WO2003011487A1 - Biorestauration de contaminants metalliques avec des bacteries utilisant des hydrocarbures - Google Patents
Biorestauration de contaminants metalliques avec des bacteries utilisant des hydrocarbures Download PDFInfo
- Publication number
- WO2003011487A1 WO2003011487A1 PCT/US2002/024001 US0224001W WO03011487A1 WO 2003011487 A1 WO2003011487 A1 WO 2003011487A1 US 0224001 W US0224001 W US 0224001W WO 03011487 A1 WO03011487 A1 WO 03011487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- butane
- hydrocarbon
- metal
- metal contaminant
- substrate
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 139
- 239000002184 metal Substances 0.000 title claims abstract description 139
- 239000000356 contaminant Substances 0.000 title claims abstract description 91
- 241000894006 Bacteria Species 0.000 title claims abstract description 57
- 238000005067 remediation Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 120
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract description 99
- 239000001273 butane Substances 0.000 claims abstract description 93
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 69
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 69
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 64
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003673 groundwater Substances 0.000 claims abstract description 24
- 239000002689 soil Substances 0.000 claims abstract description 24
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000003914 acid mine drainage Methods 0.000 claims abstract description 22
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 22
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 21
- 238000007747 plating Methods 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 239000011651 chromium Substances 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- -1 poly(alkyne) Polymers 0.000 claims abstract description 13
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 12
- 239000011669 selenium Substances 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 239000011701 zinc Substances 0.000 claims abstract description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 150000001345 alkine derivatives Chemical class 0.000 claims abstract description 8
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 8
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 8
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052709 silver Inorganic materials 0.000 claims abstract description 8
- 239000004332 silver Substances 0.000 claims abstract description 8
- 239000002352 surface water Substances 0.000 claims abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000001336 alkenes Chemical class 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011133 lead Substances 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 239000011777 magnesium Substances 0.000 claims abstract description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims abstract description 7
- 229910052705 radium Inorganic materials 0.000 claims abstract description 7
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 7
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 6
- 229920000098 polyolefin Polymers 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- 239000001301 oxygen Substances 0.000 claims description 38
- 229910052760 oxygen Inorganic materials 0.000 claims description 38
- 238000001556 precipitation Methods 0.000 claims description 26
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 20
- 238000011066 ex-situ storage Methods 0.000 claims description 13
- 239000012528 membrane Substances 0.000 claims description 11
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 10
- 239000001294 propane Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 7
- 244000005700 microbiome Species 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 230000002285 radioactive effect Effects 0.000 claims description 5
- 241000195493 Cryptophyta Species 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 230000000813 microbial effect Effects 0.000 claims description 4
- 241000233866 Fungi Species 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 3
- 241000700141 Rotifera Species 0.000 claims description 2
- 230000001651 autotrophic effect Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 230000000696 methanogenic effect Effects 0.000 claims description 2
- 230000003448 neutrophilic effect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 2
- 241001148470 aerobic bacillus Species 0.000 claims 2
- 229910052748 manganese Inorganic materials 0.000 claims 2
- 239000011572 manganese Substances 0.000 claims 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 claims 2
- 241000726119 Acidovorax Species 0.000 claims 1
- 241000607534 Aeromonas Species 0.000 claims 1
- 241000588986 Alcaligenes Species 0.000 claims 1
- 241000611330 Chryseobacterium Species 0.000 claims 1
- 241000186650 Clavibacter Species 0.000 claims 1
- 241000589519 Comamonas Species 0.000 claims 1
- 241000186216 Corynebacterium Species 0.000 claims 1
- 241000605056 Cytophaga Species 0.000 claims 1
- 241000203751 Gordonia <actinomycete> Species 0.000 claims 1
- 241001467578 Microbacterium Species 0.000 claims 1
- 241000192041 Micrococcus Species 0.000 claims 1
- 241000187654 Nocardia Species 0.000 claims 1
- 241001135342 Phyllobacterium Species 0.000 claims 1
- 241000589516 Pseudomonas Species 0.000 claims 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims 1
- 241000863430 Shewanella Species 0.000 claims 1
- 241001136275 Sphingobacterium Species 0.000 claims 1
- 241000122971 Stenotrophomonas Species 0.000 claims 1
- 241001478283 Variovorax Species 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- UBCKGWBNUIFUST-YHYXMXQVSA-N tetrachlorvinphos Chemical compound COP(=O)(OC)O\C(=C/Cl)C1=CC(Cl)=C(Cl)C=C1Cl UBCKGWBNUIFUST-YHYXMXQVSA-N 0.000 claims 1
- 230000009977 dual effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 32
- 150000002739 metals Chemical class 0.000 description 15
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 238000009713 electroplating Methods 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010878 waste rock Substances 0.000 description 5
- 239000000370 acceptor Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000005065 mining Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 241000605222 Acidithiobacillus ferrooxidans Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 241000186361 Actinobacteria <class> Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241001074903 Methanobacteria Species 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229940093920 gynecological arsenic compound Drugs 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 241000512250 phototrophic bacterium Species 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052569 sulfide mineral Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 241000592889 Glycomyces Species 0.000 description 1
- 241001074968 Halobacteria Species 0.000 description 1
- 241001134635 Micromonosporaceae Species 0.000 description 1
- 241000204003 Mycoplasmatales Species 0.000 description 1
- 241000863434 Myxococcales Species 0.000 description 1
- 241000204098 Saccharothrix Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 241000589970 Spirochaetales Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001655322 Streptomycetales Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000203640 Thermomonospora Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000005112 continuous flow technique Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 238000009277 landfarming Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000010841 municipal wastewater Substances 0.000 description 1
- 239000010892 non-toxic waste Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000000247 postprecipitation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000003128 rodenticide Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010880 spent shale Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/26—Processes using, or culture media containing, hydrocarbons
- C12N1/28—Processes using, or culture media containing, hydrocarbons aliphatic
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/103—Arsenic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
Definitions
- the present invention relates to the remediation of metal contaminants, and more particularly relates to the remediation of metal contaminants with hydrocarbon- utilizing bacteria.
