+

WO2003014018A1 - Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material - Google Patents

Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material Download PDF

Info

Publication number
WO2003014018A1
WO2003014018A1 PCT/JP2002/007708 JP0207708W WO03014018A1 WO 2003014018 A1 WO2003014018 A1 WO 2003014018A1 JP 0207708 W JP0207708 W JP 0207708W WO 03014018 A1 WO03014018 A1 WO 03014018A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
gas
carbon material
hydrogen
adsorption
Prior art date
Application number
PCT/JP2002/007708
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunori Yokomichi
Hitoshi Nishino
Katsuhiro Sasaki
Ryoichi Nishida
Takeo Matsui
Original Assignee
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Company Limited filed Critical Osaka Gas Company Limited
Publication of WO2003014018A1 publication Critical patent/WO2003014018A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • Carbon material comprising the carbon material, and gas storage method using the gas storage material
  • the present invention relates to a carbon material, and more particularly to a carbon material having an amorphous structure, a gas storage material made of the carbon material, and a gas storage method using the gas storage material.
  • Activated carbon is widely known as a carbon-based gas storage material. Activated carbon has many pores during the manufacturing process, which is due to the crystal structure of activated carbon being an amorphous structure. It is thought that gas molecules are adsorbed on such pores. The type of gas that can be absorbed depends mainly on the size of the pore diameter, and the amount of gas adsorbed depends on the surface area or pore volume of the pores. It is considered.
  • Activated carbon has been manufactured under activation conditions that can provide more pores on the tongue carbon surface.
  • halogen gas such as chlorine, fluorine, bromine, iodine, phosgene, etc.
  • chain and formula hydrocarbons halogenated hydrocarbons
  • liquid nitrogen temperature e.g., 196 ° C.
  • an object of the present invention is to provide a carbon material which can store a gas having a very low critical temperature such as hydrogen even at room temperature. Disclosure of the invention
  • the present inventors have conducted intensive studies to produce a carbon material that can occlude a gas having a very low critical temperature such as hydrogen even at room temperature, and as a result, treated a certain raw material under specific conditions. By doing so, it is possible to obtain an amorphous nano-carbon having an amorphous structure, for example, a carbon material containing amorphous carbon particles, an amorphous carbon fiber, and the like. It has been found that it has the ability to occlude gases with low critical temperatures even at room temperature.
  • the present invention has been completed based on the above findings and further studied, and provides the following carbon material, gas storage material and gas storage method.
  • Item 1 True density is 2.1 to 3.1 gZ cm 3 ,
  • the hydrogen / carbon weight ratio by elemental analysis is 0.013 or less
  • the volume of the Ultramiku orifice with a diameter of 0.6 nm or less is 0.05 ml / g or more when measured by the ultrahigh vacuum nitrogen adsorption method at 196 ° C,
  • Item 1 characterized in that the integrated intensity ratio (IaZlb) of the integrated intensity (la) of the peak to the integrated intensity (lb) of the peak having a peak center at 1200 cm- 1 to 1500 cm- 1 is 1 or less.
  • the carbon material according to 1.
  • Item 3 The carbon material according to Item 1 or 2, wherein the specific surface area is 1000 m 2 / g or more.
  • Item 4 In the nitrogen gas adsorption isotherm at liquid nitrogen temperature (-196 ° C), the relative pressure
  • Item 5 A gas P and a storage material comprising the carbon material according to any one of Items 1 to 4 above.
  • Item 6 A hydrogen storage material comprising the carbon material according to any one of Items 1 to 4.
  • Item 7 Gas is stored using the gas P and storage material described in Item 5 above. Gas storage method.
  • Item 8 A hydrogen storage method characterized by storing hydrogen using the hydrogen storage material according to Item 6 above.
  • FIG. 1 is a graph showing the hydrogen storage characteristics of activated carbon (TPD 5 ° C./min temperature rise) in Test Example 2.
  • FIG. 2 is a graph showing hydrogen storage characteristics (TPD 3 ° C./min temperature rise) of activated carbon in Test Example 2.
  • FIG. 3 is a graph showing hydrogen storage characteristics (TPD 5 ° C./min temperature rise) of the amorphous carbon material of the present invention in Test Example 2.
  • FIG. 4 is a graph showing the hydrogen storage characteristics (TPD 3 ° C./min temperature rise) of the amorphous carbon material of the present invention in Test Example 2.
  • FIG. 5 is a graph showing the results of ultrahigh vacuum nitrogen adsorption measurement (SWPA method) in Test Example 3.
  • FIGS. 1 to 4 have the following meanings.
  • SWPA stands for Super Wide Pressure Adsorption.
  • the carbon material of the present invention has a property of absorbing gas and is a carbon material containing a nanoscale carbon having an amorphous structure.
  • the carbon material of the present invention typically contains amorphous carbon such as amorphous carbon particles and amorphous carbon fiber.
  • carbon materials having a tube structure such as carbon nanotubes It has been considered to be useful as a gas storage material because it stores gas in the space (hollow portion) surrounded by the tube wall made of such a material.
  • the present invention provides an excellent gas occlusion that can absorb gas even at room temperature because the nanoscale carbon has a specific amorphous structure regardless of whether it has a tube structure or not. It was completed after finding that it had the ability.
  • the carbon material of the present invention contains a nanoscale force element substantially consisting of an amorphous structure.
  • the nanoscale carbon has only an amorphous structure.
  • the carbon material of the present invention has an amorphous structure, it has many pores that effectively work for hydrogen adsorption at room temperature, particularly pores smaller than 2 nm in diameter (that is, ultra-fine particles having a pore diameter of 0.6 nm or less). It has a large number of edges on the hexagonal mesh of carbon.
  • the edge of the carbon hexagonal plane means the end carbon atom of the carbon hexagonal plane.
  • This carbon atom is chemically very active due to its unsaturated sp 2 electron, and easily reacts with foreign elements such as oxygen to form surface functional groups. It is presumed that effective interaction for hydrogen adsorption at room temperature occurs between these unsaturated sp 2 electrons and surface functional groups and hydrogen.
  • the amorphous carbon particles constituting the carbon material of the present invention are carbon particles consisting of only an amorphous structure having a particle diameter of about 5 nm to 500 nm, especially about 10 to 400 nm, and have a spherical or cubic shape. Shape, rectangular parallelepiped, disk, flake, film or similar shape. Among these shapes, granules represented by a sphere, a cubic shape, and a rectangular parallelepiped shape, in particular, a spherical shape are more preferable than a fibrous shape when a material is formed at a high density.
  • a nanopole in which the shape of the constituent amorphous wall is spherical or closed shell can be exemplified. The average diameter of the nanopoles is of the order of 0.5 to 50 nm, in particular 5 to 30 nm.
  • the amorphous carbon fiber is a carbon fiber having a diameter of 100 nm or less, particularly about 5 to 500 nm, particularly about 10 to 400 nm, and has only an amorphous structure.
  • the ratio (L / D) of the length L of the fiber to the outer diameter D is 2 or more, preferably 5 or more, and more preferably 50 to 500.
  • the particle diameter of the amorphous carbon particles and the diameter of the amorphous fiber are measured by measuring the size of an image observed by a scanning electron microscope or a transmission electron microscope.
  • the carbon material of the present invention may be composed of amorphous carbon particles, amorphous carbon fibers, or the like, or may be composed of a mixture thereof.
  • the carbon material of the present invention has various physical properties. Hereinafter, these physical properties will be described.
  • the carbon material of the present invention has a true density of 2.:! ⁇ 3.1 gZ cm 3 about, is particularly 2.4 ⁇ 2.7.01 3 extent.
  • the true density is usually measured by the same procedure as the weight method used for measuring the amount of stored hydrogen, by measuring the buoyancy of helium exerted on the sample under a pressure of! The volume was determined from the measured buoyancy and calculated from the weight / volume.
  • the hydrogen / carbon weight ratio by elemental analysis is 0.013 or less, preferably 0.011 or less, more preferably 0.0063 or less, and particularly 0.005 to 0.011.
  • Samples of amorphous carbon material of the present invention after holding 0.99 ° C, 2 hours under a reduced pressure of 10 "3 Pa or less, - 196 ° C, and have use gravimetry the adsorption isotherm of nitrogen at 10- 5 Pa By analyzing the obtained adsorption isotherm of nitrogen under ultra-high vacuum, the pore volume of pertramic mixture was determined.
  • SWPA means super wide pressure adsorption.
  • HRA high-resolution adsorption
  • SWPA the apparatus in the pressure (about 1 0- 2 P a) of the HRA measuring device ⁇ 1/1 0 0 0 pressure or lower pressure than, i.e., 1 0- 5 P a or By using a lower pressure, the measurement method is improved so that the measurement of the pores of the Ultramic mouth can be performed.
  • the relative pressure that is, the nitrogen pressure (P), the nitrogen saturated vapor pressure (Po (PZPO) in the range of 0.5 or more shows a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side is 1.1 or more. This is advantageous because it has the property that it can be stably held.
  • the carbon material of the present invention has a pore volume of 0.2 ml or less for micropores having a pore diameter of 2 nm or less determined by a Dubinin analysis method using a gas adsorption amount of a gas at a boiling point under atmospheric pressure in a gas adsorption method. / g or more.
  • micropore refers to a pore having a pore diameter of 2 nm or less obtained by the Dubinin analysis method using the gas adsorption amount at the boiling point of the gas at atmospheric pressure in the above gas adsorption method. .
  • the Dubinin analysis method is a method of obtaining the pore volume of the pores of the Miku mouth from adsorption isotherms of various gases.
  • the pore volume of the pores in the orifice of Miku was determined by Dubinin-Radushkevich plot.
  • the nitrogen gas adsorption method uses liquid nitrogen temperature (1 196) and various relative pressures of nitrogen (ratio of nitrogen pressure (P) to nitrogen saturated vapor pressure (Po) at 1 196: P / Po).
  • P nitrogen pressure
  • Po nitrogen saturated vapor pressure
  • the measurement of the amount of nitrogen adsorbed on the sample in the present invention is performed by a constant volume method that calculates the amount of nitrogen adsorbed from a change in the nitrogen pressure in a container of known volume filled with the sample.
  • a pore distribution measuring device (ASAP2400, manufactured by Micromeritics Co., Ltd.) was used. Before the nitrogen adsorption measurement, 0.02 g of the sample was heated at 200 ° C while evacuating the sample container, and the process was continued until the degree of vacuum in the sample container reached lOmmTorr.
  • the pore volume of the micropores having a pore diameter of 2 nm or less determined by the above analysis method may be 0.2 ml / g or more, preferably 0.25 ml / g or more, more preferably 0.3mlZg or more.
  • the upper limit of the pore volume is not particularly limited, but is generally about 1.5 ml / g, particularly about 2.0 ral / g.
  • the carbon material of the present invention has two or more (particularly 2 to 4) types of hydrogen adsorption sites. This was demonstrated by the fact that at least two peaks were observed in thermal desorption (TPD) measurement using hydrogen gas (see Test Example 2 below).
  • the carbon material of the present invention is characterized by having an amorphous structure instead of graphite.
  • the amorphous structure in the present invention is an average distance d between carbon hexagonal mesh planes obtained by a diffractometry method in a powder X-ray diffraction method (incident X-ray: CuKQ!).
  • . 2 is 0.43 nm (4.3 A) or more.
  • d. 0 2 particularly preferably 0.43 ⁇ 0.55nm (4.3-5.5A) about.
  • the amorphous carbon material of the present invention has a diffraction angle (2 is 25.1 degrees or less, preferably 24.1 degrees or less) determined by the diffractometry method in powder X-ray diffraction (incident X-ray: CuKQ!). In particular, it is 23.5-24.5 degrees, and the half-width at 2 ⁇ band is 3.2 degrees or more, preferably 7 degrees or more, particularly 5.0 to 8.0 degrees.
  • This integrated intensity ratio has the following significance. That is, of the Raman-active vibrations of the graphite structure, which peak center of the scan Bae spectrum is observed Raman shift 1540cm- 1 ⁇ 1650cm- 1 in the range (especially 1580cm- around 1), E 2 g vibratory And originates from the lattice vibration in the carbon hexagonal plane. On the other hand, in general, the range of 1200 cm- 1 to 1500 cm- 1 The center of the spectrum peak is also observed around (especially around 1360 cm- 1 ). This vibration is an Alg- type vibration, which is thought to be caused by the transition or loss of the local structure from hexagonal symmetry to lower symmetry, reflecting the disorder of the crystal structure. I have.
  • a broad spectrum having a peak center near 1360 cm- 1 is considered to have a diamond-like structure, that is, a property derived from sp 3 bonds.
  • the broad scan Bae spectrum near 1360Cm- 1 but be derived from that L a is small it is thought to be the main, there are cases where both the properties of sp 3 bonds.
  • a case where both the properties of sp 3 bonds is a case where in the structure sp 2 is the main binding, partially sp 3 bond occurs.
  • the part where the sp 3 bond has occurred has a dangling bond of a carbon bond, or an atom other than carbon is bonded to the carbon atom, and is considered to be chemically active. This is presumed to be effective for gas storage at room temperature.
  • the carbon material of the present invention has a specific surface area measured by the BET method of 1000 m 2 / g or more, particularly 1000 to 1500 m 2 / g.
  • the carbon material of the present invention is characterized in that the average area of one carbon hexagonal mesh plane is 0.85 nm 2 or less.
  • the average area of the carbon hexagonal mesh plane is calculated by squaring the length of the crystallite image included in a range of 10 OA squares selected arbitrarily in the observation image of the transmission electron microscope and the area of the carbon hexagonal mesh plane. By defining and summing the area of the carbon hexagonal meshes included in the range of 10 OA square by the number of carbon hexagonal meshes, the area value of each carbon hexagonal mesh is averaged.
  • the carbon material of the present invention has the various physical properties described above and is useful as a gas storage material.
  • the carbon material of the present invention can be obtained by subjecting a fixed power source and a specific catalyst to heat treatment under specific conditions.
  • the carbon source examples include a fluorine-containing polymer or fluorine-containing carbon, and among them, PTFE film, PTTE powder, Freon 116 (C 2 F 6 ) and the like are preferable.
  • polyimide can be used as a source of carbon. Polyimide has a property that the carbon skeleton is easily retained when pyrolyzed and carbonized, and pores are easily formed in the process of removing the desorbed components due to the thermal decomposition.
  • a particularly preferred example is a polyimide film sold by DuPont under the trade name "Kapton".
  • As the catalyst an iron fluoride or iron oxide can be exemplified, inter alia FeF 2 or Fe 2 0 3 is preferred.
  • the particle size of these catalysts is not particularly limited, it is generally preferable to use them in the form of powder having an average particle size of about 0.01 to 50 m, particularly about 0.01 to about 10 m.
  • the carbon source and the catalyst are placed in a reactor separately or in contact with each other.
  • a carbon source in the form of a film a method in which the above powdery catalyst is uniformly sprinkled on a film and put into a reaction furnace can be exemplified, and when a powdery carbon source is used, the powdery catalyst is used.
  • a method in which a carbon source and catalyst particles are previously dry-blended or wet-blended and uniformly mixed and then placed in a reaction furnace can be exemplified.
  • a vacuum furnace using a quartz tube, an alumina tube or the like can be generally used.
  • the reaction conditions are typically such that the carbon source and the catalyst are placed in the furnace as described above, the furnace is set to an inert gas atmosphere, and the pressure in the furnace is set to lPa to 200 kPa, preferably 5 Pa to
  • the carbon material of the present invention is manufactured by setting the furnace temperature to 150 kPa, setting the furnace temperature to 600 to 1500 ° C, preferably 800 to 1200, and heating the furnace for 0.5 hours or more, particularly 0.5 to 5 hours. can do.
  • the product obtained by the above method may contain an iron compound which is a residue derived from the above catalyst, but this iron compound does not significantly impair the gas storage properties of the carbon material of the present invention. Therefore, the product obtained by the above method may be used as it is.
  • Gas storage material and gas storage method comprising carbon material of the present invention
  • the carbon material of the present invention is excellent in gas storage capacity. Therefore, the present invention also provides a gas occluding material comprising the carbon material of the present invention.
  • the carbon material comprising the carbon material of the present invention can stably store various gases at room temperature.
  • the gas that can be stored by the gas storage material of the present invention include hydrogen, methane, argon, nitrogen, neon, and the like.
  • the gas occluding material of the present invention has an advantage that the gas can be stably occluded at room temperature, and therefore has extremely high industrial value.
  • the gas occluding material of the present invention has an occluding ability even at room temperature. For example, at a hydrogen pressure of 10 MPa, at room temperature, 1% or more, particularly 3 to 5% by weight of hydrogen, Indicates the amount of occlusion.
  • the carbon material of the present invention has many structures capable of stably adsorbing various gases, it can occlude various gases stably, and in particular, a gas having a very low critical temperature such as hydrogen. However, it can be stably stored even at a temperature around room temperature (for example, 0 to 40). In particular, the carbon material of the present invention is useful as a hydrogen storage material.
  • the present invention also provides a gas storage method, particularly a hydrogen storage method, using the carbon material of the present invention.
  • a gas occlusion material made of the carbon material of the present invention is used. What is necessary is just to expose to the said gas atmosphere.
  • the pressure of the above gas atmosphere Is not less than 0.03 MPa, preferably from 0.2 MPa to 50 MPa, more preferably from 0.5 MPa to 20 MPa.
  • the gas storage method of the present invention has an advantage that a gas such as hydrogen, which has been difficult to occlude at room temperature with conventional activated carbon, can be occluded well even at room temperature.
  • the gas storage method of the present invention is also advantageous in that gas can be taken in and out only by pressure change. That is, gas can be taken in and out in the same way as a conventional gas cylinder.
  • FeF 2 powder particle diameter: 500 m or less
  • the furnace used was a quartz tube with an inner diameter of 50 mm, a length of 650 mm, and a wall thickness of 2.5 mm. After the inside of the furnace was replaced with nitrogen three times, the pressure was reduced to 5 Pa, and the inside of the furnace was heated at 900 ° C for 1 hour to obtain 0.7 g of a carbon material.
  • the carbonaceous material obtained was composed of amorphous carbon with a diameter of 20 to 500 nm.
  • Table 1 shows the physical properties of the obtained carbon material containing amorphous carbon fibers as a main component.
  • the particle size 10 X m or less of the PTFE powder 10g and the particle size lO U m following Fe 2 0 3 powder 1 g were mixed using a mill, the mixture was placed in an alumina container was placed in a furnace. The same quartz tube as in Example 1 was used for the furnace. After the inside of the furnace was replaced with argon three times, the pressure was reduced to 5 Pa, and the furnace was heated at 1200 ° C for 1 hour to obtain 2.1 g of a carbon material.
  • the carbonaceous material was composed of amorphous carbon particles having a diameter of 20 to 200 nm.
  • Table 1 shows the physical properties of the obtained carbon material mainly composed of amorphous force-pong particles.
  • a 5 m piece of a 100 mX 10 mm X 10 mm polyimide film (manufactured by DuPont, trade name "Rockton Film”) was sprinkled with 1 ⁇ of powder uniformly and placed in a furnace.
  • the same quartz tube as in Example 1 was used for the furnace.
  • the furnace pressure was set to 50 Pa, the temperature was raised to 900 ° C at a heating rate of l ° CZmin, and the furnace was heated at 900 ° C for 1 hour to produce a carbon material.
  • 1.6 g were obtained.
  • the carbonaceous material was composed of amorphous carbon particles having a diameter of 100 to 200 nm.
  • Table 1 shows the physical properties of the carbon material containing the obtained amorphous carbon particles as a main component.
  • “Hydrogen to carbon weight ratio” was calculated from the results of elemental analysis and elemental analysis.
  • the “volume of ultramicropores having a pore diameter of 0.55 nm or less” was measured according to the ultrahigh vacuum nitrogen adsorption method at 196 ° C. described above.
  • D. 2 is determined by the diffractometry method in powder X-ray diffraction (incident X-ray: CuKQ!).
  • Integrated intensity ratio (IaZlb) is the integrated intensity of a peak having a peak centered at l ⁇ Ocm- 1 from 1650Cm- 1 obtained by Raman spectroscopy (la), having a peak center from 1200Cm- 1 to 1500 cm _1 This is the ratio of the integrated intensity to the integrated intensity (lb) of the peak.
  • the presence or absence of a hysteresis loop is defined as the relative pressure (ie, nitrogen pressure (P), — nitrogen saturation vapor pressure (Po) at 196 ° C) in the nitrogen gas adsorption isotherm at liquid nitrogen temperature (1 196 ° C).
  • P nitrogen pressure
  • Po nitrogen saturation vapor pressure
  • the ratio was determined by examining the presence or absence of a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side was 1.1 or more in the range of 0.5 or more.
  • the measurement method is the same as in Table 1), and the amount of hydrogen storage was similarly evaluated.
  • Table 2 shows the results.
  • the evaluation criteria in Table 2 are as follows:
  • the hydrogen storage amount was 1% by weight or more based on the weight of the storage material even at room temperature.
  • Table 2 shows that conventional activated carbon does not absorb hydrogen at room temperature, but that the carbon material of the present invention has excellent hydrogen storage ability even at room temperature.
  • the hydrogen storage characteristics of the amorphous carbon material of the present invention and the activated carbon (comparative) were evaluated using a thermal desorption apparatus.
  • Example 1 As the amorphous carbon material of the present invention, the one produced in Example 1 was used. A commercial product (trade name “Maxsorb”, manufactured by Kansai Thermal Chemical Co., Ltd.) was used as the activated carbon.
  • the temperature was raised from 1 165 ° C (start temperature) to 50 ° C (end temperature) at a rate of 3 ° CZ, and the amount of desorbed hydrogen was measured.
  • FIGS. 1 to 4 show the hydrogen storage characteristics of each sample using thermal desorption (TPD).
  • TPD thermal desorption
  • 1 and 2 show the hydrogen storage properties of activated carbon
  • FIGS. 3 and 4 show the hydrogen storage properties of the amorphous carbon material of the present invention.
  • activated carbon has a slower heating rate from 57 minutes to 3 ° CZ, and the release of hydrogen is slower, resulting in a lower peak and a broader peak.
  • a single peak was observed at around -178 even under the temperature increasing conditions. Therefore, it is assumed that activated carbon has only one kind of adsorption site.
  • the amorphous carbon material of the present invention has two peaks in a low temperature region of ⁇ 160 ° C. or lower regardless of the heating conditions, and the peak position and the shape of the peaks Showed remarkable changes depending on the heating conditions.
  • the heating rate was 3 Z minutes, a weak broad peak was observed at around -50 ° C.
  • the above-mentioned SPA indicates super wide pressure adsorption.
  • HRA high-resolution adsorption
  • SWPA is 1/1 0 0 0 pressure or lower pressure than that of the device the pressure of the HRA measuring apparatus (about 1 0- 2 P a), i.e., 1 0- 5 P a or
  • the measurement method is improved so that the measurement of the pores of the Ultramic mouth can be performed.
  • Analysis of this graph showed that the volume of ultramicropores of 0.55 nm or less was It was shown to be 0.06 ml / g.
  • Pobs on the horizontal axis indicates the measured nitrogen pressure
  • Pvap indicates the nitrogen vapor pressure at the measurement temperature.
  • the carbon material of the present invention can stably occlude various gases, and in particular, stably occlude gases such as hydrogen having a very low critical temperature even at room temperature. Therefore, the industrial value is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A carbon material which has a real density of 2.1 to 3.1 g/cm3, has a H/C weight ratio of 0.013 or less as determined by elemental analysis, has a volume of ultra-micropores having a pore diameter not larger than 0.6 nm of 0.05 ml/g or more as measured by the ultra high vacuum nitrogen adsorption method at -196˚C, has two or more types of hydrogen adsorbing sites, exhibits d002 determined by the powder X-ray diffraction method (incident X-ray: CuKα) of 4.3 Å or more, and comprises a nanoscale carbon material having an amorphous structure which is composed of amorphous carbon particles, amorphous carbon fibers or a mixture thereof; a gas occluding material comprising said carbon material; and a method for storing a gas using said gas occluding material.

