+

WO2003015977A1 - Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess - Google Patents

Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess Download PDF

Info

Publication number
WO2003015977A1
WO2003015977A1 PCT/DE2002/002501 DE0202501W WO03015977A1 WO 2003015977 A1 WO2003015977 A1 WO 2003015977A1 DE 0202501 W DE0202501 W DE 0202501W WO 03015977 A1 WO03015977 A1 WO 03015977A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
workpiece
laser beam
protective gas
flow
Prior art date
Application number
PCT/DE2002/002501
Other languages
English (en)
French (fr)
Inventor
Bertrand Joseph
Johannes Wais
Gert Callies
Ulrich Graf
Beatrice Gebhard
Andreas Dauner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02754335A priority Critical patent/EP1425130A1/de
Priority to US10/486,537 priority patent/US7022941B2/en
Priority to JP2003520520A priority patent/JP2004538157A/ja
Publication of WO2003015977A1 publication Critical patent/WO2003015977A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1436Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1437Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for flow rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1438Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for directional control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the invention relates to a device for making holes in workpieces, which has a laser beam source for generating at least one laser beam that can be directed onto the workpiece.
  • Devices of the generic type are known. They are used to introduce holes, for example holes, into a workpiece using a laser beam.
  • the laser beam is directed onto the workpiece surface. Due to the high intensity of the laser beam, the material of the workpiece is locally heated, melted and partially evaporated. Due to the relatively high vapor pressure, the melt is driven out of the borehole produced. Due to the high kinetic energy of the melt, melt droplets come off at the edge of the hole. These cool in the medium surrounding the borehole, for example the ambient air, and accumulate together with the condensed steam on the surface of the workpiece.
  • melt particles are deflected by this gas jet directed vertically onto the workpiece surface and pressed back onto the workpiece surface, which the undesirable adhesion of the particles on the surface of the workpiece.
  • the device according to the invention with the features mentioned in claim 1 offers the advantage that the particle deposition that forms on the workpiece surface can be significantly reduced compared to the known device. As a result, the time-consuming and expensive reworking of the workpiece can be reduced or, if necessary, eliminated entirely. This is achieved with the help of a nozzle arrangement that has at least one a pressurized gas can be applied to the nozzle, the gas stream emerging from the nozzle being oriented relative to the workpiece surface in such a way that melted particles detached from the workpiece are removed from the hole produced by the laser beam or the workpiece.
  • the hole created by means of the laser beam is a bore. This can penetrate the workpiece or a wall of the same, in other words be designed as a through hole or as a blind hole.
  • a wide variety of hole shapes can be realized by means of the laser beam, so that the invention is not restricted to circular holes / bores.
  • the nozzle arrangement has a modified protective gas nozzle that can be acted upon with a protective gas under pressure to protect an optical device from melt particles.
  • the inert gas flow has a double function here. It serves both to protect the optical device from the melt particles and the condensing metal vapor and to remove these melted particles detached from the workpiece from the borehole.
  • the shielding gas nozzle is arranged coaxially or eccentrically to the laser beam, the geometry of which is selected such that the shielding gas stream impinging on the workpiece surface detects the Particles detached from the workpiece are removed from the hole created by the laser beam and at the same time protect the optical device.
  • the shielding gas nozzle is thus designed such that the shielding gas stream surrounds the laser beam in the region near the nozzle and is deflected before it hits the workpiece surface in such a way that the shielding gas stream has at least one directional component running parallel to the workpiece surface.
  • the protective gas flow does not strike the workpiece surface orthogonally, but at most at an angle of less than 90 °.
  • the nozzle arrangement comprises at least one crossflow nozzle u which can be pressurized with a pressurized process gas, the process gas stream emerging from the crossflow nozzle being parallel to at least one in the region of the hole produced by means of the laser beam Has workpiece surface extending directional component.
  • the melt particles detached from the workpiece are captured by the process gas stream and discharged from the hole.
  • the removal of the melt particles from the hole In this exemplary embodiment, this takes place exclusively through the process gas stream, that is to say a protective gas stream is not necessary here and is also not provided.
  • a further exemplary embodiment of the device is also preferred, which is characterized in that the nozzle arrangement comprises a protective gas nozzle and at least one cross-flow nozzle, the protective gas stream emerging from the protective gas nozzle is directed perpendicularly or essentially perpendicularly to the workpiece surface and the cross-flow nozzle is aligned with respect to the shielding gas nozzle in such a way that the shielding gas flow is deflected by the process gas stream from the workpiece surface, so that a perpendicular impact of the shielding gas stream on the workpiece surface is prevented.
  • a resulting gas flow arises from the protective gas flow and the process gas flow, which detects the melt particles detached from the workpiece and removes them from the workpiece or from the hole produced by the laser beam. This means that the resulting gas flow has at least one directional component, which runs parallel to the surface of the workpiece in the area of the hole.
  • the nozzle arrangement has an inert gas nozzle, the geometry of which is selected such that the inert gas stream emerging from the inert gas nozzle may initially run coaxially or eccentrically to the laser beam and - before it hits the workpiece surface - is deflected such that it has at least one directional component running parallel to the workpiece surface and removes the melt particles detached from the workpiece from the hole.
  • the nozzle arrangement additionally has at least one cross-flow nozzle which is aligned with respect to the protective gas flow in such a way that the process gas stream emerging from the cross-flow nozzle has at least one directional component running parallel to the workpiece surface in the region of the hole produced by the laser beam has and in the region of the hole meets the flow of shielding gas already deflected due to the geometry of the shielding gas nozzle.
  • the shielding gas and process gas flows combine to form a resulting gas flow that removes the melt particles detached from the workpiece from the hole.
  • the directional components of the protective gas flow running parallel to the workpiece surface and those of the process gas flow before they are combined to form the resulting gas flow are rectified.
  • the process gas flow is particularly suitable due to its direction of flow to ensure that the melt particles detached from the workpiece are safely transported away.
  • the prerequisite for this is a corresponding volume flow and pressure of the gas flow.
  • the shielding gas flow essentially assumes the protective function of the optics against ablation products.
  • This exemplary embodiment of the device is characterized by a particularly high level of functional reliability.
  • the process gas stream emerging from the crossflow nozzle is directed in the direction of a direction of movement of the surface of the workpiece executing a relative movement with respect to the nozzle arrangement.
  • the workpiece can be, for example, a cylindrical component, such as a roller or drum, which is driven to rotate about its longitudinal central axis and can preferably also be moved in translation in all three spatial directions.
  • the process gas flow is in the direction of rotation of the cylinder directed component.
  • the air layer entrained by the outer surface of the cylindrical component also has a supporting effect when the melt particles are transported away from the hole.
  • an embodiment of the device is preferred in which the volume flow and / or the pressure of the process gas and / or the protective gas can be set. This enables an optimal adaptation of the gas flows for the removal of the melt particles.
