminoxadiazinedione structures produced.
  • Reactants containing NH 2 groups according to the invention are: hydrazine, guanidine and its salts, hydroxylamine, di- and polyamines and amino alcohols. These compounds can be used in pure form or as mixtures with one another.
  • a preferred one Guanidine salt is guanidine carbonate. When using guanidine salts of strong acids, the addition of a base is necessary.
  • Suitable amines are generally polyfunctional amines in the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which contain at least two amino groups selected from the group of primary and secondary amino groups.
  • Examples include diamines such as diaminoethane, diamino-propane, diaminobutane, diaminohexane, piperazine, 2, 5-dimethyl-piperazine, amino-3-aminomethyl-3, 5, 5-trimethyl-cyclohexane (iso-phorondia in, IPDA), 4 , 4'-diaminodicyclohexylmethane, 1, 4-diamino-cyclohexane, aminoethylethanolamine, hydrazine, hydrazine hydrate or triamines such as diethylenetriamine or 1, 8-diamino-4-aminomethyl-octane. , ,
  • the amines can also be in blocked form, e.g. in the form of the corresponding ketimines (see, for example, CA-A-1 129 128), ketazines (see, for example, US Pat. No. 4,269,748) or amine salts (see US Pat. No. 4,292,226).
  • amino alcohols are ethanolamine and triethanolamine.
  • water can also act as a reactant by __. Addition to an NCO group and subsequent C0 elimination produces an amino group which can then react with an NCO group with crosslinking.
  • Preferred reactants carrying NH groups are diamines, particularly preferably aliphatic C 6 -C 6 diamines such as ethylenediamine and hexamethylenediamine.
  • the amount of the isocyanates to be used according to the invention is in the usual range for interfacial polyaddition processes.
  • 20 to 150, preferably 40 to 150,% by weight of isocyanate, based on the discontinuous phase intended for encapsulation (hydrophilic solvent + water-soluble substance) are used.
  • Good shear stability of the capsules can be observed from as little as 40% by weight. Amounts above 150% by weight are possible, but generally do not lead to more stable capsule walls.
  • the theoretical amount of the reactants required for wall formation is calculated from a) the content of reactive amino and / or hydroxyl groups in the reactant component used. These quantitative ratios are usually expressed by so-called equivalent weights. 42
  • the reactants are therefore used in an amount which is between 50 and 150% by weight of the theoretical calculated.
  • This amount is preferably between 50 and 100% by weight, based on the theoretically calculated amount.
  • the present invention further relates to a process for the preparation ⁇ position of the microcapsule dispersion according to the invention by ⁇ solvents provides an emulsion of the hydrophilic solvent in the hydrophobic Lö with the aid of a surfactant forth ⁇ , wherein the hydrophilic phase ubstanz the water-soluble organic S and the OH or Contains NH 2 groups, reacting with di- and / or poly isocyanate groups, and adds di- and / or polyisocyanates to the emulsion.
  • surfaces ⁇ active substances such as protective colloids and / or emulsifiers.
  • surface-active substances are used that mix with the hydrophobic phase.
  • B evorzugte protective colloids are linear block copolymers with a hydrophobic structural unit of length> 50 A, alone or in mixtures with other surface-active substances.
  • the linear block copolymers are represented by the general formula C w BAB y - X D Z
  • hydrophilic groups are polyethylene oxides, poly (1, 3-dioxolane), copolymers of polyethylene oxide or
  • the polyesters are derived from components such as 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 2-hydroxycaproic acid, 10-hydrodecanoic acid, 12-hydroxydodecanoic acid, 16-hydroxyhexadecanoic acid, 2-hydroxyisobutanoic acid, 2- (4-hydroxyphenoxy) propionic acid, 4-hydroxyphenylpyruvic acid, 12-hydroxystearic acid, 2-hydroxyvaleric acid, polylactones from caprolactone and butyrolactone, polylactams from caprolactam, polyurethanes and polyisobutylenes.
  • the linear block copolymers contain both hydrophilic and hydrophobic units.
  • the block polymers have a molecular weight above 1000 and a length of the hydrophobic part of> 50 A calculated according to the Cosines law. These sizes are calculated with the configuration extended, taking into account the bond lengths and angles given in the literature.
  • the manufacture of these units is well known. Manufacturing processes are, for example, condensation reaction of hydroxy acid, condensation of polyols such as diols with polycarbonic acids such as dicarboxylic acids.
  • the polymerization of lactones and lactams and the reaction of polyols with polyisocyanates are also suitable.
  • Hydrophobic polymer units are reacted with the hydrophilic units as is generally known, for example by means of a condensation reaction and a coupling reaction.
  • the production of such block copolymers is described, for example, in US Pat. No. 4,203,877, to which express reference is made.
  • the proportion of linear block copolymer is preferably 20-100% by weight of the total amount of surface-active substance used.
  • Suitable surfactants are also the emulsifiers commonly used for water-in-oil emulsions, for example
  • Emulsifiers from the Span® series have proven to be particularly advantageous. These are cyclized sorbitol which is partially esterified several times with a fatty acid, it being possible for the backbone to be substituted with further radicals known from surface-active compounds, for example with polyoxyethylene. Examples include the sorbitan esters with lauric, palmitic, stearic and oleic acid, such as Span 80 (sorbitan monooleate) and Span 60 (sorbitan monostearate).
  • oxypropylene / oxyethylene C ⁇ -C o-fatty alcohols are used as a mixture component with other surface-active substances. These fatty alcohols generally have 3 to 12 ethylene oxide or propylene oxide units.
  • C 8 -C 8 sorbitan fatty acid ester as an emulsifier. These can be used individually, in their mixtures and / or as mixtures with other types of emulsifiers mentioned above.
  • the proportion of sorbitan fatty acid ester is preferably 20-100% by weight of the total amount of surface-active substance used.
  • a mixture of surface-active substances is selected containing the linear block copolymers defined above and C 8 -C 8 sorbitan fatty acid esters.
  • the proportion of oxypyropylenated / oxyethylenated C 12 -C 0 fatty alcohol is preferably 0 to 20% by weight.
  • mixtures of surface-active substances are preferably comprised essentially of 40 to 60% by weight of linear block copolymer, 30 to 50% by weight of C ⁇ -C ⁇ s sorbitan fatty acid ester and 2 to 10% by weight of oxypropylenated / oxyethylenated C ⁇ -C 0 fatty alcohols, based on the total amount of surfactant.
  • the optimum amount of surface-active substance is influenced on the one hand by the surface-active substance itself, on the other hand by the reaction temperature, the desired microcapsule size and the wall materials.
  • the optimally required amount can easily be determined by simple series tests.
  • the surface-active substance for producing the emulsion is used in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight and in particular 0.1 to 2% by weight, based on the hydrophobic Phase applied.
  • a solution of water-soluble organic substance and reactant bearing OH or NH 2 groups in the hydrophilic solvent can be added to the hydrophobic solvent.
  • the surface-active substance With the help of the surface-active substance, a stable emulsion is produced with stirring.
  • the water-soluble organic substances and the reactant are first added to the stable emulsion or during the emulsification step.
  • the isocyanate can then be metered into such an emulsion.
  • the interface reaction can take place, for example, at temperatures in the range from -3 to + 70 ° C., preferably at 0 to 25 ° C.
  • the core material is dispersed in a known manner depending on the size of the capsules to be produced. Dispersion using effective stirrers, in particular propeller or impeller stirrers, is sufficient for the production of large capsules. Small capsules, especially if the size is to be below 50 ⁇ , require homogenizing or dispersing machines, and these devices can be provided with or without a forced-flow device.
  • Homogenization can also be carried out using ultrasound (e.g. Branson Sonifier II 450).
  • ultrasound e.g. Branson Sonifier II 450.
  • the devices described in GB 2250930 and US Pat. No. 5,108,654 are suitable for homogenization by means of ultrasound.
  • the capsule size can be determined by the number of revolutions of the dispersing / homogenizing device and / or by means of the concentration of the
  • Protective colloid or its molecular weight, d. H. about the viscosity of the aqueous continuous phase within certain _. limits are controlled.
  • the number of dispersed particles decreases as the number of tours increases up to a limit number of tours.
  • dispersing devices are used at the beginning of the capsule formation.
  • Microcapsule dispersions containing 5 to 50% by weight of microcapsules can be produced by the process according to the invention.
  • the microcapsules are single capsules. Suitable dispersing conditions can be used to derive capsules with an average particle size in the range from 0.5 to 50 ⁇ m and larger. Capsules with an average particle size of 0.5 to 50 ⁇ m, in particular up to 30 ⁇ m, are preferred.
  • the average particle diameter is the z-average particle diameter, determined by quasi-elastic, dynamic light scattering. A Coulter N4 Plus Particle Analyzer from Coulter Scientific Instruments is usually used for its determination. The very narrow size distribution of the capsules is particularly advantageous.
  • the microcapsule dispersions according to the invention can be incorporated into cosmetic compositions in a known manner. The incorporation into the cosmetic agent is carried out according to the usual procedures, usually by stirring and homogenizing 5 into the other constituents of the cosmetic agent.
  • cosmetic agents which are designed as decorative cosmetic agents are agents for the treatment of the facial skin, in particular in the eye area, such as kohl pencils, eye-liner pencils, eyebrow pencils, eyeshadow, cream blush, powder blush, make-up, make-up , e.g. B. theater make-up, lipsticks.
  • pens such as kohl pencils, eyeliner pencils, eyebrow pencils, pen-shaped theater make-up, lipsticks and the like, and in the case of powdered or powdered cosmetic products such as eyeshadow and cream blush or loose powder blush, it is preferred to use microcapsule dispersions.
  • the amount of microcapsules in the cosmetic agent depends primarily on the desired color impression that the decorative cosmetic agent should have. Depending on the type of cosmetic and the desired color impression, the
  • microcapsules in the cosmetic agent in the range of 0.1 to 50 wt .-%, based on the total weight of the cosmetic agent.
  • the viscosities were measured in accordance with ISO 3219 (DIN 53019) with the Physica MC20 viscometer in measuring system 21 at a shear rate of 100 s " 1 and a temperature of 23 ° C.
  • the capsule diameter was determined optically at 400 times magnification using a microscope Leitz company (Diaplan 101/107).
  • a microcapsule dispersion was prepared analogously to Example 1, 4 g of Reactive Red 120 being used as the dye.
  • the dispersion obtained was red-milky and, according to the microscopic assessment, contained individual capsules predominantly 1 to 5 ⁇ m in diameter.
  • the viscosity was 43.9 mPas and the solids content was 11% by weight.
  • Example 2 Analogously to Example 1 there was prepared a microcapsule dispersion, g as the dye Reactive Red 4 were used. 2 The dispersion obtained was red-milky and, according to the microscopic assessment, contained individual capsules predominantly 1 to 5 ⁇ m in diameter. The viscosity was 45.2 mPas and the solids content was 11% by weight.
  • Example 2 Analogous to Example 1, a mixture of 64 g of H0 and 16 g of ethanol being used as the aqueous solution.
  • the dispersion obtained was red-milky and, according to the microscopic assessment, contained individual capsules of predominantly 1 to 5 ⁇ m in diameter.
  • the viscosity was 50.2 mPas and the solids content was 11% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Cosmetics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Die vorliegende Erfindung betrifft Mikrokapseldispersionen enthaltend Mikrokapseln mit einem wasserlösliche organische Substanzen enthaltenden Kapselkern und einer Kapselhülle, die im wesentlichen aus Polyurethan und/oder Polyharnstoff besteht, in einem hydrophoben Lösungsmittel, das aus 50 bis 100 Gew.-% Glycerinesterölen und 0 bis 50 Gew.-% mit Glycerinesterölen mischbaren Lösungsmitteln besteht, sowie ein Verfahren zu ihrer Herstellung.