Description

明 細 書 炭素材料、 該炭素材料からなるガス吸蔵材並びに 該ガス吸蔵材を用いるガス貯蔵方法 技術分野  Description Carbon material, gas storage material comprising the carbon material, and gas storage method using the gas storage material
本発明は、 炭素材料、 より詳しくはアモルファス構造を有する炭素材料、 該炭 素材料からなるガス吸蔵材並びに該ガス吸蔵材を用いるガス貯蔵方法に関する。 背景技術  The present invention relates to a carbon material, and more particularly to a carbon material having an amorphous structure, a gas storage material made of the carbon material, and a gas storage method using the gas storage material. Background art
炭素系のガス吸蔵材としては、 活性炭が広く知られている。 活性炭は、 その製 造過程で多くの細孔を有するようになるが、 これは活性炭の結晶構造がァモルフ ァス構造であることに起因している。 かかる細孔に気体分子が吸着されると考え られており、 P及着できる気体の種類は主として細孔径の大きさに依存し、 気体の 吸着量は細孔の表面積ないし細孔容積に依存すると考えられている。  Activated carbon is widely known as a carbon-based gas storage material. Activated carbon has many pores during the manufacturing process, which is due to the crystal structure of activated carbon being an amorphous structure. It is thought that gas molecules are adsorbed on such pores.The type of gas that can be absorbed depends mainly on the size of the pore diameter, and the amount of gas adsorbed depends on the surface area or pore volume of the pores. It is considered.
従来、 活性炭のガス吸蔵特性を向上させるために、 ?舌性炭表面により多くのミ ク口ポアを設けることができる賦活条件で活性炭を製造していた。  Conventionally, to improve the gas storage characteristics of activated carbon,? Activated carbon has been manufactured under activation conditions that can provide more pores on the tongue carbon surface.
しかし、 塩素、 フッ素、 臭素、 ヨウ素、 ホスゲンなどのハロゲンガスや、 鎖式 および 式炭化水素類、 ハロゲン化炭化水素類、 アルコール類、 エーテル類、 ェ ステル類、 ケトン類、 ァニリン、 二硫化炭素などの有機ガスのガス吸蔵に最適な 活性炭であっても、 水素のような臨界温度が非常に低い (一 239.8T:)ガスを吸蔵さ せるためには、 例えば、 液体窒素温度 (一 196°C)まで活性炭を冷却する必要があり 、 室温での吸蔵は困難であった。  However, halogen gas such as chlorine, fluorine, bromine, iodine, phosgene, etc., chain and formula hydrocarbons, halogenated hydrocarbons, alcohols, ethers, esters, ketones, aniline, carbon disulfide, etc. Even if activated carbon is the most suitable for storing organic gas, it is necessary to store liquid with very low critical temperature (e.g., 239.8T :) such as hydrogen by using liquid nitrogen temperature (e.g., 196 ° C). ) It was necessary to cool the activated carbon until the storage at room temperature was difficult.
従って、 本発明の目的は、 水素のような臨界温度が非常に低いガスを室温でも 吸蔵できる炭素材料を提供することである。 発明の開示  Accordingly, an object of the present invention is to provide a carbon material which can store a gas having a very low critical temperature such as hydrogen even at room temperature. Disclosure of the invention
本発明者らは、 水素のような臨界温度が非常に低いガスを室温でも吸蔵できる 炭素材料を製造するために鋭意検討した結果、 一定の原料を特定の条件下で処理 することにより、アモルファス構造を有するアモルファスナノ力一ボン、例えば、 アモルファスカーボン粒子、 アモルファス力一ボンファイバ一等を含有する炭素 材料が得られること、 このアモルファスナノカーボンを含有する炭素材料が水素 のような臨界温度の低いガスを室温でも吸蔵する能力を有していることを見出し た。 The present inventors have conducted intensive studies to produce a carbon material that can occlude a gas having a very low critical temperature such as hydrogen even at room temperature, and as a result, treated a certain raw material under specific conditions. By doing so, it is possible to obtain an amorphous nano-carbon having an amorphous structure, for example, a carbon material containing amorphous carbon particles, an amorphous carbon fiber, and the like. It has been found that it has the ability to occlude gases with low critical temperatures even at room temperature.
本発明は、 上記知見に基づき、 更に検討を加えて完成されたものであって、 次 の炭素材料、 ガス吸蔵材及びガス貯蔵方法を提供するものである。  The present invention has been completed based on the above findings and further studied, and provides the following carbon material, gas storage material and gas storage method.
項 1 真密度が 2.1〜3.1 gZ c m3であり、 Item 1 True density is 2.1 to 3.1 gZ cm 3 ,
元素分析による水素/炭素重量比が 0.013以下であり、  The hydrogen / carbon weight ratio by elemental analysis is 0.013 or less,
- 1 9 6 °Cでの超高真空窒素吸着法により測定した場合に、 直径 0.6nm以下の ウルトラミク口細孔の容積が 0.05ml/g以上であり、  -The volume of the Ultramiku orifice with a diameter of 0.6 nm or less is 0.05 ml / g or more when measured by the ultrahigh vacuum nitrogen adsorption method at 196 ° C,
2種類以上の水素吸着サイトを持ち、  Has two or more types of hydrogen adsorption sites,
粉末 X線回折法 (入射 X線: CuKo;)において、 ディフラクトメ一夕一法により 求められる d。 0 2が 4.30 A以上であり、 Determined by the diffractometry method in powder X-ray diffraction (incident X-ray: CuKo;) d. 0 2 is greater than 4.30 A,
アモルファス力一ボン粒子、 アモルファス力一ボンファイバー又はこれらの混 合物から構成されているアモルファス構造を有するナノスケールカーボンを含有 することを特徴とする炭素材料。  A carbon material characterized by containing nanoscale carbon having an amorphous structure composed of amorphous carbon particles, amorphous carbon fibers or a mixture thereof.
項 2 ラマン分光法で得られる 1540CHT1から 1650CHT1にピーク中心をもつピPi from 1540CHT 1 obtained in claim 2 Raman spectroscopy has a peak centered at 1650CHT 1
—クの積分強度 (la) の、 1200cm—1から 1500cm—1にピーク中心をもつピークの積 分強度(lb) に対する積分強度比(IaZlb) が 1以下であることを特徴とする上記 項 1に記載の炭素材料。 Item 1 characterized in that the integrated intensity ratio (IaZlb) of the integrated intensity (la) of the peak to the integrated intensity (lb) of the peak having a peak center at 1200 cm- 1 to 1500 cm- 1 is 1 or less. The carbon material according to 1.
項 3 比表面積が 1000m2/g以上である上記項 1又は 2に記載の炭素材料。 項 4 液体窒素温度 (—196°C)における窒素気体の吸着等温線において、相対圧Item 3. The carbon material according to Item 1 or 2, wherein the specific surface area is 1000 m 2 / g or more. Item 4 In the nitrogen gas adsorption isotherm at liquid nitrogen temperature (-196 ° C), the relative pressure
(即ち、窒素圧力 の、一 196°Cにおける窒素飽和蒸気圧 (Po)に対する比: PZPO)0.5 以上の範囲で脱着側吸着量と吸着側吸着量との比が 1.1以上であるヒステリシス ループを示すことを特徵とする上記項 1〜 3のいずれかに記載の炭素材料。 (That is, the ratio of the nitrogen pressure to the nitrogen saturated vapor pressure (Po) at 196 ° C: PZPO) shows a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side is 1.1 or more in the range of 0.5 or more. Item 4. The carbon material according to any one of Items 1 to 3 above.
項 5 上記項 1〜 4のいずれかに記載の炭素材料からなるガス P及蔵材。  Item 5 A gas P and a storage material comprising the carbon material according to any one of Items 1 to 4 above.
項 6 上記項 1〜4のいずれかに記載の炭素材料からなる水素吸蔵材。  Item 6 A hydrogen storage material comprising the carbon material according to any one of Items 1 to 4.
項 7 上記項 5に記載のガス P及蔵材を使用してガスを貯蔵することを特徴とす るガス貯蔵方法。 Item 7 Gas is stored using the gas P and storage material described in Item 5 above. Gas storage method.
項 8 上記項 6に記載の水素吸蔵材を使用して水素を貯蔵することを特徴とす る水素貯蔵方法。 図面の簡単な説明  Item 8 A hydrogen storage method characterized by storing hydrogen using the hydrogen storage material according to Item 6 above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 試験例 2における活性炭の水素吸蔵特性 (T P D 5 °C/min昇温) を 示すグラフである。  FIG. 1 is a graph showing the hydrogen storage characteristics of activated carbon (TPD 5 ° C./min temperature rise) in Test Example 2.
図 2は、 試験例 2における活性炭の水素吸蔵特性 (T P D 3 °C/min昇温) を 示すグラフである。  FIG. 2 is a graph showing hydrogen storage characteristics (TPD 3 ° C./min temperature rise) of activated carbon in Test Example 2.
図 3は、 試験例 2における本発明のアモルファス炭素材の水素吸蔵特性 (T P D 5 °C/min昇温) を示すグラフである。  FIG. 3 is a graph showing hydrogen storage characteristics (TPD 5 ° C./min temperature rise) of the amorphous carbon material of the present invention in Test Example 2.
図 4は、 試験例 2における本発明のアモルファス炭素材の水素吸蔵特性 (T P D 3 °C/min昇温) を示すグラフである。  FIG. 4 is a graph showing the hydrogen storage characteristics (TPD 3 ° C./min temperature rise) of the amorphous carbon material of the present invention in Test Example 2.
図 5は、 試験例 3における超高真空窒素吸着測定 (SWPA法) の結果を示すグ ラフである。  Figure 5 is a graph showing the results of ultrahigh vacuum nitrogen adsorption measurement (SWPA method) in Test Example 3.
図 1〜4における略号は次の意味を示す。  The abbreviations in FIGS. 1 to 4 have the following meanings.
「 T P D」 =昇温脱離 (Temperature Programmed Desorption)  “TPD” = Temperature Programmed Desorption
「 Q M S強度」 =四極子質量スベクトル (quadrupole mass spectrum) の強度 「E + 0 0 J = Γχ 1 0 °J (即ち 「X 1」)  "QMS intensity" = intensity of quadrupole mass spectrum "E + 0 0 J = Γχ 10 ° J (ie" X 1 ")
また、 図 5において、 SWPAは、 超広圧力範囲吸着測定 (Super Wide Pressure Adsorption 指す。 発明の詳細な記載  In FIG. 5, SWPA stands for Super Wide Pressure Adsorption.
本発明の炭素材料  The carbon material of the present invention
本発明の炭素材料は、 ガスを吸蔵する性質を有するものであって、 ァモルファ ス構造を有するナノスケール力一ボンを含有する炭素材料である。 本発明炭素材 料は、 典型的には、 アモルファスカーボン粒子、 アモルファスカーボンファイバ 一等の形態のアモルファスカーボンを含有する。  The carbon material of the present invention has a property of absorbing gas and is a carbon material containing a nanoscale carbon having an amorphous structure. The carbon material of the present invention typically contains amorphous carbon such as amorphous carbon particles and amorphous carbon fiber.
従来、 カーボンナノチューブ等のチューブ構造を有する炭素材料がその炭素か らなるチューブ壁で囲まれた空間部 (中空部) にガスを吸蔵するため、 ガス吸蔵 材として有用であると考えられてきた。 Conventionally, carbon materials having a tube structure such as carbon nanotubes It has been considered to be useful as a gas storage material because it stores gas in the space (hollow portion) surrounded by the tube wall made of such a material.
これに対して、 本発明は、 上記ナノスケールカーボンが、 チューブ構造を有し ていても有していなくても、 特定のアモルファス構造を有するが故に、 室温でも 気体を吸蔵できるという優れたガス吸蔵能を有していることを見出し完成された ものである。  On the other hand, the present invention provides an excellent gas occlusion that can absorb gas even at room temperature because the nanoscale carbon has a specific amorphous structure regardless of whether it has a tube structure or not. It was completed after finding that it had the ability.
本発明の炭素材料は、 アモルファス構造から実質的になるナノスケール力一ポ ンを含有するものである。 特に、 該ナノスケールカーボンは、 アモルファス構造 のみからなるのが好ましい。  The carbon material of the present invention contains a nanoscale force element substantially consisting of an amorphous structure. In particular, it is preferable that the nanoscale carbon has only an amorphous structure.