- Arsenic contamination in surface water, groundwater and soil represents a significant health hazard.
- Arsenic is used for hardening metals such as copper and lead and as a doping agent in the electronics industry.
- Arsenic salts are used to make herbicides, rodenticides and fireworks.
- Arsenic and arsenic compounds are toxic and can be carcinogenic. They are absorbed into the body through gastrointestinal ingestion or inhalation. For example, the trivalent inorganic compounds of arsenic, such as arsenic trichloride, arsenic trioxide and arsine, are highly toxic.
- Arsenic-contaminated groundwater has conventionally been treated by groundwater pump and treat technologies including post precipitation, chemical oxidation, filtration, sedimentation, etc.
- the following methods are currently employed: 1) land farming, where soil piles are watered and aerated; 2) bioreactors that involve the slurry treatment of soil and water in a closed vessel to which oxygen, nutrients and a carbohydrate cosubstrate such as molasses, corn syrup, or hydrolyzed starch are added; and 3) in-situ treatment where contaminated soils are chemically oxidized and/or stabilized using encasement methods.
- AMD acid mine drainage
- CMOS acid mine drainage
- Sulfide ores contain large quantities of pyrite, which is discarded in the tailings and produces sulfuric acid when exposed to water and oxygen.
- the ferrous iron produced is then oxidized to ferric ions, which become the dominant oxidizing agent of the exposed sulfide minerals.
- the reduced sulfur and iron compounds in the deposit provide an environment for T. ferrooxidans which oxidize iron, thiosulfate, sulfur and metallic sulfides to obtain energy for growth while using oxygen as the final electron acceptor and CO 2 as its sole source of carbon. This process generates an acidic pH.
- AMD resulting from all types of metal mining operations is one of the most pressing environmental problems facing the mining and mineral industries. A significant portion of the AMD draining into rivers and streams is released from waste rock. Once the AMD process has begun, it is extremely difficult to reverse or stop.
- Electrolytic plating solutions normally contain high concentrations of heavy metals like zinc, chromium, cadmium, nickel, selenium, copper, gold, silver and nickel.
- Electroless nickel plating solutions contain a nickel metal salt, such as sulfate, acetate, carbonate or chloride salt, pH adjustors, accelerators, stabilizers, buffers, and wetting agents.
- the electroless nickel solutions only have a limited useful life and eventually become depleted or spent.
- the disposal or treatment of spent electrolytic metal plating solutions poses significant challenges for the electroplating industry.
- the dissolved metal concentration must be below discharge thresholds in order to allow for the solution to be discharged as non-toxic waste directly to a municipal wastewater treatment facility.
- the spent electroless solution is first contacted with a reducing agent for sufficient time to cause the dissolved metal salt to undergo chemical reduction, resulting in the precipitation of the metal compounds out of the solution.
- Some methods include the dosing of electroless baths with caustic soda to precipitate the bulk of the heavy metal contaminants as insoluble hydrous oxides (metal hydroxides), pressing the sludge into a filter cake, drumming and disposal.
- Another waste treatment used for spent electroless plating solutions is the dosing of the solution at slightly alkaline pH with reducing agents.
- the reducing agents typically used to convert the dissolved metal salt into insoluble metal precipitates include sodium borohydride, sodium hydrosulfite and other chemicals.
- a further waste treatment method known for reducing the dissolved metal content of spent electroless baths to acceptable discharge levels involves organosulfur precipitation of the metal by dosing the spent solution at a pH of 5-8 with water-soluble precipitating agents.
- hydrocarbon-utilizing bacteria are used to remediate metal contaminants.
- the bacteria use hydrocarbons as a substrate under aerobic, anaerobic or dual aerobic/anaerobic conditions.
- the hydrocarbon comprises at least one alkane such as butane, methane, ethane and/or propane. Examples of applications include the remediation of heavy metals, the remediation of arsenic impacted surface water, groundwater and or soil, the remediation of acid mine drainage, and the treatment of spent metal plating solutions.
- An aspect of the present invention is to provide a method of remediating a metal contaminant.
- the method includes treating the metal contaminant with hydrocarbon-utilizing bacteria in the presence of a hydrocarbon.