Description

Mikrokapseldispersion
Beschreibung
Die vorliegende Erfindung betrifft Mikrokapseldispersionen enthaltend Mikrokapseln mit einem wasserlösliche organische Substanzen enthaltenden Kapselkern und einer Kapselhülle, die im wesentlichen aus Polyurethan und/oder Polyharnstoff besteht, in einem hydrophoben Lösungsmittel, das aus 50 bis 100 Gew.-% Glycerinesterölen und 0 bis 50 Gew.-% mit Glycerinesterölen mischbaren Lösungsmitteln besteht, sowie ein Verfahren zu ihrer Herstellung.
Mikrokapseln sind kugelförmige Teilchen, die einen Kapselkern und eine den Kapselkern umgebende Kapselhülle, auch als Kapselwand bezeichnet, umfassen. Je nach Art des Kapselkerns ergeben sich die verschiedenen Verwendungen. Entscheidend für die Eigenschaften ist dabei auch das Wandmaterial und das Verkapselungsverfah- ren beispielsweise bei Kapseln mit kontrollierter Abgabe für Wirkstoffe.
Eine breite Anwendung finden Mikrokapseln bei den kohlefreien Durchschreibepapieren. So sind Mikrokapseln mit Farbbildnern enthaltenden Kernölen seit langem bekannt. Die Kapselwände auf Melamin-Formaldehydharzbasis (EP-A-0 026 914) oder Polyharnstoff- basis (EP-A-0 535 384) werden durch Polykondensation bzw. Poly- addition an den Grenzflächen einer Öl-in-Wasser-E ulsion gebildet.
Im Unterschied zu den Öl-in-Wasser-Emulsionen, bei denen das Öl die disperse, also die diskontinuierliche Phase und das Wasser die kontinuierliche Phase ist, kennt man auch Verkapselungsver- fahren, bei denen die beiden Phasen vertauscht sind. Diese Verfahren werden auch als inverse Mikroverkapselung bezeichnet.
Die ältere deutsche Anmeldung 10120480.2 beschreibt eine solche inverse Verkapselung. Sie lehrt Mikrokapseln mit einem wasserlösliche Substanzen enthaltenden Kapselkern und einer Kapselwand aus Melamin/Formaldehyd-Harzen .
Ferner lehrt die US 5,859,075 Mikrokapsel mit Diolen und Polyolen als Kapselkern und einer Polyurethanwand, die in Paraffinen als kontinuierliche Phase hergestellt werden. Die so erhaltenen Mikrokapseln eignen sich als Pulverlackkomponente. Gemäß dieser Lehre lassen sich auch wasserempfindliche Substanzen nach diesem Verfahren verkapseln. Die EP-A-0 148 169 beschreibt Mikrokapseln mit einem wasserlöslichen Kern und einer Polyurethanwand, die in einem Pflanzenöl hergestellt werden. Als Kapselkernmaterial werden neben Herbiziden unter anderem wasserlösliche Farbstoffe genannt.
In der dekorativen Kosmetik verwendet man in der Regel organische oder anorganische Pigmente als farbgebende Bestandteile. Aufgrund ihrer Unlöslichkeit -verhalten sich die Pigmente gegenüber den übrigen Bestandteilen des kosmetischen Mittels im Unterschied zu löslichen Farbstoffen weitgehend inert. Zudem hat die
Unlöslichkeit der Pigmente den Vorteil, dass eine bleibende Verfärbung der Körperstellen, die mit dem kosmetischen Mittel behandelt wurden, vermieden werden kann.
Nachteilig bei der Verwendung von Pigment ist jedoch im Vergleich zu Farbstoffen ihre geringere Farbbrillanz.
Aufgabe der vorliegenden Erfindung war es, organische, wasserlösliche Substanzen wie Farbstoffe, für kosmetische Mittel in einer Form zur Verfügung zu stellen, in der sie sich gegenüber Lösungsmitteln inert verhalten.
Demgemäß wurden die oben beschriebenen Mikrokapseldispersionen sowie ein Verfahren zu ihrer Herstellung gefunden.
Die Kapseln umfassen eine Kapselhülle und einen Kapselkern. Der Kapselkern enthält mindestens eine wasserlösliche, organische Substanz als Feststoff und/oder herstellungsbedingt als Lösung in dem hydrophilen Lösungsmittel. Bevorzugt werden als Kapselkerne Lösungen der wasserlöslichen, organischen Substanz.
Unter Reaktand ist im Rahmen dieser Anmeldung eine OH- oder NH2-Gruppen tragende, mit Di- und/oder Polyisocyanatgruppen reagierende Verbindung zu verstehen.
Das Grundprinzip der Mikroverkapselung beruht auf der sogenannten Grenzflächenpolymerisation oder -addition . Bei der Grenzf lachen - polyaddition werden in einem ersten Verfahrensschritt die zu verkapselnden Stoffe und der sogenannte Reaktand in einem hydrophi - len Lösungsmittel gelöst und anschließend mit einem hydrophoben Lösungsmittel versetzt und zu einer Emulsion verarbeitet . Die kontinuierliche Phase der Emulsion enthält üblicherweise oberflächenaktive Substanzen, um ein Zusammenfließen der Tröpfchen zu vermeiden . In dieser Emulsion ist das hydrophile Lösungsmittel die diskontinuierliche spätere disperse Phase und das hydrophobe Lösungsmittel die kontinuierliche Phase . Sofern es sich bei dem hydrophilen Lösungsmittel um Wasser handelt, ist auch der Begriff Wasser-in-Öl-Emulsion anschaulich. Die emulgierten Tröpfchen besitzen dabei eine Größe, die ungefähr der Größe der späteren Mikrokapseln entspricht. Zur Bildung der Kapselwand vermischt man in einem zweiten Verfahrensschritt die Emulsion mit dem zur Wand- bildung befähigten Isocyanat. Der Reaktand ist in der Lage an der Grenzfläche zwischen der diskontinuierlichen und der kontinuierlichen Phase mit dem in der kontinuierlichen Phase gelösten Isocyanat unter Ausbildung des polymeren Films zu reagieren.
Der dritte Verfahrensschritt umfasst die sogenannte Nachbehandlung der frisch hergestellten Kapseldispersion. Hierbei wird unter Kontrolle von Temperatur und Verweilzeit und gegebenenfalls unter Einsatz weiterer Hilfsmittel, die Reaktion zwischen Isocyanat und Reaktand zu Ende geführt.
Unter einem hydrophilen Lösungsmittel ist sowohl Wasser als auch solche wässrigen Mischungen zu verstehen, die außer Wasser bis zu 20 Gew.-% eines mit Wasser mischbaren organischen Lösungsmittels wie 0χ- bis C4-Alkanolen, insbesondere Methanol, Ethanol, Isopropanol oder einen cyclischen Ether wie Tetrahydrofuran enthalten. Bevorzugtes hydrophiles Lösungsmittel ist Wasser.
Geeignete hydrophile Lösungsmittel sind ferner Ethylenglykol , Glycerin, Polyethylenglycole und Butylenglycol, ihre Mischungen sowie ihre Mischungen mit Wasser oder den oben aufgeführten wässrigen Mischungen. Bevorzugt werden als hydrophile Lösungsmittel Mischungen dieser Lösungsmittel mit Wasser.
Als hydrophobes Lösungsmittel werden erfindungsgemäß reine Glyce- rinesteröle oder als 50 bis < 100 gew.-%ige Glycerinesteröl-
Mischungen eingesetzt. Unter Glycerinesterölen versteht man Ester gesättigter oder ungesättigter Fettsäuren mit Glycerin. Geeignet sind Mono-, Di- und Triglyceride sowie ihre Mischungen. Bevorzugt werden Fettsäuretriglyceride.
Als Fettsäuren seien beispielhaf C6-Cι -Fettsäuren wie Hexan- ,
Octan-, Decan- und Dodecansäure erwähnt.
Bevorzugte Glycerinesteröle sind Cg-Cι -Fettsäuretriglyceride ins- besondere Octan- und Decansäuretriglyceride sowie ihre Mischungen. Eine solche Octanoylglycerid/Decanoylglycerid Mischung ist beispielsweise Miglyol® 812 der Fa. Hüls.
Das hydrophobe Lösungsmittel besteht aus 50 bis 100 Gew. -%, bevorzugt 70 bis 100 Gew.-%, besonders bevorzugt aus 90 bis 100 Gew. -% Glycerinesterölen und 0 bis 50, bevorzugt 0 bis 30, besonders bevorzugt 0 bis 10 Gew.-% mit Glycerinesterölen misch- baren Lösungsmitteln. Besonders bevorzugt sind als hydrophobes Lösungsmittel Glycerinesteröle, die einzeln oder in ihren Mischungen eingesetzt werden.
Mit Glycerinesterölen mischbare Öle sind beispielsweise:
Kohlenwasserstoff-Öle, wie Paraffinöl, Purcellinöl, Perhy- drosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen, - tierische oder pflanzliche Öle, wie Süßmandelöl, Avocadoöl, Calophylumöl , Lanolin und Derivate davon, Ricinusöl, Pfer- deöl, Schweineöl, Sesamöl, Olivenöl, Jojobaöl, Karite-Öl, Ho- plostethus-Öl, mineralische Öle, deren Destillationsbeginn unter Atmosphä- rendruck bei ca. 250 °C und deren Destillationsendpunkt bei 410 °C liegt, wie z. B. Vaselinöl,
Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmy- ristate, z. B. i-Propyl-, Butyl- oder Cetylmyristat, Hexade- cylstearat, Ethyl- oder i-Propylpalmitat und Cetylricinolat .
Weitere geeignete mit Glycerinesterölen mischbare Verbindungen sind Siliconöle, wie Dirnethylpolysiloxan, Methylphenylpolysiloxan... und das Siliconglycol-Copolymer, Fettsäuren und Fettalkohole oder Wachse wie Carnauba-Wachs , Candellilawachs, Bienenwachs, mikro- kristallines Wachs, Ozokeritwachs und Ca-, Mg- und Al-Oleate, -Myristate, -Linoleate und -Stearate.
Unter einer wasserlöslichen, organischen Substanz ist eine Verbindung auf Basis von Kohlenstoff zu verstehen, die zumindest teilweise in Wasser löslich ist. Die organische Substanz muß eine größere Affinität zur hydrophilen als zur hydrophoben Phase haben. Dies ist in der Regel dann gewährleistet, wenn die Substanz, bei Raumtemperatur eine Löslichkeit im hydrophilen Lösungsmittel von mindestens 1 g/1 aufweisen. Bevorzugt weisen die organischen Substanzen eine Löslichkeit ≥ 20 g/1 im hydrophilen Lösungsmittel auf .
Bei den wasserlöslichen, organischen Substanzen handelt es sich beispielsweise um wasserlösliche Farbstoffe, Agrochemikalien, Ge- schmacksstoffe, pharmazeutische Wirkstoffe, Dünger oder kosmetische Wirkstoffe. Abhängig von der Dicke der Kapselwand, die durch die gewählten Verfahrensbedingungen sowie Menge der Einsatzstoffe beeinflußt wird, sind die Kapsel undurchlässig oder schwer durchlässig für die wasserlöslichen, organischen Substanzen. Mit schwer durchlässigen Kapseln läßt sich eine kontrollierte Abgabe wasserlöslichen, organischen Substanzen erzielen. Bevorzugt werden wasserlösliche Farbstoffe.
Der Begriff Farbstoff umfasst hier und im Folgenden organische Verbindungen oder Salze organischer Verbindungen sowie Charge- Transfer-Komplexe von organischen Verbindungen mit einem Chromo- phor, der ein Absorptionsmaximum im Wellenlängenbereich von 400 bis 850 n aufweist und somit für das menschliche Auge einen Farbeindruck hervorruft (konventionelle Farbstoffe) und der gege- benenfalls auch selber Licht im sichtbaren Bereich emittiert (Fluoreszenzfarbstoffe) . Farbstoffe im Sinne dieser Erfindung sind auch Verbindungen mit einem Absorptionsmaximum im Bereich von 250 bis 400 nm, die bei Bestrahlen mit UV-Licht eine Fluores- zensstrahlung im sichtbaren Bereich emittieren (optische Aufhei - 1er) . Farbstoffe im Sinne dieser Erfindung sind weiterhin organische Verbindungen, die Licht der Wellenlänge < 400 nm absorbieren und strahlungslos deaktivieren (UV-Stabilisatoren) .
In der Regel weisen die wasserlöslichen Farbstoffe ionische funk- tionelle Gruppen auf, welche die Löslichkeit im wässrigen
Lösungsmittel verbessern. Die Modifizierung kann dabei kationisch oder anionisch erfolgt sein. Geeignete Substituenten sind beispielsweise Sulfonsäure- , Carbonsäure-, Phosphorsäurereste sowie Ammonium- und Alkylammoniumreste.
Erfindungsgemäß geeignete Farbstoffe umfassen verschiedene Farb- stoffklassen mit unterschiedlichen Chro ophoren, beispielsweise Monoazo- und Disazofarbstoffe, Triarylmethanfarbstoffe, Metallkomplexfarbstoffe, wie Phtalocyaninfarbstoffe, Chinophthalone und Methin- und Azamethinfarbstoffe.
Beispielhaft genannt seien die folgenden Nummern des Colour- Index:
Direct Yellow 4, 5, 11, 50, 127, 137, 147, 153; Acid Orange 7, 8 ; Direct Orange 15, 34, 102; Direct Red 81, 239, 252-255; Direct Violet 9, 51; Acid Blue 9, 86; Direct Blue 199, 218, 267, 273, 279, 281; Acid Black 194, 208, 210, 221; Direct Black 19, 161, 170 und 171;
Basic Red 1, Basic Red 14, Basic Blue 7, Basic Blue 11, Basic Blue 26, Basic Violet 1, Basic Violet 4, Basic Violet 10 etc.; Reaktivfarbstoffe wie Reactiv Red 120, Reactiv Red 2 etc.. Weiterhin zählen zu den Farbstoffen auch Komplexe aus basischen und sauren Farbstoffen bzw. Komplexe aus anionischen und kationischen Farbstoffen, beispielsweise der Komplex aus Chrysoidinbase und Metanilgelbsäure.
Erfindungsgemäß zählen zu den Farbstoffen auch optische Aufheller, die zumindest zum Teil in Wasser löslich sind.
Zu den organischen Farbstoffen zählen definitionsgemäß auch UV- strahlenabsorbierende Verbindungen (UV-Stabilisatoren) , die die absorbierte Strahlung strahlungslos deaktivieren. Derartige Verbindungen werden häufig als UV-Absorber in Sonnenschutzmitteln eingesetzt. Hierzu zählen Derivate der p-Aminobenzoesäure, insbesondere ihre Ester; Salicylate, Cinnamate, Benzophenone, 2-Phe- nylbenzimidazol-4-sulfonsäure und deren Salze, Urocainsäure, deren Salz und deren Ester, Benzoxazole, Benzotriazole, Benzyliden- ka pfer und seine Derivate.
Ebenfalls gut geeignet sind in der Kosmetik eingesetzte Farb- Stoffe des Colour-Index wie 42045, 42051, 42080, 42090, 42735,
44045, 61585, 62045, 73015, 74180, Bromthymol-blau, Kulör, 10316, 13015, 18690, 18820, 18965, 19140, 45350, 47005, 75100, Lactofla-_. vin, 10020, 42053, 42100, 42170, 44090, 59040, 61570, 75810, Bromkresolgrün, 14270, 15510, 15980, 15985, 16230, 20170, 40215, 14700, 14720, 14815, 15620, 16035, 16185, 16255, 16290, 17200, 18050, 18130, 18736, 24790, 27290, 45100, 45220, 45380, 45405, 45410, 45425, 45430, 75470, Beetenrot, Anthocyane, Acid Red 195, schwarz 20470, 27755, 28440, 50420, 42510, 42520, 45190 und 60730.
Je nach Farbintensität des Farbstoffs enthält die Mikrokapsel in der Regel wenigstens 0 , 1 Gew. -% bezogen auf das hydrophile Lösungsmittel , vorzugsweise 1 bis 50 Gew. -% und insbesondere 5 bis 20 Gew. -% wenigstens eines Farbstoffs .
Die erfindungsgemäße Kapselwand besteht im wesentlichen aus Polyurethan und/oder Polyharnstof f . Bevorzugt werden Kapselwände, die im wesentlichen aus Polyharnstof f also Umsetzungsprodukten von NH -Gruppen enthaltenden Reaktanden mit Di- und/oder Polyiso - cyanaten bestehen .
Geeignet sind Di- und Polyisocyanate, wie aliphatische, cycloali - phatische, araliphatische, aromatische und heterocyclische Di- und Polyisocyanate wie sie von W . Siefken in Justus Liebigs Anna - len der Chemie, 562 , Seiten 75 bis 136 , beschrieben werden, beispielsweise Ethylendi isocyanat, 1 , 4-Tetramethylendiisocyanat, 1 , 6-Hexamethylendiisocyanat, 1 , 12-Dodecandiisocyanat , Cyclo - butan-1, 3-diisocyanat, Cyclohexan-1, 3- und -1, 4-diisocyanat und beliebige Gemische dieser Isomeren, l-Isoσyanato-3 , 3 , 5-tri- methyl-5-isocyanatomethyl-cyclohexan, wie z.B. beschrieben in DE-AS 1 202 785 und US-PS 3 401 190, 2,4- und 2, 6-Hexanhydroto- luylendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexa- hydro-1,3- und -1, -phenylendiisocyanat, Perhydro-1,4'- und -4, 4' -diphenylmethandiisocyanat, 1,3- und 1, 4-Phenylendiisocyanat, 2,4- und 2, 6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2, 4' - und 4, 4' -diisocyanat, Naphthylen-1, 5-diisocyanat, Triphenylmethan-4, 4' , 4"-Triisocyanat, Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten werden und z.B. in den GB-PS'en 874 430 und 848 671 beschrieben werden, m- und p-Isocyanatophenylsulfonylisocyanate- gemäß der US-PS 3 454 606, perchlorierte Arylpolyisocyanate, wie sie z.B. in der DE-AS 1 157 601 beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der DE-PS 1 092 007 (=US-PS 3 152 162) beschrieben werden, Diisocyanate, wie sie in der US-PS 3 492 330 beschrieben werden, Allophanatgruppen aufwei- sende Polyisocyanate, wie sie in der GB-PS 761 626 und der veröffentlichten NL-Patentanmeldung 7 102 524 beschrieben werden Iso- cyanuratgruppen aufweisende Polyisocyanate, wie sie z.B. in der _.. US-PS 3 001 973, in den De-PS'en 1 022 789, 1 222 067 und 1 027 394 sowie in den DE-OS'en 1 929 034 und 2 004 048 beschrie- ben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der BE-PS 752 261 oder in der US-PS 3 394 164 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der DE-PS 1 230 778, Biuretgruppen aufweisende Polyisocyanate, wie sie z.B. in der DE-PS 1 101 394 sowie in der GB-PS 889 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der US-PS 3 654 106 beschrieben werden, Ethergruppen aufweisende Polyisocyanate, wie sie z.B. in den GB-PS'en 965 474 und 1 072 956, in der US-PS 3 567 763 und in der DE-PS 1 231 688 genannte werden, Umsetzungs- produkte der obengenannten Isocyanate mit Acetalen gemäß der
