明 細 書 Specification
細胞と細胞増殖因子とからなる腎臓の再生のための材料 技術分野 Materials for regeneration of kidneys composed of cells and cell growth factors
本発明は、 未分化間葉系幹細胞と細胞増殖因子とを組み合わせて用いることを 特徴とする腎臓のィンビボでの再生のための材料に関する。 背景技術 The present invention relates to a material for regenerating kidney in vivo, characterized by using a combination of undifferentiated mesenchymal stem cells and a cell growth factor. Background art
人工臓器を用いた再建医療は、 現在、 臨床に大きく貢献しているものの、 効果 が一時的で、 侵襲が大きく、 補助できる機能が単一であるという大きな欠点があ る。 一方、 移植医療もドナー不足に加えて、 移植後の免疫抑制剤の副作用による 感染症や発癌なども問題であり、 理想的な治療とはいいがたい。 このように現在 の先端医療の二本柱がそれぞれに限界に達してきている。 このような状況 "中で、 自己の組織を再生させることによつて欠損あるいは荒廃した組織や臓器を復元す るという、 新しい治療の試みが行われている。 これが再生医学である。 すなわち、 細胞を利用することによって、 人為的に自己の組織や臓器を再び健全なものにし ようという試みである。 Reconstructive medicine using artificial organs is currently making significant contributions to the clinic, but has the major drawback of being temporary, invasive, and having a single function that can be supported. On the other hand, transplantation medicine has problems such as infections and carcinogenesis due to side effects of immunosuppressive drugs after transplantation, in addition to the shortage of donors. In this way, the current two pillars of advanced medicine have reached their limits. Under such circumstances, a new treatment attempt is being made to restore a defective or devastated tissue or organ by regenerating its own tissue. This is regenerative medicine. It is an attempt to artificially reestablish one's own tissues and organs by using the.
ヒ トを含む哺乳動物においては、 高次に分化した臓器の再生能力は消失してい ると考えられてきた。 しかしながら、 近年、 これらの動物でも再生能力を有する のではないかと考えられるようになつている。 つまり、 哺乳動物では個体を守る ための創傷治癒があまりにも早く進行する結果、 臓器再生の場が奪われ、 本来 もっている再生能力が見失われている。 例えば、 骨髄移植は古くから行われてい る治療法でありよい臨床成績をあげている。 これは骨髄細胞中の血液幹細胞が増 殖分化できる天与の場、 骨髄組織が体内に存在しているからこそ成功していると 考えられる。 つまり、 ヒトといえども、 個体が生存していくためには、 組織、 臓 器に幹細胞が存在しなければ生存しえないはずであり、 生体内に広く存在するで あろう幹細胞に対して十分な再生の場を与えることができれば、 自己組織を再生 させることができる可能性がある。 近年、 神経系や肝臓などにも幹細胞の存在す ることがわかってきている。
そこで、 このような考えのもとに、 いろいろな組織再生の方法が研究開発され ているが、 現在のところ、 再生のための足場、 細胞増殖因子、 およぴ幹細胞の 3者を組み合わせて利用する方法が最も現実的である。 In mammals containing humans, it has been considered that the ability to regenerate highly differentiated organs has disappeared. However, in recent years, it has been considered that these animals may have regenerative ability. In other words, wound healing to protect individuals progresses too quickly in mammals, depriving them of organ regeneration and losing sight of the inherent regeneration ability. For example, bone marrow transplantation is a long-standing treatment and has good clinical results. This is considered a success because the bone marrow tissue exists in the body, a natural place where blood stem cells in the bone marrow cells can proliferate and differentiate. In other words, even for human beings, in order for an individual to survive, it must be able to survive without the presence of stem cells in tissues and organs, which is sufficient for stem cells that would be widely present in the body. If it is possible to provide a place for renewal, it is possible to regenerate the self-organization. In recent years, it has been found that stem cells also exist in the nervous system and liver. Therefore, various methods of tissue regeneration have been researched and developed based on this idea, but at present, a combination of the scaffold for regeneration, cell growth factor, and stem cells is used. The method to do is the most realistic.
再生場所における幹細胞や前駆細胞の接着 ·分化 ·形態形成の促進のためには 再生のための足場が必要である。 再生場所の生体組織が再生の足場となり得る場 合もあるが、 再生のための足場として足場マトリッタスが必要となる場合もある。 生体吸収性材料はこのマトリックスとして用いられている。 In order to promote adhesion, differentiation, and morphogenesis of stem cells and progenitor cells at the regeneration site, a scaffold for regeneration is required. In some cases, the biological tissue at the regeneration site can serve as a scaffold for regeneration, but there are also cases where a scaffold Matritta is required as a scaffold for regeneration. Bioabsorbable materials are used as this matrix.
し力 しながら、 例えば、 再生場所に足場マトリックスを埋め込んでも、 再生に 必要な幹細胞、 前駆細胞、 あるいは芽細胞の数が少なかったり、 細胞を増殖分化 させる生体因子の濃度が低すぎたりすれば、 いかにマトリッタスが優れていても、 望む組織の再生は起こらない。 そこで、 補充するべきものとしてまず考えられる のは、 細胞の増殖あるいは分化のための細胞増殖因子である。 However, for example, even if the scaffold matrix is embedded in the regeneration site, if the number of stem cells, progenitor cells, or blasts necessary for regeneration is small, or the concentration of biological factors that cause the cells to grow and differentiate is too low, No matter how good Matritta is, the desired regeneration will not occur. Therefore, what is first considered as a supplement is a cell growth factor for cell growth or differentiation.