- Another aspect of the present invention is to provide a method of treating a metal-contaminated site. The method includes supplying a hydrocarbon substrate to the site to thereby remediate the metal contaminant.
- a further aspect of the present invention is to provide a system for remediating a metal contaminant.
- the system includes means for treating the metal contaminant with hydrocarbon-utilizing bacteria in the presence of at least one hydrocarbon.
- Another aspect of the present invention is to provide a remediation system for treating a metal contaminant comprising a source of hydrocarbon substrate and at least one injector in flow communication with the hydrocarbon substrate and the metal contaminant.
- Fig.l is a schematic plan view of an in-situ hydrocarbon injection system for remediating metal-contaminated groundwater in accordance with an embodiment of the present invention.
- Fig. 2 is a schematic side view illustrating an ex-situ treatment system for metal-contaminated soil in accordance with an embodiment of the present invention.
- Fig. 3 is a schematic plan view of an in-situ hydrocarbon injection system for remediating acid mine drainage in accordance with an embodiment of the present invention.
- Fig. 4 is a schematic side view of an ex-situ treatment system employing hydrocarbon injection within a precipitation lagoon for the remediation of acid mine drainage in accordance with an embodiment of the present invention.
- Fig. 5 is a schematic side view of an ex-situ treatment system for the remediation of spent metal plating solutions in accordance with an embodiment of the present invention.
- Fig. 6 illustrates an anaerobic bioreactor in accordance with an embodiment of the present invention.
- Fig. 7 illustrates an aerobic bioreactor in accordance with an embodiment of the present invention.
- the present invention uses hydrocarbon-utilizing bacteria to remediate metal contaminants.
- the metal contaminants may include one or more metals listed on the Periodic Table, such as arsenic, antimony, beryllium, cadmium, chromium, copper, lead, mercury, iron, manganese, magnesium, radium, nickel, selenium, silver, thallium and zinc, as well as compounds containing such metals.
- the concentrations of metal contaminants in groundwater are reduced to the EPA Maximum Contaminant Levels (MCLs) set forth in the National Primary Drinking Water Regulations shown in Table 1 below. These MCLs represent safe levels for drinking water that metal concentrations in groundwater should not exceed.
- MCLs Maximum Contaminant Levels
- Metal contaminants may be present in various media, for example, in soil, groundwater, surface water, storage tanks, lagoons, industrial gaseous emissions, waste rock, soil piles, agricultural soils and fertilizers, aquatic systems, paints, polymers, herbicides, pesticides and spent auto fluids such as antifreeze and waste oil.
- Some examples of metal contaminants include acid mine drainage, metal plating solutions, arsenic-impacted groundwater, metallic salts used to control algae in lakes, weed control chemicals for lawns, pollution in river sediments and lakes, urban highway runoff, metal surface treatment waste, metal cutting and fabrication dust and junked auto parts.
- Metal contaminants may be present at many different industrial sites such as mining facilities, smelting operations, foundries, steel mills, metal processing and manufacturing facilities, process plants, production facilities for computer chips and semiconductors, and the like. Some types of metal contaminants may be radioactive, such as nuclear waste, armor plating production waste, munitions and ordnance, and hospital waste.
- the present invention uses hydrocarbon-utilizing bacteria in the presence of at least one hydrocarbon substrate to remediate metal contaminants.
- the hydrocarbon may comprise one or more alkane, alkene, alkyne, poly(alkene), poly(alkyne), aromatic hydrocarbon, aromatic hydrocarbon polymer, or aliphatic hydrocarbon.
- the hydrocarbon comprises at least one alkane such as butane, methane, ethane and/or propane.
- butane is a nontoxic and relatively low molecular weight organic compound that may serve as an electron donor under aerobic or anaerobic conditions.
- the high solubility of butane provides a large zone of influence and makes butane particularly suited to accelerate the transformation of aerobic conditions to anaerobic conditions.
- Under aerobic conditions butane substrates stimulate the growth of butane-utilizing bacteria which may oxidize iron and other metals.
- butane is the most prevalent compound of the hydrocarbon substrate on a weight percent basis, and typically comprises at least about 10 weight percent of the hydrocarbon substrate.
- the other constituents of the hydrocarbon substrate may include other alkanes or other types of hydrocarbons, and may also include inert gases.
- the hydrocarbon substrate preferably comprises at least about 50 weight percent butane. More preferably, the hydrocarbon substrate comprises at least about 90 weight percent butane. In a particular embodiment, the hydrocarbon substrate comprises at least about 99 weight percent n-butane.
- the butane may contain straight (n-butane) and/or branched chained compounds such as iso-butane.