DE-PS 1 072 385 und polymere Fettsäurereste enthaltende Polyisocyanate gemäß der US-PS 3 455 883.
Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
Geeignete modifizierte, aliphatische Isocyanate sind z.B. solche auf der Basis von Hexamethylen-1, 6-diisocyanat, m-Xylylendiisocyanat, 4, ' -Diisocyanat-dicyclohexylmethan und Isophorondiiso- cyanat, die pro Molekül mindestens zwei Isocyanatgruppen aufweisen.
Ferner geeignet sind z.B. Polyisocyanate auf der Basis von Deri- vaten des Hexamethylen-1, 6-diisocyanats mit Biuretstruktur wie in De-AS 1 101 394, DE-AS 1 453 543, DE-OS 1 568 017 und DE-OS 1 931 055 beschrieben.
Außerdem einsetzbar sind Polyisocyanat-polyuretonimine, wie sie durch Carbodiimidisierung von Biuretgruppen enthaltendem Hexa- methylen-1, 6-diisocyanat mit phosphororganischen Katalysatoren entstehen, wobei sich primär gebildete Carbodiimidgruppen mit weiteren Isocyanatgruppen zu Uretonimingruppen umsetzen.
Es können auch Isocyanurat-modifizierte Polyisocyanate mit mehr als zwei endständigen Isocyanatgruppen verwendet werden, z.B. solche deren Herstellung auf Basis von Hexamethylendiisocyanat in der DE-OS 2 839 133 beschrieben ist. Andere Isocyanurat-modifi- zierte Polyisocyanate können analog dazu erhalten werden.
Es können auch Gemische aus den genannten Isocyanaten verwendet werden, z.B. Gemische aliphatischer Isocyanate, Gemische aromati-__. scher Isocyanate, Gemische aus aliphatischen und aromatischen Isocyanaten, insbesondere Mischungen, die gegebenenfalls modifi- zierte Diphenylmethandiisocyanate enthalten.
Die hier beschriebenen Di- und/oder Polyisocyanate können auch als Mischungen mit Di- und Polycarbonsäurechloriden, wie Seba- coylchlorid, Terephthaloylchlorid, Adipinsäuredichlorid, Oxal- säuredichlorid, Tricarballylsäuretrichlorid und 1, 2,4, 5-Benzol- carbonsäuretetrachlorid, mit Di- und Polysulfonsäurechloriden wie 1 , 3-Benzolsulfonsäuredichlorid und 1,3, 5-Benzolsulfonsäuretrich- lorid, Phosgen und mit Dichlor- und Polychlorameisensäureester, wie 1, 3, 5-Benzoltrichloroformiat und Ethylenbischloroformiat An- Wendung finden.
Bevorzugte Isocyanate sind biuretisches Hexamethylendiisocyanat gegebenenfalls in Abmischung mit 4,4' -Diphenylmethanisocyanat und gegebenenfalls 2 , 4-Diphenylmethanisocyanat, trimerisiertes Hexa- methylendiisocyanat gegebenenfalls in Abmischung mit
4, 4'Diphenylmethandiisocyanat und gegebenenfalls 2 , 4-Diphenyl- methandiisocyana . Weitere bevorzugte Diisocyanate sind die in den DE-OS ' en 3 105 776 und 3 521 126 angegebenen Alkylbenzoldiisocyanate und Alkoxybenzoldiisocyanate, auch in Form ihrer Biuret-isocyana u- retdion-Oligomeren.
Bevorzugte Di- oder Polyisocyanate sind 4, 4' -Diphenylmethandiiso- cyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten und olig eren Diphenylmethandiisocyanaten (Polymer-MDI) , Tetramethylendiisocyanat, Tetramethylendiisocyanat-Tri ere, Hexa-me- thylendiisocyanat, Hexamethylendiisocyanat-Trimere, Isophorondii - socyanat-Trimer, 4,4' -Methylenbis (cyclohexyl) -diisocyanat, Xylylendiisocyanat, Tetramethylxylylendiisocyanat, Dodecyldiiso- cyanat, Lysinalkylester-diisocyanat, wobei Alkyl für Ci bis Cχo steht, 2,2,4- oder 2 , 4, 4-Trimethyl-l, 6-hexamethylen-diisocyanat, 2-Butyl-2-ethyl-pentamethylendiisocyanat, 1, 4-Diisocyanatocyclo- hexan oder 4-Isocyanato-methyl-l, 8-octamethylendiisocyanat.
Besonders bevorzugt sind Di- oder Polyisocyanate mit NCO-Gruppen unterschiedlicher Reaktivität, wie 2 ,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), Triiso- cyanatotoluol, Isophorondiisocyanat (IPDI) , 2-Butyl-2-ethylpenta- methylendiisocyanat, 2-Isocyanatopropylcyclohexylisocyanat, 3 (4) -Isocyanato-methyl-1-methylcyclohexylisocyanat, 1,4-Diiso- cyanato-4-methylpentan, 2,4' -Methylen-bis (cyclo-hexyl) diisocyanat und 4-Methyl-cyclohexan-l, 3-diisocyanat (H-TDI). Weiterhin sind Isocyanate besonders bevorzugt, deren NCO-Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Erstaddition eines Alkohols oder Amins an einer NCO-Gruppe ein Reaktivitätsabfall bei der zweiten NCO-Gruppe induzieren läßt. Beispiele dafür sind Isocyanate, deren NCO-Gruppen über ein delokalisiertes
Elektronensystem gekoppelt sind, z.B. 1,3- und 1, 4-Phenylendiiso- cyanat, 1, 5-Naphthylendiisocyanat, Diphenyldiisocyanat, Tolidin- diisocyanat oder 2, 6-Toluylendiisocyanat.
Weiterhin können beispielsweise Oligo- oder Polyisocyanate verwendet werden, die sich aus den genannten Di- oder Polyiso- cyanaten oder deren Mischungen durch Verknüpfung mittels Ure- than-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Iso- cyanurat-, Carbodiimid-, Uretonimin-, Oxadiazintrion- oder Imi- nooxadiazindion-Strukturen herstellen lassen.
Erfindungsgemäße NH2-Gruppen enthaltende Reaktanden sind: Hydra- zin, Guanidin und dessen Salze, Hydroxylamin, Di- und Polyamine und Aminoalkohole. Diese Verbindungen können in reiner Form oder als Mischungen untereinander eingesetzt werden. Ein bevorzugtes Guanidinsalz ist Guanidincarbonat . Bei Einsatz von Guanidinsalzen starker Säuren ist der Zusatz einer Base erforderlich.
Geeignete Amine sind im allgemeinen polyfunktionelle Amine des Molgewichtsbereiches von 32 bis 500 g/mol , vorzugsweise von 60 bis 300 g/mol , welche mindestens zwei Aminogruppen, ausgewählt aus der Gruppe der primären und sekundären Aminogruppen, enthal ten . Beispiele hierfür sind Diamine wie Diaminoethan, Diamino- propane, Diaminobutane, Diaminohexane, Piperazin, 2 , 5-Dimethyl - piperazin, Amino-3-aminomethyl-3 , 5 , 5-trimethyl-cyclohexan (Iso - phorondia in, IPDA) , 4 , 4 ' -Diaminodicyclohexylmethan, 1 , 4-Diamino - cyclohexan, Aminoethylethanolamin, Hydrazin, Hydra zinhydrat oder Triamine wie Diethylentriamin oder 1 , 8-Diamino-4-aminomethyl - octan . . .
Die Amine können auch in blockierter Form, z.B. in Form der entsprechenden Ketimine (siehe z.B. CA-A—1 129 128), Ketazine (vgl. z.B. die US-A 4 269 748) oder Aminsalze (s. US-A 4 292 226) eingesetzt werden.
Beispiel für Aminoalkohole sind Ethanolamin und Triethanolamin . Auch Wasser kann prinzipiell als Reaktand wirken, indem es durch __. Addition an eine NCO-Gruppe und nachfolgende C0 -Abspaltung eine Aminogruppe erzeugt, die dann mit einer NCO-Gruppe unter Vernet - zung reagieren kann.
Bevorzugter NH -Gruppen tragender Reaktand sind Diamine, besonders bevorzugt aliphatische C -C6 - Diamine wie Ethylendiamin und Hexame- thylendiamin .
Die Menge der erfindungsgemäß einzusetzenden Isocyanate bewegt sich in dem für Grenzflächenpolyadditionsverfahen üblichen Rahmen. So werden in der Regel 20 bis 150 bevorzugt 40 bis 150 Gew.-% Isocyanat bezogen auf die zur Verkapselung vorgesehene diskontinuierliche Phase (hydrophiles Lösungsmittel + wasserlösliche Substanz) eingesetzt. Bereits ab 40 Gew.-% sind gute Scherstabilitäten der Kapseln zu beobachten. Mengen oberhalb 150 Gew. -% sind möglich, führen jedoch in der Regel zu keinen stabileren Kapselwänden.
Die theoretische Menge des zur Wandbildung notwendigen Reaktanden errechnet sich aus a) dem Gehalt an reaktiven Amino- und/oder Hydroxylgruppen der verwendeten Reaktandko ponente. Üblicherweise werden diese Mengenverhältnisse durch sogenannte Äquivalentge- wichte ausgedrückt. 42