  • Figure 1 shows a detail of the device according to the invention in side view
  • Figure 2 shows a second embodiment of a protective gas nozzle. Description of the embodiments
  • FIG. 1 shows a schematic illustration of a section of a device 1 for producing holes, in particular bores, in a workpiece 3.
  • the workpiece 3 is shown here by way of example in the form of a cylindrical component 5 which can be acted upon by a drive device (not shown) for rotation about its longitudinal central axis 7.
  • the cylindrical component 5 is driven here, for example, clockwise, as indicated by an arrow.
  • the device 1 comprises a laser beam source, not shown, for generating at least one laser beam 9 which can be directed onto the workpiece 3 and which is indicated in FIG. 1 by an arrow.
  • the structure and function of the laser beam source is known per se, so that it is not discussed in more detail here.
  • the laser beam 9 is oriented such that it strikes the outer lateral surface 11 of the cylindrical component 5 perpendicularly. It is easily possible to align the laser beam 9 with respect to the component 5 such that it strikes the component surface at an angle unequal to 90 °.
  • the device 1 also has a nozzle arrangement
  • the protective gas nozzle 15 is arranged coaxially or eccentrically to the laser beam 9 and is designed as a truncated cone, the cross section of the protective gas nozzle 15 decreasing in the direction of the workpiece 3.
  • the mouth area of the protective gas nozzle 15 is arranged at a short distance from the outer surface 11 of the cylindrical component 5, the distance between the protective gas nozzle 15 and component 5 being adjustable by means of an adjusting device (not shown), as indicated in the figure by a double arrow 21.
  • the protective gas nozzle 15 is connected to a first gas supply device, not shown, by means of which the protective gas nozzle 15 can be acted upon by a protective gas which is under pressure.
  • the protective gas stream 23 within the protective gas nozzle 15 is indicated by arrows.
  • the nozzle geometry and the protective gas guide are selected such that the protective gas or the protective gas flow surrounds the laser beam 9.
  • the cross-flow nozzles 17, 19, shown in simplified form as tubular structures, are arranged upstream of the protective gas nozzle 15, as seen in the direction of rotation of the cylindrical component 5. They are connected to a second gas supply device, not shown, by means of which they can each be pressurized with a pressurized process gas, preferably with one and the same process gas, whereby other gases can also be used.
  • the process gas flows 25, 27 are each indicated by an arrow.
  • the cross-flow nozzles 17, 19 are in the direction of the longitudinal central axis 7 of the cylindrical see component 5 seen - arranged one behind the other and by means of an actuator (not shown) for the purpose of aligning the process gas streams 25, 27 emerging from the Ouerstromdusen 17, 19 independently of one another, can be brought into any position within the space, as indicated by arrows.
  • the Ouerstrom nozzles 17, 19 are arranged such that their mouth area is located a short distance from the mouth area of the protective gas nozzle 15.
  • the process gas streams 25, 27 emerging from the cross-flow nozzles 17, 19 run parallel to an imaginary horizontal, that is to say transversely or essentially transversely to the protective gas stream 23 and meet approximately in the mouth region of the protective gas nozzle 15 and thereby sweep over an area of the outer jacket 11 of the cylindrical component 5, in which the hole is drilled / melted out by means of the laser beam 9.
  • the protective gas stream 23 emerging from the protective gas nozzle 15 is laterally deflected by the outer surface 11 of the cylindrical component 5, so that it cannot strike the outer surface 11 perpendicularly.
  • the process gas streams 25, 27 combine with the protective gas stream 23 to form a resulting gas stream which is directed parallel or substantially parallel to the outer jacket surface 11 in the region of the hole produced by the laser beam 9.
  • the process gas streams 25, 27 and the protective gas stream 23 entrain material particles melted by the laser beam 9 and detached from the outer surface 11 and guide them laterally from the cylindrical component 5 path. This advantageously prevents these particles from accumulating on the outer surface 11, but at least significantly reduces them compared to known devices. An elaborate and expensive reworking of the workpiece 3 can optionally be dispensed with entirely here.
  • the process gas streams 25, 27 blown out of the crossflow nozzles 17, 19 have a dual function. On the one hand, they prevent the protective gas stream 23 from striking the outer lateral surface 11 vertically by deflecting it laterally, and on the other hand they discharge the melt particles from the cylindrical component 5.
  • crossflow nozzles 17, 19 may be sufficient to deflect the protective gas stream 23 laterally from the workpiece 3 and also to remove the melt particles from the workpiece in the process.
  • more than two cross-flow nozzles for example three or four cross-flow nozzles, can also be used.
  • the Ouerstrom nozzles are inexpensive to manufacture. It is also advantageous that existing devices can be retrofitted with the crossflow nozzles.
  • Almost all gases can be used as process gas, which is pressurized and fed to the cross-flow nozzles, including air, for example.
  • the structure of the device 1 can be simplified, for example, in that both the protective gas nozzle 15 and the crossflow nozzles 17, 19 are subjected to protective gas under pressure are, so that all the nozzles of the nozzle arrangement 13 are supplied with gas by a common gas supply device.
  • FIG. 2 shows a second exemplary embodiment of the nozzle arrangement 13, which comprises a protective gas nozzle 15, which differs from the protective gas nozzle 15 described with reference to FIG. 1 in that it has a lock 29 in its mouth region adjacent to the workpiece 3 to be machined (not shown) , which prevents a free outflow of the protective gas stream 23 running coaxially or eccentrically to the laser beam 9 upstream of the protective gas nozzle 15.
  • the at least part, preferably the entire protective gas flow 23, is configured as a guide device 31, which deflects the protective gas flow 23 surrounding the laser beam 9 by approximately 90 ° with respect to the laser beam 9, so that the one emerging from the protective gas nozzle 15 Shielding gas flow preferably runs parallel or substantially parallel to the workpiece surface, as indicated by an arrow 23 '.
  • the guide device 31 can of course also be designed so that the protective gas flow 23 'emerging from the protective gas nozzle 15 strikes the workpiece surface at an acute angle.
  • the protective gas flow guide is selected in any case so that the particles detached from the workpiece 3 are carried away in order to to prevent the same from being deposited on the workpiece, but at least to reduce it compared to known devices.
  • the guide device 31 is formed here in one piece with the protective gas nozzle 15, which is achieved in that sections of the outer surface of the protective gas nozzle 15 are drawn radially inward in the mouth area up to approximately the middle of the protective gas nozzle 15.
  • the guide device 31 is designed here in such a way that the cross-section of the protective gas nozzle 15 that can be freely flowed through is reduced in the mouth region.
  • overflow nozzles 17, 19 as described with reference to FIG. 1 are not required in all cases.
  • the protective gas flow guidance realized by means of the protective gas nozzle geometry according to the invention, in which the protective gas flow 23 emerging from the protective gas nozzle 15 has a direction transverse to the laser beam 9, can already be sufficient to reduce ablation products on the workpiece surface.
  • the devices 1 described in the introduction to the description and with reference to FIGS. 1 and 2 can also be used to produce holes in a workpiece that has a flat surface and / or has a fixed position with respect to the device 1 — at least at the moment the hole is created ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung (1) zum Einbringen von Löchern in ein Werkstück (3), die eine Laserstrahlquelle zum Erzeugen mindestens eines auf das Werkstück (3) richtbaren Laserstrahls (9) aufweist. Es ist eine Düsenanordnung (13) mit mindestens einer mit einem unter Druck stehenden Gas beaufschlagbaren Düse (15 ; 17; 19) vorgesehen, wobei der aus der Düse (15; 17; 19) austretende Gasstrom (23; 25; 27) so gegenüber der Werkstückoberfläche ausgerichtet ist, dass geschmolzene, vom Werkstück (3) abgelöste Partikel von dem mittels des Laserstrahls (9) erzeugten Loch abgeführt werden.