- Hydrocarbon-utilizing microorganisms used in accordance with the present invention are typically found naturally in the affected media. However, in some applications, it may be necessary to inoculate bacteria into the treatment zone. Suitable bacteria may include the following Groups (in addition to fungi, algae, protozoa, rotifers and all other aerobic and anaerobic microbial populations found in decaying materials): Group 1: The Spirochetes
- Group 2 Aerobic/Microaerophilic, motile, helical/vibroid, gram-negative bacteria
- Group 3 Nonmotile (or rarely motile), gram-negative bacteria
- Group 4 Gram-negative aerobic/microaerophilic rods and cocci
- Group 6 Gram-negative, anaerobic, straight, curved, and helical bacteria
- Group 10 Anoxygenic phototrophic bacteria
- Group 11 Oxygenic phototrophic bacteria
- Group 12 Aerobic chemolithotrophic bacteria and associated organisms
- Group 13 Budding and/or appendaged bacteria
- Group 14 Sheathed bacteria
- Group 16 The fruiting, gliding bacteria and the Myxobacteria
- Group 1 Regular, nonsporing, gram-positive rods
- Group 20 Irregular, nonsporing, gram-positive rods
- Group 21 The mycobacteria
- Group 23 Genera with multiocular sporangia
- Group 25 Streptomycetes and related genera
- Group 29 Genus Glycomyces, Genus Kitasatospira and Genus Saccharothrix
- Group 30 The Mycoplasmas - cell wall-less bacteria
- Group 34 Cell wall-less archaeobacteria
- Group 35 Extremely thermophilic and hyperthermophilic S°-metabolizers.
- suitable bacteria may include facultative and/or microaerophilic anaerobes, which are capable of surviving at low levels of oxygen. These bacteria do not require strict anaerobic conditions such as the obligate anaerobes. Acidophilic, alkaliphilic, anaerobe, anoxygenic, autotrophic, chemolithotrophic, chemoorganotroph, chemotroph, halophilic, methanogenic, neutrophilic, phototroph, saprophytic, thermoacidophilic and thermophilic bacteria may be used. Hydrocarbon and oxygen injection may encourage the growth of other microorganisms such as fungi, protozoa and algae that may be beneficial to the sulfur compound reducing process.
- facultative and/or microaerophilic anaerobes which are capable of surviving at low levels of oxygen. These bacteria do not require strict anaerobic conditions such as the obligate anaerobes. Acidophilic, alkaliphilic, anaerobe, anoxygenic, autotrophic, chemolithotrophic
- the injected oxygen may be in the form of air (e.g., dry air with 20.9% oxygen), a gas stream with varying concentrations of oxygen, substantially pure oxygen or the like.
- the hydrocarbon and oxygen may be delivered continuously or intermittently, and may be delivered together or separately, e.g., through the same injectors or through different injectors.
- Hydrocarbon-utilizing bacteria may oxide heavy metals through direct metabolism, sequential metabolism, reductive metabolism and or cometabolism. Furthermore, the hydrocarbons may chemically oxidize or otherwise remediate the metals or metal compounds without the action of microorganisms.
- remediation of metals may occur both aerobically and anaerobically.
- hydrocarbons such as butane may transform aerobic conditions to anaerobic conditions by initially accelerating the growth of aerobic hydrocarbon-utilizing microorganisms in the presence of oxygen, which produces carbon dioxide and transforms the aerobic conditions to anaerobic conditions.
- T. Ferrooxidans activity may decrease or terminate, and anaerobic hydrocarbon-utilizing bacteria may flourish.
- the transformation from aerobic to anaerobic conditions may prevent or reduce heavy metal migration and curtail T. Ferrooxidans in general.
- the aerobic cycle may accelerate heavy metal precipitation out of solution, thereby inhibiting the migration of the metals through the subsurface, or facilitating the collection and removal of these metals using ex-situ techniques.
- Metal contaminants may be remediated by changing the subsurface microbial ecology of contaminated sites.
- Remediation may be conducted either in-situ or ex-situ.
- In-situ equipment may include injection wells for the continuous or periodic delivery of the hydrocarbon substrate, oxygen and/or nutrients.
- injection wells for the continuous or periodic delivery of the hydrocarbon substrate, oxygen and/or nutrients.
- in-situ systems as described in U.S. Patent Nos. 6,244,346 and 6,245,235 may be used to inject the hydrocarbon substrate and, optionally, oxygen to the remediation site.
- Ex-situ equipment may include bioreactors, for example, as disclosed in U.S. Patent Nos. 5,888,396 and 6,051,130, which are capable of treating air, soil or groundwater waste streams.
- the ex-situ bioreactor may be used in a batch-type process and/or in a continuous flow process.
- Ex-situ equipment may also include, for example, butane/air diffusers, precipitation lagoons with metal deposition membrane liners, anaerobic reduction chambers, and aerobic precipitation chambers.
- Fig. 1 illustrates a system for in-situ treatment of arsenic-contaminated groundwater or other types of metal-contaminated groundwater in accordance with an embodiment of the present invention.
- Butane and air injection wells 10 are installed in- situ within a flow path of metal-contaminated groundwater 12 to create radii of influence 14 around the wells 10. Dissolved butane and oxygen thus form a barrier against arsenic migration. As the treatment continues, butane-utilizing bacteria produce the requisite enzymes to precipitate arsenic or other metal contaminants from the groundwater 12 onto aquifer solids. Clean groundwater 16 then flows toward a recovery well 18, e.g., a drinking water well.
