+

WO2003014099A1 - Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen - Google Patents

Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen Download PDF

Info

Publication number
WO2003014099A1
WO2003014099A1 PCT/EP2002/008133 EP0208133W WO03014099A1 WO 2003014099 A1 WO2003014099 A1 WO 2003014099A1 EP 0208133 W EP0208133 W EP 0208133W WO 03014099 A1 WO03014099 A1 WO 03014099A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reaction
absorption
oxygen
hydrocarbons
Prior art date
Application number
PCT/EP2002/008133
Other languages
English (en)
French (fr)
Inventor
Günter Schümmer
Christoph Zurlo
Helmut Woynar
Markus Weisbeck
Gerhard Wegener
Kaspar Hallenberger
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to EP02794512A priority Critical patent/EP1414811A1/de
Publication of WO2003014099A1 publication Critical patent/WO2003014099A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for the catalytic partial oxidation of hydrocarbons in the presence of oxygen and at least one reducing agent, characterized in that the reaction mixture is reacted by a
  • compositions used among others contain nanoscale gold particles.
  • alkene oxides such as propene oxide
  • solid adsorbents such as activated carbons or zeolites can be used.
  • US-B-4,692,535 discloses the separation of high molecular weight poly (propene oxide) from propene oxide by contact with activated carbon.
  • US-B-4, 187,287, US-B-5,352,807 and EP-AI-0 736 528 disclose the separation of various organic contaminants from alkene oxides, such as propene oxide and butene oxide, by treatment with solid activated carbons.
  • the preferred process parameters are at temperatures well above 200 ° C. and reaction pressures> 15 bar.
  • ethene oxide is formed with a selectivity of 80-85%.
  • the extreme process parameters with high temperatures and high pressures almost exclusively produce carbon dioxide and water as a result of the preferred total ethene oxidation.
  • the epoxy is then separated from the feed together with the carbon dioxide by absorption in water.
  • the partial oxidation with an oxygen-hydrogen mixture works in a temperature range of 140 to 210 ° C and is therefore significantly lower than the partial oxidation described, in which only oxygen and no additional reducing agent, such as hydrogen, is used.
  • the product range includes, in addition to the epoxide as the main product, many other partial oxidation products such as aldehydes, ketones, acids, esters, ethers in low concentrations. These by-products can lower the pH in aqueous systems and thus reduce the stability of the epoxide (see Y. Pocker et al., J. Am. Chem. Soc. 1980, 102, 7725-7732: A Nuclear Magnetic Resonance Kinetic and Product Study of the Ring Opening of Propylene Oxide). Therefore, there was a prejudice that the absorption in water in the presence of acidic by-products could not be technically realized.
  • the object of the present invention is to provide a process for the continuous synthesis of epoxides by partial catalytic gas phase oxidation of hydrocarbons in the presence of oxygen and a reducing agent and subsequent continuous quantitative isolation of the partial oxidation products by absorption (de) absorption in / out Water.
  • Another object of the present invention is to provide a method in which a high total alkene conversion is achieved.
  • Another object of the present invention is to provide a method in which the partially oxidized hydrocarbon can be isolated as quantitatively and continuously as possible.
  • the object is achieved according to the invention by a process for the catalytic partial oxidation of hydrocarbons in the presence of oxygen and at least one reducing agent, characterized in that the reaction mixture is comprised of a catalyst-containing layer and a downstream water-containing absorption layer in which the partially oxidized hydrocarbons Substances are absorbed, conducts.
  • hydrocarbon is understood to mean unsaturated or saturated hydrocarbons such as olefins or alkanes, which can also contain heteroatoms such as N, O, P, S or halogens.
  • the organic component to be oxidized can be acyclic, monocyclic, bicyclic or polycyclic and can be monoolefinic, diolefinic or polyolefinic.
  • Double bonds are conjugated and non-conjugated.
  • Hydrocarbons are preferably oxidized, from which such oxidation products are formed whose partial pressure is low enough to keep the product from the catalyst remove.
  • Unsaturated and saturated hydrocarbons having 2 to 20, preferably 2 to 12, hydrocarbon atoms, in particular ethene, ethane, propene, propane, isobutane, isobutylene, 1-butene, 2-butene, cis-2-butene, trans-2-butene, are preferred.
  • the oxygen can be used in various forms, e.g. molecular oxygen, air and / or nitrogen oxide. Molecular oxygen is preferred.
  • Hydrogen is particularly suitable as a reducing agent. It can be any known
  • Hydrogen source are used, e.g. pure hydrogen, cracker hydrogen, synthesis gas or hydrogen from dehydrogenation of hydrocarbons and alcohols.
  • the hydrogen can also be generated in situ in an upstream reactor, e.g. by dehydrating propane or isobutane or alcohols such as isobutanol.
  • the hydrogen can also be used as a complex-bound species, e.g. Catalyst-hydrogen complex to be introduced into the reaction system.
  • a diluent gas such as nitrogen, helium, argon, methane, carbon dioxide, can optionally be added to the essential starting gases described above.
  • Carbon monoxide or similar, predominantly inert gases are used. Mixtures of the inert components described can also be used. The addition of inert components is often favorable for transporting the heat released by this exothermic oxidation reaction and from a safety point of view.
  • gaseous dilution components such as nitrogen, helium, argon, methane and possibly water vapor and carbon dioxide are preferably used. Water vapor and carbon dioxide are not completely inert, but they often have a positive effect at low concentrations ( ⁇ 2% by volume) of the total reaction gases.
  • the relative molar ratio of hydrocarbon, oxygen, reducing agent (especially hydrogen) and optionally a diluent gas can be varied over a wide range.
  • Oxygen in the range of 1-30 mol% is preferred, particularly preferably 5-
  • hydrocarbon based on the oxygen used (on a molar basis), is preferably used.
  • the hydrocarbon content is typically greater than 1 mol% and less than 96 mol%.
  • Hydrocarbon contents in the range from 5 to 90 mol% are preferably used, particularly preferably from 20 to 85 mol%.
  • the molar proportion of reducing agent (especially hydrogen) - in relation to the total number of moles of hydrocarbon, oxygen, reducing agent and diluent gas - can be varied within a wide range.
  • Typical reducing agent contents are greater than 0.1 mol%, preferably 2-80 mol%, particularly preferably 3-70 mol%.
  • compositions containing noble metal particles with a diameter of less than 51 nm on a carrier material containing metal oxide and silicon oxide are advantageously used as catalysts.
  • Gold and / or silver are preferably used as precious metal particles.
  • the gold particles preferably have a diameter in the range from 0.3 to 10 nm, preferably 0.9 to 9 nm and particularly preferably 1.0 to 8 nm.
  • the silver particles preferably have a diameter in the range from 0.5 to 50 nm, preferably 0.5 to 20 nm and particularly preferably 0.5 to 15 nm.
  • the catalyst support materials used include the hybrid support materials mentioned in DE-Al-199 59 525 and DE-Al-100 23 717.
  • Organic-inorganic hybrid materials in the sense of the invention are organically modified glasses which are preferably formed in sol-gel processes via hydrolysis and condensation reactions of soluble precursor compounds and contain terminal and / or bridging organic groups which are not hydrolyzable in the network. These materials and their production are described in DE-Al-199 59 525,
  • Suitable for generating gold particles on the carrier materials are those described in the documents US Pat. No. 5,623,090, WO-98/00413-A1, WO-98/00415-A1, WO-
  • 98/00414-A1 disclose methods such as deposition precipitation (precipitation-precipitation), coprecipitation, impregnation in solution, incipient wetness, colloid process, sputtera, CVD (chemical vapor deposition), PVD (physical vapor deposition) and micro-emulsion.
  • the support materials can also be promoters of metals from group 5 of the periodic table according to IUPAC (1985), such as vanadium, niobium and tantalum, group 3, preferably yttrium, group 4, preferably zircon, group 8, preferably Fe, of Group 15, preferably antimony, of group 13, preferably aluminum, boron, thallium and metals of group 14, preferably germanium, and of groups 1 and 2, preferably sodium and / or cesium and / or magnesium and / or calcium.
  • the additional metals (promoters) are often in oxidic form.
  • the noble metal-containing compositions according to the invention can be used at temperatures> 10 ° C., preferably in the range from 80-230 ° C., particularly preferably in the range from 120-210 ° C.
  • steam can be generated as an energy source in coupled systems. If the process is adeptly managed, the steam can be used, for example, to process the product.
  • reaction pressures of> 1 bar are preferred, particularly preferably 2-30 bar.
  • the catalyst load can be varied over a wide range. Catalyst loads of 0.5-100 l of gas (feed gas or recycle gas) per ml of catalyst and hour are preferably used, and catalyst loads of 2-50 l of gas per ml of catalyst and hour are particularly preferably selected.
  • reaction mixture surprisingly succeeds even in the presence of the acidic by-products by selective absorption in water without decomposition or by-products of these absorption products.
  • Water is used as the preferred absorbent.
  • the absorbent can also contain additives which, for example, increase the solubility for the partially oxidized hydrocarbon (solubilizer), or which prevent the further reaction of the partial oxidation products with water, possibly catalyzed by acidic or basic-reacting by-products (stabilizers).
  • additives in the “solubilizer” function include functionalized hydrocarbons, such as lower alcohols, ketones and ethers.