一般に、 これらの因子の生体内寿命は短く不安定であり、 必要な細胞増殖因子 を、 単に水に溶かして必要部位に注入するだけでは、 期待する組織再生効果は得 られない。 そこで、 再生の場における細胞増殖因子の濃度を必要な期間にわたつ て有効値に保たなければならない。 例えば、 細胞増殖因子を徐放キャリア内に含 ませ、 再生の場で持続的に放出させる技術である。 細胞増殖因子の徐放により、 細胞の増殖分化が高まり、 自己組織の再生が促される。 しかしながら、 組織ある いは器官の種類によっては、 細胞増殖因子のみでは再生が不十分である場合が多 い。 In general, these factors have a short in vivo life span and are unstable, and the expected tissue regeneration effect cannot be obtained simply by dissolving the necessary cell growth factor in water and injecting it into the required site. Therefore, the concentration of cell growth factor at the regeneration site must be kept at an effective value for the required period. For example, it is a technology that does not contain cell growth factors in a sustained-release carrier and releases them continuously in the field of regeneration. Sustained release of cell growth factors enhances cell proliferation and differentiation, and promotes self-organization regeneration. However, depending on the type of tissue or organ, regeneration with cell growth factors alone is often insufficient.
腎臓は、 血液濾過臓器であり、 尿の形で身体の物質代謝の最終産物を排泄し、 細胞外液中の水素、 ナトリウム、 カリゥム、 リンその他のイオン濃度を調節する。 排泄と再吸収機構のバランスによって、 水分、 電解質、 体液浸透圧、 酸塩基平衡 の調節などの機能を有する。 腎臓の機能が不全になると、 血圧が上昇し、 尿素、 クレアチンなどの窒素代謝物が血中に貯留し、 生体廃棄物の血中濃度が有害な濃 度にまで増加する。 このような病理を解消するためには、 不全の腎臓の機能を置 き換える処置が必要になる。 The kidney is a blood filtration organ that excretes the end products of body metabolism in the form of urine and regulates the concentration of hydrogen, sodium, potassium, phosphorus and other ions in the extracellular fluid. Depending on the balance between excretion and reabsorption mechanism, it has functions such as regulation of water, electrolyte, fluid osmotic pressure, and acid-base balance. When kidney function fails, blood pressure increases, nitrogen metabolites such as urea and creatine accumulate in the blood, and blood levels of biowaste increase to harmful levels. In order to eliminate such pathology, it is necessary to replace the function of the failing kidney.
血液透析は、 腎臓機能不全状態にある血液を清浄化、 そして濾過する処置であ る。 当該処置によって、 有害廃棄物等の濃度が減少する。 しかし、 この処置は、
週に 3回、 1回 2〜4時間もかかるうえに、 副作用及び合併症の危険があるとい う問題点がある。 Hemodialysis is a procedure that cleans and filters blood that is in renal failure. This measure reduces the concentration of hazardous waste. However, this treatment It takes 3-4 times a week, 2-4 hours once a week, and there are problems of side effects and complications.
腎移植は、 ドナーからの健康な腎臓を腎不全に苦しむ個体内に植え付ける処置 である。 しかし、 一生涯に渡る免疫抑制剤の投与を必要とし、 その結果生ずる感 染性、 癌化などの副作用が問題となっている。 また、 移植を必要とする全ての個 体に十分な量のドナーがいないという問題点もある。 Kidney transplantation is a procedure in which a healthy kidney from a donor is implanted in an individual suffering from renal failure. However, lifelong administration of immunosuppressive drugs is required, and the resulting side effects such as infectivity and canceration are problematic. Another problem is that there is not a sufficient amount of donors for all individuals requiring transplantation.
腎臓それ自体の移植ではなく、 腎臓細胞の移植も報告されている (Pediatrics, 1996, 98S, 615)。 それによると、 C 5 7ブラックマウスの腎臓細胞を培養し、 ポリカーボネート製チューブに封入後、 無胸腺マウスの皮下に移植したところ、 8週間後までの観察において、 血管新生、 糸球体及び尿 '細管様構造が認められた。 尿細管様構造部位にはアル力リホスファターゼ及びフイブロネクチンが認められ、 分泌された黄色の液体から尿酸が検出された。 Instead of transplanting the kidney itself, transplantation of kidney cells has also been reported (Pediatrics, 1996, 98S, 615). According to it, C 5 7 black mouse kidney cells were cultured, encapsulated in a polycarbonate tube, and transplanted subcutaneously in an athymic mouse. In the observation up to 8 weeks later, angiogenesis, glomeruli and urine 'tubules' A similar structure was observed. Alkaline phosphatase and fibronectin were found in the tubule-like structure, and uric acid was detected from the secreted yellow liquid.
また、 別の報告によると、 ニュージーランド白ゥサギの腎臓細胞を遠位尿細管、 糸球体、 近位尿細管に分画し、 それぞれをポリ乳酸ーポリグリコール酸シート上 で培養し、 無胸腺マウスの皮下に移植したところ、 ネフロンの形成が認められた According to another report, New Zealand White Rabbit kidney cells were fractionated into distal tubules, glomeruli, and proximal tubules, and each was cultured on a polylactic acid-polyglycolic acid sheet. When implanted subcutaneously, nephron formation was observed.
(J. Urol, 1995, 153 (suppl. ) , 4)。 (J. Urol, 1995, 153 (suppl.), 4).