- Fig. 2 illustrates a system 20 for ex-situ treatment of metal-contaminated soil such as arsenic-containing soil in accordance with another embodiment of the present invention.
- the system 20 includes a rock crusher 22 where contaminated soil is pretreated or crushed.
- the crushed soil 23 is fed to a slurry bioreactor 24 which includes a hydrocarbon and oxygen supply 25 and diffusers 26.
- the hydrocarbon/oxygen supply 25 may comprise, for example, a cylinder containing a hydrocarbon such as butane and an air compressor, or any other suitable hydrocarbon/oxygen source.
- the supply 25 may only introduce a hydrocarbon into the bioreactor 24 if anaerobic conditions are desired.
- the hydrocarbon injected through the diffusers 26 stimulates the growth of hydrocarbon-utilizing bacteria in the bioreactor 24, which oxidize or otherwise separate the metal contaminant from the soil.
- the bioreactor 24 may be replaced with a washing tank where the metal contaminant is removed from the soil without the use of the hydrocarbon.
- the clean soil 27 is removed from the bioreactor 24 and the metal- contaminated effluent 28 is pumped 29 to a precipitation lagoon 30 where further treatment by hydrocarbon-utilizing bacteria results in metal precipitation onto a membrane liner 31.
- the membrane 31 may be made of any suitable material, such as polyethylene, EPDM rubber, polyurethane or polypropylene.
- a hydrocarbon and oxygen supply 32 and diffusers 33 deliver, for example, butane and air to the precipitation lagoon 30. Although two different hydrocarbon supplies 25 and 32 are shown in Fig. 2, a single supply could be used.
- Clean water 34 is then pumped 35 from the precipitation lagoon 30 and the metal precipitates are eliminated, for example, by collection, separation, incineration, disposal and/or stabilization, e.g., with road construction materials such as concrete and/or asphalt.
- metal-contaminated soil may be treated in heap piles utilizing leaching techniques.
- Hydrocarbon and air injection wells may be installed in the heap pile.
- Stimulated hydrocarbon-utilizing bacteria may precipitate the metal while water flushing over the heap collects the oxidized metal fraction and creates a solution effluent, which then can be treated separately, for example, in a precipitation lagoon as described above.
- Fig. 3 illustrates a system for treatment of a contaminated site, such as a heavy metal-contaminated site and/or an acid mine drainage site in accordance with a further embodiment of the invention.
- Butane (and/or other hydrocarbon substrates) and oxygen injection wells 40 are installed in-situ within a groundwater flow path 42 adjacent to a waste rock area 43 which may be above grade and or below grade.
- the waste rock 43 existing above and/or below ground, may result from metal mining operations and may be a source of AMD or heavy metal contamination.
- the wells 40 are installed in-situ and create radii of influence 44 which form a protective curtain or barrier to reduce or eliminate the flow of AMD or heavy metals.
- the injection wells 40 may operate aerobically, for example, by maintaining constant or intermittent air flow and constant or intermittent hydrocarbon flow. Alternately, the injection wells 40 may alternate between periodic hydrocarbon injection only and hydrocarbon/air injection to achieve alternating anaerobic and aerobic processes. With the transformation of the groundwater flow 42 to a substantially anaerobic state, and in the presence of an alternate electron acceptor such as carbon dioxide or nitrate, the hydrocarbon may serve as an electron donor and carbon source, thereby halting the AMD process.
- an alternate electron acceptor such as carbon dioxide or nitrate
- Fig.4 illustrates an ex-situ system 50 for the treatment of lagoons or tanks contaminated with AMD or other heavy metal contaminants in accordance with an embodiment of the present invention.
- the ex-situ system 50 includes a lagoon 52 contaminated with acid mine drainage or other heavy metal contaminants.
- the contaminated fluid 54 is pumped 56 to a precipitation lagoon 58 lined with a membrane 60.
- a hydrocarbon and oxygen supply 62 and diffusers 64 inject the desired amounts of hydrocarbon and oxygen at the desired intervals in order to create anaerobic, aerobic or alternate anaerobic and aerobic conditions in the precipitation lagoon 58.
- butane and air may be injected in order to stimulate the growth of aerobic butane-utilizing bacteria which accelerate heavy metal precipitation onto the membrane filter 60 installed in the precipitation lagoon 58.
- Clean water 66 is then pumped from the precipitation lagoon 58 while the metal contaminant is deposited on the membrane filter 60.
- the membrane 60 may be made of any suitable material, such as polyethylene, EPDM rubber, polyurethane or polypropylene.
- Fig. 5 illustrates a system 70 for treating spent metal plating solutions in accordance with another embodiment of the invention.
- Spent metal plating solution 72 is pumped 74 to an anaerobic reduction chamber 76.
- a hydrocarbon supply 78 such as a butane cylinder and diffusers 80 inject the desired amount of hydrocarbon at the desired intervals into the reduction chamber 76.
- the chamber 76 is vented 82 to atmosphere, e.g., by a one-way valve.
- the solution 84 is then pumped 86 from the reduction chamber 76 to an aerobic precipitation chamber 88.