  • Suitable additives in the "stabilizer" function are, for example, bases, acids, buffer systems or salts.
  • raising the pH to, for example, a constant 7-9 results in a significant increase in epoxy stability in the aqueous environment in the presence of the reaction-typical by-products such as aldehydes and / or carboxylic acids.
  • the hydrocarbon oxide absorption in water is promoted with increasing pressures and / or falling temperatures, and reduced by heating and / or lowering the pressure.
  • the hydrocarbon oxide absorption is advantageously carried out at reaction pressure (e.g. at 5-30 bar).
  • the subsequent hydrocarbon oxide desorption then advantageously takes place at reduced pressure.
  • a pressure difference between absorption and desorption of ⁇ 30 bar, particularly preferably of ⁇ 25 bar, is preferably set.
  • FIG. 1 A flow diagram of an overall process for the partial oxidation of propene to propene oxide in the presence of oxygen and hydrogen with continuous absorption (de) absorption in / from water is shown in FIG. 1.
  • Fig. 1 PO absorption / desorption in / from water
  • a reaction mixture is contained, for example consisting of 1.5% by volume of propene oxide, 0.1% by volume of propionaldehyde, 0.1% by volume of acetaldehyde, 1 vol.% Acetone, 0.02 vol.% Acetic acid and 0.05 vol.% Propylene glycol.
  • the propene oxide can be isolated almost quantitatively and continuously.
  • the organic partial oxidation products from the reaction gas stream are absorbed quantitatively in water.
  • the entire reaction gas stream is advantageously passed under reaction pressure from below into an absorber column with a high number of plates, in which water trickles downward in countercurrent.
  • the gas stream depleted of partial oxidation products is preferably re-reacted, possibly after further purification, e.g. Drying, returned to the reactor, for example by means of a fan.
  • This gas stream consists essentially of unreacted hydrocarbons, reducing agents, oxygen and possibly a diluent gas.
  • An absorption column is advantageously operated in countercurrent, ie that the reaction gas mixture flows from bottom to top and that the water trickles in countercurrent from top to bottom.
  • This countercurrent absorption takes place continuously and preferably under reaction pressure.
  • a mode of operation in which the absorber pressure is 3-20 bar and the absorption temperature is 15-50 ° C. is particularly preferred.
  • Cooling medium for example, cooling water or brine of, for example, 20 ° C. is used in countercurrent to the operating medium.
  • the water enriched with propene oxide and other partial oxidation products then reaches, for example, a reservoir under reaction pressure, which serves as a compensation vessel for a pump that promotes the contents of the reservoir against pressure maintenance in an area where the system pressure (0.5-10 bar ) is smaller than in the reactor and absorber.
  • the low boilers such as propene oxide, acetaldehyde, propionaldehyde and acetone are partially desorbed here.
  • the desorption is preferably increased further by heating the loaded water mixture by means of a heat exchanger. Temperatures of 60 to 150 ° C are suitable here.
  • the propene oxide can be concentrated directly in the amplifier section above the desorber column.
  • the heat of reaction in the partial oxidation is advantageously used in the desorption part of the plant, for example when the reactor is operated as a circulation evaporator for the desorption column.
  • propene is particularly preferably oxidized to propene oxide.
  • a metal tube reactor with an inner diameter of 15 mm and a length of 100 cm was used, which was tempered by means of an oil thermostat.
  • the reactor was supplied with a set of four mass flow controllers (hydrocarbon, oxygen, hydrogen, nitrogen) with feed gases.
  • a gas stream hereinafter always referred to as the standard gas composition, was selected to carry out the oxidation reactions: H 2 / O 2 / C 3 H 6 : 60/10/30% by volume.
  • the active substance load was 10 1 gas / (g active substance x h).
  • propene was used as the hydrocarbon.
  • the catalyst productivity when propene is used as the hydrocarbon is 400 g propene oxide / (kg active ingredient x h).
  • the reaction gas stream was then cooled to 35 ° C. by means of a heat exchanger and downstream
  • Counterflow absorber metal tube, 20 mm inner diameter and 100 cm length; filled with 3x3 wire mesh rings conducted under system pressure. Water (800 g / h) trickles downwards towards the gas flow. The water loaded with organics enters a compensation reservoir. From there, the mixture enters a heat exchanger, is heated to 95 ° C and is behind you
  • Pressure holding valve in the desorber (20 mm inner diameter; 100 cm long; filled with 3x3 wire mesh) filled with normal pressure relaxed to 100 ° C.
  • the reflux ratio is 5-20, for example.
  • the low boiler fraction consisting of, inter alia, propene oxide, propionaldehyde, acetone, acetaldehyde reaches the top of the column, condenses and is condensed in the receiver cooled to 5 ° C.
  • reaction gases were analyzed by gas chromatography behind the reactor (sample 1) and above the absorber head (sample 2) (a combined FID / TCD method in which three capillary columns are run through).
  • the water loaded with organic matter is analyzed in front of the reservoir (sample 3) and in the bottom of the deodorant column (sample 4) by means of gas chromatography (FID; FF AP column).
  • FID gas chromatography
  • Catalyst preparation This example first describes the preparation of a powdery catalytically active organic-inorganic hybrid material, consisting of a silicon and titanium-containing, organic-inorganic hybrid material with free silane hydrogen units, which contains gold particles (0.04% by weight) via an incipient -Wetness was proven. The finely powdered catalyst material is then converted into extrudates.
  • the catalytically active organic-inorganic hybrid material thus produced contains 0.04% by weight of gold.
  • organic-inorganic hybrid material synthesized in accordance with the above catalyst preparation, were mixed with 5 g of silicon dioxide sol (Levasil, Bayer, 300 m 2 / g, 30% by weight of SiO 2 in water) and 1.0 g of SiO 2 powder (Ultrasil VN3, Degussa) mixed intensively for 2 h.
  • the resulting plastic mass was mixed with 2 g of sodium silicate solution (Aldrich), homogenized intensively for 5 min and then in one
  • Extrusion press formed into 2 mm strands.
  • the strands produced in this way were first dried at room temperature for 8 hours and then at 120 ° C. for 5 hours and then tempered at 400 ° C. for 4 hours under a nitrogen atmosphere.
  • the mechanically stable molded body has a high lateral compressive strength.
  • the annealed 2x2 mm molded bodies were used as a catalyst in the gas phase epoxidation of propene with molecular oxygen in the presence of hydrogen.
  • the reaction gas (analysis at the reactor outlet; before adsorber; sample 1) contains 1.5 vol.% Propene oxide, 2.5 vol.% Water and 0.05 vol.% By-products (including acetaldehyde, propionaldehyde, acetone, Acetic acid).
  • the reaction gas was passed from below into a countercurrent absorber at reaction pressure (3 bar), which is completely filled with wire mesh rings (3 x 3 mm). Unabsorbed gas is expanded to normal pressure at the top of the absorber and analyzed by gas chromatography. Propene oxide and the by-product partial oxidation product concentrations are below the detection limit. The absorption of the condensable organics is almost quantitative.
  • the water loaded with partial oxidation products is heated to 95 ° C.
  • the template cooled to 5 ° C consists of 70 vol .-% organics and 30 vol .-% water.
  • the organics in turn consist of> 94% by volume of propene oxide, 2% by volume of propionaldehyde, 1% by volume of acetaldehyde and traces of acetone and butanedione.
  • the column bottom is free of propene oxide and acetaldehyde as well as propionaldehyde. Only traces of glycol are detectable.
  • Example 2 is analogous to Example 1, but the reflux ratio in the desorption column is 1:15.
  • a temperature of 40 ° C forms at the top of the column.
  • the template cooled to 5 ° C consists of 78 vol .-% organics and 22 vol .-% water.
  • the organics in turn consist of 94% by volume of propene oxide, 2% by volume of propionaldehyde, 1% by volume of acetaldehyde and traces of acetone and butanedione.
  • the column bottom is free of propene oxide and acetaldehyde as well as propionaldehyde. Only traces of glycol and carboxylic acids are detectable.
  • Example 3 is analogous to example 1, but the system pressure for the reactor and absorber is 5 bar.
  • a temperature of 37 ° C. forms at the top of the desorber column.
  • the template cooled to 5 ° C consists of 90 vol .-% organics and 10 vol .-% water.
  • the organics in turn consist of 92% by volume of propene oxide, 2% by volume of propionaldehyde, 1.1% by volume of acetaldehyde and traces of acetone and butanedione.
  • the column bottom is free of propene oxide and acet- as well
  • a total of 93% by volume of the propene oxide present in the reaction gas can be isolated in a single pass.
  • Example 4 proceeds analogously to Example 1, but the unreacted feed gas after the absorber is fed into the reactor again by means of a fan.
  • reaction gas After passing through the absorber, the reaction gas has the following volume composition behind the head of the desorber: 58% H, 8.5% O 2 , 27.5% C 3 H 6 , 0.2% water, 0.005% propene oxide, 0.001% acetaldehyde , This gas was reintroduced into the reactor using a fan.
  • the reaction gas (analysis at the reactor outlet; before adsorber; sample 1) contains 1.4 vol.% Propene oxide, 2.1 vol.% Water and 0.05 vol.% By-products (including acetaldehyde, propionaldehyde, acetone, Acetic acid).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur katalytischen partiellen Oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und weingstens einem Reduktionsmittel, dadurch gekennzeichnet, dass man das Reationsgemisch durch eine Katalysator enthaltende Schicht und eine nachgeschaltete wässrige Absorptionsmittel enthaltende Schicht, in der die partiell oxdierten Kohlenwasserstoffe quantitativ absorbiert werden, leitet.