本発明の炭素材料は、 アモルファス構造であるが故に、 室温での水素吸着に有 効に働く多くの細孔、 特に直径 2nmよりも更に小さい細孔 (即ち、 細孔径 0 . 6 nm以下のウルトラミク口細孔) ならびに炭素六角網面のエツジを多数有してい る。 ここで、 炭素六角網面のエッジとは、 炭素六角網面の端部炭素原子のことで ある。 この炭素原子は不飽和の sp2電子があるので化学的に非常に活性であり、 容易に酸素などの異種元素と反応し、 表面官能基を形成する。 これらの不飽和の sp2電子並びに表面官能基と水素との間に、室温での水素吸着に有効な相互作用が 働くと推定される。 Since the carbon material of the present invention has an amorphous structure, it has many pores that effectively work for hydrogen adsorption at room temperature, particularly pores smaller than 2 nm in diameter (that is, ultra-fine particles having a pore diameter of 0.6 nm or less). It has a large number of edges on the hexagonal mesh of carbon. Here, the edge of the carbon hexagonal plane means the end carbon atom of the carbon hexagonal plane. This carbon atom is chemically very active due to its unsaturated sp 2 electron, and easily reacts with foreign elements such as oxygen to form surface functional groups. It is presumed that effective interaction for hydrogen adsorption at room temperature occurs between these unsaturated sp 2 electrons and surface functional groups and hydrogen.
本発明の炭素材料を構成する上記ァモルファスカ一ボン粒子は、粒子径 5 nm〜 500nm程度、特に 10〜400nm程度のサイズを有するアモルファス構造のみからな る炭素粒子であり、 その形状は、 球状、 立方体状、 直方体状、 円盤状、 フレーク 状、 フィルム状又はこれらに類似する形状である。 これら形状のうち、 球状、 立 方体状、 直方体状に代表される顆粒状のもの、 特に球状のものが、 材料を高密度 に成形する際には繊維状のものより好ましい。 特に、 構成アモルファス壁の形状 が球状もしくは閉殻状のナノポールが例示できる。 該ナノポールの平均直径は、 0.5〜50nm程度、 特に 5〜3 O nmである。  The amorphous carbon particles constituting the carbon material of the present invention are carbon particles consisting of only an amorphous structure having a particle diameter of about 5 nm to 500 nm, especially about 10 to 400 nm, and have a spherical or cubic shape. Shape, rectangular parallelepiped, disk, flake, film or similar shape. Among these shapes, granules represented by a sphere, a cubic shape, and a rectangular parallelepiped shape, in particular, a spherical shape are more preferable than a fibrous shape when a material is formed at a high density. In particular, a nanopole in which the shape of the constituent amorphous wall is spherical or closed shell can be exemplified. The average diameter of the nanopoles is of the order of 0.5 to 50 nm, in particular 5 to 30 nm.
また、 上記アモルファスカーボンファイバーは、 lOOOnm以下、 特に 5〜500nm 程度、特に 10〜400nm程度の直径を有する力一ボンファイバ一であり、 ァモルフ ァス構造のみからなる。 該ファイバーの長さ Lの外径 Dに対する比 (L/D) は 2以上、 好ましくは 5以上、 特に 5 0〜5 0 0 0である。 尚、 上記アモルファス力一ボン粒子の粒子径、 ァモレファスカ一ボンファイバ —の直径等は、 走査型電子顕微鏡又は透過型電子顕微鏡による観察像の大きさを 計測することにより測定したものである。 Further, the amorphous carbon fiber is a carbon fiber having a diameter of 100 nm or less, particularly about 5 to 500 nm, particularly about 10 to 400 nm, and has only an amorphous structure. The ratio (L / D) of the length L of the fiber to the outer diameter D is 2 or more, preferably 5 or more, and more preferably 50 to 500. The particle diameter of the amorphous carbon particles and the diameter of the amorphous fiber are measured by measuring the size of an image observed by a scanning electron microscope or a transmission electron microscope.
上記本発明の炭素材料は、 アモルファスカーボン粒子、 アモルファスカーボン ファイバ一等のそれぞれ単独から構成されていてもよく、 また、 これらの混合物 から構成されていてもよい。  The carbon material of the present invention may be composed of amorphous carbon particles, amorphous carbon fibers, or the like, or may be composed of a mixture thereof.
上記本発明の炭素材料は、 種々の物性を有している。 以下、 これら物性につい て、 説明する。  The carbon material of the present invention has various physical properties. Hereinafter, these physical properties will be described.
く真密度〉  True density>
本発明の炭素材料は、 真密度が 2.:!〜 3.1 gZ c m3程度、 特に 2.4〜2.7。013程 度である。 ここで、 真密度は、 通常、 水素吸蔵量を計測する際に用いられる重量 法と同じ手順で、圧力:!〜 1 O MPaの加圧下でヘリウムがサンプルに及ぼす浮力 を測定し、 サンプルの重量と測定された浮力から体積を求め、 重量/体積から算 出した。 The carbon material of the present invention has a true density of 2.:! ~ 3.1 gZ cm 3 about, is particularly 2.4~2.7.01 3 extent. Here, the true density is usually measured by the same procedure as the weight method used for measuring the amount of stored hydrogen, by measuring the buoyancy of helium exerted on the sample under a pressure of! The volume was determined from the measured buoyancy and calculated from the weight / volume.
<水素 Z炭素重量比 >  <Hydrogen Z carbon weight ratio>
元素分析による水素ノ炭素重量比が 0.013以下、好ましくは 0.011以下、より好 ましくは 0.0063以下であり、 特に 0.005〜0.011である。  The hydrogen / carbon weight ratio by elemental analysis is 0.013 or less, preferably 0.011 or less, more preferably 0.0063 or less, and particularly 0.005 to 0.011.
<ウルトラミク口細孔の容積 >  <Ultra Miku mouth pore volume>
また、 本発明の炭素材料は、 一 196°Cでの超高真空窒素吸着法 (到達真空度 = 10一 5 Pa; SWPA法) により測定した場合に、直径 0.6nm以下のウルトラミク口細 孔の容積が 0.05ml/g以上、 特に 0.05〜0.1ml/g、 好ましくは 0.05〜0.08ml/gであるThe carbon material of the present invention has an ultra-micro pore diameter of 0.6 nm or less as measured by an ultra-high vacuum nitrogen adsorption method at 1196 ° C (ultimate vacuum = 10 to 15 Pa; SWPA method). Is at least 0.05 ml / g, especially 0.05-0.1 ml / g, preferably 0.05-0.08 ml / g
(後記試験例 3参照 )。 (See Test Example 3 below).
本明細書において、 「ウルトラミクロ細孔」 とは、 上記一 196 での超高真空窒 素吸着法(到達真空度 =10_ 5Pa) により測定された、直径 0.6nm以下の細孔をい う。 As used herein, "Ultra-micro pores", ultra-high vacuum nitrogen adsorption method at the one 196 (ultimate vacuum = 10_ 5 Pa) as measured by, it will have the following pore diameters 0.6nm .
本明細書において、 「ウルトラミクロ細孔の容積」 又は 「ウルトラミクロ細孔 容積」 とは、 本発明の炭素材料に関して当該炭素材料 1 g当たりの、 上記一 196 °Cでの超高真空窒素吸着法 (到達真空度 =10— 5Pa)により測定された、直径 0.6nm 以下のウルトラミク口細孔の合計容積をいう。 本発明のアモルファス炭素材料のサンプルを、 10" 3 Pa以下の減圧下で 150°C、 2時間保持した後に、 — 196°C、 10— 5Paにおける窒素の吸着等温線を重量法を用 いて求めた。 求めた超高真空下の窒素の吸着等温線を解析することによって、 ゥ ルトラミク口細孔容積を求めた。 In the present specification, “ultramicropore volume” or “ultramicropore volume” refers to the ultrahigh vacuum nitrogen adsorption at 1196 ° C. per 1 g of the carbon material of the present invention. measured by law (ultimate vacuum = 10- 5 Pa), it refers to the total volume of the following ultra Miku port pore diameter 0.6 nm. Samples of amorphous carbon material of the present invention, after holding 0.99 ° C, 2 hours under a reduced pressure of 10 "3 Pa or less, - 196 ° C, and have use gravimetry the adsorption isotherm of nitrogen at 10- 5 Pa By analyzing the obtained adsorption isotherm of nitrogen under ultra-high vacuum, the pore volume of pertramic mixture was determined.
ここで、 上記の SWPA とは、 超広圧力範囲吸着測定 (Super Wide Pressure Adsorption) を指す。 一般に用いられている高分解能吸着 (High Resolution Adsorption=HRA)ではウルトラミク口細孔は検出できない。これに対して、 SWPA は、 HRA測定装置の装置内圧力 ( 1 0— 2 P a程度) © 1 / 1 0 0 0の圧力又は それよりも低い圧力、即ち、 1 0— 5 P a又はそれより低い圧力を使用することに より、 ウルトラミク口細孔の測定が可能であるように改良した測定方法である。 本発明の炭素材料の中でも、液体窒素温度 (—196°C)における窒素気体の吸着等 温線において、相対圧 (即ち、窒素圧力 (P)の、 _ 196°Cにおける窒素飽和蒸気圧 (Po) に対する比: PZPO)0.5以上の範囲で脱着側吸着量と吸着側吸着量との比が 1.1以 上であるヒステリシスループを示すものがあり、,そのような炭素材料は、 吸着し たガスを安定に保持することができるという性質を有しているので、有利である。 また、 本発明の炭素材料は、 気体吸着法において気体の大気圧下での沸点にお ける気体吸着量を用いる Dubinin解析法により求めた細孔径 2nm以下のミクロ細 孔の細孔容積が 0.2ml/g以上である。 本明細書において、 「ミクロ細孔」 とは、 上記気体吸着法において気体の大気圧下での沸点における気体吸着量を用いる Dubinin解析法により求めた細孔径 2nm以下の細孔を指すものとする。 Here, the above-mentioned SWPA means super wide pressure adsorption. In general, high-resolution adsorption (HRA) cannot detect the pores of the Ultramic mouth. In contrast, SWPA, the apparatus in the pressure (about 1 0- 2 P a) of the HRA measuring device © 1/1 0 0 0 pressure or lower pressure than, i.e., 1 0- 5 P a or By using a lower pressure, the measurement method is improved so that the measurement of the pores of the Ultramic mouth can be performed. Among the carbon materials of the present invention, in the nitrogen gas adsorption isotherm at liquid nitrogen temperature (-196 ° C), the relative pressure (that is, the nitrogen pressure (P), the nitrogen saturated vapor pressure (Po (PZPO) in the range of 0.5 or more shows a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side is 1.1 or more. This is advantageous because it has the property that it can be stably held. Further, the carbon material of the present invention has a pore volume of 0.2 ml or less for micropores having a pore diameter of 2 nm or less determined by a Dubinin analysis method using a gas adsorption amount of a gas at a boiling point under atmospheric pressure in a gas adsorption method. / g or more. In the present specification, the term "micropore" refers to a pore having a pore diameter of 2 nm or less obtained by the Dubinin analysis method using the gas adsorption amount at the boiling point of the gas at atmospheric pressure in the above gas adsorption method. .
ここで、 Dubinin解析法は、 各種ガスの吸着等温線からミク口細孔の細孔容積 を求める方法である。 ここでは、液体窒素温度における窒素吸着等温線を用いて、 Dubinin-Radushkevichプロットによりミク口細孔の細孔容積を求めた。この方法に おける窒素気体吸着法は、 液体窒素温度 (一 196 )において、 種々の窒素相対圧( 窒素圧力 (P)の、 一 196 での窒素飽和蒸気圧 (Po)に対する比: P/Po)において試料 への窒素吸着量を測定し、 吸着された窒素分子の量から固体の比表面積、 細孔容 積、 細孔径分布を求める手法である。  Here, the Dubinin analysis method is a method of obtaining the pore volume of the pores of the Miku mouth from adsorption isotherms of various gases. Here, using the nitrogen adsorption isotherm at the liquid nitrogen temperature, the pore volume of the pores in the orifice of Miku was determined by Dubinin-Radushkevich plot. In this method, the nitrogen gas adsorption method uses liquid nitrogen temperature (1 196) and various relative pressures of nitrogen (ratio of nitrogen pressure (P) to nitrogen saturated vapor pressure (Po) at 1 196: P / Po). In this method, the amount of nitrogen adsorbed on the sample is measured, and the specific surface area, pore volume, and pore size distribution of the solid are determined from the amount of nitrogen molecules adsorbed.