ÄquivalentgewichtIsocyanat = x 100
NCO-Gehalt * )
*) = z.B. titri etrisch zu ermitteln (DIN 53 185)
MθlgewichtReaktand
ÄquvivalentgewichtRektand -
Anzahl Reaktivgruppen im Molekül
Zur Reaktion sämtlicher in der Ölphase befindlicher NCO-Gruppen sind zumindest theoretisch gleich viele NH2- und/oder OH-Gruppen erforderlich. Es ist deshalb vorteilhaft, das Isocyanat und den Reaktanden im Verhältnis ihrer Äquivalentgewichte einzusetzen . Es ist j edoch ebenfalls möglich, von der s öchiometrisch errechneten Reaktandmenge entweder nach unten abzuweichen, da bei Grenzflä - chenpolyadditionsverfahren eine Nebenreaktion des Isocyanates mit dem im Überschuß vorhandenen Wasser nicht auszuschließen ist , oder einen Überschuß der Reaktandkomponente anzuwenden, weil ein solcher unkritisch ist .
Insbesondere wendet man deshalb den Reaktanden in einer Menge an, die zwischen 50 und 150 Gew. -% der theoretischen berechneten liegt . Bevorzugt liegt diese Menge zwischen 50 und 100 Gew. -% , bezogen auf die theoretisch berechnete Menge .
Die vorliegende Erfindung betrifft ferner ein Verfahren zur Her¬ stellung der erfindungsgemäßen Mikrokapseldispersion, indem man eine Emulsion des hydrophilen Lösungsmittels im hydrophoben Lö ¬ sungsmittel mit Hilfe einer oberflächenaktiven Substanz her¬ stellt, wobei die hydrophile Phase die wasserlösliche organische Substanz und den OH- oder NH2-Gruppen tragenden, mit Di- und/oder Poly isocyanatgruppen reagierenden Reaktanden enthält, und der Emulsion Di- und/oder Polyisocyanate zufügt .
Um eine stabile Emulsion zu erhalten, benötigt man oberflächen¬ aktive Substanzen wie Schutzkolloide und/oder Emulgatoren . In der Regel verwendet man oberflächenaktive Substanzen, die sich mit der hydrophoben Phase mischen .
Bevorzugte Schutzkolloide sind lineare Blockcopolymere mit einer hydrophoben Struktureinheit von einer Länge > 50 Ä, allein oder in Mischungen mit anderen oberflächenaktiven Substanzen . Die li - nearen Blockcopolymere werden durch die allgemeine Formel Cw B-A-By - XDZ
wiedergegeben, in der w 0 oder 1, x 1 oder mehr, y 0 oder 1 und A eine hydrophile Struktureinheit, mit einer Löslichkeit in Wasser bei 25°C > 1 Gew.-% (> 10 g/1) und einem Molekulargewicht von 200 bis 50 000, der kovalent mit den B-Blöcken verbunden ist und B eine hydrophobe Struktureinheit, mit einem Molekulargewicht von 300 bis 60 000 und eine Löslichkeit <1 Gew.-% in Wasser bei 25°C und zu A kovalente Bindungen bilden kann; und in der C und D End- gruppe sind, die unabhängig voneinander A oder B sein können. Die Endgruppen können gleich oder verschieden sein und sind abhängig vom Herstellungsverfahren.
Beispiele für hydrophile Gruppen sind Polyethylenoxide, Poly (1, 3-dioxolan) , Copolymere von Polyethylenoxid oder
Poly (1, 3-dioxolan) , Poly (2-methyl-2-oxazolin) , Poly (glycidyltri- methylammoniumchlorid) , Polymethylenoxid.
Beispiele für hydrophobe Gruppen sind Polyester bei denen der hy- drophobe Teil eine sterische Barriere >50 Ä, vorzugsweise ≥75 Ä insbesondere >100 Ä ist. Die Polyester sind abgeleitet von Komponenten wie 2-Hydroxybutansäure, 3-Hydroxybutansäure, 4-Hydroxybu— tansäure, 2-Hydroxycapronsäure, 10-Hydrodecansäure, 12-Hydroxydo- decansäure, 16-Hydroxyhexadecansäue, 2-Hydroxyisobutansäure, 2- ( 4-Hydroxyphenoxy)propionsäure, 4-Hydroxyphenylbrenztrauben- säure, 12-Hydroxystearinsäure, 2-Hydroxyvaleriansäure, Polylacto- nen aus Caprolacton und Butyrolacton, Polylactamen aus Capro- lactam, Polyurethanen und Polyisobutylenen.
Die linearen Blockcopolymere enthalten sowohl hydrophile wie auch hydrophobe Einheiten. Die Blockpolymere haben ein Molekulargewicht oberhalb 1000 und eine Länge des hydrophoben Teils von >50 A berechnet nach dem Gesetz von Cosines. Diese Größen werden bei ausgestreckter Konfiguration berechnet unter Berücksichtigung der in der Literatur angegebenen Bindungslängen und -winkel . Die Herstellung dieser Einheiten ist allgemein bekannt. Herstellverfahren sind beispielsweise Kondensationsreaktion von Hydroxy- säure, Kondensationen von Polyolen wie Diolen mit Polycarbon- säuren wie Dicarbonsäuren. Geeignet ist auch die Polymerisation von Lactonen und Lactamen sowie die Reaktion von Polyolen mit Polyisocyanaten. Hydrophobe Polymereinheiten werden mit den hydrophilen Einheiten wie allgemein bekannt umgesetzt, beispielsweise durch Kondensationsreaktion und Kupplungsreaktion. Die Herstellung solcher Blockcopolymere wird beispielsweise in der US 4 203 877 beschrieben, auf die ausdrücklich verwiesen wird. Bevorzugt beträgt der Anteil an linearem Blockcopolymer 20 - 100 Gew.-% der Gesamtmenge an eingesetzter oberflächenaktiver Substanz.
Geeignete oberflächenaktive Substanzen sind ferner die gewöhnlich für Wasser-in-Öl-Emulsionen verwendeten Emulgatoren beispielsweise
Cι -Ci8-Sorbitan-Fettsäureester,
Ester von Hydroxystearinsäure und Cι -Co-Fettalkoholen, - Mono- und Diester von Cχ2-Cχ8-Fettsäuren und Glycerin oder Po- lyglycerin,
Kondensate von Ethylenoxid und Propylenglycolen, oxypropylenierte/oxyethylenierte Cι-C o-Fettalkohole, polycyclische Alkohole, wie Sterole, - aliphatische Alkohole mit einem hohen Molekulargewicht, wie
Lanolin,
Mischungen von oxypropylenierten/polyglycerinierten Alkoholen und Magnesiumisostearat,
Succinester von polyoxyethylierten oder polyoxypropylenierten Fettalkoholen,
Magnesium-, Calcium-, Lithium-, Zink- oder Aluminiumlanolat und -stearat, gegebenenfalls als Mischung mit hydriertem La-_„. nolin, Lanolinalkohol, oder Stearinsäure oder Stearylalkohol .
Als besonders vorteilhaft haben sich Emulgatoren der Span®-Reihe (ICI Americas, Inc.) herausgestellt. Dabei handelt es sich um teilweise mehrfach mit einer Fettsäure verestertes cyclisiertes Sorbit, wobei das Grundgerüst noch mit weiteren, von oberflächenaktiven Verbindungen bekannten Resten substituiert sein kann, beispielsweise mit Polyoxyethylen. Beispielhaft seien die Sorbitanester mit Laurin-, Palmitin-, Stearin- und Ölsäure erwähnt wie Span 80 (Sorbitanmonooleat) und Span 60 ( Sorbitanmonostearat) .
In einer bevorzugten Ausführungsform werden oxypropylenierte/ oxyethylenierte Cχ-C o-Fettalkohole als Mischungskomponente mit weiteren oberflächenaktiven Substanzen eingesetzt. Diese Fettalkohole haben in der Regel 3 bis 12 Ethylenoxid bzw. Propyleno- xid-Einheiten.
Bevorzugt verwendet man als E ulgator Cι -Cχ8-Sorbitanfettsäure- ester. Diese können einzeln, in ihren Mischungen und/oder als Mischungen mit anderen obengenannten Emulgatortypen eingesetzt werden. Bevorzugt beträgt der Anteil an Sorbitanfettsäureester 20 - 100 Gew.-% der Gesamtmenge an eingesetzter oberflachen- aktiver Substanz. In einer bevorzugten Ausführungsform wählt man eine Mischung von oberflächenaktiven Substanzen enthaltend die oben definierte linearen Blockcopolymere und Cχ -Cι8-Sorbitanfettsäureester .
Besonders bevorzugt wählt man eine Mischung oberflächenaktiver Substanzen enthaltend die linearen Blockcopolymere, Cι-Ci8-Sorbitanfettsäureester und oxypropylenierte/oxyethyle- nierte C1 -Co-Fettalkohole.
Bevorzugt werden solche Mischungen enthaltend 20 bis 95 Gew.-% insbesondere 30 bis 75 Gew.-% lineares Blockcopolymer und 5 bis 80 Gew.-% insbesondere 25 bis 70 Gew.-% Cι -Cιs-Sorbitanfettsäureester bezogen auf die Gesamtmenge oberflächenaktive Substanz. Der Anteil an oxypyropylenierten/oxyethylenierten C12-C 0-Fettalkohol beträgt bevorzugt 0 bis 20 Gew.-%.
Insbesondere werden Mischungen von oberflächenaktiven Substanzen bevorzugt enthaltend im wesentlichen 40 bis 60 Gew.- lineares Blockcopolymer, 30 bis 50 Gew.-% Cχ -Cιs-Sorbitanfettsäureester und 2 bis 10 Gew.- oxypropylenierte/oxyethylenierte Cχ-C0-Fett- alkohole, bezogen auf die Gesamtmenge oberflächenaktive Substanz.