Description

Nerfahren zur Herstellung und Isolierung von Alkenoxiden aus Alkenen
Die Erfindung betrifft ein Verfahren zur katalytischen partiellen Oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und wenigstens einem Reduk- tionsmittel, dadurch gekennzeichnet, dass man das Reaktionsgemisch durch eine
Katalysator enthaltende Schicht und eine nachgeschaltete wässrige Absorptionsmittel enthaltende Schicht, in der die partiell oxidierten Kohlenwasserstoffe quantitativ absorbiert werden, leitet.
Die katalytische Gasphasen-Partialoxidation von Kohlenwasserstoffen in Gegenwart von molekularem Sauerstoff und einem Reduktionsmittel ist bekannt. (DE-Al- 199 59 525, DE-Al-100 23 717, US-B-5 623 090, WO-98/00413-A1, WO- 98/00415-A1, WO-98/00414-A1, WO-00/59632-A1, EP-Al-0827779, WO- 99/43431-A1 welche gleichzeitig für die Zwecke der US-Patentpraxis als Referenz in die vorliegende Anmeldung aufgenommen werden). Als Katalysatoren werden
Zusammensetzungen eingesetzt die u.a. nanoskalige Goldpartikel enthalten.
Methoden zur selektiven Trennung der Partialoxidationsprodukte von den Edukten und den Nebenprodukten aus oben genannter Partialoxidation in Gegenwart von Reduktionsmitteln werden j edoch nicht offenbart.
Methoden zur Reinigung von Alkenoxiden, wie Adsorption, Absorption, Kondensation usw. sind prinzipiell bekannt.
Zur Reinigung von Alkenoxiden, wie beispielsweise Propenoxid, können beispielsweise feste Adsorptionsmittel wie Aktivkohlen oder Zeolithe eingesetzt werden.
US-B-4,692,535 offenbart beispielsweise die Abtrennung von hoch molekularen Poly(propenoxid) von Propenoxid durch Kontakt an Aktivkohlen. US-B-4, 187,287, US-B-5,352,807 und EP-AI -0 736 528 offenbaren die Abtrennung von verschiedenen organischen Verunreinigungen von Alkenoxiden, wie Propenoxid und Butenoxid, durch Behandlung mit festen Aktivkohlen.
Eine selektive Adsorption von Partialoxidationsprodukten aus katalytischen Gas- phasen-Direkt-Oxidationsreaktionen mit molekularem Sauerstoff und einem Reduktionsmittel wird aber nicht beschrieben.
Ebenfalls ist die selektive und quantitative Abtrennung von Partialoxidations- produkten aus Gemischen, bestehend aus nicht-kondensierbaren Gasen, wie Kohlenwasserstoffen, Sauerstoff, Wasserstoff, Verdünnungsgas, und auf der anderen Seite Wasser, Wasserdampf und vor allem sauer reagierenden Nebenprodukten, wie u.a. Carbonsäuren und/oder Aldehyden, nicht beschrieben.
Bei kommerziellen Verfahren zur Synthese von Ethylenoxid aus Ethen und molekularem Sauerstoff ohne Verwendung eines Reduktionsmittels liegen die bevorzugten Prozessparameter bei Temperaturen deutlich über 200°C und Reaktionsdrücken > 15 bar. Als Partialoxidationsprodukt entsteht Ethenoxid mit einer Selektivität von 80-85 %. Als nahezu einzige Nebenprodukte entstehen bei den extremen Prozessparametern mit hohen Temperaturen und hohen Drücken nahezu ausschließlich Kohlendioxid und Wasser als Folge der bevorzugten Ethen-Totaloxidation. Das Epoxid wird zusammen mit dem Kohlendioxid anschließend durch Absorption in Wasser vom Feed getrennt.
Bei der Ethen-Direktoxidation entstehen somit neben dem Epoxid und Kohlendioxid kaum weitere partiell oxidierte Kohlenwasserstoffe, wie u.a. Aldehyde, Ketone, Säuren, Ester oder Ether, die den pH- Wert des Absorptionswassers nachhaltig verringern können und somit die Stabilität des Epoxides in Wasser stark herabsenken. Aus katalytischen Gasphasen-Direkt-Oxidationsreaktionen mit molekularem Sauerstoff und einem Reduktionsmittel wird eine selektive Absorption von Epoxiden - wie Propenoxid - nicht beschrieben.
Die Partialoxidation mit einem Sauerstoff- Wasserstoff-Gemisch arbeitet hingegen in einem Temperaturbereich von 140 bis 210°C und liegt damit deutlich niedriger, als die beschriebenen Partialoxidation, bei denen nur Sauerstoff und kein zusätzliches Reduktionsmittel, wie Wasserstoff, verwendet wird.
Die niedrige Reaktionstemperatur von « 210°C in Verfahren mit Sauerstoff und
Reduktionsmittel hat zur Folge, dass nahezu keine Totaloxidation stattfindet und daher nur Spuren von Kohlendioxid gebildet werden. Anstelle von Kohlendioxid weist das Produktspektrum aber neben dem Epoxid als Hauptprodukt aber viele weitere Partialoxidationsprodukte wie Aldehyde, Ketone, Säuren, Ester, Ether in geringen Konzentrationen auf. Diese Nebenprodukte können in wässrigen Systemen den pH- Wert senken und verringern somit die Stabilität des Epoxides (see Y.Pocker et al., J. Am. Chem. Soc, 1980, 102, 7725-7732: A Nuclear Magnetic Resonance Kinetic and Product Study of the Ring Opening of Propylene Oxide). Daher bestand ein Vorurteil, dass sich die Absorption in Wasser in Gegenwart von sauer reagie- renden Nebenprodukten technisch nicht realisieren lasse.
Weiterhin erreichen alle publizierten Anmeldungen zur selektiven Oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und einem Reduktionsmittel nur einen kleinen Kohlenwasserstoffumsatz von kleiner 10 %. Alle Verfahren arbeiten daher bei einer technischen Realisierung mit sehr großen Kreislaufgasmengen. Die
Isolierung von sehr kleinen Volumina an Wertprodukten (z.B. 2 Vol.-% Kohlenwasserstoffoxid) aus großen Gasmengen (z.B. 98 Nol.-% Gas bestehend aus Kohlenwasserstoff, Wasserstoff, Sauerstoff, Wasser, Acetaldehyd, Propionaldehyd, Aceton, Essigsäure, Formaldehyd, ..) ist sehr aufwendig. Die Wirtschaftlichkeit der beschriebenen selektiven Oxidationen wird daher entscheidend von den Kosten der
Wertproduktisolierung bestimmt. Die Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur kontinuierlichen Synthese von Epoxiden durch partielle katalytische Gasphasen- oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und einem Reduk- tionsmittel und nachfolgender kontinuierlichen quantitativen Isolierung der Partial- oxidationsprodukte durch Ab(De)sorption in/aus Wasser.
Eine weitere Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens, bei dem ein hoher Gesamtumsatz an Alken erzielt wird.
Eine weitere Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens, bei dem der partiell oxidierte Kohlenwasserstoff möglichst quantitativ und kontinuierlich isoliert werden kann.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur katalytischen partiellen Oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und wenigstens einem Reduktionsmittel, dadurch gekennzeichnet, dass man das Reaktionsgemisch durch eine Katalysator enthaltende Schicht und eine nachgeschaltete Wasser-enthaltende Absorptionsschicht, in der die partiell oxidierten Kohlenwasser- Stoffe absorbiert werden, leitet.
Unter dem Begriff Kohlenwasserstoff werden ungesättigte oder gesättigte Kohlenwasserstoffe wie Olefine oder Alkane verstanden, die auch Heteroatome wie N, O, P, S oder Halogene enthalten können. Die zu oxidierende organische Komponente kann azyklisch, monozyklisch, bizyklisch oder polyzyklisch und kann monoole- finisch, diolefinisch oder polyolefmisch sein.
Bei Kohlenwasserstoffen mit zwei oder mehreren Doppelbindungen können die