Description

Vorrichtung zur Reduzierung von Ablationsprodukten auf der Werks ύckoberfläche beim Laserbohrprozess
Die Erfindung betrifft eine Vorrichtung zum Einbringen von Lochern m Werkstucken, die eine Laser- strahlquelle zum Erzeugen mindestens eines auf das Werkstuck richtbaren Laserstrahls aufweist.
Stand der Technik
Vorrichtungen der gattungsgemaßen Art sind bekannt. Sie dienen dazu, mit Hilfe eines Laserstrahls Locher, beispielsweise Bohrungen, in ein Werkstuck einzubringen. Hierzu wird der Laserstrahl auf die Werkstuckoberflache gerichtet. Dabei wird durch die hohe Intensität des Laserstrahls das Material des Werkstucks lokal erhitzt, aufgeschmolzen und teilweise verdampft. Durch den relativ hohen Dampfdruck wird die Schmelze aus dem erzeugten Bohrloch ausge- trieben. Aufgrund der hohen kinetischen Energie der Schmelze losen sich am Bohrungsrand Schmelztropf- chen ab. Diese kühlen sich m dem das Bohrloch umgebenden Medium, beispielsweise der ümgebungsluft, ab und lagern sich zusammen mit dem kondensierten Dampf teilweise an der Werkstuckoberflache an. In Abhängigkeit der kinetischen Energie dieser Partikel, deren Temperatur und dem das Bohrloch umgeben- den Medium ergibt sich eine zum Teil fest haftende Schicht aus Ablationsprodukten auf der Werkstuckoberflache, die nicht gewünscht ist. Die Partikel- deposition kann eine aufwendige und teuere Nacharbeit des Werkstucks erforderlich machen.
Bei Verwendung einer konventionellen Schutzgasduse, deren Gasstrom zum Schutz der optischen Einrichtung vor den vom Bohrungsrand aufsteigenden Schmelzpartikeln und dem kondensierenden Metalldampf koaxial zum Laserstrahl verlauft, werden die Schmelzpart - kel durch diesen senkrecht auf die Werkstuckoberflache gerichteten Gasstrahl umgelenkt und wieder auf die Werkstuckoberflache gepresst, was die unerwünschte Anhaftung der Partikel auf der Werkstuckoberflache fordert.
Vorteile der Erfindung
Die erfmdungsgemaße Vorrichtung mit den in Anspruch 1 genannten Merkmalen bietet demgegenüber den Vorteil, dass die sich auf der Werkstuckoberflache bildende Partikeldeposition gegenüber der bekannten Vorrichtung deutlich reduzierbar ist. Dadurch kann die aufwendige und teuere Nacharbeit des Werkstucks vermindert oder gegebenenfalls ganz darauf verzichtet werden. Dies wird mit Hilfe einer Dusenanordnung erreicht, die mindestens eine mit einem unter Druck stehenden Gas beaufscnlagbare Düse aufweist, wobei der aus der Düse austretende Gasstrom so gegenüber der Werkstuckoberflache ausgerichtet ist, dass geschmolzene, vom Werkstuck ab- geloste Partikel von dem mittels des Laserstrahls erzeugten Loch beziehungsweise dem Werkstuck abgeführt werden.
In bevorzugter Ausfuhrungsform ist vorgesehen, dass das mittels des Laserstrahls erzeugte Loch eine Bohrung ist. Diese kann das Werkstuck oder eine Wand desselben durchdringen, also als Durchgangsbohrung, oder als Sacklochbohrung ausgebildet sein. Mittels des Laserstrahls sind verschiedenste Lochformen realisierbar, so dass die Erfindung nicht auf kreisrunde Locher/Bohrungen beschrankt ist.
Bei einem vorteilhaften Ausfuhrungsbeispiel der Vorrichtung ist vorgesehen, dass die Dusenanordnung eine mit einem unter Druck stehenden Schutzgas beaufschlagbare, modifizierte Schutzgasduse zum Schutz einer optischen Einrichtung vor Schmelzpartikeln aufweist. Der Schutzgasstrom weist hier eine Doppelfunktion auf. Er dient sowohl zum Schutz der optischen Einrichtung vor den Schmelzpartikeln und dem kondensierenden Metalldampf als auch der Abfuhr dieser vom Werkstück abgelösten, geschmolzenen Partikel vom Bohrloch.
In bevorzugter Ausfuhrungsform der Vorrichtung ist vorgesehen, dass die Schutzgasduse koaxial oder exzentrisch zum Laserstrahl angeordnet ist, wobei de- ren Geometrie so gewählt ist, dass der auf die Werkstuckoberflache auftreffende Schutzgasstrom die vom Werkstück abgelösten Partikel von dem mittels des Laserstrahls erzeugten Lochs abführt und damit gleichzeitig die optische Einrichtung schützt. Die Schutzgasduse ist also derart ausgebildet, dass der Schutzgasstrom im düsennahen Bereich den Laserstrahl umgibt und vor dem Auftreffen auf die Werkstückoberfläche so umgelenkt wird, dass der Schutzgasstrom zumindest eine parallel zur Werkstückoberfläche verlaufende Richtungskomponente aufweist. Mit anderen Worten, der Schutzgasstrom trifft nicht orthogonal auf die Werkstückoberfläche auf, sondern allenfalls unter einem Winkel kleiner als 90°.
Weiterhin wird ein Ausführungsbeispiel der Vorrichtung bevorzugt, das sich dadurch auszeichnet, dass die Düsenanordnung mindestens eine mit einem unter Druck stehenden Prozessgas beaufschlagbare Quer- stromdüse u fasst, wobei der aus der Querstromdüse austretende Prozessgasstrom zumindest eine im Bereich des mittels des Laserstrahls erzeugten Lochs parallel zur Werkstückoberfläche verlaufende Rich- tungskomponente aufweist. Die vom Werkstück abgelösten Schmelzpartikel werden vom Prozessgasstrom erfasst und vom Loch abgeführt. Das Abführen der Schmelzpartikel vom Loch. erfolgt bei diesem Ausfüh- rungsbeispiel ausschließlich durch den Prozessgasstrom, das heißt, ein Schutzgasstrom ist hier nicht erforderlich und auch nicht vorgesehen.