WO 9 8 / 0 9 5 8 2は、 上記技術を応用した人工腎臓を開示する。 しかし、 この人工腎臓は、 ハイブリッド型人工腎臓、 すなわち腎臓を摘出し、 その細胞を 培養した後に臓器様に再構築したものである。 このような分化細胞は、 その寿命 に限りがあり、 また腎臓細胞としての機能維持が困難であることから、 人工腎臓 の耐久性 ·信頼性に問題がある。 また、 異種動物からのような非自己の細胞を用 いる場合においては、 常に、 免疫拒絶の問題がつきまとう。 WO 9 8/0 9 5 8 2 discloses an artificial kidney to which the above technique is applied. However, this artificial kidney is a hybrid type artificial kidney, that is, a kidney that has been removed, cultured, and then reconstructed into an organ. Such differentiated cells have a limited life span, and it is difficult to maintain their function as kidney cells, so there are problems with the durability and reliability of the artificial kidney. Also, when using non-self cells, such as from different animals, there is always a problem of immune rejection.
組織器官の再生をインビボで行うためには、 その組織あるいは器官を構成して いる細胞が必要であることは疑いない。 し力、しながら、 単に細胞を再生させたい 部位に注入するだけで、 その場所に組織や器官を再生させることはきわめて難し い。 その理由は加えられた細胞がその部位で増殖、 分化することがほとんど期待 できないからである。 生体内で細胞の増殖おょぴ分化を積極的に促進させるため には細胞増殖因子の存在が不可欠である。 すでに、 多くのインビトロ実験によつ て、 未分化間葉系幹細胞、 前駆細胞、 あるいは芽細胞が適当な細胞増殖因子の存
在下でその数を増やし、 分化していくことが証明されている。 しかし、 インビト 口とインビボでは細胞の環境が全く異なっており、 インビトロでの結果をィンビ ボにおいて再現、 予測するのは困難である場合が多い。 There is no doubt that in order to regenerate a tissue organ in vivo, the cells constituting the tissue or organ are necessary. However, it is extremely difficult to regenerate tissues and organs at the site by simply injecting the cells into the site where the cells are to be regenerated. The reason is that added cells can hardly be expected to grow and differentiate at the site. In order to actively promote cell growth and differentiation in vivo, the presence of cell growth factors is essential. Already, many in vitro experiments have shown that undifferentiated mesenchymal stem cells, progenitor cells, or blasts can be It has been proven that the number will increase and differentiate in the country. However, the cellular environment is quite different between in vitro and in vivo, and in vitro results are often difficult to reproduce and predict in vivo.
本発明者らはインビボにおける細胞の増殖分化に関する上記の問題点を解決す るために鋭意検討した結果、 未分化間葉系幹細胞と細胞増殖因子とを組み合わせ て用いることによって、 インビポにおける腎臓の再生が極めて有利となることを 見出し、 本発明を完成した。 発明の開示 As a result of diligent studies to solve the above-described problems related to cell proliferation and differentiation in vivo, the present inventors have found that regeneration of kidney in in vivo by using a combination of undifferentiated mesenchymal stem cells and cell growth factors. Was found to be extremely advantageous, and the present invention was completed. Disclosure of the invention
したがって、 本発明は、 未分化間葉系幹細胞と細胞増殖因子とを組み合わせて 用いることによって、 腎臓をインビボで再生させるための材料を供給する。 また、 本発明は、 上記材料を用いることを含む、 腎臓の再生方法にも関する。 図面の簡単な説明 Therefore, the present invention provides a material for regenerating the kidney in vivo by using a combination of undifferentiated mesenchymal stem cells and cell growth factors. The present invention also relates to a method for regenerating a kidney, comprising using the above material. Brief Description of Drawings
図 1 Figure 1
未分化間葉系幹細胞と b F G F含浸ゼラチン粒子とを含むコラーゲンスポンジ 埋入群。 A : X 1 0 0、 B : X 4 0 0、 矢印が再生した糸球体を示す (埋入 A group of collagen sponges containing undifferentiated mesenchymal stem cells and bFGF-impregnated gelatin particles. A: X 1 0 0, B: X 4 0 0, arrows indicate regenerated glomeruli (embedding
3 6週後)。 3 after 6 weeks).
図 2 Figure 2
未分化間葉系幹細胞を含むコラーゲンスポンジ埋入群。 A : X 1 0 0、 B : X Collagen sponge embedded group containing undifferentiated mesenchymal stem cells. A: X 1 0 0, B: X
4 0 0 (埋入 3 6週後)。 4 0 0 (3 weeks after placement).
図 3 Fig 3
b F G F含浸ゼラチン粒子を含むコラーゲンスポンジ埋入群。 A : X 1 0 0、 B : X 4 0 0、 (埋入 4◦週後)。 発明を実施するための最良の形態 b Collagen sponge embedded group containing FGF impregnated gelatin particles. A: X 1 00, B: X 4 0 0, (4 weeks after implantation). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の技術的構成を説明する。 The technical configuration of the present invention will be described below.
本発明で使用される細胞は、 未分化間葉系幹細胞である。 この細胞は、 動物、 ヒトから採取することにより、 又はその採取細胞を培養系にて数を増やしたりす
ることができる。 The cells used in the present invention are undifferentiated mesenchymal stem cells. These cells can be collected from animals or humans, or the number of collected cells can be increased in culture. Can.
本発明に用いる未分化間葉系幹細胞、 その細胞増殖因子との混合、 およびそれ らの組織工学材料を用いた腎組織の再生は以下の方法によって行うことができる。 細胞単離法に若干の修飾点を加えることも可能であるが、 それらは大きく細胞 の分化性質に寄与するところはない。 未分化間葉系幹細胞の採取法は常法によつ て行うことができる。 例えば、 大腿骨、 類骨等の骨髄から骨髄液を採取し、 これ をピペッティング等によって細胞を分散させ、 α— MEM等の適切な培地又は塩 類溶液に懸濁し、 骨髄細胞懸濁液を調製する。 この細胞を 3 7°C、 5%炭酸ガス の条件下、 インキュベータ一にて、 例えば、 7〜10日間培養し、 その後接着細 胞を、 例えば、 0. 05%トリプシンを用いて剥離し、 回収する。 The undifferentiated mesenchymal stem cells used in the present invention, their mixing with cell growth factors, and regeneration of kidney tissue using these tissue engineering materials can be performed by the following methods. Although some modification points can be added to cell isolation methods, they do not contribute significantly to the differentiation properties of cells. The method for collecting undifferentiated mesenchymal stem cells can be performed by a conventional method. For example, bone marrow fluid is collected from bone marrow such as femur and osteoid, and the cells are dispersed by pipetting or the like, suspended in an appropriate medium or saline such as α -MEM, and the bone marrow cell suspension is obtained. Prepare. The cells are cultured in an incubator under conditions of 37 ° C and 5% carbon dioxide, for example, for 7 to 10 days, and then the adherent cells are detached using, for example, 0.05% trypsin and collected. To do.
得られた未分化間葉系幹細胞を 37 °C、 5%炭酸ガスの条件下、 インキュベー ターにて培養し、 細胞を増殖 '継代することもできる。 この細胞を培養液に分散 させ、 その中に適当な濃度の細胞増殖因子を混合する。 得られた複合体を、 例え ば、 SDラットの腎臓欠損に埋入する。 36週間後、 埋入部位に腎組織の再生が 見られる。 The obtained undifferentiated mesenchymal stem cells can be cultured in an incubator under conditions of 37 ° C and 5% carbon dioxide gas, and the cells can be proliferated and subcultured. Disperse these cells in the culture medium and mix them with appropriate concentrations of cell growth factors. The resulting complex is implanted, for example, in a SD rat kidney defect. After 36 weeks, regeneration of renal tissue is seen at the site of implantation.
採取する細胞は、 未分化間葉系幹細胞であれば、 採取する動物の種類、 年齢、 およびその部位に関係なく、 いずれの組織も本発明に用いることができる。 一般 に、 免疫拒絶は細胞成分に対する生体反応である。 この免疫拒絶を回避する方法 として、 例えば、 自己の組織から採取された未分化間葉系幹細胞を用いる方法が ある。 これによれば免疫反応の問題は解決することができると考えられる。 すな わち、 本発明においては、 自己の細胞成分を利用することによって、 自己の腎組 織を再生することもできる。 As long as the cells to be collected are undifferentiated mesenchymal stem cells, any tissue can be used in the present invention regardless of the kind of animal to be collected, age, and site thereof. In general, immune rejection is a biological response to cellular components. As a method for avoiding this immune rejection, for example, there is a method using undifferentiated mesenchymal stem cells collected from its own tissue. According to this, it is considered that the problem of immune reaction can be solved. In other words, in the present invention, the self-renal tissue can be regenerated by utilizing the self-cell component.
本発明に用いる細胞増殖因子としては、 特に限定されるものではないが、 未分 化間葉系幹細胞の数を増加させる作用をもつものが好ましい。 例えば、 塩基性線 維芽細胞増殖因子 (b FGF)、 血小板由来増殖因子 (PDGF)、 インスリン、 インスリン様增殖因子 (I GF)、 肝細胞増殖因子 (HGF)、 グリア誘導神経栄 養因子 (GDNF)、 神経栄養因子 (NF)、 ホルモン、 サイ ト力イン、 骨形成因 子 (BMP)、 トランスフォーミング増殖因子 (TGF) などが挙げられる。 こ れらのうち、 本発明では、 特に、 b FGFが望ましい。 その濃度は、 細胞数
1 0 5〜1 08個当り 0 . 0 0 0:!〜 1 0 / g、 好ましくは 0 . 0 0 1〜1 であ る。 The cell growth factor used in the present invention is not particularly limited, but preferably has a function of increasing the number of undifferentiated mesenchymal stem cells. For example, basic fibroblast growth factor (b FGF), platelet-derived growth factor (PDGF), insulin, insulin-like growth factor (I GF), hepatocyte growth factor (HGF), glia-induced neurotrophic factor (GDNF) ), Neurotrophic factor (NF), hormone, site force-in, bone morphogenetic factor (BMP), transforming growth factor (TGF), and the like. Among these, in the present invention, bFGF is particularly desirable. Its concentration is the number of cells Per 10 5 to 10 8 pieces, 0.0 0:! To 1 0 / g, preferably 0.0 1 to 1.
本発明に使用されるこれらの細胞増殖因子は、 好ましくは適切な徐放用担体に 含有させた状態で細胞と混合して用いる。 適切な徐放用担体に含有させた状態で 使用する場合には、 その徐放期間は約 1から 3週間の範囲がよい。 These cell growth factors used in the present invention are preferably mixed with cells in a state of being contained in an appropriate sustained release carrier. When used in an appropriate sustained release carrier, the sustained release period should be in the range of about 1 to 3 weeks.
細胞増殖因子の徐放用担体としては、 生体内で分解吸収されていく性質をもつ ものが好ましい。 例えば、 ポリ乳酸、 ポリグリコール酸、 乳酸とダルコール酸と の共重合体、 ポリ一 f —力プロラタトン、 f —力プロラタ トンと乳酸あるいはグ リコール酸との共重合体、 ポリクェン酸、 ポリリンゴ酸、 ポリ一α—シァノアク リレート、 ポリ一j3—ヒ ドロキシ酪酸、 ポリ トリメチレンォキサレート、 ポリテ トラメチレンォキサレート、 ポリオルソエステル、 ポリオルソカーボネート、 ポ リエチレンカーボネート、 ポリプロピレンカーボネート、 ポリ一 γ—ベンジ^^ー Lーグルタメ一ト、 ポリ一 γ—メチルー L -グルタメート、 ポリ一 L—ァラニン などの合成高分子、 デンプン、 アルギン酸、 ヒアルロン酸、 キチン、 ぺクチン酸 およびその誘導体などの多糖、 あるいはゼラチン、 コラーゲン (コラーゲンのタ ィプおよびその抽出法はいずれでもよい)、 アルブミン、 フイブリンなどのタン パク質などが挙げられる。 これらの材料から細胞増殖因子の徐放用担体を作製で きるが、 その形態としては、 ディスク状、 フィルム状、 棒状、 粒子状、 および ペースト状などがあるが、 これらに限定されるものではない。 例えば、 その中で 基底膜成分との均一な混合を目的とする場合には、 粒子状の担体が好ましい。 ま た、 粒子の直径は 1 0〜5 0 0 μ πι、 好ましくは 2 0〜1 0 0 である。 The carrier for sustained release of cell growth factor is preferably one having the property of being decomposed and absorbed in vivo. For example, polylactic acid, polyglycolic acid, copolymer of lactic acid and dalcholic acid, poly-f-force prolatatone, f-copolymer of force prolatatone and lactic acid or glycolic acid, polyquenic acid, polymalic acid, poly 1α-cyanoacrylate, poly 1j3-hydroxybutyrate, polytrimethylene oxalate, poly tramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, polypropylene carbonate, poly 1 γ-benzen ^^ー Synthetic polymers such as L-glutamate, poly-γ-methyl-L-glutamate, poly-l-alanine, polysaccharides such as starch, alginic acid, hyaluronic acid, chitin, pectinic acid and their derivatives, gelatin, collagen ( Collagen type and its Deho may be either), albumin, and the like proteins, such as fibrin. Carriers for sustained release of cell growth factors can be prepared from these materials, but the forms include, but are not limited to, discs, films, rods, particles, and pastes. . For example, in the case of aiming at uniform mixing with the basement membrane component, a particulate carrier is preferable. The diameter of the particles is from 10 to 500 μπι, preferably from 20 to 100.
徐放性の調節は、 徐放用担体の分解性を調節することにより行なうことができ る。 分解性の調節は、 例えば、 担体作製時における架橋度を変えることにより行 なうことができる。 徐放期間を 1〜3週間とするには、 例えば、 担体作製時の架 橋剤濃度あるいは反応時間を調節し、 含水率を 9 8〜9 4 %として、 1 ~ 3週間 で分解吸収される徐放用担体を作製すればよい。 The sustained release can be adjusted by adjusting the degradability of the sustained release carrier. Degradability can be adjusted, for example, by changing the degree of crosslinking during carrier production. In order to set the sustained release period to 1 to 3 weeks, for example, by adjusting the concentration of the crosslinking agent or the reaction time at the time of preparing the carrier, the moisture content is 98 to 94%, and it is decomposed and absorbed in 1 to 3 weeks A sustained release carrier may be prepared.
細胞と細胞増殖因子とからなる組織工学材料の作製条件は、 特に限定されるも のではないが、 例えば、 両者を単に混合するだけでもよく、 あるいは、 緩衝液、 生理食塩水、 注射用溶媒、 あるいはコラーゲン溶液などの液体とともに混合して
もよい。 用いる細胞の数として 1 0万〜 5 0 0万個が望ましい。 さらに、 細胞と 細胞増殖因子との混合物を生体吸収性材料からなるスポンジ、 メッシュ、 不繊布 状成形物などの足場材料内へ注入、 あるいはそれらの足場材料と混ぜ合わせた状 態で用いることもできる。 The conditions for preparing the tissue engineering material composed of cells and cell growth factors are not particularly limited. For example, they may be simply mixed with each other, or buffer, physiological saline, solvent for injection, Or mixed with a liquid such as a collagen solution Also good. The number of cells to be used is preferably from 100,000 to 500,000. Furthermore, a mixture of cells and cell growth factors can be injected into a scaffold material such as a sponge, mesh, or non-woven fabric molding made of a bioabsorbable material, or used in a state of being mixed with the scaffold material. .
この際に用いる足場材料としては生体吸収性であることが必須であると考えら れ、 非吸収性の場合には組織の再生を物理的に邪魔をするので好ましくなレ、。 足 場材料の分解吸収性は、 組織の再生の邪魔にならないように適当なものを選択し て用いる必要がある。 足場材料が合成高分子の場合にはその分子量、 化学組成に より、 天然高分子の場合には架橋の程度によりそれらの吸収性はコントロールで きる。 これらの方法については、 公知の方法を用いることができる。 The scaffold material used in this case is considered to be essential to be bioabsorbable. In the case of non-absorbability, it is preferable because it physically interferes with tissue regeneration. It is necessary to select and use an appropriate scaffold so that the scaffold material does not interfere with tissue regeneration. If the scaffold material is a synthetic polymer, its absorbency can be controlled by its molecular weight and chemical composition, and if it is a natural polymer, its degree of cross-linking can be controlled. About these methods, a well-known method can be used.
本発明にて用いられる細胞、 細胞増殖因子の注入、 混合のために用いられる足 場材料としては、 生体内で分解吸収されていく性質をもつことが必須であり、 例 えば、 好ましくは上述の細胞増殖因子の徐放用担体に用いられる材料を利用でき る。 足場材料と徐放性担体は同一の材料を用いてもよいし、 異なるものを用いて もよい。 その形態としては、 ディスク状、 フィルム状、 棒状、 粒子状、 および ペースト状などがあるが、 これらに限定されるものではない。 As a scaffold material used for injection and mixing of cells and cell growth factors used in the present invention, it is essential to have a property of being decomposed and absorbed in the living body. Materials used as a carrier for sustained release of cell growth factors can be used. The same material may be used for the scaffold material and the sustained-release carrier, or different materials may be used. Examples of the form include, but are not limited to, a disk shape, a film shape, a rod shape, a particle shape, and a paste shape.
本発明の細胞と細胞増殖因子との混合物あるいはその足場材料との混合複合物 は、 皮膚を切開して埋入あるいは注射により注入することで体内へ投入できる。 実施例 The mixture of the cell of the present invention and a cell growth factor or a mixture of the scaffold can be injected into the body by incision through the skin and implantation or injection. Example
以下、 実施例をあげて本発明について説明するが、 本発明は以下の実施例に限 定されるものではない。 実施例 1 足場の調製 EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples. Example 1 Scaffold preparation
1 4 0 °Cで 2時間の熱処理の後、 0 . 2 wt%のダルタルアルデヒ ド水溶液中で 化学架橋を行った後、 グリシン水溶液中にて未反応のアルデヒ ド基をプロックし た。 その後水洗いを行レ、凍結乾燥することによって得たコラーゲンスポンジを直 径約 5讓、 厚さ 3讓の円筒形に打ち抜いた。 滅菌したポアサイズ 2 0 0 μ ηιのポ リプロピレンのメッシュでコラーゲンスポンジを卷き、 その形状を維持するため
に 7. 0ナイロン糸で更にメッシュを固定した。 これを腎臓に作製した円柱状欠 損部へ埋入した。 メッシュを入れた理由は、 組織内において埋入コラーゲンスポ ンジ部位と腎組織部位とを隔離し、 再生組織が欠損部に新生したもの力、 腎組織 由来の組織なのかを明瞭化するためである。 実施例 2 未分化間葉系幹細胞の単離及び精製 After heat treatment at 140 ° C. for 2 hours, after chemical crosslinking in a 0.2 wt% aqueous solution of dartal aldehyde, unreacted aldehyde groups were blocked in the aqueous glycine solution. Thereafter, the collagen sponge obtained by washing with water and freeze-drying was punched into a cylindrical shape having a diameter of about 5 mm and a thickness of 3 mm. In order to maintain the shape of the collagen sponge with a sterilized pore size 200 μηι polypropylene mesh The mesh was further fixed with 7.0 nylon thread. This was embedded in a cylindrical defect created in the kidney. The reason for using the mesh is to isolate the implanted collagen sponge site from the kidney tissue site in the tissue, and to clarify whether the regenerated tissue is newly born in the defect, or whether the tissue is derived from the kidney tissue. . Example 2 Isolation and purification of undifferentiated mesenchymal stem cells
6週齢の雌の SDラット (株式会社清水実験動物) の大腿骨及び脛骨を摘出し、 清潔操作で骨髄を採取し、 初期培地 (《MEM、 GIBCO BRL) 1 0. 2wt%、 炭 酸水素ナトリウム (ナカライテスク) 26. 2mM、 ペニシリン (500U/1) 一ストレプトマイシン (500 合剤 (SIGMA)、 仔ゥシ血清 1 5 %で培養 した。 7〜10日後、 接着した細胞を 0. 05%トリプシン ZED T A溶液で回 収し、 同じ培地を用いて継代した。 実施例 3 ゼラチン粒子の調製 The femur and tibia of a 6-week-old female SD rat (Shimizu Experimental Animal Co., Ltd.) were removed, and the bone marrow was collected by a clean operation. The initial medium (<< MEM, GIBCO BRL) 1 0.2 wt%, bicarbonate Sodium (Nacalai Tesque) 26.2 mM, penicillin (500 U / 1), 1 streptomycin (500 combination (SIGMA), pup sera cultured in 15%. After 7-10 days, adherent cells were treated with 0.05% trypsin. Collected with ZED TA solution and passaged using the same medium Example 3 Preparation of gelatin particles
1000ml容の丸底フラスコにォリーブ油 375ml を加え、 固定した撹拌用 モーター (新東科学社製、 スリーワンモーター) にテフロン製撹拌用プロペラを 取り付け、 フラスコと一緒に固定した。 オリーブ油を 30°C、 420 rpm にて撹 拌しながら等電点 4. 9のアルカリ処理ゼラチン (新田ゼラチン社製) の水溶液 (10wt%、 10 ml) を滴下し、 WZO型ェマルジヨンを調製した。 10分間の 撹拌後、 フラスコを 10〜 20 °Cに冷却し、 さらに、 30分間撹拌した。 ェマル ジョンへ 1 0 0ml のアセ トンを加え、 さらに 1時間撹拌した後、 遠心分離 (5000 rpm, 4°C、 5分間) によりゼラチン粒子を回収した。 アセトンさら に 2—プロパノールを用いて粒子を遠心洗浄することによって、 未架橋のゼラチ ン粒子を得た。 得られた未架橋ゼラチン粒子 (500mg) を 0. 01wt%濃度の グルタルアルデヒ ドを含む、 0. lwt0/0Tween 80 の水溶液 (100ml) に懸濁 させ、 4°C、 15時間緩やかに撹拌することによってゼラチンの架橋反応を行つ た。 その後、 粒子を 0. lwt%Tween 80 の水溶液、 2—プロパノール、 蒸留水 で 2回ずつ洗浄した後、 凍結乾燥した。 2—プロパノールからの風乾時あるいは PB S中、 37 °Cでの平衡膨潤時における粒子の直径を、 それぞれ 100個粒子
について顕微鏡にて測定し、 膨潤状態の粒子の体積に対する粒子に含まれる水の 体積の比として含水率を算出したところ、 その含水率は約 95vol%であった。 また、 膨潤時における粒子の平均粒径は 40 μπιであった。 375 ml of olive oil was added to a 1000 ml round bottom flask, and a Teflon stirring propeller was attached to the fixed stirring motor (manufactured by Shinto Kagaku Co., Ltd., Three-One Motor) and fixed together with the flask. An aqueous solution (10 wt%, 10 ml) of alkali-treated gelatin (made by Nitta Gelatin Co., Ltd.) with an isoelectric point of 4.9 was dripped while stirring olive oil at 30 ° C and 420 rpm to prepare a WZO type emulsion. . After stirring for 10 minutes, the flask was cooled to 10-20 ° C and further stirred for 30 minutes. To the emulsion, 100 ml of acetone was added, and the mixture was further stirred for 1 hour, and then the gelatin particles were collected by centrifugation (5000 rpm, 4 ° C, 5 minutes). Uncrosslinked gelatin particles were obtained by centrifugally washing the particles with acetone and 2-propanol. The resulting non-crosslinked gelatin particles (500 mg) containing glutaraldehyde de of 0. 01wt% concentration, were suspended in an aqueous solution of 0. lwt 0/0 Tween 80 ( 100ml), 4 ° C, 15 hours gentle stirring As a result, the gelatin cross-linking reaction was carried out. Thereafter, the particles were washed twice with an aqueous solution of 0.1 wt% Tween 80, 2-propanol and distilled water, and then lyophilized. 100 particles each when dried in air from 2-propanol or in equilibrium swelling at 37 ° C in PBS The water content was calculated as a ratio of the volume of water contained in the particles to the volume of the swollen particles, and the water content was about 95 vol%. The average particle size of the particles during swelling was 40 μπι.
125 Iにより標識した後、 この含水率 95%の粒子をマウス皮下に投与したとこ ろ、 投与部位での放射活性は時間とともに減少した。 その放射活性は 14日後に ゼロとなった。 次に、 b FGFを 125 Iにより標識し、 ゼラチン粒子に含浸した 後、 上記と同様にインビボ投与して、 放射活性の時間的変化を調べたところ、 そ の放射活性の残存の時間依存性は粒子の場合とほぼ同じであった。 このように、 この粒子の分解とともに b F G Fはィンビポで徐放化された。 この粒子からの b FGFの徐放化期間は 14日であった。 実施例 4 塩基性線維芽細胞増殖因子 (b FGF) の除放化 After labeling with 1 25 I, Toko filtrate treated with this water content of 95% of the particles in mice subcutaneously, radioactivity at the site of administration was decreased with time. Its radioactivity reached zero after 14 days. Next, b FGF was labeled with 125 I, impregnated into gelatin particles, then administered in vivo in the same manner as described above, and the temporal change of radioactivity was examined. It was almost the same as the case of particles. Thus, b FGF was gradually released by in vivo as the particles were degraded. The sustained release period of bFGF from these particles was 14 days. Example 4 Release of basic fibroblast growth factor (b FGF)
実施例 3で作製した凍結乾燥ゼラチン粒子 ( 2 mg) に 0 g および 100 g の b FGF (科研製薬株式会社より供与) を含む水溶液 10 μΐ を滴下、 25 °C で 1時間放置することによって b F G Fを粒子内に含浸させた。 その後、 Add 10 μΐ of an aqueous solution containing 0 g and 100 g of bFGF (provided by Kaken Pharmaceutical Co., Ltd.) to the freeze-dried gelatin particles (2 mg) prepared in Example 3 and leave them at 25 ° C for 1 hour. FGF was impregnated into the particles. after that,
100 1の PB Sを加え b FGF含浸ゼラチン粒子を分散させた。 実施例 5 細胞及び徐放化因子の封入 100 1 PBS was added and b FGF impregnated gelatin particles were dispersed. Example 5 Encapsulation of cells and sustained release factor
実施例 2で調製した細胞 ( 2 X 1 04個) を含む細胞懸濁液 5 0 を 22ゲージの注射針をつけた注射器を用いて実施例 1で調製したコラーゲン足場 内に注意深く注入した。 この足場を 37 °Cの C〇2インキュベーター内で 3時間 放置し、 細胞をコラーゲンスポンジ内に定着させた。 その後、 実施例 3で調製し た徐放化した b F G F含浸ゼラチン粒子懸濁液 50 ^1 を加えた。 コント口ール として、 細胞のみあるいは b FGF含浸ゼラチン粒子のみを注入した足場を調製 した。 実施例 6 足場の移植 The cell suspension 50 containing the cells prepared in Example 2 (2 × 10 4 ) was carefully injected into the collagen scaffold prepared in Example 1 using a syringe equipped with a 22 gauge needle. The scaffold was left for three hours in a C_〇 2 incubator 37 ° C, cells were fixed in a collagen sponge. Thereafter, the sustained release bFGF-impregnated gelatin particle suspension 50 ^ 1 prepared in Example 3 was added. As a control mouth, scaffolds were prepared in which only cells or b FGF-impregnated gelatin particles were injected. Example 6 Transplantation of scaffold
SDラットを体重あたり 1 5mg/kg のフェントバルビタールで麻酔し、 左 1 1肋骨付近より腹腔に達するまで切開した。 左腎をガーゼで保護しながら露出
させた。 出血防止のため腎動脈部をクランプした上で、 左腎の中腎盃の外側皮質 部にピンセッ トで欠損 (defect:直径 5 mm、 深さ 5 mm の円柱状) をつく り、 細 胞及び徐放体を含んだ足場を埋め込んだ。 腎外側皮膜を 7 . 0ナイロンで 1針縫 合して脱離を防いだ。 腎を元に戻した後、 腹膜筋層、 外皮を縫合した。 3 6週間 後ジェチルエーテルで犠死させ、 左腎を回収した。 左腎に切開を加えるときは、 ポリプロピレンで被覆された足場の長径中央で切断するように留意した。 この組 織切片を作製し、 組織学的評価を行った。 染色は通常のへマトキシリンェォジン 染色で行った。 SD rats were anesthetized with 15 mg / kg phenobarbital per body weight and dissected from the left 11 1 ribs until reaching the abdominal cavity. Exposure while protecting left kidney with gauze I let you. After clamping the renal artery to prevent bleeding, a defect (defect: 5 mm in diameter, 5 mm in depth) was formed in the lateral cortex of the left renal midrenal fistula. A scaffold containing a sustained release body was embedded. The outer skin of the kidney was sewn with 7.0 nylon to prevent detachment. After replacing the kidney, the peritoneal muscle layer and the outer skin were sutured. 3 Six weeks later, the mice were sacrificed with jetyl ether, and the left kidney was collected. When making an incision in the left kidney, care was taken to cut at the center of the major axis of the polypropylene-coated scaffold. This tissue section was prepared for histological evaluation. Staining was performed with normal hematoxylin eosin staining.
得られた埋入部位の標本を観察したところ、 b F G Fを含浸したゼラチン粒子 と未分化間葉系幹細胞とを含むコラーゲンスポンジを埋入した群においてのみ、 腎組織の再生が認められた (図 1 A、 1 B )。 写真よりあきらかなように、 この 実験群においては、 プロピレンメッシュの内側に、 糸球体組織の再生が確認され た。 血管新生ならびに尿細管の新生も見られた。 コントロールである未分化間葉 系幹細胞のみをスポンジに入れたもの (図 2 A、 2 B )、 b F G F含浸ゼラチン 粒子のみをスポンジに入れたもの (図 3 A、 3 B ) では血管新生、 時として尿細 管の形成は確認されたが、 糸球体の再生は見られなかった。 ここには示していな いが、 スポンジのみの埋入では、 繊維性組織の侵入も他のグ —プと比較して軽 微であり、 血管新生などは全く誘導されていなかった。 この結果は、 未分化間葉 系幹細胞と細胞増殖因子との混合が腎組織の再生に不可欠であることを示してい る。 産業上の利用可能性 When the specimens of the obtained implantation sites were observed, regeneration of kidney tissue was observed only in the group in which collagen sponges containing gelatin particles impregnated with FGF and undifferentiated mesenchymal stem cells were implanted (Fig. 1 A, 1 B). As is clear from the photograph, regeneration of the glomerular tissue was confirmed inside the propylene mesh in this experimental group. Angiogenesis as well as tubules were also seen. In control, only undifferentiated mesenchymal stem cells were placed in a sponge (Figs. 2A and 2B), and b FGF-impregnated gelatin particles only in a sponge (Figs. 3A and 3B). As a result, formation of tubules was confirmed, but glomerular regeneration was not observed. Although not shown here, in the case of embedding with sponge only, the invasion of fibrous tissue was lighter than that of other groups, and no angiogenesis was induced at all. This result indicates that mixing of undifferentiated mesenchymal stem cells and cell growth factors is essential for the regeneration of renal tissue. Industrial applicability
本発明によれば、 未分化間葉系幹細胞と細胞増殖因子とを組み合わせて用いる ことにより、 腎臓をィンビボで再生させることができる材料を得ることができる。 また、 本発明では、 自己組織からの細胞を用いることができることから、 免疫拒 絶の問題も解消され、 その医療への利用性は非常に大きいといえる。
According to the present invention, a material capable of regenerating the kidney in vivo can be obtained by using a combination of undifferentiated mesenchymal stem cells and cell growth factors. Further, in the present invention, since cells from the self tissue can be used, the problem of immune rejection is solved and it can be said that its utility for medical treatment is very large.