Doppelbindungen konjugiert und nichtkonjugiert vorliegen. Bevorzugt werden Kohlenwasserstoffe oxidiert, aus denen solche Oxidationsprodukte gebildet werden, deren Partialdruck niedrig genug liegt, um das Produkt ständig vom Katalysator zu entfernen. Bevorzugt sind ungesättigte und gesättigte Kohlenwasserstoffe mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenwasserstoffatomen, insbesondere Ethen, Ethan, Propen, Propan, Isobutan, Isobutylen, 1 -Buten, 2-Buten, cis-2-Buten, trans-2-Buten, 1,3-Butadien, Pentene, Pentan, 1 -Hexen, Hexene, Hexan, Hexadien, Cyclohexen, Benzol.
Der Sauerstoff kann in verschiedenster Form eingesetzt werden, z.B. molekularer Sauerstoff, Luft und/oder Stickstoffoxid. Molekularer Sauerstoff wird bevorzugt.
Als Reduktionsmittel eignet sich insbesondere Wasserstoff. Es kann jede bekannte
Wasserstoffquelle genutzt werden, wie z.B. reiner Wasserstoff, Cracker- Wasserstoff, Synthesegas oder Wasserstoff aus Dehydrierung von Kohlenwasserstoffen und Alkoholen. In einer anderen Ausführungsform der Erfindung kann der Wasserstoff auch in einem vorgeschalteten Reaktor in situ erzeugt werden, z.B. durch Dehydrie- rung von Propan oder Isobutan oder Alkoholen wie Isobutanol. Der Wasserstoff kann auch als komplexgebundene Spezies, z.B. Katalysator- Wasserstoffkomplex, in das Reaktionssystem eingeführt werden.
Zu den essentiell notwendigen oben beschriebenen Eduktgasen kann optional auch ein Verdünnungsgas, wie Stickstoff, Helium, Argon, Methan, Kohlendioxid,
Kohlenmonoxid oder ähnliche, sich überwiegend inert verhaltende Gase, eingesetzt werden. Auch Mischungen der beschriebenen Inertkomponenten können eingesetzt werden. Der Inertkomponentenzusatz ist zum Transport der freiwerdenden Wärme dieser exothermen Oxidationsreaktion und aus sicherheitstechnischen Gesichts- punkten oft günstig. Wird der erfindungsgemäße Prozess in der Gasphase durchgeführt, werden bevorzugt gasförmige Verdünnungskomponenten wie z.B. Stickstoff, Helium, Argon, Methan und evtl. Wasserdampf und Kohlendioxid verwendet. Wasserdampf und Kohlendioxid sind zwar nicht völlig inert, bewirken aber bei kleinen Konzentrationen (< 2 Vol.-%) der gesamten Reaktionsgase häufig einen positiven Effekt. Das relative molare Verhältnis von Kohlenwasserstoff, Sauerstoff, Reduktionsmittel (insbesondere Wasserstoff) und optional einem Verdünnungsgas ist in weiten Bereichen variierbar.
Bevorzugt wird Sauerstoff im Bereich von 1-30 Mol-%, besonders bevorzugt 5-
25 Mol-% eingesetzt. (Bezogen auf das zugeführte Gas (feed-Gas) oder auf das Kreislaufgas.)
Bevorzugt wird ein Uberschuss von Kohlenwasserstoff, bezogen auf eingesetzten Sauerstoff (auf molarer Basis) eingesetzt. Der Kohlenwasserstoffgehalt liegt typischerweise größer 1 Mol-% und kleiner als 96 Mol-%. Bevorzugt werden Kohlenwasserstoffgehalte im Bereich von 5 bis 90 Mol-%, besonders bevorzugt von 20 bis 85 Mol-% eingesetzt. Der molare Reduktionsmittelanteil (insbesondere Wasserstoffanteil) - in Bezug auf die Gesamtmolzahl aus Kohlenwasserstoff, Sauer- stoff, Reduktionsmittel und Verdünnungsgas - kann in weiten Bereichen variiert werden. Typische Reduktionsmittelgehalte liegen bei größer als 0,1 Mol-%, bevorzugt bei 2-80 Mol-%, besonders bevorzugt bei 3-70 Mol-%.
Als Katalysatoren werden vorteilhaft Zusammensetzungen enthaltend Edelmetall- partikel mit einem Durchmesser kleiner 51 nm auf einem Metalloxid- und Siliziumoxid enthaltendem Trägermaterial eingesetzt.
Bevorzugt werden Gold und/oder Silber als Edelmetallpartikel eingesetzt. Bevorzugt besitzen die Goldpartikel einen Durchmesser im Bereich von 0,3 bis 10 nm, bevorzugt 0,9 bis 9 nm und besonders bevorzugt 1,0 bis 8 nm. Bevorzugt besitzen die Silberpartikel einen Durchmesser im Bereich von 0,5 bis 50 nm, bevorzugt 0,5 bis 20 nm und besonders bevorzugt 0,5 bis 15 nm.
Als Katalysator-Trägermaterialien können u.a. die in DE-Al-199 59 525 und DE- Al-100 23 717 genannten Hybridträgermaterialien, verwendet werden. Organisch-anorganische Hybridmaterialien im Sinne der Erfindung sind organisch modifizierte Gläser, die bevorzugt in Sol-Gel-Prozessen über Hydrolyse- und Kondensationsreaktionen löslicher Vorläuferverbindungen entstehen und im Netzwerk nicht hydrolysierbare terminale und/oder verbrückende organische Gruppen enthalten. Diese Materialien und deren Herstellung ist u.a. in DE-Al-199 59 525,
DE-Al-100 23 717 offenbart, welche hiermit für die Zwecke der US-Patentpraxis als Referenz in die vorliegende Anmeldung aufgenommen werden.
Zur Generierung von Goldpartikel auf den Trägermaterialien eignen sich die in den Dokumenten US-A-5 623 090, WO-98/00413-A1, WO-98/00415-A1, WO-
98/00414-A1, WO-00/59632-A1, EP-Al-0827779 und WO-99/43431-A1 offenbarten Verfahren, wie Abscheidung-Ausfällung (Deposition-Precipitation), Copreci- pitation, Imprägnierung in Lösung, Incipient-wetness, Kolloid- Verfahren, Sputtera, CVD (chemical vapor deposition), PVD (physical vapor deposition) und Mikro- emulsion.
Die Methoden Incipient Wetness, Lösungsmittelimprägnierung und eine Kombination aus Imprägnierung der Trägermaterialien mit Edelmetallprecursom und sofort anschließender Trocknung durch Sprüh- oder Wirbelbetttechnologie werden in den Anmeldungen DE-Al-199 59 525, DE-Al-100 23 717 offenbart und sind besonders vorteilhaft.
Die Trägermaterialien können als Promotoren auch Anteile von Metallen aus der Gruppe 5 des Periodensystems nach IUPAC (1985), wie Vanadium, Niob und Tantal, der Gruppe 3, bevorzugt Yttrium, der Gruppe 4, bevorzugt Zirkon, der Gruppe 8, bevorzugt Fe, der Gruppe 15, bevorzugt Antimon, der Gruppe 13, bevorzugt Aluminium, Bor, Thallium und Metalle der Gruppe 14, bevorzugt Germanium, und der Gruppen 1 und 2, bevorzugt Natrium und/oder Cäsium und/oder Magnesium und/oder Calcium enthalten. Die zusätzlichen Metalle (Promotoren) liegen häufig in oxidischer Form vor. Die erfindungsgemäßen edelmetallhaltigen Zusammensetzungen können bei Temperaturen > 10°C, bevorzugt im Bereich von 80-230°C, besonders bevorzugt im Bereich von 120-210°C eingesetzt werden. Bei den hohen Temperaturen kann in gekoppelten Anlagen Dampf als Energieträger erzeugt werden. Bei geschickter Ver- fahrensführung kann der Dampf z.B. zur Produktaufarbeitung genutzt werden.
Vorteilhaft wird die Oxidationsreaktion bei erhöhten Reaktionsdrücken durchgeführt. Bevorzugt sind Reaktionsdrücke von > 1 bar, besonders bevorzugt 2-30 bar.
Die Katalysatorbelastung kann in weiten Bereichen variiert werden. Bevorzugt werden Katalysatorbelastungen von 0,5-100 1 Gas (feed-Gas oder Kreislaufgas) pro ml Katalysator und Stunde verwendet, besonders bevorzugt werden Katalysatorbelastungen von 2-50 1 Gas pro ml Katalysator und Stunde gewählt.
Bei der katalytischen Oxidation von Kohlenwasserstoffen in Gegenwart von Wasserstoff entsteht in der Regel Wasser als Koppelprodukt zum entsprechenden selektiven Oxidationsprodukt.