- a hydrocarbon and oxygen supply 90 and diffusers 92 inject the desired amounts of hydrocarbon and oxygen, such as butane and air, at the desired intervals into the aerobic precipitation chamber 88.
- a membrane liner 94 is provided at the bottom of the chamber 88, e.g., on a pull-out tray.
- the chamber 88 is vented 96 to atmosphere. Clean water 98 exits the chamber 88.
- butane-utilizing bacteria or other hydrocarbon-utilizing bacteria in the reduction chamber 76 anaerobically pretreat the metal plating solution 72, e.g., using metabolic and cometabolic processes.
- hydrocarbon-utilizing bacteria such as butane-utilizing bacteria may utilize a variety of alternate electron acceptors such as sulfate, nitrate or iron.
- the electroless plating solution 72 may be pretreated with buffers to maintain a pH between 4 and 8.
- the solution 84 undergoes microbial oxidation in the aerobic precipitation chamber 88.
- the alternate electron acceptors may be added, for example, to the butane/air mix injected into the precipitation chamber 88.
- Precipitated metals are deposited on the membrane liner 94 which may be incorporated into pull-out trays for subsequent removal.
- a low voltage current may be passed through a portion of the tray assembly to electrolyze and plate portions of the tray liners with the metal constituents to aid and expedite the metal recovery process.
- Example 1 illustrates the treatment of a spent electroplating solution, and is not intended to limit the scope of the present invention.
- the spent electroplating solution had a pH of 3.0.
- concentrations of cyanide, beryllium, chromium, copper, nickel and zinc were detected above the laboratory detection limits.
- the sample prior to treatment with butane, the sample should have been adjusted with an alkaline buffer to raise the pH.
- the example was designed to demonstrate the principal of metals precipitation under conservative conditions. Therefore, the pH was not adjusted and since oxygen alone will partially oxidize metals, air was not pumped into the bioreactors designed for this study.
- FIG. 6 illustrates an anaerobic bioreactor 100 used in the study.
- the reactor 100 included a container 102 having a lid 104, an injection tube 106 and a syringe port 108 to inject butane.
- a vent tube 112 was connected through the lid 104 to a water bath 114.
- Filter paper 110 was placed at the bottom of the bioreactor container 102.
- Three liters of spent electroplating solution underwent butane treatment in the anaerobic bioreactor 100 for 14 days.
- vent tube 112 and water bath 114 shown in Fig. 6 were removed from the bioreactor 100.
- the resultant aerobic bioreactor 120 is illustrated in Fig. 7.
- air exchange was permitted within the vessel 102, although to a limited degree since butane is heavier than air and displaces air in a semi-closed environment.
- the spent electroplating solution was decanted from the bioreactor. A change in color was immediately noticeable. The initial color of the solution was a deep bluish-green. After the 28-day period, the color was light green. The pH of the solution was tested and found to be the same, i.e., 3.0. A precipitate was noticeable on the filter paper.
- the filter paper was submitted to a certified analytical laboratory for metals analyses (only for those metals detected above the detection limit during the pre-characterization sampling event). The results are listed in Table 4.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Environmental & Geological Engineering (AREA)
- Wood Science & Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Soil Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30848701P | 2001-07-27 | 2001-07-27 | |
US30821201P | 2001-07-27 | 2001-07-27 | |
US30821001P | 2001-07-27 | 2001-07-27 | |
US60/308,487 | 2001-07-27 | ||
US60/308,212 | 2001-07-27 | ||
US60/308,210 | 2001-07-27 | ||
US34486801P | 2001-12-31 | 2001-12-31 | |
US60/344,868 | 2001-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003011487A1 true WO2003011487A1 (fr) | 2003-02-13 |
Family
ID=27501946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/024001 WO2003011487A1 (fr) | 2001-07-27 | 2002-07-26 | Biorestauration de contaminants metalliques avec des bacteries utilisant des hydrocarbures |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003011487A1 (fr) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006072845A3 (fr) * | 2004-12-02 | 2007-03-01 | Csir | Proteine de recombinaison gram-positives pour la production de bacteries |