本発明における試料への窒素吸着量の測定は、 試料を充填した容積既知の容器 内の窒素圧力変化から窒素吸着量を計算する定容法で行つており、高速比表面積/ 細孔分布測定装置 (マイクロメリティックス社製、 商品名 「ASAP2400」) を用い た。 また、窒素吸着量測定前には、試料充填容器内を真空排気しながら試料 0.02g を 200°Cで加熱し、 試料充填容器内の真空度が lOmmTorrに到達するまで続けた。 本発明の炭素材料において、上記解析法により求めた細孔径 2nm以下のミク口 細孔の細孔容積は、 0.2ml/g以上であればよいが、 好ましくは 0.25ml/g以上、 より好ましくは 0.3mlZg以上である。 該細孔容積の上限は特に限定されないが、 一般には、 1.5ml/g程度、 特に 2.0ral/g程度である。 The measurement of the amount of nitrogen adsorbed on the sample in the present invention is performed by a constant volume method that calculates the amount of nitrogen adsorbed from a change in the nitrogen pressure in a container of known volume filled with the sample. A pore distribution measuring device (ASAP2400, manufactured by Micromeritics Co., Ltd.) was used. Before the nitrogen adsorption measurement, 0.02 g of the sample was heated at 200 ° C while evacuating the sample container, and the process was continued until the degree of vacuum in the sample container reached lOmmTorr. In the carbon material of the present invention, the pore volume of the micropores having a pore diameter of 2 nm or less determined by the above analysis method may be 0.2 ml / g or more, preferably 0.25 ml / g or more, more preferably 0.3mlZg or more. The upper limit of the pore volume is not particularly limited, but is generally about 1.5 ml / g, particularly about 2.0 ral / g.
< 2種類以上の水素吸着サイト>  <Two or more hydrogen adsorption sites>
本発明の炭素材料は、 2種類以上(特に 2〜 4種類)の水素吸着サイトを持つ。 このことは、 水素ガスを用いた昇温脱離 (TPD) 測定において、 少なくとも 2つ のピークが観測されることから実証された (後記試験例 2参照)。  The carbon material of the present invention has two or more (particularly 2 to 4) types of hydrogen adsorption sites. This was demonstrated by the fact that at least two peaks were observed in thermal desorption (TPD) measurement using hydrogen gas (see Test Example 2 below).
<アモルファス構造についての物性 >  <Physical properties of amorphous structure>
また、 本発明の炭素材料は、 黒鉛質ではなく、 アモルファス構造を有すること を特徴としている。本発明におけるアモルファス構造は、粉末 X線回折法 (入射 X 線: CuKQ!)において、 ディフラクトメ一夕一法により求められる炭素六角網面間 の平均距離 d。。2が 0.43nm(4.3A)以上である構造である。 d。0 2は、 特に 0.43〜 0.55nm (4.3-5.5A) 程度であるのが好ましい。 Further, the carbon material of the present invention is characterized by having an amorphous structure instead of graphite. The amorphous structure in the present invention is an average distance d between carbon hexagonal mesh planes obtained by a diffractometry method in a powder X-ray diffraction method (incident X-ray: CuKQ!). . 2 is 0.43 nm (4.3 A) or more. d. 0 2, particularly preferably 0.43~ 0.55nm (4.3-5.5A) about.
また、 本発明のアモルファス炭素材料は、 粉末 X線回折法 (入射 X線: CuKQ!) において、 ディフラクトメ一夕一法に'より求められる回折角度(2 が 25.1度 以下、好ましくは 24.1度以下、特に 23.5-24.5度であり、 2 Θバンド半値幅が 3.2 度以上、 好ましくは 7度以上であり、 特に 5.0〜8.0度である。  Further, the amorphous carbon material of the present invention has a diffraction angle (2 is 25.1 degrees or less, preferably 24.1 degrees or less) determined by the diffractometry method in powder X-ray diffraction (incident X-ray: CuKQ!). In particular, it is 23.5-24.5 degrees, and the half-width at 2Θ band is 3.2 degrees or more, preferably 7 degrees or more, particularly 5.0 to 8.0 degrees.
更に、本発明の炭素材料は、 ラマン分光法で得られる 1540cm―1〜 SOcnT 1に ピーク中心をもつピークの積分強度 (la) の、 1200cm一 1から 1500cm— 1にピ一ク 中心をもつピークの積分強度 (lb) に対する積分強度比 R (=Ia/lb) が 1以下で あるのが好ましい。 Further, the carbon material of the present invention, the integrated intensity of a peak having a peak centered at 1540cm- 1 ~ SOcnT 1 obtained by Raman spectroscopy (la), a peak having a peak one click from central 1200cm one 1 to 1500Cm- 1 It is preferable that the integrated intensity ratio R (= Ia / lb) to the integrated intensity (lb) be 1 or less.
この積分強度比は、 次のような意義を有する。 即ち、 黒鉛構造のラマン活性な 振動のうち、スぺクトルのピーク中心がラマンシフト 1540cm―1〜 1650cm— 1の範 囲 (特に 1580cm— 1付近) に観測されるものは、 E2 g型振動であり、 炭素六角網 面内の格子振動に由来する。 これに対して、一般的に 1200cm―1〜 1500cm— 1の範 囲 (特に 1360cm—1付近) にもスペクトルのピーク中心が観測される。 この振動 は、 Al g型振動であり、 結晶局部での構造が六方対称性からより低い対称性へ移 行したり、 失われたりすることによって生じると考えられ、 結晶構造の乱れを反 映している。 This integrated intensity ratio has the following significance. That is, of the Raman-active vibrations of the graphite structure, which peak center of the scan Bae spectrum is observed Raman shift 1540cm- 1 ~ 1650cm- 1 in the range (especially 1580cm- around 1), E 2 g vibratory And originates from the lattice vibration in the carbon hexagonal plane. On the other hand, in general, the range of 1200 cm- 1 to 1500 cm- 1 The center of the spectrum peak is also observed around (especially around 1360 cm- 1 ). This vibration is an Alg- type vibration, which is thought to be caused by the transition or loss of the local structure from hexagonal symmetry to lower symmetry, reflecting the disorder of the crystal structure. I have.
従つて、 1540cnT 1から 1650cm_ 1の範囲(特に 1580cm_ 1付近) にピ一ク中心 をもつピーク (la) と 1200CHT 1から 1500αη_ 1の範囲 (特に 1360cm一1付近) に ピーク中心をもつピーク (lb) の積分強度比 R (=Ia/lb) は、 結晶構造と強い相 関をもつ指標とされる。 Accordance connexion, ranging from 1540CnT 1 of 1650Cm_ 1 (especially 1580Cm_ 1 near) range 1200CHT 1 peak (la) having a peak Ichiku center of 1500Arufaita _ 1 (especially 1360cm one 1 near) a peak having a peak center ( The integrated intensity ratio R (= Ia / lb) of lb) is an index that has a strong correlation with the crystal structure.
一般的に、 Rが小さいと基底面に平行な結晶子サイズ (La) が小さいとされる 。 これは、 Rが小さいことで結晶局部の結晶構造の影響が強くなることを反映し ている。 このことは、 Rが小さい程、 より結晶性が低い構造であることを反映し ている。 Generally, when R is small, the crystallite size (L a ) parallel to the basal plane is small. This reflects that the influence of the crystal structure of the crystal local part becomes strong when R is small. This reflects that the smaller the R, the lower the crystallinity of the structure.
また、 ダイヤモンドライクカーボンのラマンスぺクトル等から判るように、 1360cm— 1付近にピーク中心を持つブロードなスぺクトルはダイヤモンド的構造、 即ち、 sp3結合に由来する性質を持つとも考えられる。 従って、 1360cm— 1付近の ブロードなスぺクトルは、 Laが小さいことに由来することが主であると考えられ るが、 sp3結合の性質を併せ持つ場合がある。 ここで、 sp3結合の性質を併せ持つ 場合とは、 sp2が主な結合である構造において、部分的に sp3結合が生じる場合で ある。 sp3結合が生じた部分は炭素結合の未結合手を有する、 もしくは炭素以外の 原子が炭素原子に結合していると考えられ、 化学的に活性であると考えられる。 このことは室温でのガス吸蔵に有効であると推定されている。 Also, as can be seen from the Raman spectrum of diamond-like carbon, a broad spectrum having a peak center near 1360 cm- 1 is considered to have a diamond-like structure, that is, a property derived from sp 3 bonds. Thus, the broad scan Bae spectrum near 1360Cm- 1, but be derived from that L a is small it is thought to be the main, there are cases where both the properties of sp 3 bonds. Here, a case where both the properties of sp 3 bonds is a case where in the structure sp 2 is the main binding, partially sp 3 bond occurs. It is considered that the part where the sp 3 bond has occurred has a dangling bond of a carbon bond, or an atom other than carbon is bonded to the carbon atom, and is considered to be chemically active. This is presumed to be effective for gas storage at room temperature.
本発明炭素材料において、 上記積分強度比 R (=Ia/lb) は、 1以下、 特に 0 . 9以下であるのが好ましい。  In the carbon material of the present invention, the integrated intensity ratio R (= Ia / lb) is preferably 1 or less, particularly preferably 0.9 or less.
<比表面積 >  <Specific surface area>
本発明の炭素材料は、 B E T法で測定した比表面積が 1000m2/g以上、特に 1000 〜: 1500m2/gである。 The carbon material of the present invention has a specific surface area measured by the BET method of 1000 m 2 / g or more, particularly 1000 to 1500 m 2 / g.
ぐ炭素六角網面の平均面積 >  Average area of carbon hexagonal mesh>
また、 本発明の炭素材料は、 一枚の炭素六角網面の平均面積が 0.85nm2以下で あることを特徴とする。 炭素六角網面の平均面積は、 透過型電子顕微鏡の観察像において任意に選び出 した 1 0 O A四方の範囲に含まれる結晶子像の長さを 2乗した数値を炭素六角網 面の面積と定義し、 1 0 O A四方の範囲に含まれる炭素六角網面の面積の総和を 炭素六角網面の個数で除することにより、 この各炭素六角網面の面積値を平均化 したものである。 Further, the carbon material of the present invention is characterized in that the average area of one carbon hexagonal mesh plane is 0.85 nm 2 or less. The average area of the carbon hexagonal mesh plane is calculated by squaring the length of the crystallite image included in a range of 10 OA squares selected arbitrarily in the observation image of the transmission electron microscope and the area of the carbon hexagonal mesh plane. By defining and summing the area of the carbon hexagonal meshes included in the range of 10 OA square by the number of carbon hexagonal meshes, the area value of each carbon hexagonal mesh is averaged.
上記本発明の炭素材料は、 上記各種の物性を有しており、 ガス吸蔵材料として 有用である。  The carbon material of the present invention has the various physical properties described above and is useful as a gas storage material.
本発明の炭素材料の製造法  Method for producing carbon material of the present invention
本発明の炭素材料は、 一定の力ーポン源と特定の触媒を特定条件で加熱処理す ることにより得られる。  The carbon material of the present invention can be obtained by subjecting a fixed power source and a specific catalyst to heat treatment under specific conditions.
上記カーボン源としては、フッ素含有高分子またはフッ素含有カーボンがあり、 なかでも PTFEフィルム、 PTTE紛、 フロン 116(C2F6)等が好ましい。 さらに、 力 一ボン源としては、 ポリイミドが使用できる。 ポリイミドは、 熱分解して炭化し たときに、 炭素骨格が保持されやすく、 熱分解に伴い脱離成分の除去過程で細孔 が形成されやすい性質を有する。 特に好ましい具体例としては、 デュポン社から 「カプトン」 なる商品名で販売されているポリイミドのフィルムを例示できる。 触媒としては、 鉄フッ化物または鉄酸化物が例示でき、 なかでも FeF2または Fe203が好ましい。 これら触媒の粒子径は特に限定されないが、 一般には、 平均 粒子径が 0.01〜50 m程度、 特に 0.01〜: 10 m程度の粉末状で使用するのが好ま しい。 Examples of the carbon source include a fluorine-containing polymer or fluorine-containing carbon, and among them, PTFE film, PTTE powder, Freon 116 (C 2 F 6 ) and the like are preferable. Furthermore, polyimide can be used as a source of carbon. Polyimide has a property that the carbon skeleton is easily retained when pyrolyzed and carbonized, and pores are easily formed in the process of removing the desorbed components due to the thermal decomposition. A particularly preferred example is a polyimide film sold by DuPont under the trade name "Kapton". As the catalyst, an iron fluoride or iron oxide can be exemplified, inter alia FeF 2 or Fe 2 0 3 is preferred. Although the particle size of these catalysts is not particularly limited, it is generally preferable to use them in the form of powder having an average particle size of about 0.01 to 50 m, particularly about 0.01 to about 10 m.
上記カーボン源と触媒とは、 別々に又は相互に接触した形で反応炉内に入れら れる。 例えば、 フィルム形状のカーボン源を使用する場合は、 上記粉末状の触媒 をフィルムに均一に振りかけて反応炉内に入れる方法を例示でき、 粉末状の力一 ボン源を使用する場合は、 当該粉末力一ボン源と触媒粒子とを事前に乾式プレン ド又は湿式ブレンドして均一に混合した状態で反応炉に入れる方法を例示できる。 使用する反応炉としては、 種々のものが使用できるが、 一般には石英管、 アル ミナ管等を用いた真空炉が使用できる。  The carbon source and the catalyst are placed in a reactor separately or in contact with each other. For example, when a carbon source in the form of a film is used, a method in which the above powdery catalyst is uniformly sprinkled on a film and put into a reaction furnace can be exemplified, and when a powdery carbon source is used, the powdery catalyst is used. For example, a method in which a carbon source and catalyst particles are previously dry-blended or wet-blended and uniformly mixed and then placed in a reaction furnace can be exemplified. Although various reactors can be used, a vacuum furnace using a quartz tube, an alumina tube or the like can be generally used.
反応条件は、典型的には、上記のようにしてカーボン源と触媒を炉内に配置し、 炉内を不活性ガス雰囲気とし、 炉内の圧力を lPa〜200kPa、 好ましくは 5Pa〜 150kPaに設定し、 炉内温度を 600〜1500°C、 好ましくは 800〜1200 に設定し、 炉内を 0.5時間以上、 特に 0.5〜5時間程度加熱することにより、 本発明の炭素材 料を製造することができる。 The reaction conditions are typically such that the carbon source and the catalyst are placed in the furnace as described above, the furnace is set to an inert gas atmosphere, and the pressure in the furnace is set to lPa to 200 kPa, preferably 5 Pa to The carbon material of the present invention is manufactured by setting the furnace temperature to 150 kPa, setting the furnace temperature to 600 to 1500 ° C, preferably 800 to 1200, and heating the furnace for 0.5 hours or more, particularly 0.5 to 5 hours. can do.
本発明では、 上記方法で得られる生成物中には上記触媒由来の残渣物である鉄 化合物を含む場合もあるが、 この鉄化合物は本発明の炭素材料のガス吸蔵特性を 著しく損なうものではないので、 上記方法で得られる生成物をそのまま使用して もよい。  In the present invention, the product obtained by the above method may contain an iron compound which is a residue derived from the above catalyst, but this iron compound does not significantly impair the gas storage properties of the carbon material of the present invention. Therefore, the product obtained by the above method may be used as it is.
本発明の炭素材料からなるガス吸蔵材及びガス貯蔵方法  Gas storage material and gas storage method comprising carbon material of the present invention
上記本発明の炭素材料は、 ガスの吸蔵能力に優れている。 従って、 本発明は、 上記本発明の炭素材料からなるガス吸蔵材を提供するものでもある。  The carbon material of the present invention is excellent in gas storage capacity. Therefore, the present invention also provides a gas occluding material comprising the carbon material of the present invention.
本発明の炭素材料からなる炭素材料は、 室温で各種ガスに対する安定な吸蔵が 可能である。 本発明のガス吸蔵材で吸蔵できるガスとしては、 水素、 メタン、 ァ ルゴン、 窒素、 ネオン等を挙げることができる。 本発明のガス吸蔵材は、 上記ガ スを室温で安定して吸蔵できるという利点を有するので、 産業上の価値が極めて 高い。 特に、 本発明のガス吸蔵材は、 室温でも吸蔵能を有し、 例えば水素圧 1 0 MPaの場合、 室温で、 蔵材重量に対して 1重量%以上、 特に 3〜5重量%の水 素吸蔵量を示す。  The carbon material comprising the carbon material of the present invention can stably store various gases at room temperature. Examples of the gas that can be stored by the gas storage material of the present invention include hydrogen, methane, argon, nitrogen, neon, and the like. The gas occluding material of the present invention has an advantage that the gas can be stably occluded at room temperature, and therefore has extremely high industrial value. In particular, the gas occluding material of the present invention has an occluding ability even at room temperature. For example, at a hydrogen pressure of 10 MPa, at room temperature, 1% or more, particularly 3 to 5% by weight of hydrogen, Indicates the amount of occlusion.
本発明の炭素材料は、 各種ガスを安定に吸着することができる構造を多く有し ているため、 各種ガスを安定に吸蔵することができ、 特に水素のような臨界温度 が非常に低い気体を、 室温付近の温度 (例えば、 0 〜4 0 ) でも安定に吸蔵 できる。 特に本発明炭素材料は、 水素吸蔵材として有用である。  Since the carbon material of the present invention has many structures capable of stably adsorbing various gases, it can occlude various gases stably, and in particular, a gas having a very low critical temperature such as hydrogen. However, it can be stably stored even at a temperature around room temperature (for example, 0 to 40). In particular, the carbon material of the present invention is useful as a hydrogen storage material.
さらに、 本発明の炭素材料を高圧ガスボンベ容器に充填すれば、 同じ容積の高 圧ガスボンベ容器に貯蔵できるガス量以上のガスを貯蔵できるようにな.り、 単位 容積あたりのガス貯蔵量を向上できるようになる。  Further, by filling the carbon material of the present invention into a high-pressure gas cylinder container, it becomes possible to store more gas than can be stored in a high-pressure gas cylinder container of the same volume, and it is possible to improve the gas storage amount per unit volume. Become like
従って、 本発明は、 上記本発明の炭素材料を用いることを特徴とするガス貯蔵 方法、 特に水素貯蔵方法を提供するものでもある。  Therefore, the present invention also provides a gas storage method, particularly a hydrogen storage method, using the carbon material of the present invention.
本発明のガス吸蔵材を用いて上記ガスを吸蔵させるには、 種々の方法が採用で きるが、 一般的には、 例えば 0〜40 程度の温度において、 本発明炭素材料から なるガス吸蔵材を上記ガス雰囲気に晒せばよい。 ここで、 上記ガス雰囲気の圧力 としては、 0.03MPa以上であり、 好ましくは 0.2MPa〜50MPa、 より好ましくは 0.5MPa〜20MPaである。 Various methods can be employed to occlude the gas using the gas occlusion material of the present invention. Generally, for example, at a temperature of about 0 to 40, a gas occlusion material made of the carbon material of the present invention is used. What is necessary is just to expose to the said gas atmosphere. Here, the pressure of the above gas atmosphere Is not less than 0.03 MPa, preferably from 0.2 MPa to 50 MPa, more preferably from 0.5 MPa to 20 MPa.
本発明のガス貯蔵方法は、 従来の活性炭では室温吸蔵が困難であった水素等の ガスを室温でも良好に吸蔵できるという利点がある。 また、 本発明のガス貯蔵方 法は、 圧力変ィ匕のみでガスの出し入れができる点でも有利である。 即ち、 従来の ガスボンベと同じようにガスの出し入れができる 実施例  The gas storage method of the present invention has an advantage that a gas such as hydrogen, which has been difficult to occlude at room temperature with conventional activated carbon, can be occluded well even at room temperature. The gas storage method of the present invention is also advantageous in that gas can be taken in and out only by pressure change. That is, gas can be taken in and out in the same way as a conventional gas cylinder.
以下に実施例を掲げて本発明をより一層詳しく説明するが、 本発明はこれら実 施例に限定されるものではなぐ 本発明を逸脱することなく種々の変更が可能で ある。  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these Examples, and various modifications can be made without departing from the present invention.
尚、 実施例及び比較例において、 得られた炭素材料の各物性は、 前記した方法 に従って測定した。  In Examples and Comparative Examples, each physical property of the obtained carbon material was measured according to the method described above.
実施例 1  Example 1
1片の大きさが 60 mX 10mm X 10mmの PTFEフィルム 600片に FeF2紛 (粒径 500 m以下) 0.2gを均一に振りかけた後、 炉内に配置した。 炉は、 内径 50mm、 長さ 650mm、 肉厚 2.5mmの石英管を使用した。 炉内を 3回窒素置換した後、 5Pa に減圧し、 900°Cで 1時間炉内を加熱し、 炭素材料 0.7gを得た。 0.2 g of FeF 2 powder (particle diameter: 500 m or less) was uniformly sprinkled on 600 pieces of PTFE film having a size of 60 mX 10 mm X 10 mm, and then placed in a furnace. The furnace used was a quartz tube with an inner diameter of 50 mm, a length of 650 mm, and a wall thickness of 2.5 mm. After the inside of the furnace was replaced with nitrogen three times, the pressure was reduced to 5 Pa, and the inside of the furnace was heated at 900 ° C for 1 hour to obtain 0.7 g of a carbon material.
得られた炭素材料は、 S E M観察の結果、 炭素質は直径 20〜500nmのァモルフ ァス力一ポンファィバーからなるものであった。 得られたアモルファスカーボン ファイバーを主成分とする炭素材料の物性を表 1に示す。  As a result of SEM observation, the carbonaceous material obtained was composed of amorphous carbon with a diameter of 20 to 500 nm. Table 1 shows the physical properties of the obtained carbon material containing amorphous carbon fibers as a main component.
実施例 2  Example 2
粒径 10 X m以下の PTFE紛 10gと粒径 lO U m以下の Fe203紛 1 gをミルを用い て混合し、 混合物をアルミナ製容器に入れ、 炉内に配置した。 炉は、 実施例 1と 同じ石英管を使用した。 炉内を 3回アルゴン置換した後、 5Paに減圧し、 1200°C で 1時間炉内を加熱し、 炭素材料 2.1gを得た。 The particle size 10 X m or less of the PTFE powder 10g and the particle size lO U m following Fe 2 0 3 powder 1 g were mixed using a mill, the mixture was placed in an alumina container was placed in a furnace. The same quartz tube as in Example 1 was used for the furnace. After the inside of the furnace was replaced with argon three times, the pressure was reduced to 5 Pa, and the furnace was heated at 1200 ° C for 1 hour to obtain 2.1 g of a carbon material.
該炭素材料は、 S E M観察の結果、炭素質は直径 20〜200nmのアモルファス力 一ポン粒子からなるものであった。 得られたアモルファス力一ポン粒子を主成分 とする炭素材料の物性を表 1に示す。 実施例 3 As a result of SEM observation, the carbonaceous material was composed of amorphous carbon particles having a diameter of 20 to 200 nm. Table 1 shows the physical properties of the obtained carbon material mainly composed of amorphous force-pong particles. Example 3
100 mX 10mm X 10mmのポリイミドフィルム (デュポン社製、 商品名 「力プ トンフィルム」) 片 5gに、 紛1 §を均一に振りかけ、 炉内に配置した。 炉は、 実施例 1と同じ石英管を使用した。 炉内を 3回 He置換した後、 炉内圧力を 50Pa に設定し、 昇温速度 l °CZminで 900°Cまで昇温し、 9 0 0 °Cで 1時間炉内を加 熱し、 炭素材料 1.6 gを得た。 A 5 m piece of a 100 mX 10 mm X 10 mm polyimide film (manufactured by DuPont, trade name "Rockton Film") was sprinkled with 1 § of powder uniformly and placed in a furnace. The same quartz tube as in Example 1 was used for the furnace. After the inside of the furnace was replaced with He three times, the furnace pressure was set to 50 Pa, the temperature was raised to 900 ° C at a heating rate of l ° CZmin, and the furnace was heated at 900 ° C for 1 hour to produce a carbon material. 1.6 g were obtained.
該炭素材料は、 S EM観察の結果、 炭素質は、 直径 100〜200nmのァモルファ ス力一ボン粒子からなるものであった。 得られたアモルファスカーボン粒子を主 成分として含む炭素材料の物性を表 1に示す。  As a result of SEM observation, the carbonaceous material was composed of amorphous carbon particles having a diameter of 100 to 200 nm. Table 1 shows the physical properties of the carbon material containing the obtained amorphous carbon particles as a main component.
Figure imgf000014_0001
Figure imgf000014_0001
上記表 1における物性は、 いずれも前記 「本発明の炭素材料」 の項に記載した 方法により測定したものである。 従って、 表 1において 「真密度」、 「比表面積」、 「水素 Z炭素重量比」、 「細孔径 0.55nm以下のウルトラミクロ細孔の容積」、 「d 002」、 「積分強度比 (IaZlb)」、 及び 「ヒステリシスループの有無」 は、 それぞれ、 次のようにして測定した。 The physical properties in Table 1 above were all measured by the method described in the section “Carbon material of the present invention”. Therefore, in Table 1, the “true density”, “specific surface area”, “hydrogen-Z carbon weight ratio”, “volume of ultramicropores having pore diameters of 0.55 nm or less”, “d 002 "," Integrated intensity ratio (IaZlb) ", and" the presence or absence of a hysteresis loop "were measured as follows.
「真密度」 は、 前記ヘリウムを用いた重量法により測定した。  “True density” was measured by the gravimetric method using helium.
「比表面積」 は、 BET法により測定した。  "Specific surface area" was measured by the BET method.
「水素 Z炭素重量比」 は、 元素分析を行い、 元素分析結果から算出した。  “Hydrogen to carbon weight ratio” was calculated from the results of elemental analysis and elemental analysis.
「細孔径 0.55nm以下のウルトラミクロ細孔の容積」 は、 前記一 1 9 6 °Cでの 超高真空窒素吸着法に従い測定した。  The “volume of ultramicropores having a pore diameter of 0.55 nm or less” was measured according to the ultrahigh vacuum nitrogen adsorption method at 196 ° C. described above.
「d。。2」 は、 粉末 X線回折法 (入射 X線: CuKQ!)において、 ディフラクトメ 一夕一法により求められたものである。 “D. 2 ” is determined by the diffractometry method in powder X-ray diffraction (incident X-ray: CuKQ!).
「積分強度比 (IaZlb)」 は、 ラマン分光法で得られる l^Ocm—1から 1650cm— 1 にピーク中心をもつピークの積分強度(la) の、 1200cm— 1から 1500cm_1にピーク 中心をもつピークの積分強度 (lb) に対する積分強度比である。 "Integrated intensity ratio (IaZlb)" is the integrated intensity of a peak having a peak centered at l ^ Ocm- 1 from 1650Cm- 1 obtained by Raman spectroscopy (la), having a peak center from 1200Cm- 1 to 1500 cm _1 This is the ratio of the integrated intensity to the integrated intensity (lb) of the peak.
「ヒステリシスループの有無」 は、 液体窒素温度 (一 196°C)における窒素気体の 吸着等温線において、 相対圧 (即ち、 窒素圧力 (P)の、 — 196°Cにおける窒素飽和蒸 気圧 (Po)に対する比: PZPO)0.5以上の範囲で脱着側吸着量と吸着側吸着量との比 が 1.1以上であるヒステリシスループの有無を調べたものである。  The presence or absence of a hysteresis loop is defined as the relative pressure (ie, nitrogen pressure (P), — nitrogen saturation vapor pressure (Po) at 196 ° C) in the nitrogen gas adsorption isotherm at liquid nitrogen temperature (1 196 ° C). The ratio was determined by examining the presence or absence of a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side was 1.1 or more in the range of 0.5 or more.
試験例 1  Test example 1
前記実施例;!〜 3で製造した本発明炭素材料について、 容量法により、 25°C、 水素圧力 lOMPaで水素吸蔵量を評価した。  With respect to the carbon material of the present invention produced in the above examples;! To 3, the hydrogen storage capacity was evaluated by the volumetric method at 25 ° C and a hydrogen pressure of lOMPa.
比較のため、 活性炭 (物性:細孔径 2 n m以下のミクロ細孔の細孔容積 = 0.19ml/g、 doo^O^Onm. 炭素六角網面 1枚の平均面積 =0.93nm2:これら物性の測 定法は、 表 1の場合と同じである) を使用して、 同様に水素吸蔵量を評価した。 結果を表 2に示す。 表 2の評価基準は次の通りである: For comparison, activated carbon (physical properties: pore volume of micropores with a pore diameter of 2 nm or less = 0.19 ml / g, doo ^ O ^ Onm. Average area of one hexagonal carbon screen = 0.93 nm 2 : these physical properties The measurement method is the same as in Table 1), and the amount of hydrogen storage was similarly evaluated. Table 2 shows the results. The evaluation criteria in Table 2 are as follows:
〇:室温でも吸蔵材重量に対して 1重量%以上の水素吸蔵量であった。  〇: The hydrogen storage amount was 1% by weight or more based on the weight of the storage material even at room temperature.
X:室温では、 水素吸蔵は認められなかった。 表 2 X: No hydrogen absorption was observed at room temperature. Table 2
Figure imgf000016_0001
表 2から、 従来の活性炭では室温で水素吸蔵が認められないが、 本発明の炭素 材料は室温でも優れた水素吸蔵能力を有することが判る。
Figure imgf000016_0001
Table 2 shows that conventional activated carbon does not absorb hydrogen at room temperature, but that the carbon material of the present invention has excellent hydrogen storage ability even at room temperature.
試験例 2 サンプルの昇温脱離法による水素吸蔵特性評価  Test Example 2 Evaluation of hydrogen storage characteristics of sample by thermal desorption method
本発明のアモルファス炭素材及び活性炭 (比較) の水素吸蔵特性評価を昇温脱 離装置により行った。  The hydrogen storage characteristics of the amorphous carbon material of the present invention and the activated carbon (comparative) were evaluated using a thermal desorption apparatus.
本発明のアモルファス炭素材としては、 実施例 1で製造したものを使用した。 また、 上記活性炭としては、 市販品 (商品名 「Maxsorb」、 関西熱化学社製) を使 用した。  As the amorphous carbon material of the present invention, the one produced in Example 1 was used. A commercial product (trade name “Maxsorb”, manufactured by Kansai Thermal Chemical Co., Ltd.) was used as the activated carbon.
(1)昇温脱離法測定の手順  (1) Thermal desorption measurement procedure
a 前処理  a Pre-processing
① サンプルを試料管に入れ、 10_ 3Paまで減圧した後に 250DCまで昇温 し 1時間保持した。 ① sample was placed in a sample tube, and kept warm said 1 hour to 250 D C after the pressure was reduced to 10_ 3 Pa.
② 常温まで冷却し、 1気圧の水素を導入する。  ② Cool to room temperature and introduce 1 atm of hydrogen.
③ 水素の圧力を 1気圧に保ったまま、 一 165°C以下に冷却し 1時間保持 した。  (3) While maintaining the hydrogen pressure at 1 atm, it was cooled to below 165 ° C and maintained for 1 hour.
④ 冷却したまま 10一4 Paまで排気、 減圧し 1時間保持した。 ④ cooled remained evacuated to 10 one 4 Pa, and maintained under reduced pressure for 1 hour.
b 測定  b Measurement
① 3°CZ分の昇温速度で一 165°C (開始温度) 〜50°C (終了温度) まで昇 温し、 脱離してくる水素の量を測定した。  (1) The temperature was raised from 1 165 ° C (start temperature) to 50 ° C (end temperature) at a rate of 3 ° CZ, and the amount of desorbed hydrogen was measured.
②上記 aの前処理を繰り返した後に 5 Z分の昇温速度で一 165°C (開始 温度) 〜50°C (終了温度) まで昇温し、 脱離してくる水素の量を測定 した。 (2) After repeating the above pretreatment a, at a heating rate of 5 Z for 1 165 ° C (start Temperature) to 50 ° C (end temperature), and the amount of desorbed hydrogen was measured.
(2)昇温脱離法による各サンカレの水素吸蔵特性評価結果  (2) Evaluation of hydrogen storage characteristics of each Sankare by thermal desorption method
図 1〜図 4に昇温脱離法(TPD)を用いた各サンプルの水素吸蔵特性を示した。 図 1及び図 2は活性炭の水素吸蔵特性を示し、 図 3及び図 4は本発明のァモルフ ァス炭素材の水素吸蔵特性を示す。  Figures 1 to 4 show the hydrogen storage characteristics of each sample using thermal desorption (TPD). 1 and 2 show the hydrogen storage properties of activated carbon, and FIGS. 3 and 4 show the hydrogen storage properties of the amorphous carbon material of the present invention.
どのサンプルも一 25°C付近より高い温度領域でピークが検出されない状態が 25回 (測定時間で 5〜10分) 程度続いたときに測定を打ち切った。  In all samples, the measurement was stopped when the peak was not detected in the temperature range higher than about 25 ° C for about 25 times (5 to 10 minutes in measurement time).
図 1及び図 2に示すように、活性炭は、昇温速度が 5 7分から 3°CZ分と遅く なると、 その分水素の放出もゆっくりになって、 ピークが低くブロードになるも のの、どちらの昇温条件においても— 178 付近に単一のピークを持っていた。従 つて、 活性炭は吸着サイトが 1種類であると推測される。  As shown in Fig. 1 and Fig. 2, activated carbon has a slower heating rate from 57 minutes to 3 ° CZ, and the release of hydrogen is slower, resulting in a lower peak and a broader peak. A single peak was observed at around -178 even under the temperature increasing conditions. Therefore, it is assumed that activated carbon has only one kind of adsorption site.
一方、 図 3及び図 4に示すように、 本発明のアモルファス炭素材は、 昇温条件 にかかわらず— 160°C以下の低温部に 2つのピークを持つており、そのピーク位置 やピークの形状は昇温条件によって著しい変化を示した。 また、 昇温速度が 3 Z分の時には— 50°C付近に弱いブロードなピークが見られた。 これらの観測結果 は、 本発明のアモルファス炭素材が少なくとも 2種類の吸着サイトを持ち、 各々 の吸着サイトが水素吸着に際して複雑な挙動を取つていることを示している。 試験例 3  On the other hand, as shown in FIGS. 3 and 4, the amorphous carbon material of the present invention has two peaks in a low temperature region of −160 ° C. or lower regardless of the heating conditions, and the peak position and the shape of the peaks Showed remarkable changes depending on the heating conditions. When the heating rate was 3 Z minutes, a weak broad peak was observed at around -50 ° C. These observations indicate that the amorphous carbon material of the present invention has at least two types of adsorption sites, and each of the adsorption sites has a complicated behavior upon hydrogen adsorption. Test example 3
実施例 1に記載の方法で調製した本発明のアモルファス炭素材料のサンプルを、 10_ 3Pa以下の減圧下で 150°C、 2時間保持した後に、 _196°Cにおける超高真空 窒素吸着測定 (SWPA法) したところ、 図 5に示すグラフが得られた。 Samples of amorphous carbon material of the present invention prepared by the method described in Example 1, 10_ 3 Pa after holding the following under vacuum at 0.99 ° C, 2 hours, ultra-high vacuum nitrogen adsorption measurements at _196 ° C (SWPA Method), the graph shown in Fig. 5 was obtained.
ここで、 上記の S PA とは、 超広圧力範囲吸着測定 (Super Wide Pressure Adsorption) を指す。 一般に用いられている高分解能吸着 (High Resolution Adsorption=HRA)ではウルトラミク口細孔は検出できない。これに対して、 SWPA は、 HRA測定装置の装置内圧力 ( 1 0— 2 P a程度) の 1 / 1 0 0 0の圧力又は それよりも低い圧力、即ち、 1 0— 5 P a又はそれより低い圧力を使用することに より、 ウルトラミク口細孔の測定が可能であるように改良した測定方法である。 このグラフを、 解析したところ、 0.55nm以下のウルトラミクロ細孔の容積が 0.06ml/gであることが示された。 Here, the above-mentioned SPA indicates super wide pressure adsorption. In general, high-resolution adsorption (HRA) cannot detect the pores of the Ultramic mouth. In contrast, SWPA is 1/1 0 0 0 pressure or lower pressure than that of the device the pressure of the HRA measuring apparatus (about 1 0- 2 P a), i.e., 1 0- 5 P a or By using a lower pressure, the measurement method is improved so that the measurement of the pores of the Ultramic mouth can be performed. Analysis of this graph showed that the volume of ultramicropores of 0.55 nm or less was It was shown to be 0.06 ml / g.
尚、 図 5のグラフにおいて、横軸の Pobsは、 測定した窒素圧を示し、 Pvapは 測定温度における窒素の蒸気圧を示す。 産業上の利用可能性 本発明の炭素材料は、 各種ガスを安定に吸蔵することができ、 特に水素のよう な臨界温度が非常に低い気体を室温でも安定に吸蔵できる。 従って、 産業上の価 値が極めて高い。  In the graph of FIG. 5, Pobs on the horizontal axis indicates the measured nitrogen pressure, and Pvap indicates the nitrogen vapor pressure at the measurement temperature. INDUSTRIAL APPLICABILITY The carbon material of the present invention can stably occlude various gases, and in particular, stably occlude gases such as hydrogen having a very low critical temperature even at room temperature. Therefore, the industrial value is extremely high.

Claims

真密度が 2.1〜3.1 g / c m3であり、 True density of 2.1~3.1 g / cm 3,
元素分析による水素/炭素重量比が 0.013以下であり、  The hydrogen / carbon weight ratio by elemental analysis is 0.013 or less,
― 1 9 6 °Cでの超高真空窒素吸着法により測定した場合に、 直径 0.6nm以下のウルトラミク口細孔の容積が 0.05ml/g以上であり、 2種類以上の水素吸着サイトを持ち、  -Ultra-micro vacuum nitrogen adsorption method at 196 ° C has a volume of pores of Ultramiku with a diameter of 0.6 nm or less of 0.05 ml / g or more and has two or more hydrogen adsorption sites. ,
粉末 X線回折法 (λ請射 X線: CuKa)において、 ディフラクトメ一タ- 法により求められる d Q 0 2が 4.30 A以上であり、 In powder X-ray diffraction method (λ-irradiated X-ray: CuKa), d Q 02 obtained by the diffractometer method is 4.30 A or more,
アモルファスカーボン粒子、のアモルファスカーボンファイバ一又は: れらの混合物から構成されているアモルファス構造を有するナノスケ ルカーボンを含有することを特徴とする囲炭素材料。 ラマン分光法で得られる 1540cm_ 1から 1650cm_ 1にピーク中心をもつピ —クの積分強度 (la) の、 1200cm—1から 1500cm- 1にピーク中心をもつ ピークの積分強度 (lb) に対する積分強度比 (Ia/Ib)が 1以下であるこ とを特徴とする請求項 1に記載の炭素材料。 比表面積が 1000m2/g以上である請求項 1に記載の炭素材料。 液体窒素温度 (一196°C)における窒素気体の吸着等温線において、相対圧 (即ち、 窒素圧力 (P)の、 _196 における窒素飽和蒸気圧 (Po)に対する比 : P/Po)0.5以上の範囲で脱着側吸着量と吸着側吸着量との比が 1.1以上 であるヒステリシスループを示すことを特徴とする請求項 1に記載の炭 素材料。 請求項 1に記載の炭素材料からなるガス P及蔵材。 請求項 1に記載の炭素材料からなる水素吸蔵材。 請求項 5に記載のガス吸蔵材を使用してガスを貯蔵することを特徴とす るガス貯蔵方法。 請求項 6に記載の水素吸蔵材を使用して水素を貯蔵することを特徴とす る水素貯蔵方法。 A carbon material comprising amorphous carbon particles, amorphous carbon fibers, or nanoscale carbon having an amorphous structure composed of a mixture thereof. The integrated intensity ratio to the integral intensity of a peak having a peak centered at 1 (lb) - peak with a peak centered at 1650Cm_ 1 from 1540Cm_ 1 obtained by Raman spectroscopy - the integrated intensity of the click of (la), 1500 cm from 1200Cm- 1 2. The carbon material according to claim 1, wherein (Ia / Ib) is 1 or less. 2. The carbon material according to claim 1, having a specific surface area of 1000 m 2 / g or more. In the adsorption isotherm of nitrogen gas at liquid nitrogen temperature (1 196 ° C), the relative pressure (ie, the ratio of nitrogen pressure (P) to nitrogen saturated vapor pressure (Po) at _196: P / Po) is 0.5 or more 2. The carbon material according to claim 1, wherein the carbon material exhibits a hysteresis loop in which the ratio between the adsorption amount on the desorption side and the adsorption amount on the adsorption side is 1.1 or more. A gas P and storage material comprising the carbon material according to claim 1. A hydrogen storage material comprising the carbon material according to claim 1. A gas storage method using the gas storage material according to claim 5 to store gas. A hydrogen storage method comprising storing hydrogen using the hydrogen storage material according to claim 6.
PCT/JP2002/007708 2001-08-06 2002-07-29 Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material WO2003014018A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-238343 2001-08-06
JP2001238343 2001-08-06
JP2002-96408 2002-03-29
JP2002096408 2002-03-29

Publications (1)

Publication Number Publication Date
WO2003014018A1 true WO2003014018A1 (en) 2003-02-20

Family

ID=26620051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007708 WO2003014018A1 (en) 2001-08-06 2002-07-29 Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material

Country Status (1)

Country Link
WO (1) WO2003014018A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3253826A4 (en) * 2015-02-03 2018-07-25 Monolith Materials, Inc. Carbon black combustable gas separation
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043613A1 (en) * 1998-02-27 1999-09-02 Osaka Gas Company Limited Process for producing carbon nanotube
WO1999056870A1 (en) * 1998-05-01 1999-11-11 Osaka Gas Company Limited Gas-occluding material and method for occluding gas
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043613A1 (en) * 1998-02-27 1999-09-02 Osaka Gas Company Limited Process for producing carbon nanotube
WO1999056870A1 (en) * 1998-05-01 1999-11-11 Osaka Gas Company Limited Gas-occluding material and method for occluding gas
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHANSSON E. ET AL.: "Hydrogen in carbon nanostructures", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 330-332, 17 January 2002 (2002-01-17), pages 670 - 675, XP004313355 *
WENLOU WANG ET AL.: "Amorphous-carbon nanotube: The growth intermediates of graphitic carbon nanotube?", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 97, no. 14, 1997, pages 814 - 824, XP002922501 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203692B2 (en) 2014-01-30 2021-12-21 Monolith Materials, Inc. Plasma gas throat assembly and method
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11591477B2 (en) 2014-01-30 2023-02-28 Monolith Materials, Inc. System for high temperature chemical processing
US11866589B2 (en) 2014-01-30 2024-01-09 Monolith Materials, Inc. System for high temperature chemical processing
US12144099B2 (en) 2014-01-31 2024-11-12 Monolith Materials, Inc. Plasma torch design
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11998886B2 (en) 2015-02-03 2024-06-04 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US12286540B2 (en) 2015-02-03 2025-04-29 Monolith Materials, Inc. Carbon black generating system
EP3253826A4 (en) * 2015-02-03 2018-07-25 Monolith Materials, Inc. Carbon black combustable gas separation
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US12250764B2 (en) 2015-07-29 2025-03-11 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US12012515B2 (en) 2016-04-29 2024-06-18 Monolith Materials, Inc. Torch stinger method and apparatus
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene

Similar Documents

Publication Publication Date Title
WO2003014018A1 (en) Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material
Ahn et al. Hydrogen desorption and adsorption measurements on graphite nanofibers
Poirier et al. Storage of hydrogen on single-walled carbon nanotubes and other carbon structures
Lithoxoos et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study
Wickramaratne et al. Importance of small micropores in CO 2 capture by phenolic resin-based activated carbon spheres
Park et al. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes
Reddy et al. Synthesis and hydrogen storage properties of different types of boron nitride nanostructures
Sreńscek-Nazzal et al. Modification of commercial activated carbons for CO₂ adsorption
Alam et al. Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons
Chen et al. Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption
Armandi et al. Role of microporosity in hydrogen adsorption on templated nanoporous carbons
Balahmar et al. Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO 2 and H 2) uptake properties
JP2008542184A (en) Method for producing nanoporous carbide-derived carbon with increased gas storage capacity
Zhong et al. A solution-phase synthesis method to prepare Pd-doped carbon aerogels for hydrogen storage
Rufino et al. The effect of particle size on the formation and structure of carbide-derived carbon on β-SiC nanoparticles by reaction with chlorine
Huang et al. From fish scales to highly porous N-doped carbon: a low cost material solution for CO 2 capture
Haas et al. Tailoring singlewalled carbon nanotubes for hydrogen storage
Sudibandriyo et al. Adsorption capacity and its dynamic behavior of the hydrogen storage on carbon nanotubes
JP2000103612A (en) Hydrogen absorbing carbon
Tamilarasan et al. Effect of partial exfoliation in carbon dioxide adsorption-desorption properties of carbon nanotubes
JP2013112572A (en) Hydrogen occlusion method, and hydrogen occluding material
Li et al. Preparation and characterization of ordered mesoporous carbons on SBA-15 template
JP2003292316A (en) Metal carrying carbon material, gas storage material using the same, gas storage method using the gas storage material, and electrode material for fuel cell
Noroozi et al. Increasing the Hydrogen Storage Capacity of Single-Walled Carbon Nanotube (SWNT) Through Facile Impregnation by Tio2, Zro2, and Zno Nanocatalysts
Puthusseri et al. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

Kind code of ref document: A1

Designated state(s): CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载