Die kontinuierliche Trennung der bei der Direkt-Oxidation in Gegenwart von Sauer- stoff und einem Reduktionsmittel entstehenden Partialoxidationsprodukte vom
Reaktionsgemisch gelingt überraschend auch in Gegenwart von den sauer reagierenden Nebenprodukten durch selektive Absorption in Wasser ohne Zersetzung bzw. Folgeprodukte dieser Absorptionsprodukte.
Als bevorzugtes Absorptionsmittel wird Wasser verwendet.
In einigen Fällen kann das Absorptionsmittel auch Zusätze enthalten, die beispielsweise die Löslichkeit für den partiell oxidierten Kohlenwasserstoff erhöhen (Lösungsvermittler), oder die die Weiterreaktion von den Partialoxidationsprodukten mit Wasser, evtl. katalysiert durch sauer oder basisch reagierende Nebenprodukte, verhindern (Stabilisatoren). Geeignete Zusätze in der Funktion „Lösungsvermittler" sind u.a. fiinktionalisierte Kohlenwasserstoffe, wie niedere Alkohole, Ketone und Ether.
Geeignete Zusätze in der Funktion „Stabilisator" sind beispielsweise Basen, Säuren, Puffersysteme oder Salze. In einigen Fällen bewirkt die Anhebung des pH- Wertes auf z.B. konstant 7-9 eine deutliche Erhöhung der Epoxid-Stabilität im wäßrigen Milieu in Gegenwart von den reaktionstypischen Nebenprodukten wie Aldehyde und/oder Carbonsäuren.
Die Kohlenwasserstoffoxid-Absorption in Wasser wird mit steigenden Drücken und/oder fallenden Temperaturen begünstigt, und durch Erwärmung und/oder Druckerniedrigung verringert.
Die Kohlenwasserstoffoxid- Absorption erfolgt vorteilhaft bei Reaktionsdruck (z.B. bei 5-30 bar). Die anschliessende Kohlenwasserstoffoxid-Desorption erfolgt anschließend vorteilhaft bei verringertem Druck. Aus wirtschaftlichen Gründen muss dabei ein Kompromiss zwischen leichter Kohlenwasserstoffoxid-Desorption bei geringen Drücken und Kosten für die anschließende Gaskomprimierung gefunden werden. Vorzugsweise wird ein Druckunterschied zwischen Absorption und Desorp- tion von < 30 bar, besonders bevorzugt von < 25 bar eingestellt.
Ein Fließbild eines Gesamtverfahrens für die Partialoxidation von Propen zu Propenoxid in Gegenwart von Sauerstoff und Wasserstoff mit kontinuierlicher Ab(De)- sorption in/aus Wasser ist in Figur 1 dargestellt. (Fig. 1 : PO-Absorbtion/Desorption in/aus Wasser)
Hierbei steht 1 für Feed, 2 für Reaktor, 3 für Wärmetauscher, 4 für Absorber, 5 für Ventilator, 6 für Reservoir, 7 für Wärmetauscher, 8 für Desorber, 9 für Verstärkerteil, 10 für Vorlage, 11 für Frischwasser und 12 für Nebenproduktausschleusung. Bei der katalytischen Partialoxidation von Propen mit einem Sauerstoff- Wasserstoff- Gemisch wird ein Reaktionsgemisch enthalten, beispielsweise bestehend aus l,5 Vol.-% Propenoxid, 0,1 Vol.-% Propionaldehyd, 0,1 Vol.-% Acetaldehyd, 0,1 Vol.-% Aceton, 0,02 Vol.-% Essigsäure und 0,05 Vol.-% Propylenglykol. Nach Figur 1 kann das Propenoxid nahezu quantitativ und kontinuierlich isoliert werden.
Die organischen Partialoxidationsprodukte aus dem Reaktionsgasstrom werden quantitativ in Wasser absorbiert. Vorteilhaft wird der gesamte Reaktionsgasstrom unter Reaktionsdruck von unten in eine Absorberkolonne mit hoher Bodenzahl geleitet, bei der Wasser im Gegenstrom von oben nach unten rieselt.
Der von Partialoxidationsprodukten abgereicherte Gasstrom wird vorzugsweise zur erneuten Reaktion eventuell nach einer weiteren Reinigung, z.B. Trocknung, in den Reaktor beispielsweise mittels eines Ventilators zurückgeführt. Dieser Gasstrom besteht im wesentlichen aus nicht umgesetztem Kohlenwasserstoffen, Reduktionsmittel, Sauerstoff und evtl. einem Verdünnungsgas. Bei Verwendung eines Ventilator mit seinen bewegten Teilen ist prinzipiell immer mit einer leicht erhöhten Explosionsgefahr zu rechnen. Die Explosionsgefahr im Verdichter konnte in einigen Fällen durch Zudosierung von kleinen Mengen Wasserdampf verringert werden .
Durch diese Kreislauffahrweise mit regelmäßiger Abtrennung der Reaktionsprodukte können wesentlich erhöhte Gesamtumsätze erreicht werden. Die Aufkonzentrierung der Reaktionsprodukte durch Absorption in Wasser senkt den Aufarbeitungsaufwand zur Kohlenwasserstoffisolierung deutlich.
Vorteilhaft wird eine Absoφtionskolonne im Gegenstrom betrieben, d.h., dass das Reaktionsgasgemisch von unten nach oben, und das das Wasser im Gegenstrom von oben nach unten rieselt. Diese Gegenstromabsorption erfolgt kontinuierlich und bevorzugt unter Reaktionsdruck. Besonders bevorzugt ist eine Fahrweise, bei der der Absorberdruck 3-20 bar und die Absorptionstemperatur 15-50°C beträgt. Als Kühlmedium wird beispielsweise Kühlwasser oder Sole von beispielsweise 20°C im Gegenstrom zum Betriebsmedium verwendet.
Das mit Propenoxid und weiteren Partialoxidationsprodukten angereicherte Wasser gelangt anschließend beispielsweise in ein unter Reaktionsdruck stehendes Reservoir, welches als Ausgleichsgefäß für eine Pumpe dient, die den Inhalt des Reservoirs gegen eine Druckhaltung in einen Bereich fördert, bei dem der Systemdruck (0,5-10 bar) kleiner ist, als im Reaktor und Absorber. Hier desorbieren partiell die Leichtsieder, wie Propenoxid, Acetaldehyd, Propionaldehyd und Aceton. Bevorzugt wird die Desoφtion noch weiter erhöht, indem das beladene Wassergemisch durch einen Wärmetauscher erwärmt wird. Hier sind Temperaturen von 60 bis 150°C geeignet. Die Aufkonzentrierung des Propenoxids gelingt in manchen Fällen direkt im Verstärkerteil oberhalb der Desorberkolonne.
Die Isolierung von Propenoxid von weiteren leichtflüchtigen Partialoxidationsprodukten erfolgt in einer nachgeschalteten Feindestillation.
Die Reaktionswärme bei der partiellen Oxidation wird vorteilhaft in dem Anlagenteil Desorption genutzt, beispielsweise bei Betrieb des Reaktors als Umlaufverdampfers für die Desoφtionskolonne.
Besonders bevorzugt wird in dem erfindungsgemäßen Verfahren Propen zu Propenoxid oxidiert.
Die charakteristischen Eigenschaften der vorliegenden Erfindung werden an Hand von Testreaktionen in den folgenden Beispielen veranschaulicht. Beispiele
Vorschrift zum Test der kontinuierlichen Absorption von katalytisch hergestelltem Roh-Propenoxid und Nebenprodukten in Wasser mit anschließender Desorption (Testvorschrift)
Es wurde ein Metallrohrreaktor mit 15 mm Innendurchmesser und 100 cm Länge eingesetzt, welcher mittels eines Olthermostaten temperiert wurde. Der Reaktor wurde mit einem Satz von vier Massendurchflussregler (Kohlenwasserstoff, Sauer- stoff, Wasserstoff, Stickstoff) mit Eduktgasen versorgt. Zur Durchführung der Oxi- dationsreaktionen wurde ein Gasstrom, nachfolgend immer als Standard-Gaszusammensetzung bezeichnet, ausgewählt: H2 / O2 / C3H6 : 60 / 10 / 30 Vol.-%.
Zur Reaktion wurden 60 g Formköφer mit einem Wirkstoffanteil von 20 % (2x2 mm
Extrudate) bei 165°C und 3 bar vorgelegt. Die Wirkstoffbelastung lag bei 10 1 Gas/(g Wirkstoff x h). Als Kohlenwasserstoff wurde beispielsweise Propen eingesetzt. Die Katalysatoφroduktivität liegt bei Verwendung von Propen als Kohlenwasserstoff bei 400 g Propenoxid/(kg Wirkstoff x h). Der Reaktionsgasstrom wurde anschließend mittels Wärmetauscher auf 35°C gekühlt und in einen nachgeschalteten
Gegenstromabsorber (Metallrohr, 20 mm Innendurchmesser und 100 cm Länge; gefüllt mit 3x3 Maschendrahtringen) unter Systemdruck geleitet. Wasser (800 g/h) rieselt dem Gasstrom von oben nach unten entgegen. Das mit Organika beladene Wasser gelangt in ein Ausgleichsreservoir. Von dort aus gelangt das Gemisch in einen Wärmetauscher, wird hier auf 95°C aufgeheizt und wird hinter einem
Druckhalteventil seitlich in den auf 100°C temperierten Desorber (20 mm Innendurchmesser; 100 cm lang; gefüllt mit 3x3 Maschendrahtrinen) auf Normaldruck entspannt. Das Rücklaufverhältnis beträgt beispielhaft 5-20. Die Leichtsiederfraktion bestehend aus u.a. Propenoxid, Propionaldehyd, Aceton, Acetaldehyd gelangt zum Kolonnenkopf, kondensiert und wird in der auf 5°C gekühlten Vorlage kondensiert.
Die Reaktionsgase wurden gaschromatographisch hinter dem Reaktor (Probe 1) und oberhalb des Absorberkopfes (Probe 2) analysiert (eine kombinierte FID/WLD- Methode, bei der drei Kapillarsäulen durchlaufen werden). Das mit Organik beladene Wasser wird vor dem Reservoir (Probe 3) und im Sumpf der Desoφtionskolonne (Probe 4) mittels Gaschromatographie analysiert (FID; FF AP-Säule). Der Inhalt der gekühlten Vorlage wird ebenfalls mittels FID gaschromatographisch analysiert
(Probe 5). (FID = Flamm-Ionisation-Detektor; WLD = Wärme-Leitfähigkeits- Detektor.)
Katalysatorherstellung Dieses Beispiel beschreibt zunächst die Präparation eines pulverförmigen katalytisch aktiven organisch-anorganischen Hybridmaterials, bestehend aus einem Silizium- und Titan-haltigen, organisch-anorganischen Hybridmaterial mit freien Silanwasser- stoffeinheiten, welches mit Goldteilchen (0,04 Gew.-%) über Incipient-Wetness belegt wurde. Anschließend wird das feinpulverige Katalysatormaterial in Extrudate überfuhrt.
184,29 g Methyltrimethoxysilan (1,35 mol) und 25,24 g Triethoxysilan (153,6 mmol) werden vorgelegt. 44,79 g p-Toluolsulfonsäure (0,1 n) werden hinzugefügt und anschließend mit 17,14 g Tetrapropoxytitan, gelöst in 40 g Ethanol, versetzt. Nach einer Alterungszeit von 12 h wurde das Gel zwei mal mit je 200 ml Hexan gewaschen, 2 h bei RT und 8 Stunden bei 120°C unter Luft getrocknet.
10,1 g getrocknetes Sol-Gel-Material wurde mit 5 g einer 0,16 %igen Lösung von
HAuCl4 x H2O in Methanol unter Rühren imprägniert (Incipient Wetness), bei RT im Luftstrom getrocknet, dann 8 h bei 120 °C unter Luft und anschließend 5 h bei 400°C unter Stickstoffatmosphäre getempert. Das so hergestellte katalytisch aktive organisch-anorganische Hybridmataerial enthält 0,04 Gew.-% Gold.
Extrudatbildung
8,5 g organisch-anorganisches Hybridmaterial, synthetisiert gemäß obiger Katalysatorherstellung wurden mit 5 g Siliziumdioxidsol (Levasil, Bayer, 300 m2/g, 30 Gew.-% SiO2 in Wasser) und 1,0 g SiO2-Pulver (Ultrasil VN3, Degussa) 2 h lang intensiv vermischt. Die erhaltene plastische Masse wurde mit 2 g Natrium- silicatlösung (Aldrich) versetzt, 5 min intensiv homogenisiert und dann in einer
Strangpresse zu 2 mm-Strängen verformt. Die so hergestellten Stränge wurden zunächst 8 h bei Raumtemperatur und dann 5 h bei 120°C getrocknet und anschließend 4 h unter Stickstoffatmosphäre bei 400°C getempert. Der mechanisch stabile Formköφer hat eine hohe Seitendruckfestigkeit.
Die getemperten 2x2 mm Formköφer wurden als Katalysator in der Gasphasen- Epoxidation von Propen mit molekularem Sauerstoff in Gegenwart von Wasserstoff verwendet.
Beispiel 1
Das Reaktionsgas (Analyse am Reaktorausgang; vor Adsorber; Probe 1) enthält am Reaktorausgang 1,5 Vol.-% Propenoxid, 2,5 Vol.-% Wasser und 0,05 Vol.-% Nebenprodukte (u.a. Acetaldehyd, Propionaldehyd, Aceton, Essigsäure). Das Reaktionsgas wurde bei Reaktionsdruck (3 bar) von unten in einen Gegenstrom- absorber geleitet, der mit Maschendrahtringen (3 x 3 mm) vollständig gefüllt ist. Nicht absorbiertes Gas wird am Kopf des Absorbers auf Normaldruck entspannt und gaschromatographisch analysiert. Propenoxid- und die als Nebenprodukt entstehende Partialoxidationsprodukt-Konzentrationen liegen hier unterhalb der Nachweisgrenze. Die Absoφtion der kondensierbaren Organika verläuft nahezu quantitativ. Das mit Partialoxidationsprodukten beladene Wasser wird in einem Wärmetauscher auf 95 °C aufgeheizt und in die Desoφtionskolonne (in seitlicher Eintrittsstelle hat die Desoφtionskolonne 100°C) entspannt. Bei einem Rücklaufverhältnis von 1 : 10 bildet sich am Kolonnenkopf eine Temperatur von 45°C aus. Die auf 5°C gekühlte Vorlage besteht aus 70 Vol.-% Organika und 30 Vol.-% Wasser. Die Organika besteht seinerseits aus > 94 Vol.-% Propenoxid, 2 Vol.-% Propionaldehyd, 1 Vol.-% Acetaldehyd und Spuren aus Aceton und Butandion. Der Kolonnensumpf ist frei von Propenoxid und Acet- sowie Propionaldehyd. Lediglich Spuren an Glykol sind nachweisbar.
Insgesamt kann in einem Single pass > 95 Vol.-% des im Reaktionsgas befindliche Propenoxid isoliert werden.
Beispiel 2
Beispiel 2 ist analog Beispiel 1, aber das Rücklaufverhältnis in der Desoφtionskolonne beträgt 1:15.
Bei einem RücklaufVerhältnis von 1: 15 bildet sich am Kolonnenkopf eine Tempe- ratur von 40°C aus. Die auf 5°C gekühlte Vorlage besteht aus 78 Vol.-% Organika und 22 Vol.-% Wasser. Die Organika besteht seinerseits aus 94 Vol.-% Propenoxid, 2 Vol.-% Propionaldehyd, 1 Vol.-% Acetaldehyd und Spuren aus Aceton und Butandion. Der Kolonnensumpf ist frei von Propenoxid und Acet- sowie Propionaldehyd. Lediglich Spuren an Glykol und Carbonsäuren sind nachweisbar.
Insgesamt kann in einem Single pass 94 Vol.-% des im Reaktionsgas befindliche Propenoxid isoliert werden. Beispiel 3
Beispiel 3 verläuft analog Beispiel 1, aber der Systemdruck für Reaktor und Absorber beträgt 5 bar.
Bei einem Rücklauf erhältnis von 1: 10 bildet sich am Kolonnenkopf des Desorbers eine Temperatur von 37°C aus. Die auf 5°C gekühlte Vorlage besteht aus 90 Vol.-% Organika und 10 Vol.-% Wasser. Die Organika besteht seinerseits aus 92 Vol.-% Propenoxid, 2 Vol.-% Propionaldehyd, 1,1 Vol.-% Acetaldehyd und Spuren aus Aceton und Butandion. Der Kolonnensumpf ist frei von Propenoxid und Acet- sowie
Propionaldehyd. Lediglich Spuren an Glykol und Carbonsäuren sind nachweisbar.
Insgesamt kann in einem single pass 93 Vol.-% des im Reaktionsgas befindliche Propenoxid isoliert werden.
Beispiel 4
Beispiel 4 verläuft analog Beispiel 1, aber das nicht umgesetzte Feedgas nach dem Absorber wird erneut mittels eines Ventilators in den Reaktor eingespeist.
Das Reaktionsgas hat nach Durchlaufen des Absorbers hinter dem Kopf des Desorbers folgende Volumen-Zusammensetzung: 58 % H , 8,5 % O2, 27,5 % C3H6, 0,2 % Wasser, 0,005 % Propenoxid, 0,001 % Acetaldehyd. Dieses Gas wurde mittels eines Ventilators erneut in den Reaktor eingeleitet.
Das Reaktionsgas (Analyse am Reaktorausgang; vor Adsorber; Probe 1) enthält am Reaktorausgang 1,4 Vol.-% Propenoxid, 2,1 Vol.-% Wasser und 0,05 Vol.-% Nebenprodukte (u.a. Acetaldehyd, Propionaldehyd, Aceton, Essigsäure).

Claims

Patentansprüche
1. Verfahren zur katalytischen partiellen Oxidation von Kohlenwasserstoffen in Gegenwart von Sauerstoff und wenigstens einem Reduktionsmittel, dadurch gekennzeichnet, dass man das Reaktionsgemisch durch eine Katalysator enthaltende Schicht und eine nachgeschaltete wässrige Ab so tionsmittel enthaltende Schicht, in der die partiell oxidierten Kohlenwasserstoffe quantitativ absorbiert werden, leitet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nach der Ab- soφtion der partiell oxidierten Kohlenwasserstoffe das Reaktionsgas in die Reaktion zurückfuhrt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man die Absoφtion des partiell oxidierten Kohlenwasserstoffes in Gegenwart von nicht-kondensierbaren Gasen wie Sauerstoff und Wasserstoff durchführt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die bei der Reaktion erzeugten Wärme bei der Aufarbeitung, bestehend u.a. aus Absoφ- tion in Wasser und Desoφtion aus Wasser integriert genutzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man als Absoφtionsmittel Wasser einsetzt.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet dass man den pH- Wert des Wassers mit Basen und/oder Puffersystemen konstant im Bereich von 4-9 hält.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die absorbierten Partialoxidationsprodukte mittels Desoφtionskolonne in
Leicht- und Schwersieder trennt. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Desoφtion unter teilweiser Druckentspannung und erhöhten Temperaturen im Bereich von 70-150°C erfolgt.
PCT/EP2002/008133 2001-08-02 2002-07-22 Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen WO2003014099A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02794512A EP1414811A1 (de) 2001-08-02 2002-07-22 Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10137826A DE10137826A1 (de) 2001-08-02 2001-08-02 Verfahren zur Herstellung und Isolierung von Alkenoxiden aus Alkenen
DE10137826.2 2001-08-02

Publications (1)

Publication Number Publication Date
WO2003014099A1 true WO2003014099A1 (de) 2003-02-20

Family

ID=7694084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008133 WO2003014099A1 (de) 2001-08-02 2002-07-22 Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen

Country Status (5)

Country Link
US (1) US20030031624A1 (de)
EP (1) EP1414811A1 (de)
DE (1) DE10137826A1 (de)
TW (1) TW548273B (de)
WO (1) WO2003014099A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137784A1 (de) * 2001-08-02 2003-02-13 Bayer Ag Verfahren zur Herstellung von Alkenoxiden aus Alkenen
JP5336468B2 (ja) * 2007-04-05 2013-11-06 ダウ グローバル テクノロジーズ エルエルシー オレフィンオキシド生成物流れの分離と統合されたヒドロ酸化法
US7649102B2 (en) * 2008-03-28 2010-01-19 Lyondell Chemical Technology, L.P. Propylene oxide process
DE102008028760B9 (de) * 2008-06-17 2010-09-30 Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Verfahren zur Abtrennung von NOx aus einem epoxidhaltigen Gasstrom
EP2304454A4 (de) * 2008-07-11 2017-11-08 University of Cape Town Magnetometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577443A (en) * 1968-11-12 1971-05-04 Atlantic Richfield Co Separation of olefins from epoxides
US4692535A (en) * 1986-12-22 1987-09-08 Atlantic Richfield Company Purification of propylene oxide
EP0601273A1 (de) * 1992-12-10 1994-06-15 The Dow Chemical Company Reinigung von Propylenoxid
US5352807A (en) * 1992-02-20 1994-10-04 Arco Chemical Technology, L.P. Propylene oxide purification
US5493035A (en) * 1995-03-24 1996-02-20 Arco Chemical Technology, L.P. Propylene oxide purification
JPH08283253A (ja) * 1995-04-07 1996-10-29 Mitsui Toatsu Chem Inc プロピレンオキサイドの精製方法
WO2000055148A1 (en) * 1999-03-16 2000-09-21 Shell Internationale Research Maatschappij B.V. Process for the purification of propylene oxide

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1039745B (it) * 1975-07-08 1979-12-10 Sir Soc Italiana Resine Spa Procedimento per la purificazione di eilende ossido
US5187287A (en) * 1992-02-20 1993-02-16 Arco Chemical Technology, L.P. Lower alkylene oxide purification
JP2615432B2 (ja) * 1994-10-28 1997-05-28 工業技術院長 金−酸化チタン含有触媒による炭化水素の部分酸化方法
US5932750A (en) * 1996-03-21 1999-08-03 Agency Of Industrial Science And Technology Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
US6323351B1 (en) * 1997-06-30 2001-11-27 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
EP1005907A4 (de) * 1998-02-24 2000-12-27 Agency Ind Science Techn Katalysator zur teilweisen oxidation von ungesättigten kohlenwasserstoffen
ATE259258T1 (de) * 1999-04-08 2004-02-15 Dow Global Technologies Inc Verfahren für die oxidierung von olefinen zu olefinoxiden unter verwendung eines oxidierten gold-katalysators
DE10137784A1 (de) * 2001-08-02 2003-02-13 Bayer Ag Verfahren zur Herstellung von Alkenoxiden aus Alkenen
DE10137783A1 (de) * 2001-08-02 2003-02-13 Bayer Ag Verfahren zur Herstellung von Epoxiden aus Alkenen
DE10139531A1 (de) * 2001-08-10 2003-02-20 Bayer Ag Verfahren zur Epoxidierung von Kohlenwasserstoffen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577443A (en) * 1968-11-12 1971-05-04 Atlantic Richfield Co Separation of olefins from epoxides
US4692535A (en) * 1986-12-22 1987-09-08 Atlantic Richfield Company Purification of propylene oxide
US5352807A (en) * 1992-02-20 1994-10-04 Arco Chemical Technology, L.P. Propylene oxide purification
EP0601273A1 (de) * 1992-12-10 1994-06-15 The Dow Chemical Company Reinigung von Propylenoxid
US5493035A (en) * 1995-03-24 1996-02-20 Arco Chemical Technology, L.P. Propylene oxide purification
EP0736528A1 (de) * 1995-03-24 1996-10-09 ARCO Chemical Technology, L.P. Reinigung von Propylenoxid
JPH08283253A (ja) * 1995-04-07 1996-10-29 Mitsui Toatsu Chem Inc プロピレンオキサイドの精製方法
WO2000055148A1 (en) * 1999-03-16 2000-09-21 Shell Internationale Research Maatschappij B.V. Process for the purification of propylene oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02 28 February 1997 (1997-02-28) *

Also Published As

Publication number Publication date
EP1414811A1 (de) 2004-05-06
US20030031624A1 (en) 2003-02-13
DE10137826A1 (de) 2003-02-13
TW548273B (en) 2003-08-21

Similar Documents

Publication Publication Date Title
Ulgen et al. Conversion of glycerol to acrolein in the presence of WO 3/ZrO 2 catalysts
Bienholz et al. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst's activity
DE69824148T2 (de) Verfahren, Katalysator und Vorrichtung zur Herstellung von Acetaldehyd aus Essigsäure
Chamblee et al. Reversible in situ acid formation for β-pinene hydrolysis using CO 2 expanded liquid and hot water
US11498887B2 (en) Process for producing dienes
EP1794110B1 (de) Verfahren zur reinigung und aufkonzentrierung von distickstoffmonoxid
Costa et al. Heteropoly Acid Catalysts for the Synthesis of Fragrance Compounds from Biorenewables: Cycloaddition of Crotonaldehyde to Limonene, α‐Pinene, and β‐Pinene
Shah et al. One pot menthol synthesis via hydrogenations of citral and citronellal over montmorillonite-supported Pd/Ni-heteropoly acid bifunctional catalysts
ES2207124T3 (es) Procedimiento para la produccion de acetato de vinilo.
Steffan et al. Selective hydrogenation of citral in an organic solvent, in a ionic liquid, and in substance
WO2003014099A1 (de) Verfahren zur herstellung und isolierung von alkenoxiden aus alkenen
EP1281705A2 (de) Verfahren zur Herstellung von Epoxiden aus Alkenen
EP1281706A1 (de) Verfahren zur Herstellung von Alkenoxiden aus Alkenen
WO2000021945A1 (de) Verfahren zur oxidation einer mindestens eine c-c-doppelbindung aufweisenden organischen verbindung
US12071400B2 (en) Process of selective oxidation of glycerol
DE3048690A1 (de) Katalysator zur dehydrierung von sauerstoffhaltigen derivaten der cyclohexanreihe zu den entsprechenden cyclischen ketonen und/oder phenolen und verfahren zur dehydrierung von sauerstoffhaltigen derivaten der cyclohexanreihe zu den entsprechenden cyclischen ketonen und/oder phenolen unter verwendung des genannten katalysators
Huang et al. Kinetics of selective oxidation of dimethyl ether to formaldehyde over Al 2 O 3-supported VO x and MoO x catalysts
EP2869920B1 (de) Katalysator und verfahren zur entfernung von sauerstoff aus kohlenwasserstoffströmen
EP2467355B1 (de) Verfahren zur herstellung von 4-pentensäure
Talipova et al. Catalytic conversion of 4-tert-butylphenol in hydrogen peroxide solutions in the presence of titanium oxide compounds and titanosilicates
DE10030637A1 (de) Katalysatoren auf Basis Erdalkalititanat als Träger für metallisches Gold zur selektiven Oxidation von Kohlenwasserstoffen
Nebykov et al. Hydrogenation of 1, 5, 9-Cyclododecatriene in a Three-Phase System in the Presence of Nickel Nanoparticles Supported on NаX Zeolite
Aykaç et al. Hydrogenation of citral over Ni and Ni-Sn catalysts
DE102007034284A1 (de) Verfahren zur katalytischen N2O-Reduktion mit gleichzeitiger Gewinnung von Wasserstoff und leichten Alkenen
DE10002514A1 (de) Verfahren zur Herstellung von Olefinoxiden in der Gasphase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG AE AG AL AM AT AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MN MX MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN ZA ZM ZW GH GM KE LS MW MZ SD SZ TZ UG ZM ZW AM

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002794512

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002794512

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002794512

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载