Bevorzugt wird auch ein weiteres Ausführungsbeispiel der Vorrichtung, das sich dadurch auszeich- net, dass die Düsenanordnung eine Schutzgasduse und mindestens eine Querstromdüse umfasst, wobei der aus der Schutzgasduse austretende Schutzgasstrom senkrecht oder im Wesentlichen senkrecht zur Werkstuckoberflache gerichtet ist und wobei die Quer- stro duse derart gegenüber der Schutzgasduse ausgerichtet ist, dass der Schutzgasstrom von dem Pro- zessgasstrom von der Werkstuckoberflache abgelenkt wird, so dass ein senkrechtes Auftreffen des Schutzgasstroms auf die Werkstückoberfläche verhindert wird. Aus dem Schutzgasstrom und dem Prozessgasstrom entsteht eine resultierende Gasstromung, die die vom Werkstück abgelösten Schmelzpartikel erfasst und vom Werkstuck beziehungsweise von dem durch den Laserstrahl hergestellten Loch abfuhrt. Das heißt, die resultierende Gasströmung weist zumindest eine Richtungskomponente auf, die im Be- reich des Lochs parallel zur Werkstuckoberflache verläuft .
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Düsenanordnung eine Schutzgasduse aufweist, deren Geometrie so gewählt ist, dass der aus der Schutzgasduse austretende Schutzgasstrom gegebenenfalls zunächst koaxial oder exzentrisch zum Laserstrahl verlauft und -bevor er auf die Werkstückoberfläche auftrifft- so umgelenkt wird, dass er zumindest eine parallel zur Werkstückober- fläche verlaufende Richtungskomponente aufweist und die vom Werkstück abgelösten Schmelzpartikel vom Loch abführt. Ferner weist die Dusenanordnung zusätzlich noch mindestens eine Querstromduse auf, die derart gegenüber dem Schutzgasstrom ausgerich- tet ist, dass der aus der Querstromdüse austretende Prozessgasstrom zumindest eine im Bereich des mittels des Laserstrahls erzeugten Lochs parallel zur Werkstuckoberfläche verlaufende Richtungskomponente aufweist und im Bereich des Lochs auf den bereits aufgrund der Geometrie der Schutzgasduse umgelenkten Schutzgasstrom trifft. Der Schutzgas- und der Prozessgasstrom vereinigen sich zu einer resultie- renden Gasstromung, die die vom Werkstuck abgelösten Schmelzpartikel vom Loch abfuhrt. Die parallel zur Werkstuckoberflache verlaufende Richtungs ompo- nente des Schutzgasstroms und die des Prozessgas- stroms vor ihrer Vereinigung zur resultierenden Gasstromung sind gleichgerichtet. Bei diesem Ausfuhrungsbeispiel der Vorrichtung ist vor allem der Prozessgasstrom aufgrund seiner Stromungsrichtung geeignet, einen sicheren Abtransport der vom Werkstück abgelösten Schmelzpartikel zu gewährleisten. Vorraussetzung hierfür ist jeweils ein entsprechender Volumenstrom und Druck des Gasstroms. Der Schutzgasstrom übernimmt hier im Wesentlichen die Schutzfunktion der Optik vor Ablationsprodukten. Dieses Ausfuhrungsbeispiel der Vorrichtung zeichnet sich durch eine besonders hohe Funktionssicherheit aus .
Bei einem vorteilhaften Ausführungsbeispiel der Vorrichtung ist vorgesehen, dass der aus der Quer- stromduse austretende Prozessgasstrom in Richtung einer Bewegungsrichtung der Oberflache des gegenüber der Dusenanordnung eine Relativbewegung ausfuhrenden Werkstucks gerichtet ist. Das Werkstuck kann beispielsweise ein zylindrisches Bauteil, wie zum Beispiel Walze oder Trommel sein, das um seine Langsmittelachse zur Rotation angetrieben ist und vorzugsweise auch m alle drei Raumrichtungen translatorisch bewegt werden kann. In diesem Fall ist der Prozessgasstrom in Drehrichtung des zylind- rischen Bauteils gerichtet. Die von der Außenfläche des zylindrischen Bauteils mitgerissene Luftschicht weist ferner eine unterstützende Wirkung beim Abtransport der Schmelzpartikel vom Loch auf.
Schließlich wird ein Ausführungsbeispiel der Vorrichtung bevorzugt, bei dem der Volumenstrom und/oder der Druck des Prozessgases und/oder des Schutzgases einstellbar sind. Dadurch ist eine optimale Anpassung der Gasströme für den Abtransport der Schmelzpartikel möglich.
Es wird ohne weiteres deutlich, dass die oben beschriebene Vorrichtung in besonderem Maße zum Hoch- geschwindigkeits-Laserbohren geeignet ist.
Weitere vorteilhafte Ausführungsformen der Erfin- düng ergeben sich aus Kombinationen der in den Unteransprüchen genannten Merkmalen.
Zeichnungen
Die Erfindung wird nachfolgend in mehreren Ausfüh- rungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 einen Ausschnitt der erfindungsgemäßen Vorrichtung in Seitenansicht; und
Figur 2 eine zweite Ausführungsform einer Schutz - gasdüse. Beschreibung der Ausführungsbeispiele