CN100410190C (zh) * | 2005-08-25 | 2008-08-13 | 中南大学 | 细菌处理高浓度碱性含铬废水的方法 |
EP1873234A4 (fr) * | 2005-04-21 | 2009-08-05 | Ibiden Co Ltd | Procede de traitement des eaux usees contenant un compose organique |
WO2011098979A2 (fr) | 2010-02-12 | 2011-08-18 | Commissariat A L'energie Atomique | Nouvelle algue radiorésistante du genre coccomyxa |
CN102372406A (zh) * | 2011-10-13 | 2012-03-14 | 长沙理工大学 | 一种重金属污染底泥的异位修复方法 |
US8658411B2 (en) | 2005-04-21 | 2014-02-25 | Ibiden Co., Ltd. | Method of treating wastewater containing organic compound |
WO2014174483A2 (fr) | 2013-04-25 | 2014-10-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Nouvelle algue radioresistante du genre coccomyxa |
RU2571222C2 (ru) * | 2009-08-20 | 2015-12-20 | Интер Американ Юниверсити Оф Пуэрто-Рико | Система ремедиации тяжелых металлов |
CN106244501A (zh) * | 2016-09-23 | 2016-12-21 | 北京林业大学 | 一株抗锑细菌nxh1及其应用 |
CN106434446A (zh) * | 2016-09-23 | 2017-02-22 | 北京林业大学 | 一株抗锑细菌nxh3及其应用 |
CN106834184A (zh) * | 2017-03-03 | 2017-06-13 | 中南大学 | 一种复合菌群及其在Cr(VI)污染土壤修复中的应用 |
US9845342B2 (en) | 2014-09-17 | 2017-12-19 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
CN107971334A (zh) * | 2017-11-03 | 2018-05-01 | 中国科学院生态环境研究中心 | 一种多塘-藻水循环灌溉系统修复污染土壤的方法 |
CN108459642A (zh) * | 2018-03-09 | 2018-08-28 | 浙江海莱芙电子科技有限公司 | 一种矿井防冻采暖空气智能送风系统 |
CN108641990A (zh) * | 2018-06-29 | 2018-10-12 | 南京怡可帮生态环境科技有限公司 | 一种土壤砷污染修复微生物制剂生产方法及应用 |
CN110257272A (zh) * | 2019-04-04 | 2019-09-20 | 华中农业大学 | 丛毛单胞菌和肠杆菌的复合菌剂高效固定镉及在镉污染修复的应用 |
US11865597B2 (en) | 2019-08-23 | 2024-01-09 | Seed Health Inc. | Method for bioremediation of lead |
US12031164B2 (en) | 2017-09-20 | 2024-07-09 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and exosporium fragments for plant health |
WO2024237867A1 (fr) * | 2023-05-17 | 2024-11-21 | Slovak National Museum-Natural History Museum | Utilisation de souches bactériennes résistantes à l'antimoine pour la bioremédiation et procédé de bioremédiation utilisant ces mêmes souches bactériennes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3642577A (en) * | 1968-09-04 | 1972-02-15 | Mobil Oil Corp | Growing hydrocarbon-utilizing microorganisms |
US4696901A (en) * | 1982-12-23 | 1987-09-29 | Shell Internationale Research Maatschappij B.V. | Immobilization of microorganisms on a plastic carrier |
US5055397A (en) * | 1987-12-17 | 1991-10-08 | Atlantic Richfield Company | Geomicrobiological methods of ore and petroleum exploration |
US5888396A (en) * | 1996-12-17 | 1999-03-30 | Perriello; Felix Anthony | Bioremediation of pollutants with butane-utilizing bacteria |
-
2002
- 2002-07-26 WO PCT/US2002/024001 patent/WO2003011487A1/fr not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3642577A (en) * | 1968-09-04 | 1972-02-15 | Mobil Oil Corp | Growing hydrocarbon-utilizing microorganisms |
US4696901A (en) * | 1982-12-23 | 1987-09-29 | Shell Internationale Research Maatschappij B.V. | Immobilization of microorganisms on a plastic carrier |
US5055397A (en) * | 1987-12-17 | 1991-10-08 | Atlantic Richfield Company | Geomicrobiological methods of ore and petroleum exploration |
US5888396A (en) * | 1996-12-17 | 1999-03-30 | Perriello; Felix Anthony | Bioremediation of pollutants with butane-utilizing bacteria |
US6051130A (en) * | 1996-12-17 | 2000-04-18 | Perriello; Felix Anthony | Bioreactor for remediation of pollutants with butane utilizing bacteria |
US6156203A (en) * | 1996-12-17 | 2000-12-05 | Anthony; Felix | Bioremediation of polychlorinated biphenyl pollutants with butane-utilizing bacteria |
US6245235B1 (en) * | 1996-12-17 | 2001-06-12 | Felix Anthony Perriello | System and method of in-situ bioremediation with butane-utilizing bacteria |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006072845A3 (fr) * | 2004-12-02 | 2007-03-01 | Csir | Proteine de recombinaison gram-positives pour la production de bacteries |
US7888064B2 (en) | 2004-12-02 | 2011-02-15 | Csir | Gram positive bacterial cells comprising a disrupted flagellin gene, flagellin-based fusion proteins and use in removal of metal ions from a liquid |
EP1873234A4 (fr) * | 2005-04-21 | 2009-08-05 | Ibiden Co Ltd | Procede de traitement des eaux usees contenant un compose organique |
EP2216398A3 (fr) * | 2005-04-21 | 2010-10-27 | Ibiden Co., Ltd. | Procédé de traitement des eaux usées contenant un composé organique |
US8658411B2 (en) | 2005-04-21 | 2014-02-25 | Ibiden Co., Ltd. | Method of treating wastewater containing organic compound |
CN100410190C (zh) * | 2005-08-25 | 2008-08-13 | 中南大学 | 细菌处理高浓度碱性含铬废水的方法 |