Die optimale Menge an oberflächenaktiver Substanz wird zum einen von der oberflächenaktiven Substanz selbst, zum anderen von der Reaktionstemperatur, der gewünschten Mikrokapselgröße und den Wandmaterialien beeinflußt. Durch einfache Reihenversuche kann die optimal benötigte Menge leicht ermittelt werden. In der Regel wird die oberflächenaktive Substanz zur Herstellung der Emulsion in einer Menge von 0,01 bis 10 Gew.-%, bevorzugt 0,05 bis 5 Gew. -% und insbesondere 0,1 bis 2 Gew. -% bezogen auf die hydrophobe Phase angewendet.
Zur Herstellung der erfindungsgemäßen Mikrokapseln kann man nach einer bevorzugten Ausführungsform eine Lösung aus wasserlöslicher organischer Substanz und OH- oder NH2-Gruppen tragenden Reaktand im hydrophilen Lösungsmittel zum hydrophoben Lösungsmittel geben. Mithilfe der oberflächenaktiven Substanz, stellt man unter Rühren eine stabile Emulsion her. Nach einer ebenfalls bevorzugten Variante werden die wasserlöslichen organischen Substanzen und der Reaktand erst der stabilen Emulsion oder während des Emulgier- schrittes zugesetzt. Zu einer derartigen Emulsion kann man dann das Isocyanat dosieren. In der Regel beginnt damit die Grenzflä- chenpolyaddition oder -kondensation und damit die Wandbildung. Die Grenzflächenreaktion kann beispielsweise bei Temperaturen im Bereich von -3 bis +70°C ablaufen, vorzugsweise arbeitet man bei 0 bis 25°C.
Die Dispergierung des Kernmaterials erfolgt je nach der Größe der herzustellenden Kapseln in bekannter Weise. Für die Herstellung großer Kapseln reicht die Dispergierung unter Verwendung von wirksamen Rührern, insbesondere von Propeller- oder Impeller- rührern aus. Kleine Kapseln, insbesondere wenn die Größe unter- halb von 50 μ liegen soll, erfordern Homogenisier- oder Dis- pergiermasσhinen, wobei diese Geräte mit oder ohne Zwangsdurchlaufvorrichtung versehen sein können.
Die Homogenisierung kann ferner durch die Anwendung von Ultra- schall (z.B. Branson Sonifier II 450) erfolgen. Für die Homogenisierung mittels Ultraschall sind beispielsweise die in der GB 2250930 und US 5,108,654 beschriebenen Vorrichtungen geeignet.
Die Kapselgröße kann über die Tourenzahl des Dispergiergerätes/ Homogenisiergerätes und/oder mit Hilfe der Konzentration des
Schutzkolloids bzw. über dessen Molekulargewicht, d. h. über die Viskosität der wässrigen kontinuierlichen Phase innerhalb gewis- _. ser Grenzen gesteuert werden. Dabei nimmt mit Erhöhung der Tourenzahl bis zu einer Grenztourenzahl die Größe der dispergierten Teilchen ab.
Dabei ist es wichtig, dass die Dispergiergeräte zu Beginn der Kapselbildung angewendet werden. Bei kontinuierlich arbeitenden Geräten mit Zwangsdurchlauf ist es vorteilhaft, die Emulsion mehrmals durch das Scherfeld zu schicken.
Nach dem erfindungsgemäßen Verfahren können Mikrokapseldisper- sionen mit einem Gehalt von 5 bis 50 Gew. -% an Mikrokapseln hergestellt werden. Die Mikrokapseln sind Einzelkapseln. Durch ge- eignete Bedingungen bei der Dispergierung können Kapseln mit einer mittleren Teilchengröße im Bereich von 0,5 bis zu 50 μm und größer hergeleitet werden. Bevorzugt werden Kapseln mit einer mittleren Teilchengröße von 0,5 bis 50 μ , insbesondere bis 30 μm. Bei dem mittleren Teilchendurchmesser handelt es sich um den z- mittleren Teilchendurchmesser, bestimmt durch quasielastische, dynamische Lichtstreuung. Üblicherweise verwendet man zu seiner Bestimmung einen Coulter N4 Plus Particle Analyzer der Fa. Coulter Scientific Instruments. Besonders vorteilhaft ist die sehr enge Größenverteilung der Kapseln. Die erfindungsgemäßen Mikrokapseldispersionen können in bekannter Weise in kosmetische Mittel eingearbeitet werden. Die Einarbeitung in das kosmetische Mittel erfolgt nach den hierfür üblichen Vorgehensweisen, in der Regel durch Einrühren und Homogenisieren 5 in die übrigen Bestandteile des kosmetischen Mittels.
Beispiele für kosmetische Mittel, die als dekorative kosmetische Mittel ausgestaltet werden, sind Mittel zur Behandlung der Gesichtshaut, insbesondere im Augenbereich, wie Kajal-Stifte, Eye- 10 liner-Stif e, Augenbrauenstifte, Lidschatten, Cremerouge, Puderrouge, Make-up, Schminke, z. B. Theaterschminke, Lippenstifte.
Bei kosmetischen Mitteln, die ausschließlich aus Ölen oder Fetten bestehen, insbesondere solche, die eine feste Form haben, z .. B.
15 Stifte, wie Kajal-Stifte, Eyeliner-Stifte, Augenbrauenstifte, stiftförmige Theaterschminke, Lippenstifte und ähnliche, sowie bei pulver- oder puderförmigen kosmetischen Mitteln wie Lidschatten und Cremerouge oder loses Puderrouge wird man bevorzugt Mikrokapseldispersionen einsetzen.
20
Die Menge an Mikrokapseln in dem kosmetischen Mittel richtet sich in erster Linie nach dem gewünschten Farbeindruck, den das dekorative kosmetische Mittel aufweisen soll. Je nach Art des kosmetischen Mittels und des gewünschten Farbeindrucks liegt der Ge-
25 halt an Mikrokapseln in dem kosmetischen Mittel im Bereich von 0,1 bis 50 Gew.-%, bezogen auf das Gesamtgewicht des kosmetischen Mittels.
Beispiel 1
30
In einem zylindrischen geformten 2 1-Rührgefäß wurde eine Lösung von 1,5 g Span® 80 (Sorbitanmonooleat) , 0,3 g Cremophor® A6 [75 Gew.-% Ceteareth-6 (ethoxilierter Cetylalkohol) 25 Gew.-% Stearylalkohol, BASF] und 2,1 g Arlacel® P135 (PEG-30 Dipolyhy-
35 droxystearat, Atlas Chemie) in 860 g Miglyol® (Decanoyl/Octanoyl - glycerid; Fa. Hüls) 812 vorgelegt. Mit einem Dispergator (Turrax 45 N) , der Fa. Jahnke & Kunkel) wurde durch Zugabe einer Lösung von 6,7 g Ethylendiamin und 4 g Cochenillerot A (E124; C.I. 162 55) in 80 g Wasser mit einer Umdrehungsgeschwindigkeit von 6000
40 U/min eine Wasser in Öl Emulsion hergestellt. Die erhaltene Emulsion wurde bei einer Rührgeschwindigkeit von 1000 U/min im Eisbad auf 2°C gekühlt. Unter Eiskühlung wurde bei unvermindertem Rühren eine Lösung von 23 g Basonat® LR 8528 (mehrfach funktionelles Toluylendiisocyanat-Addukt, 75 gew.-%ig in Essigester; BASF) in
45 300 g Miglyol innerhalb von 300 min hinzugegeben. Nach Beendigung der Zugabe wurde die Dispersion auf Raumtemperatur erwärmt und weitere 180 min gerührt. Die erhaltene Dispersion war rot-milchig und enthielt nach der mikroskopischen Beurteilung Einzelkapseln von vorwiegend 1 bis 5 μm Durchmesser. Die Viskosität betrug 47,5 mPas und der Feststoffgehalt 11 Gew.-%.
Die Viskositäten wurden gemäß ISO 3219 (DIN 53019) mit dem Visko- simeter Physica MC20 im Meßsystem 21 bei einer Schergeschwindigkeit von 100 s"1 und einer Temperatur von 23°C gemessen. Der Kapseldurchmesser wurde optisch bei 400-facher Vergrößerung mit einem Mikroskop der Firma Leitz (Diaplan 101/107) bestimmt.
Beispiel 2
Es wurde analog zu Beispiel 1 eine Mikrokapseldisperison hergestellt, wobei als Farbstoff 4 g Reactive Red 120 eingesetzt wur- den. Die erhaltene Dispersion war rot-milchig und enthielt nach der mikroskopischen Beurteilung Einzelkapseln von vorwiegend 1 bis 5 μ Durchmesser. Die Viskosität betrug 43,9 mPas und der Feststoffgehalt 11 Gew.-%.
Beispiel 3
Analog zu Beispiel 1 wurde eine Mikrokapseldispersion hergestellt, wobei als Farbstoff 4 g Reactive Red 2 eingesetzt wurden. Die erhaltene Dispersion war rot-milchig und enthielt nach der ikro- skopischen Beurteilung Einzelkapseln von vorwiegend 1 bis 5 μm Durchmesser. Die Viskosität betrug 45,2 mPas und der Feststoff- gehalt 11 Gew.-%.
Beispiel 4
Analog zu Beispiel 1, wobei als wäßrige Lösung eine Mischung aus 64 g H0 und 16 g Ethanol eingesetzt wurde. Die erhaltene Dispersion war rot-milchig und enthielt nach der mikroskopischen Beurteilung Einzelkapseln von überwiegend 1 bis 5 μm Durchmesser. Die Viskosität betrug 50,2 mPas und der Feststoffgehalt 11 Gew.-%.

Claims

Patentansprüche
1. Mikrokapseldispersion enthaltend Mikrokapseln mit einem was- serlösliche organische Substanzen enthaltenden Kapselkern und einer Kapselhülle, die im wesentlichen aus Polyurethan und/ oder Polyharnstoff besteht, in einem hydrophoben Lösungsmittel, das aus 50 bis 100 Gew.-% Glycerinesterölen und 0 bis 50 Gew.-% mit Glycerinesterölen mischbaren Lösungsmitteln be- steht.
2. Mikrokapseldispersion nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den wasserlöslichen organischen Sub-
. stanzen um Farbstoffe handelt.. . .. ... .. .
3. Mikrokapseldispersion nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kapselhüllen im wesentlichen aus Umsetzungsprodukten von NH-Gruppen tragenden Reaktanden mit Di- und/oder Polyisocyanaten bestehen.
4. Mikrokapseldispersion nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das hydrophobe Lösungsmittel Glycerinesteröle sind.
5. Mikrokapseldispersion nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass der Kapselkern Wasser als hydrophiles Lösungsmittel enthält.
6. Verfahren zur Herstellung einer Mikrokapseldispersion gemäß Anspruch 1, dadurch gekennzeichnet, dass man eine Emulsion des hydrophilen Lösungsmittels im hydrophoben Lösungsmittel mit Hilfe einer oberflächenaktiven Substanz herstellt, wobei die hydrophile Phase die wasserlösliche organische Substanz und den OH- oder NH-Gruppen tragenden, mit Di- und/oder Po- lyisocyanatgruppen reagierenden Reaktanden enthält, und der Emulsion Di- und/oder Polyisocyanate zufügt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man als oberflächenaktive Substanz ein lineares Blockcopolymer mit einer hydrophoben Struktureinheit einer Länge von mehr als 5 nm (50 Ä) verwendet, das durch die folgende Formel:
Cw 4 B-A-By -)- XDZ
definiert wird, worin A eine hydrophile Struktureinheit ist, die eine Löslichkeit in Wasser bei 25°C von 1 % oder mehr hat, eine Molmasse von 200 bis 50 000 aufweist, und so ausge- wählt ist, dass sie kovalent an B gebunden wird; B eine hydrophobe Struktureinheit ist, die eine Molmasse von 300 bis 60 000 hat, eine Löslichkeit in Wasser bei 25°C von weniger als 1 % hat und kovalent an A gebunden werden kann; C und D Endgruppen sind, die A oder B und die gleiche Gruppe oder unterschiedliche Gruppen sein können; w 0 oder 1 ist; x 1 oder eine ganze Zahl > 1 ist; y 0 oder 1 ist, und z 0 oder 1 ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das lineare Blockcopolymer ein 12-Hydroxystearinsäure-Blockcopo- lymer ist.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man als oberflächenaktive Substanz Cχ-Cχ8-Sorbitan-Fettsäureester einsetzt.
10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man als eine oberflächenaktive Substanz Kombination enthaltend Cχ2-Cχ8-Sorbitan-Fettsäureester und lineare Blockcopolymere gemäß Anspruch 7 einsetzt.
PCT/EP2002/008739 2001-08-15 2002-08-06 Mikrokapseldispersion WO2003015910A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/485,266 US6890653B2 (en) 2001-08-15 2002-08-06 Microcapsule dispersion
EP02767326A EP1419006A1 (de) 2001-08-15 2002-08-06 Mikrokapseldispersion
KR1020047002107A KR100886316B1 (ko) 2001-08-15 2002-08-06 미소캡슐 분산액
JP2003520858A JP2004538354A (ja) 2001-08-15 2002-08-06 マイクロカプセル分散液
BR0211818-1A BR0211818A (pt) 2001-08-15 2002-08-06 Dispersão de microcápsulas, e, processo para a preparação da mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10138996A DE10138996A1 (de) 2001-08-15 2001-08-15 Mikrokapseldispersion
DE10138996.5 2001-08-15

Publications (1)

Publication Number Publication Date
WO2003015910A1 true WO2003015910A1 (de) 2003-02-27

Family

ID=7694828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008739 WO2003015910A1 (de) 2001-08-15 2002-08-06 Mikrokapseldispersion

Country Status (8)

Country Link
US (1) US6890653B2 (de)
EP (1) EP1419006A1 (de)
JP (1) JP2004538354A (de)
KR (1) KR100886316B1 (de)
CN (1) CN100413575C (de)
BR (1) BR0211818A (de)
DE (1) DE10138996A1 (de)
WO (1) WO2003015910A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048169A1 (en) * 2004-11-05 2006-05-11 Basf Aktiengesellschaft Low-viscosity microcapsule dispersions
WO2006048166A1 (en) * 2004-11-05 2006-05-11 Basf Aktiengesellschaft Microcapsule dispersions
WO2007081350A3 (en) * 2005-02-03 2007-12-06 Procter & Gamble Cosmetic compositions comprising encapsulated colourants
WO2013092158A2 (de) 2011-12-19 2013-06-27 Basf Se Mikrokapseldispersion enthaltend mikrokapseln mit einem hydrophilem kapselkern
US8546509B2 (en) 2004-04-08 2013-10-01 Huntsman Textile Effects (Germany) Gmbh Functionalized particles
WO2014020256A1 (fr) * 2012-07-31 2014-02-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede pour la preparation de particules presentant un coeur hydrophile enrobe par une couche polymerique hydrophobe
EP3170552A1 (de) * 2015-11-23 2017-05-24 Basf Se Mikrokapsel mit einer polymerschale und hydrophilem oder hydrophobem kernmaterial
WO2022028708A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Bioabbaubare polyharnstoff/polyurethan-mikrokapseln
WO2022028706A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Bioabbaubare polyharnstoff/polyurethan-mikrokapseln
WO2022028707A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Polyharnstoff/polyurethan-mikrokapseln

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837742B2 (en) * 2003-05-19 2010-11-23 The Procter & Gamble Company Cosmetic compositions comprising a polymer and a colorant
US7490021B2 (en) * 2003-10-07 2009-02-10 Hospira, Inc. Method for adjusting pump screen brightness
CN100400151C (zh) * 2005-09-09 2008-07-09 浙江大学宁波理工学院 一种着色交联聚氨酯微球的制备方法
FR2898904B1 (fr) 2006-03-24 2012-12-14 Oreal Materiau colorant composite de type microcapsules et son utilisation cosmetique
US8680212B2 (en) * 2006-03-24 2014-03-25 L'oreal Composite dyestuff of microcapsule type and cosmetic use thereof
CN100534605C (zh) * 2007-11-09 2009-09-02 华南理工大学 一种使用聚脲微胶囊固定金属氧化物的方法
US20100083873A1 (en) * 2008-10-06 2010-04-08 Southwest Research Institute Encapsulation Of Active Agents For On-Demand Release
KR101202736B1 (ko) * 2008-11-25 2012-11-20 한국전자통신연구원 포화알코올 분산매를 포함하는 폴리우레아 마이크로 캡슐의제조 방법 및 이에 의해 제조된 마이크로캡슐
US20100229282A1 (en) * 2009-03-11 2010-09-16 Ansell Limited Powder-Free Anti-Blocking Coated Glove
US9149567B2 (en) * 2009-03-11 2015-10-06 Ansell Limited Powder-free antimicrobial coated glove
CN102172502A (zh) * 2011-01-24 2011-09-07 天津工业大学 一种功能性纳胶囊浆液的界面聚合制造方法及用途
EP3144059A1 (de) * 2015-09-16 2017-03-22 Total Marketing Services Verfahren zur herstellung von mikrokapseln durch doppelemulsion
WO2017192648A1 (en) * 2016-05-03 2017-11-09 International Flavors & Fragrances Inc. Reloadable microcapsules
WO2018180966A1 (ja) * 2017-03-28 2018-10-04 富士フイルム株式会社 マイクロカプセル及びその製造方法
CN107090091A (zh) * 2017-05-31 2017-08-25 江南大学 一种泡沫染色用聚氨酯包覆颜料微胶囊的方法
JP7077030B2 (ja) * 2018-01-29 2022-05-30 三菱鉛筆株式会社 筆記具用水性インク組成物
KR102241417B1 (ko) * 2018-11-15 2021-04-16 주식회사 엘지생활건강 향 지속성을 향상시키는 화장료 조성물
KR20220076455A (ko) 2019-10-03 2022-06-08 가부시끼가이샤 도꾸야마 마이크로 벌룬의 제조 방법
CN111202061B (zh) * 2020-03-10 2021-02-12 宋浩 一种水性自乳化有机硫磷农药微胶囊及其制备方法
CN111848917B (zh) * 2020-08-12 2022-04-01 黄山加佳荧光材料有限公司 一种聚脲荧光微球颜料的制备方法及应用
CN115487758B (zh) * 2022-09-23 2023-07-25 中国人民解放军国防科技大学 一种单体态酞菁锌的微胶囊、制备方法及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148169A2 (de) * 1984-01-03 1985-07-10 Monsanto Company Hochkonzentrierte Verkapselung von wasserlöslichen Substanzen
EP0407257A2 (de) * 1989-06-30 1991-01-09 Hutchinson S.A. Mikrokapseln, die amphiphile wasserlöschbare Materialien enthalten
US5783520A (en) * 1995-06-26 1998-07-21 Monsanto Company Microencapsulated herbicidal compositions comprising clomazone and edible oils
US5859075A (en) * 1998-03-30 1999-01-12 Council Of Scientific & Industrial Research Polyurethane Microspheres
US5911923A (en) * 1996-07-01 1999-06-15 Microtek Laboratories, Inc. Method for microencapsulating water-soluble or water-dispersible or water-sensitive materials in an organic continuous phase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2940786A1 (de) 1979-10-08 1981-04-16 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von mikrokapseln
JPS62180743A (ja) * 1986-02-01 1987-08-08 Shiseido Co Ltd 水性液体を内包するマイクロカプセルの製造法
JP2851302B2 (ja) * 1989-05-02 1999-01-27 松本油脂製薬株式会社 水溶性物質内包マイクロカプセルの製法
JP2684473B2 (ja) 1991-09-02 1997-12-03 富士写真フイルム株式会社 マイクロカプセルの連続的製造方法
JPH0830040A (ja) * 1994-07-18 1996-02-02 Nippon Paint Co Ltd 液体現像剤及びその製造方法
DE4434638A1 (de) * 1994-09-28 1996-04-04 Hoechst Schering Agrevo Gmbh Mikroverkapselte Pflanzenschutzmittel, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP1077060B1 (de) * 1999-08-18 2004-10-20 Cognis Iberia, S.L. Verwendung von Chitosanmikropaseln zur Herstellung dekorativer kosmetischer Zubereitungen
DE10120480A1 (de) 2001-04-25 2002-10-31 Basf Ag Mikrokapseln mit einem wasserlösliche Substanzen enthaltenden Kapselkern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148169A2 (de) * 1984-01-03 1985-07-10 Monsanto Company Hochkonzentrierte Verkapselung von wasserlöslichen Substanzen
EP0407257A2 (de) * 1989-06-30 1991-01-09 Hutchinson S.A. Mikrokapseln, die amphiphile wasserlöschbare Materialien enthalten
US5783520A (en) * 1995-06-26 1998-07-21 Monsanto Company Microencapsulated herbicidal compositions comprising clomazone and edible oils
US5911923A (en) * 1996-07-01 1999-06-15 Microtek Laboratories, Inc. Method for microencapsulating water-soluble or water-dispersible or water-sensitive materials in an organic continuous phase
US5859075A (en) * 1998-03-30 1999-01-12 Council Of Scientific & Industrial Research Polyurethane Microspheres

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546509B2 (en) 2004-04-08 2013-10-01 Huntsman Textile Effects (Germany) Gmbh Functionalized particles
WO2006048169A1 (en) * 2004-11-05 2006-05-11 Basf Aktiengesellschaft Low-viscosity microcapsule dispersions
WO2006048166A1 (en) * 2004-11-05 2006-05-11 Basf Aktiengesellschaft Microcapsule dispersions
WO2007081350A3 (en) * 2005-02-03 2007-12-06 Procter & Gamble Cosmetic compositions comprising encapsulated colourants
WO2013092158A2 (de) 2011-12-19 2013-06-27 Basf Se Mikrokapseldispersion enthaltend mikrokapseln mit einem hydrophilem kapselkern
WO2014020256A1 (fr) * 2012-07-31 2014-02-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede pour la preparation de particules presentant un coeur hydrophile enrobe par une couche polymerique hydrophobe
US9333473B2 (en) 2012-07-31 2016-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for preparing particles which have a hydrophilic core coated with a hydrophobic polymeric layer
WO2017089115A1 (en) * 2015-11-23 2017-06-01 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophilic core material
EP3170552A1 (de) * 2015-11-23 2017-05-24 Basf Se Mikrokapsel mit einer polymerschale und hydrophilem oder hydrophobem kernmaterial
WO2017089116A1 (en) * 2015-11-23 2017-06-01 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophobic core material
US10695734B2 (en) 2015-11-23 2020-06-30 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophilic core material
US11077417B2 (en) 2015-11-23 2021-08-03 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophobic core material
WO2022028708A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Bioabbaubare polyharnstoff/polyurethan-mikrokapseln
WO2022028706A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Bioabbaubare polyharnstoff/polyurethan-mikrokapseln
WO2022028707A1 (de) * 2020-08-06 2022-02-10 Symrise Ag Polyharnstoff/polyurethan-mikrokapseln
EP4378575A1 (de) * 2020-08-06 2024-06-05 Symrise AG Polyharnstoff/polyurethan-mikrokapseln
EP4393581A3 (de) * 2020-08-06 2024-07-10 Symrise AG Bioabbaubare polyharnstoff/polyurethan- mikrokapseln

Also Published As

Publication number Publication date
KR100886316B1 (ko) 2009-03-04
EP1419006A1 (de) 2004-05-19
KR20040029424A (ko) 2004-04-06
BR0211818A (pt) 2004-07-27
CN100413575C (zh) 2008-08-27
US6890653B2 (en) 2005-05-10
DE10138996A1 (de) 2003-02-27
CN1541138A (zh) 2004-10-27
US20040232575A1 (en) 2004-11-25
JP2004538354A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
WO2003015910A1 (de) Mikrokapseldispersion
EP0841088B1 (de) Mikrokapseln unter Verwendung von Iminooxadiazindion-Polyisocyanaten
DE69102531T2 (de) Mikrokapseln, Verkapselungsverfahren und Methode zur Anwendung derselben.
EP0164666B1 (de) Kontinuierliche Herstellung von Mikrokapseldispersionen
US20080103265A1 (en) Microcapsule Dispersions
DD159147A5 (de) Druckbestaendige mikrokapseln mit einer polyamid-aussenhuelle und einer durch polyurethan-polyharnstoff strukturierten innenmassen,verfahren zu ihrer herstellung
DE2655048A1 (de) Mikroverkapselung mit modifizierten aliphatischen polyisocyanaten
DE1444415A1 (de) Verfahren zum Einkapseln von Substanzen
DE69203509T2 (de) Mikrokapseln aus polyfunktionellen Aziradinen.
DE10051190A1 (de) Mikrokapseln mit Wänden aus Polyharnstoff
DE3039117A1 (de) Verfahren zur herstellung von mikrokapseln
DE10051194A1 (de) Mikrokapseln mit Wänden aus Polyharnstoff
EP2732803B1 (de) Thermisch öffnende stabile Kern/Schale-Mikrokapseln
US20080125552A1 (en) Low-Viscosity Microcapsule Dispersions
EP0780154A1 (de) Verfahren zur Herstellung abbaubarer Mikrokapseln
CH628824A5 (de) Verfahren zur herstellung von mikrokapseln.
DE3710607A1 (de) Mikroschaumperlen und verfahren zu ihrer herstellung
DE2523586C3 (de) Verwendung von Polycarbodiimiden bei der Herstellung von Mikrokapseln
EP2559481A1 (de) Verfahren zur Verkapselung von Substanzen unter Ausbildung der Kapselhülle durch Grenzflächenreaktion im Zentrifugalreaktor
EP0516742B1 (de) Eine wässrige phase enthaltende mikrokapseln
EP1151789A1 (de) Mikrokapseln erhältlich unter Verwendung von Eiweisshydrolysaten als Emulgator
DE10011299A1 (de) Mikrokapseltoner
DE69009971T2 (de) Drucktinte mit hohem Fettkörpergehalt, verwendbar für die Herstellung von kohlenstofffreiem chemischem Kopierpapier.
DE10025302A1 (de) Mikrokapseln erhältlich unter Verwendung von Eiweißhydrolysaten als Emulgator
DE3620347A1 (de) Mikroverkapselung von lipophilen massen nach dem grenzflaechenpolyadditionsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002767326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10485266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047002107

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002815925X

Country of ref document: CN

Ref document number: 2003520858

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002767326

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载