In der Figur 1 ist in schematischer Darstellung ein Ausschnitt einer Vorrichtung 1 zum Erzeugen von Löchern, insbesondere Bohrungen, in einem Werkstück 3 gezeigt. Das Werkstück 3 ist hier beispielhaft in Form eines zylindrischen Bauteils 5 dargestellt, welches mittels einer nicht dargestellten Antriebseinrichtung zur Rotation um seine Längsmittelachse 7 mit einem Drehmoment beaufschlagbar ist. Das zylindrische Bauteil 5 ist hier beispielhaft im Uhrzeigersinn angetrieben, wie mit einem Pfeil angedeutet .
Die Vorrichtung 1 umfasst eine nicht dargestellte Laserstrahlquelle zum Erzeugen mindestens eines auf das Werkstück 3 richtbaren Laserstrahls 9, der in Figur 1 mit einem Pfeil angedeutet ist. Der Aufbau und die Funktion der Laserstrahlquelle ist an sich bekannt, so dass hier nicht näher darauf eingegangen wird.
Bei dem in Figur 1 dargestellten Ausführungsbeispiel ist der Laserstrahl 9 derart ausgerichtet, dass er senkrecht auf die Außenmantelfläche 11 des zylindrischen Bauteils 5 auftrifft. Es ist ohne weiteres möglich, den Laserstrahl 9 gegenüber dem Bauteil 5 auch so auszurichten, dass er unter einem Winkel ungleich 90° auf die Bauteiloberfläche auftrifft.
Die Vorrichtung 1 weist ferner eine Düsenanordnung
13 auf, die eine Schutzgasduse 15 und -bei diesem Ausführungsbeispiel- zwei Querstromdüsen 17 und 19 umfasst. Die Schutzgasduse 15 ist koaxial oder exzentrisch zum Laserstrahl 9 angeordnet und ist ke- gelstumpfför ig ausgebildet, wobei der Querschnitt der Schutzgasduse 15 in Richtung auf das Werkstück 3 abnimmt. Der Mündungsbereich der Schutzgasduse 15 ist in einem nur geringen Abstand zur Außenmantelfläche 11 des zylindrischen Bauteils 5 angeordnet, wobei der Abstand zwischen Schutzgasduse 15 und Bauteil 5 mittels einer nicht dargestellten Stell- einrichtung einstellbar ist, wie in der Figur mit einem Doppelpfeil 21 angedeutet.
Die Schutzgasduse 15 ist mit einer nicht dargestellten ersten Gasversorgungseinrichtung verbunden, mittels derer die Schutzgasduse 15 mit einem unter Druck stehenden Schutzgas beaufschlagbar ist. Der Schutzgasstrom 23 innerhalb der Schutzgasduse 15 ist mit Pfeilen angedeutet. Die Düsengeometrie und die Schutzgasführung sind so gewählt, dass das Schutzgas beziehungsweise der Schutzgasstrom den Laserstrahl 9 umgibt.
Die vereinfacht als rohrförmige Gebilde dargestellten Querstromdüsen 17, 19 sind -in Drehrichtung des zylindrischen Bauteils 5 gesehen- der Schutzgasduse 15 vorgeordnet. Sie sind mit einer nicht darge- stellten zweiten Gasversorgungseinrichtung verbunden, mittels derer sie jeweils mit einem unter Druck stehenden Prozessgas, vorzugsweise mit ein und demselben Prozessgas, beaufschlagbar sind, wobei auch andere Gase zum Einsatz kommen können. Die Prozessgasströme 25, 27 sind jeweils mit einem Pfeil angedeutet. Die Querstromdüsen 17, 19 sind -in Richtung der Langsmittelachse 7 des zylindri- sehen Bauteils 5 gesehen- hintereinander angeordnet und mittels jeweils einer nicht dargestellten Stelleinrichtung zum Zwecke der Ausrichtung der aus den Ouerstromdusen 17, 19 austretenden Prozessgas- ströme 25, 27 unabhängig voneinander, in jede beliebige Position innerhalb des Raums bringbar, wie mit Pfeilen angedeutet.
Die Ouerstromdusen 17, 19 sind bei dem m Figur 1 dargestellten Ausfuhrungsbeispiel so angeordnet, dass ihr Mundungsbereich sich m geringem Abstand vom Mundungsbereich der Schutzgasduse 15 befindet. Die aus den Querstromdusen 17, 19 austretenden Pro- zessgasstrome 25, 27 verlaufen parallel zu einer gedachten Horizontalen, also quer oder im Wesentli- chen quer zu dem Schutzgasstrom 23 und treffen sich in etwa im Mundungsbereich der Schutzgasduse 15 und überstreichen dabei einen Bereich des Außenmantels 11 des zylindrischen Bauteils 5, in dem mittels des Laserstrahls 9 das Loch herausgebohrt/-geschmolzen wird. Dadurch wird der aus der Schutzgasduse 15 austretende Schutzgastrom 23 von der Außenmantel- flache 11 des zylindrischen Bauteils 5 seitlich abgelenkt, so dass er nicht senkrecht auf die Außen- mantelflache 11 auftreffen kann. Dabei vereinigen sich die Prozessgasstrome 25, 27 mit dem Schutzgasstrom 23 zu einer resultierenden Gasstromung, die parallel oder im Wesentlichen parallel zur Außen- mantelflache 11 im Bereich des mittels des Laserstrahls 9 erzeugten Lochs gerichtet ist. Die Pro- zessgasstrome 25, 27 und der Schutzgasstrom 23 reißen vom Laserstrahl 9 geschmolzene und von der Au- ßenmantelflache 11 abgelöste Materialteilchen mit und fuhren sie seitlich vom zylindrischen Bauteil 5 weg. Dadurch wird in vorteilhafter Weise eine Anlagerung dieser Partikel auf der Außenmantelfläche 11 verhindert, zumindest aber gegenüber bekannten Vorrichtungen deutlich verringert. Auf eine aufwendige und teuere Nacharbeit des Werkstücks 3 kann hier gegebenenfalls ganz verzichtet werden.
Festzuhalten bleibt, dass die aus den Querstromdüsen 17, 19 ausgeblasenen Prozessgasströme 25, 27 eine Doppelfunktion aufweisen. Sie verhindern zum einen das senkrechte Auftreffen des Schutzgasstroms 23 auf die Außenmantelfläche 11, indem sie ihn seitlich umlenken, und zum anderen führen sie die Schmelzpartikel vom zylindrischen Bauteil 5 ab.
Es wird ohne weiteres deutlich, dass in bestimmten Fällen auch lediglich eine der Querstromdüsen 17, 19 ausreichend sein kann, um den Schutzgasstrom 23 seitlich vom Werkstück 3 abzulenken und dabei auch noch die Schmelzpartikel vom Werkstück abzutransportieren. Selbstverständlich können auch mehr als zwei Querstromdüsen, beispielsweise drei oder vier Querstromdüsen eingesetzt werden. Die Ouerstromdusen sind kostengünstig herstellbar. Vorteilhaft ist ferner, dass bestehende Vorrichtungen mit den Querstromdüsen nachrüstbar sind.
Als Prozessgas, das unter Druck gesetzt und den Querstromdüsen zugeführt wird, können nahezu alle Gase verwendet werden, also beispielsweise auch Luft. Der Aufbau der Vorrichtung 1 kann beispielsweise dadurch vereinfacht werden, indem sowohl die Schutzgasduse 15 als auch die Querstromdüsen 17, 19 mit unter Druck stehendem Schutzgas beaufschlagt werden, so dass samtliche Düsen der Dusenanordnung 13 von einer gemeinsamen Gasversorgungseinrichtung mit Gas versorgt werden.
Figur 2 zeigt ein zweites Ausfuhrungsbeispiel der Dusenanordnung 13 auf, die eine Schutzgasduse 15 umfasst, die sich von der anhand der Figur 1 beschriebenen Schutzgasduse 15 dadurch unterscheidet, dass sie m ihrem dem zu bearbeitenden Werkstuck 3 (nicht dargestellt) benachbarten Mündungsbereich eine Sperre 29 aufweist, die ein freies Abströmen des m dem vorgeordneten Bereich der Schutzgasduse 15 koaxial oder exzentrisch zum Laserstrahl 9 verlaufenden Schutzgasstroms 23 verhindert. Die zumindest einen Teil, vorzugsweise den gesamten Schutz- gasstrom 23 beeinflussende Sperre 29 ist bei diesem Ausfuhrungsbeispiel als Leiteinrichtung 31 ausgebildet, die den den Laserstrahl 9 umgebenden Schutzgasstrom 23 um circa 90° gegenüber dem Laserstrahl 9 umlenkt, so dass der aus der Schutzgasduse 15 austretende Schutzgasstrom vorzugsweise parallel oder im Wesentlichen parallel zur Werkstuckoberflache verlauft, wie mit einem Pfeil 23' angedeutet. Die Leiteinrichtung 31 kann selbstverständlich ohne weiteres auch so ausgebildet sein, dass der aus der Schutzgasduse 15 austretende Schutzgasstrom 23' unter einem spitzen Winkel auf die Werkstuckoberfläche auftrifft Die Schutzgasstromfuhrung ist in jedem Fall so gewählt, dass die vom Werkstuck 3 abgelösten Partikel weggeführt werden, um ein Ablagern derselben auf dem Werkstuck vorzugsweise zu verhindern, zumindest aber gegenüber bekannten Vorrichtungen zu reduzieren. Die Leiteinrichtung 31 ist hier einstückig mit der Schutzgasduse 15 ausgebildet, was dadurch realisiert ist, dass Abschnitte der Mantelfläche der Schutzgasduse 15 im Mündungsbereich radial nach in- nen bis in etwa zur Mitte der Schutzgasduse 15 eingezogen sind. Die Leiteinrichtung 31 ist hier derart ausgebildet, dass der frei durchströmbare Querschnitt der Schutzgasduse 15 im Mündungsbereich verkleinert ist.
Selbstverständlich ist es ohne weiteres möglich, die Leiteinrichtung 31 und die Schutzgasduse 15 als voneinander separierbare Einzelkomponenten auszubilden. Vorteilhaft hierbei wäre die reduzierte Va- riantenvielfalt der Schutzgasduse 15, von der gege- benenfalls nur eine Grundform bereitzustellen wäre, wobei durch die Verwendung einer entsprechend ausgebildeten Leiteinrichtung 31 eine gewünschte Ξchutzgasstromführung einstellbar ist.
Bei der anhand der Figur 2 beschriebenen Düsenan- Ordnung 13 sind Ouerstromdusen 17, 19, wie sie anhand der Figur 1 beschrieben wurden, nicht in allen Fällen erforderlich. Das heißt, die mittels der erfindungsgemäßen Schut∑gasdüsengεometrie realisierte Schutzgasstromführung, bei der der aus der Schutz- gasdüse 15 austretende Schutzgasstrom 23 eine Richtung quer zum Laserstrahl 9 aufweist, kann bereits schon ausreichen, um Ablationsprodukte auf der Werkstückoberfläche zu reduzieren.
Festzuhalten bleibt, dass es ohne weiteres möglich ist, die anhand der Figur 2 beschriebene Schutzgasduse 15 im Zusammenhang mit der anhand der Figur 1 beschriebenen Dusenanordnung 13 einzusetzen, die Querstromdusen 17, 19 aufweist. Dadurch, dass der Schutzgastrom 23 bereits im Bereich der Schutzgasduse 15 durch die Leiteinrichtung 31 umgelenkt wird, wird die Funktion der Ouerstromdusen, namlich das seitliche Abfuhren der Partikel weg vom Bohrloch, unterstutzt.
Die m der Beschreibungseinleitung und anhand der Figuren 1 und 2 beschriebenen Vorrichtungen 1 sind auch zum Erzeugen von Lochern in einem Werkstuck einsetzbar, das eine ebene Oberflache aufweist und/oder gegenüber der Vorrichtung 1 -zumindest im Moment des Erzeugens des Lochs- eine feststehende Position aufweist.

Claims

Pate ta Sprüche
1. Vorrichtung (1) zum Einbringen von Löchern in Werkstücke (3) , die eine Laserstrahlquelle zum Erzeugen mindestens eines auf das Werkstück (3) richtbaren Laserstrahls (9) aufweist, gekennzeichnet durch eine Düsenanordnung (13) mit mindestens einer mit einem unter Druck stehenden Gas beaufschlagbaren Düse (15; 17; 19) , wobei der aus der Düse (15;17;19) austretende Gasstrom (23;25;27) so gegenüber der Werkstückoberfläche ausgerichtet ist, dass geschmolzene, vom Werkstück (3) abgelöste Par- tikel von dem mittels des Laserstrahls (9) erzeugten Loch abgeführt werden.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Düsenanordnung (13) eine mit einem unter Druck stehenden Schutzgas beaufschlagbare Schutzgasduse (15) zum Schutz einer optischen Einrichtung aufweist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Schutzgasduse (15) koaxial oder exzentrisch zum Laserstrahl (9) angeordnet ist, wo- bei deren Geometrie so gewählt ist, dass der auf die Werkstückoberfläche auftreffende Schutzgasstrom (23) die vom Werkstück (3) abgelösten Partikel von dem mittels des Laserstrahls (9) erzeugten Loch beziehungsweise dem Werkstuck (3) abfuhrt.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Mundungs- bereich der Schutzgasduse (15) eine das freie Ausstromen zumindest eines Teils des Schutzgasstroms (23) verhindernde Sperre (29) vorgesehen ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Sperre (29) als Leiteinrichtung (31) für den Schutzgasstrom (23) ausgebildet ist, d e den den Laserstrahl (9) umgebenden Schutzgasstrom (23) so umlenkt, dass er unter einem Winkel ungleich 90°, vorzugsweise im Wesentlichen parallel zur Werkstuckoberflache gerichtet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düsenanordnung (13) mindestens eine mit einem unter Druck stehenden Prozessgas beaufschlagbare Querstromduse (17,19) umfasst, wobei der aus der Querstromduse (17,19) austretende Prozessgasstrom (25,27) zumindest eine parallel zur Werkstuckoberflache verlaufende Richtungskomponente aufweist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Quer- stromduse (17,19) derart gegenüber der Schutzgasduse (15) ausgerichtet ist, dass der Schutzgasstrom (23) von dem Prozessgasstrom (25,27) von der Werkstuckoberflache abgelenkt wird.
8. Vorrichtung nach einem der vorhergehenden An- spruche, dadurch gekennzeichnet, dass der aus der Querstromdüse (17,19) austretende Prozessgasstrom (25,27) in Richtung einer Bewegungsrichtung der Oberfläche des gegenüber der Dusenanordnung (13) eine Relativbewegung ausführenden Werkstücks (3) gerichtet ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Volumenstrom und/oder der Druck des Prozessgases und/oder des Schutzgases einstellbar sind.
PCT/DE2002/002501 2001-08-08 2002-07-09 Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess WO2003015977A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02754335A EP1425130A1 (de) 2001-08-08 2002-07-09 Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess
US10/486,537 US7022941B2 (en) 2001-08-08 2002-07-09 Device for reducing the ablation products on the surface of a work piece during laser drilling
JP2003520520A JP2004538157A (ja) 2001-08-08 2002-07-09 レーザ穿孔プロセス時におけるワーク表面のアブレーションプロダクトを減じる装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10138867A DE10138867A1 (de) 2001-08-08 2001-08-08 Vorrichtung zur Reduzierung von Ablationsprodukten auf der Werkstückoberfläche beim Laserbohrprozess
DE10138867.5 2001-08-08

Publications (1)

Publication Number Publication Date
WO2003015977A1 true WO2003015977A1 (de) 2003-02-27

Family

ID=7694751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002501 WO2003015977A1 (de) 2001-08-08 2002-07-09 Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess

Country Status (5)

Country Link
US (1) US7022941B2 (de)
EP (1) EP1425130A1 (de)
JP (1) JP2004538157A (de)
DE (1) DE10138867A1 (de)
WO (1) WO2003015977A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1022231C2 (nl) * 2002-12-20 2004-06-22 Fico Bv Werkwijze en inrichting voor het met een laserstraal bewerken van een drager voor ten minste één elektronische component.
EP1598170A2 (de) 2004-05-04 2005-11-23 MöllerTech GmbH Verfahren und Vorrichtung zum Trennen eines Materials

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846581B1 (fr) * 2002-10-31 2006-01-13 Usinor Procede et dispositif de pointage d'un jet fin de fluide, notamment en soudage, usinage, ou rechargement laser
DE102004021680A1 (de) 2004-04-30 2005-11-24 Carl Zeiss Meditec Ag Anordnung zum Entfernen von Abprodukten bei der Ablation von biologischem Gewebe
ITBO20060586A1 (it) * 2006-08-03 2006-11-02 El En Spa Dispositivo per il taglio laser di un nastro continuo.
PL2220332T3 (pl) * 2007-11-05 2017-04-28 Baker Hughes Incorporated Sposoby i urządzenia do formowania elementów skrawania posiadających ukosowaną krawędź dla narzędzi do wiercenia w ziemi
US10016876B2 (en) 2007-11-05 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of forming polycrystalline compacts and earth-boring tools including polycrystalline compacts
DE102008030079B3 (de) * 2008-06-25 2009-08-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Reduzieren der Anhaftung von Schlacke beim Einstechen eines Laserstrahls in ein Werkstück und Laserbearbeitungskopf
US9883233B1 (en) * 2008-10-23 2018-01-30 Tivo Solutions Inc. Real-time audience measurement system
WO2012003478A2 (en) 2010-07-02 2012-01-05 Ventana Medical Systems, Inc. Detecting targets using mass tags and mass spectrometry
WO2012093987A2 (en) * 2010-10-09 2012-07-12 Dackson Christopher Method and apparatus for laser welding with mixed gas plasma suppression
JP5802411B2 (ja) * 2011-03-18 2015-10-28 日酸Tanaka株式会社 レーザ加工用ノズル、レーザ加工装置の制御方法、プログラム及びレーザ加工装置
DE102011121420A1 (de) 2011-12-17 2013-06-20 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Bearbeitung zumindest eines Werkstücks mittels eines auf eine Werkstückoberfläche gerichteten Laserstrahls.
JP5692293B2 (ja) * 2013-06-28 2015-04-01 新日鐵住金株式会社 金属板のレーザ溶接方法およびレーザ溶接装置
DE202013103434U1 (de) 2013-07-31 2014-11-04 Kuka Systems Gmbh Pressschweißvorrichtung
US10335899B2 (en) 2014-10-31 2019-07-02 Prima Power Laserdyne Cross jet laser welding nozzle
WO2017034807A1 (en) 2015-08-26 2017-03-02 Electro Scientific Industries, Inc. Laser scan sequencing and direction with respect to gas flow
US9931714B2 (en) 2015-09-11 2018-04-03 Baker Hughes, A Ge Company, Llc Methods and systems for removing interstitial material from superabrasive materials of cutting elements using energy beams
US12168281B2 (en) 2022-01-11 2024-12-17 Baker Hughes Oilfield Operations Llc Polycrystalline diamond compact cutting elements, methods of forming same and earth-boring tools

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016838A2 (en) * 1992-02-25 1993-09-02 Altec S.R.L. Laser processing apparatus
EP0618037A1 (de) * 1993-04-02 1994-10-05 International Business Machines Corporation Optik- und Umweltschutzvorrichtung für Laserbehandlungsverfahren
JPH10225787A (ja) * 1997-02-13 1998-08-25 Tanaka Seisakusho Kk レーザ切断装置およびレーザ切断方法
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
WO2001045893A1 (de) * 1999-12-22 2001-06-28 Kuka Schweissanlagen Gmbh Blasvorrichtung für eine lasereinrichtung
EP1145796A1 (de) * 2000-04-10 2001-10-17 Tanaka Engineering Works, Ltd. Lochvorrichtung für Laserschneidgerät

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1165636B (it) * 1979-03-05 1987-04-22 Fiat Auto Spa Metodo ed apparecchio per il controllo dei gas di copertura utilizzati nelle lavorazioni a mezzo di laser di potenza su pezzi metallici
DE3822097A1 (de) * 1988-06-30 1990-01-04 Messer Griesheim Gmbh Verfahren zum ablenken von in richtung zur optik einer laserduese bewegten partikeln
DE4005453A1 (de) * 1990-02-21 1991-08-22 Hannover Laser Zentrum Einrichtung zur abstandsmessung bei der laser-materialbearbeitung
DE4037211A1 (de) * 1990-11-22 1992-05-27 Baasel Carl Lasertech Maschine zum bearbeiten eines materials mittels laserstrahl
NZ272635A (en) * 1994-08-02 1998-02-26 Mcneil Ppc Inc Laser cutting/drilling processing head that creates a vortex gas flow within the head to clean and prevent back spatting of particles onto the lens therein
AT408632B (de) * 1998-01-29 2002-01-25 Trodat Gmbh Bearbeitungskopf für eine lasergravier- bzw. -schneidvorrichtung
JP3056723B1 (ja) * 1999-01-04 2000-06-26 ファナック株式会社 レ―ザ加工装置
JP2001321979A (ja) * 2000-05-12 2001-11-20 Matsushita Electric Ind Co Ltd レーザー穴加工機の加工粉集塵装置
DE50005527D1 (de) * 2000-08-05 2004-04-08 Trumpf Werkzeugmaschinen Gmbh Laserbearbeitungsmaschine mit wenigstens einem mit einem Spülmedium beaufschlagbaren optischen Element
US6667459B1 (en) * 2000-11-21 2003-12-23 Hypertherm, Inc. Configurable nozzle baffle apparatus and method
DE10138866B4 (de) * 2001-08-08 2007-05-16 Bosch Gmbh Robert Verfahren zum Bohren eines Lochs in ein Werkstück mittels Laserstrahls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016838A2 (en) * 1992-02-25 1993-09-02 Altec S.R.L. Laser processing apparatus
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
EP0618037A1 (de) * 1993-04-02 1994-10-05 International Business Machines Corporation Optik- und Umweltschutzvorrichtung für Laserbehandlungsverfahren
JPH10225787A (ja) * 1997-02-13 1998-08-25 Tanaka Seisakusho Kk レーザ切断装置およびレーザ切断方法
WO2001045893A1 (de) * 1999-12-22 2001-06-28 Kuka Schweissanlagen Gmbh Blasvorrichtung für eine lasereinrichtung
EP1145796A1 (de) * 2000-04-10 2001-10-17 Tanaka Engineering Works, Ltd. Lochvorrichtung für Laserschneidgerät

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1022231C2 (nl) * 2002-12-20 2004-06-22 Fico Bv Werkwijze en inrichting voor het met een laserstraal bewerken van een drager voor ten minste één elektronische component.
WO2004060602A1 (en) * 2002-12-20 2004-07-22 Fico B.V. Method and device for treating with a laser beam a carrier for at least one electrical component
EP1598170A2 (de) 2004-05-04 2005-11-23 MöllerTech GmbH Verfahren und Vorrichtung zum Trennen eines Materials
EP1598170A3 (de) * 2004-05-04 2008-08-06 MöllerTech GmbH Verfahren und Vorrichtung zum Trennen eines Materials

Also Published As

Publication number Publication date
US20050006362A1 (en) 2005-01-13
US7022941B2 (en) 2006-04-04
DE10138867A1 (de) 2003-03-06
EP1425130A1 (de) 2004-06-09
JP2004538157A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
EP1425130A1 (de) Vorrichtung zur reduzierung von ablationsprodukten auf der werks tückoberfläche beim laserbohrprozess
DE102008030079B3 (de) Verfahren zum Reduzieren der Anhaftung von Schlacke beim Einstechen eines Laserstrahls in ein Werkstück und Laserbearbeitungskopf
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
DE102012103176B3 (de) Vorrichtung und Verfahren zum Einbringen von Trennrissen in ein Substrat
EP1417072A1 (de) Verfahren und vorrichtung zum einbringen von löchern in werkstücke mittels laserstrahlen
WO2009062851A1 (de) Aerostatisches lager und verfahren zu dessen herstellung
WO2003018232A1 (de) Vorrichtung zum kühlen von material durch erzeugen eines flachstrahls
EP0375887B1 (de) Verfahren und Vorrichtung zum Schneiden und Reinigen von Gegenständen, sowie zum gezielten Materialabtrag mittels eines Wasser-Abrasivmittel-Gemisches
DE102018102108B4 (de) Verfahren zum laserbasierten Erzeugen einer Struktur an einer Spanfläche eines spanenden Werkzeugs
WO2006114446A1 (de) Vorrichtung und verfahren zum behandeln von flächen metallischer bauelemente mittels laserstrahls mit einer lichtdurchlässigen umlenkeinheit
EP0569888A1 (de) Strahlanlage für gestreckte Bauteile
EP1957232A1 (de) Laserbearbeitungsdüse
WO2020074156A1 (de) Verfahren und bearbeitungsmaschine zum schneiden von werkstücken sowie zugehöriges computerprogrammprodukt
WO2006040280A1 (de) Verfahren und vorrichtung zur erzeugung von bohrungen mittels ultrakurzpulslaser durch abtragen von weiterem material im bereich der wtvndung einer vorbohrung
DE102019106280A1 (de) Verfahren zum Befestigen eines Befestigungselements
DE10243147B4 (de) Verfahren zum Einbringen einer Lochkontur in ein Werkstück
DE10158548A1 (de) Brennkammerschindel für eine Gasturbine mit mehreren Kühllöchern mit unterschiedlicher Winkelausrichtung
EP1138426A2 (de) Rohrschneidemaschine
WO2010121767A1 (de) Düse mit mindestens einem spritzloch zum zerstäuben von fluiden
DE102005054351B3 (de) Remote-Laserschweißverfahren
DE102019211647A1 (de) Verfahren zur Herstellung einer Lötverbindung durch Laserstrahllöten
DE102022118779B3 (de) Aufprallschutzvorrichtung
DE102004010636A1 (de) Geschossfangvorrichtung
WO1998038003A1 (de) Verfahren und vorrichtung zum kontinuierlichen verschweissen von auf stoss geführten bändern oder blechen mittels laserstrahl
EP0490189A1 (de) Strahlanlage zum Strahlen der Oberfläche von Blechen, Profilen oder dergleichen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002754335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003520520

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002754335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10486537

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载