RU2571222C2 (ru) * | 2009-08-20 | 2015-12-20 | Интер Американ Юниверсити Оф Пуэрто-Рико | Система ремедиации тяжелых металлов |
WO2011098979A2 (fr) | 2010-02-12 | 2011-08-18 | Commissariat A L'energie Atomique | Nouvelle algue radiorésistante du genre coccomyxa |
CN102372406A (zh) * | 2011-10-13 | 2012-03-14 | 长沙理工大学 | 一种重金属污染底泥的异位修复方法 |
CN102372406B (zh) * | 2011-10-13 | 2013-08-07 | 长沙理工大学 | 一种重金属污染底泥的异位修复方法 |
WO2014174483A2 (fr) | 2013-04-25 | 2014-10-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Nouvelle algue radioresistante du genre coccomyxa |
US10407472B2 (en) | 2014-09-17 | 2019-09-10 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
US10836800B2 (en) | 2014-09-17 | 2020-11-17 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
US11905315B2 (en) | 2014-09-17 | 2024-02-20 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
US9845342B2 (en) | 2014-09-17 | 2017-12-19 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
CN106244501A (zh) * | 2016-09-23 | 2016-12-21 | 北京林业大学 | 一株抗锑细菌nxh1及其应用 |
CN106434446A (zh) * | 2016-09-23 | 2017-02-22 | 北京林业大学 | 一株抗锑细菌nxh3及其应用 |
CN106434446B (zh) * | 2016-09-23 | 2019-09-17 | 北京林业大学 | 一株抗锑细菌nxh3及其应用 |
CN106834184A (zh) * | 2017-03-03 | 2017-06-13 | 中南大学 | 一种复合菌群及其在Cr(VI)污染土壤修复中的应用 |
US12031164B2 (en) | 2017-09-20 | 2024-07-09 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and exosporium fragments for plant health |
CN107971334A (zh) * | 2017-11-03 | 2018-05-01 | 中国科学院生态环境研究中心 | 一种多塘-藻水循环灌溉系统修复污染土壤的方法 |
CN108459642A (zh) * | 2018-03-09 | 2018-08-28 | 浙江海莱芙电子科技有限公司 | 一种矿井防冻采暖空气智能送风系统 |
CN108641990A (zh) * | 2018-06-29 | 2018-10-12 | 南京怡可帮生态环境科技有限公司 | 一种土壤砷污染修复微生物制剂生产方法及应用 |
CN110257272A (zh) * | 2019-04-04 | 2019-09-20 | 华中农业大学 | 丛毛单胞菌和肠杆菌的复合菌剂高效固定镉及在镉污染修复的应用 |
US11865597B2 (en) | 2019-08-23 | 2024-01-09 | Seed Health Inc. | Method for bioremediation of lead |
WO2024237867A1 (fr) * | 2023-05-17 | 2024-11-21 | Slovak National Museum-Natural History Museum | Utilisation de souches bactériennes résistantes à l'antimoine pour la bioremédiation et procédé de bioremédiation utilisant ces mêmes souches bactériennes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6923914B2 (en) | Remediation of metal contaminants with hydrocarbon-utilizing bacteria | |
Di Capua et al. | Electron donors for autotrophic denitrification | |
US5833855A (en) | Situ bioremediation of contaminated groundwater | |
WO2003011487A1 (fr) | Biorestauration de contaminants metalliques avec des bacteries utilisant des hydrocarbures | |
Cohen | Use of microbes for cost reduction of metal removal from metals and mining industry waste streams | |
US9284206B2 (en) | Chemical co-precipitation process for recovery of flow-back water, produced water and wastewater of similar characteristics | |
US10245626B2 (en) | Mine drainage remediation using barium carbonate dispersed alkaline substrate | |
US6322700B1 (en) | Engineered in situ anaerobic reactive zones | |
Roane et al. | Microbial remediation of metals | |
Hazen et al. | Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides | |
US9096449B1 (en) | Method for treating flowback water from hydraulic fracturing | |
Kuyucak | Role of microorganisms in mining: generation of acid rock drainage and its mitigation and treatment | |
Guo et al. | The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge | |
Lee | Current options in treatment of agricultural drainage wastewater | |
Grembi et al. | Remediation of high-strength mine-impacted water with mixed organic substrates containing crab shell and spent mushroom compost | |
Kaksonen et al. | Review of sulfate reduction based bioprocesses for acid mine drainage treatment and metals recovery | |
Tredoux et al. | THE FEASIBILITY OF IN S/HS GROUNDWATER REMEDIATION AS ROBUST LOW-COST WATER TREATMENT OPTION | |
Tsvetkov et al. | SEMI-PASSIVE TREATMENT OF MINE WASTE WATER IN ANAEROBIC CONDITIONS | |
Förstner et al. | Trace metals in water purification processes | |
Kuyucak et al. | Separation technologies for inorganic compounds contained in industrial wastewaters including metal ions, metalloids, thiosalts, cyanide, ammonia and nitrate | |
Lieberman et al. | Anaerobic biodegradation and biotransformation using emulsified edible oils | |
Guerrero et al. | Environmental Biotechnology for Mining and Metallurgy | |
Groudev et al. | A pilot-scale passive system for the treatment of acid mine drainage | |
Meeroff | Management of Subsurface Reductive Dissolution Underneath Landfills | |
Weathers et al. | Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VN YU ZA ZM Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |