WO2003011211A2 - Peg-modified uricase - Google Patents
Peg-modified uricase Download PDFInfo
- Publication number
- WO2003011211A2 WO2003011211A2 PCT/US2002/013265 US0213265W WO03011211A2 WO 2003011211 A2 WO2003011211 A2 WO 2003011211A2 US 0213265 W US0213265 W US 0213265W WO 03011211 A2 WO03011211 A2 WO 03011211A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uricase
- group
- polyethylene glycol
- lys
- compound
- Prior art date
Links
- 108010092464 Urate Oxidase Proteins 0.000 title claims abstract description 203
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 164
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 143
- 229940116269 uric acid Drugs 0.000 claims abstract description 52
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims abstract description 51
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 38
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 78
- 150000001875 compounds Chemical class 0.000 claims description 42
- 125000005647 linker group Chemical group 0.000 claims description 36
- 230000000694 effects Effects 0.000 claims description 20
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical group O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 12
- AASBXERNXVFUEJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) propanoate Chemical compound CCC(=O)ON1C(=O)CCC1=O AASBXERNXVFUEJ-UHFFFAOYSA-N 0.000 claims description 11
- 241000235646 Cyberlindnera jadinii Species 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 8
- KQTSOJHOCCWAEH-UHFFFAOYSA-N n'-(2,5-dioxopyrrolidin-1-yl)butanediamide Chemical compound NC(=O)CCC(=O)NN1C(=O)CCC1=O KQTSOJHOCCWAEH-UHFFFAOYSA-N 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 125000004185 ester group Chemical group 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 244000005700 microbiome Species 0.000 claims description 7
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 6
- 125000003368 amide group Chemical group 0.000 claims description 6
- 150000001720 carbohydrates Chemical class 0.000 claims description 6
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 6
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 6
- 125000005462 imide group Chemical group 0.000 claims description 6
- -1 succinimidyl Chemical group 0.000 claims description 6
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 6
- QXZGLTYKKZKGLN-UHFFFAOYSA-N 4-(2,5-dioxopyrrolidin-1-yl)oxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)ON1C(=O)CCC1=O QXZGLTYKKZKGLN-UHFFFAOYSA-N 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 125000003700 epoxy group Chemical group 0.000 claims description 5
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 5
- 241000186063 Arthrobacter Species 0.000 claims description 4
- 206010021131 Hypouricaemia Diseases 0.000 claims 1
- 201000001431 Hyperuricemia Diseases 0.000 abstract description 23
- 206010045170 Tumour lysis syndrome Diseases 0.000 abstract description 16
- 208000010380 tumor lysis syndrome Diseases 0.000 abstract description 16
- 230000001965 increasing effect Effects 0.000 abstract description 9
- 108090000623 proteins and genes Proteins 0.000 description 26
- 102000004190 Enzymes Human genes 0.000 description 23
- 108090000790 Enzymes Proteins 0.000 description 23
- 229940088598 enzyme Drugs 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 23
- 239000000243 solution Substances 0.000 description 21
- 238000011282 treatment Methods 0.000 description 21
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 18
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 15
- 229960003459 allopurinol Drugs 0.000 description 15
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 230000002255 enzymatic effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 241000282412 Homo Species 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- 150000003141 primary amines Chemical class 0.000 description 9
- 238000002560 therapeutic procedure Methods 0.000 description 9
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 7
- 108010068701 Pegloticase Proteins 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- 229940075420 xanthine Drugs 0.000 description 7
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 239000007640 basal medium Substances 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 230000006320 pegylation Effects 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000012064 sodium phosphate buffer Substances 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 239000004098 Tetracycline Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 208000037765 diseases and disorders Diseases 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 229960002180 tetracycline Drugs 0.000 description 5
- 229930101283 tetracycline Natural products 0.000 description 5
- 235000019364 tetracycline Nutrition 0.000 description 5
- 150000003522 tetracyclines Chemical class 0.000 description 5
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 4
- 208000009304 Acute Kidney Injury Diseases 0.000 description 4
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 4
- 241000228197 Aspergillus flavus Species 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 208000033626 Renal failure acute Diseases 0.000 description 4
- 201000011040 acute kidney failure Diseases 0.000 description 4
- 208000012998 acute renal failure Diseases 0.000 description 4
- 229960000458 allantoin Drugs 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229940088594 vitamin Drugs 0.000 description 4
- 239000011782 vitamin Substances 0.000 description 4
- 235000013343 vitamin Nutrition 0.000 description 4
- 229930003231 vitamin Natural products 0.000 description 4
- 150000003722 vitamin derivatives Chemical class 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 206010029148 Nephrolithiasis Diseases 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 239000007984 Tris EDTA buffer Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011026 diafiltration Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 150000003212 purines Chemical class 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- RLFWWDJHLFCNIJ-UHFFFAOYSA-N 4-aminoantipyrine Chemical compound CN1C(C)=C(N)C(=O)N1C1=CC=CC=C1 RLFWWDJHLFCNIJ-UHFFFAOYSA-N 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000010523 Cicer arietinum Nutrition 0.000 description 2
- 244000045195 Cicer arietinum Species 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 208000002682 Hyperkalemia Diseases 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108091006006 PEGylated Proteins Proteins 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 229920002538 Polyethylene Glycol 20000 Polymers 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 108010001244 Tli polymerase Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- DSEORJACOQDMQX-UHFFFAOYSA-N bis(2,3,4-trichlorophenyl) carbonate Chemical compound ClC1=C(Cl)C(Cl)=CC=C1OC(=O)OC1=CC=C(Cl)C(Cl)=C1Cl DSEORJACOQDMQX-UHFFFAOYSA-N 0.000 description 2
- 229960005069 calcium Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012538 diafiltration buffer Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000012537 formulation buffer Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- OKXGHXHZNCJMSV-UHFFFAOYSA-N nitro phenyl carbonate Chemical compound [O-][N+](=O)OC(=O)OC1=CC=CC=C1 OKXGHXHZNCJMSV-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000021962 pH elevation Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000009103 reabsorption Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 230000002485 urinary effect Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- HRNGDAQBEIFYGL-UHFFFAOYSA-N 3,4-dihydroxy-4-tetradeca-3,6-dienoyloxybutanoic acid Chemical compound CCCCCCCC=CCC=CCC(=O)OC(O)C(O)CC(O)=O HRNGDAQBEIFYGL-UHFFFAOYSA-N 0.000 description 1
- LWKJNIMGNUTZOO-UHFFFAOYSA-M 3,5-dichloro-2-hydroxybenzenesulfonate Chemical compound OC1=C(Cl)C=C(Cl)C=C1S([O-])(=O)=O LWKJNIMGNUTZOO-UHFFFAOYSA-M 0.000 description 1
- LWYOAHYSGAOKDH-UHFFFAOYSA-N 4-hydroxy-3h-purin-2-one Chemical compound C1=NC(O)=NC2(O)N=CN=C21 LWYOAHYSGAOKDH-UHFFFAOYSA-N 0.000 description 1
- 208000010444 Acidosis Diseases 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical class NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930195730 Aflatoxin Natural products 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- 206010012434 Dermatitis allergic Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000228138 Emericella Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010019842 Hepatomegaly Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 208000015924 Lithiasis Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 206010027417 Metabolic acidosis Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 208000004880 Polyuria Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000282695 Saimiri Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 206010048302 Tubulointerstitial nephritis Diseases 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000005409 aflatoxin Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Chemical group 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000035619 diuresis Effects 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical group C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000013029 homogenous suspension Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 201000005991 hyperphosphatemia Diseases 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 201000006334 interstitial nephritis Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- CNFDGXZLMLFIJV-UHFFFAOYSA-L manganese(II) chloride tetrahydrate Chemical compound O.O.O.O.[Cl-].[Cl-].[Mn+2] CNFDGXZLMLFIJV-UHFFFAOYSA-L 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940099216 oncaspar Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- HXNFUBHNUDHIGC-UHFFFAOYSA-N oxypurinol Chemical compound O=C1NC(=O)N=C2NNC=C21 HXNFUBHNUDHIGC-UHFFFAOYSA-N 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108010001564 pegaspargase Proteins 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004144 purine metabolism Effects 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000010248 tubular secretion Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 231100000402 unacceptable toxicity Toxicity 0.000 description 1
- 229940005267 urate oxidase Drugs 0.000 description 1
- 230000003424 uricosuric effect Effects 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0044—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
- C12N9/0046—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7) with oxygen as acceptor (1.7.3)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention is directed to uricase modified with polyethylene glycol and to methods for treating number of different illnesses characterized by increased circulating uric acid levels.
- Uric acid is a product of purine metabolism in birds, reptiles, and primates, including humans. Uric acid is produced in the liver by oxidation of xanthine and hypoxanthine. Xanthine is an intermediate in the catabolism of guanine nucleotides while hypoxanthine is produced during the breakdown of adenine nucleotides. In most mammals, uric acid is further oxidized by the enzyme urate oxidase to allantoin. Allantoin, because of its lost pyrimidine ring, shows a more than 20 times greater water solubility than uric acid. Urate oxidase, also called uricase, is an enzyme of the purine degradation pathway. Uricase catalyzes the conversion of uric acid + O 2 into allantoin + CO 2 .
- Hyperuricemia is defined as occurring when the serum level of uric acid is above 8 mg/dl. Hyperuricemia can result in the formation of uric acid crystals in the serum, which can precipitate in joints, skin and kidneys. This can result in inflammation of the joints (gout), renal failure, metabolic acidosis, and hyperkalemia. Overproduction of uric acid can have a variety of origins, including congenital metabolic defects, Lesch-Nyhan syndrome, excess ingestion of purine or proteins, and treatments with uricosuric drugs (Kelley, W.N. and Wortman, R. L. Textbook of Rheumatology, 5 th edition, pp 1313-1351, 1997; which is incorporated by reference). Hyperuricemia is also found in patients that have had heart or kidney transplants and are being treated with immunosupressive agents. Hyperuricemia can lead to the loss of kidney function in these patients and can produce significant morbidity and mortality.
- Hyperuricemia is also found in patients with malignant diseases. Chemotherapy and radiation therapy of cancer patients can induce a life-threatening condition known as tumor lysis syndrome (Kalemkerian, G. P., Darwish, B., and Varterasian, M. L. Am J. Med. 103, 363-367, 1997; Lorigan, P.C., Woodings, P. L., Morgenstern, G. R., and Scarffe, J. H. Ann Oncol. 7, 631-636, 1996; Hande, K. R., and Garrow, G. C. Am. J. Med. 94, 133-139, 1993). Hematologic malignancies, such as leukemias and lymphomas, are responsible for most cases of tumor lysis syndrome.
- Tumor lysis syndrome is characterized by the rapid development of hyperuricemia, hyperkalemia, hyperphosphatemia, and acute renal failure. Acute renal failure is the result of the intrarenal precipitation of uric acid. Tumor lysis syndrome is often triggered by cell death induced by chemotherapy or radiotherapy, resulting in the release of intracellular substances. However, occasionally cancer patients with a heavy tumor burden may exhibit hyperuricemia and other features of tumor lysis syndrome even in the absence of radiotherapy or chemotherapy because of the high turnover of malignant cells with subsequent catabolism of released purines into uric acid.
- Allopurinol is converted to oxypurinol, which then binds to and inhibits xanthine oxidase, the enzyme that catalyzes the conversion of hypoxanthine and xanthine to uric acid. As a result, uric acid production is inhibited, and xanthine and hypoxanthine concentrations increase.
- allopurinol does not remove uric acid that is already present and deposited intrarenally as crystals. As a result, it is often several days (sometimes 10-14 days) from the initial treatment with allopurinol before a significant decrease in uric acid in serum can be observed.
- Allopurinol can produce severe toxic effects, including cutaneous hypersensitivity reactions, leukopenia, and hepatomegaly. This drug has been also implicated in the induction of tubulointerstitial nephritis. In addition, allopurinol may cause adverse drug interactions, as has been shown for 6-me ⁇ captopurine and adenine arabinoside, drugs often used to treat lymphoproliferative disease and leukemia (Lauter, CB, Bailey, EJ, Lerner, AM. J Infect. Dis 1976; 134, 75-79). Finally, although allopurinol can block the formation of uric acid, it does little to solubilize the uric acid which is already present.
- allopurinol is not an ideal drug for the treatment of hyperuricemia.
- Dialysis and continuous ateriovenous hemodialysis are additional methods that are used to remove uric acid in patients with hyperuricemia.
- these treatment methods are problematic in patients with malignancies because of the risk for severe bleeding caused by thrombocytopenia or the need for anticoagulation.
- Uricase has been shown to be an effective treatment for hyperuricemia and tumor lysis syndrome (London, M., and Hudson, P. B. Science, 125, 937-938, 1957; Oberling, F. and Lang, J. M. organism Presse Med 3, 2026, 1974; Robert, A., Corberand, J. and Regnier, C. Rev. Med.doch 12, 1093-1100, 1976; Masera, G., et. al., J. Pediatrics 100, 152-155, 1982; Jankovic, M., et. al. Am. J. Pediatr. Hematol. Onocol. 7, 202-204, 1985; Masera, G. and Jankovic, M. Ann. Oncol. 8, 407, 1996; Jones, D.
- uricase converts uric acid into the highly soluble allantoin. Furthermore, uricase, if adequately filtered into the urine, may even dissolve already precipitated uric acid crystals and improve renal function.
- Uricase has a number of advantages in the treatment of hyperuricemia and nephrolithiasis including the speed of the hypouricemic effect (reduction of hyperuricemia of the order of 50% in less than 24 h) and better protection of the kidney against lithiasis compared with other drugs such as allopurinol. Uricase is only available in a few countries, currently limiting the use of this therapy. Uricase extracted from Aspergillus flavus through a complex manufacturing process, has been commercially available from Sanofi (Clin-Midy, Paris, France) under the trade name Uricozyme in France since 1975 and in Italy since the early 1980s.
- the uricase currently used as a drug is obtained by culturing Aspergillus flavus and isolating the enzyme from the culture medium by extraction, followed by several purification steps. While it is possible to obtain highly purified uricase, this method has disadvantages. Aspergillus flavus is not easy to work with because of its physiology and genetics (WOLOSHUK et al. Applied Environ. Microbiol., 55, 86-90, 1989), making it difficult to obtain strains that can produce substantial amounts of the enzyme. Aspergillus flavus can also produce aflatoxins, which can be difficult to remove during the purification process. The purified uricase must be checked to ensure that it is free from these toxins.
- uricase has been tested in the United States, it is not an approved therapy because of the of a high incidence of allergic reactions to this foreign protein.
- the clinical use of uricase is also compromised by its short circulating half-life. (See, Park et al, Anticancer Res., 1:373-6 (1981).
- PEG polyethylene glycol
- PEG polyethylene glycol
- PEG-uricase uricase isolated from Candida utilis
- Serum uric acid fell to undetectable levels within 60 minutes after injection, and remained undetectable for at least 32 hours.
- the serum half-life of PEG- 5,000 uricase was 6 hours.
- the half-life of native (unpegylated) uricase was noted to be less than 4 hours in other studies. Precipitating antibodies to PEG-uricase or native uricase were not detected in any patient.
- Davis et al. noted that PEG-5,000 uricase offered a potentially major therapeutic advantage over native uricase in the treatment of hyperuricemic diseases. Chua, et al.
- the present invention addresses the needs identified above in that it provides formulations of uricase which overcome the disadvantages of uricase compositions used to date.
- the present invention is directed to uricase modified with polyethylene glycol.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 10,000 to about 50,000, directly or through a biocompatible linking group.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- Another embodiment of the invention is directed to methods of treating uric acid related diseases including hyperuricemia, tumor lysis syndrome, and nephrolithiasis, among others, comprising administering a therapeutically effective amount of a compound comprising PEG-modified uricase.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- the present invention provides methods of enhancing the circulating half life of uricase comprising modifying said uricase by covalently bonding said uricase via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of about 10,000 to about 30,000, and wherein the linking group is selected from the group consisting of a succinimide group, an amide group, an imide group, a carbamate group, an ester group, an epoxy group, a carboxyl group, a hydroxyl group, a carbohydrate, a tyrosine group, a cysteine group, a histidine group and combinations thereof.
- the present invention provides methods of enhancing the anti-uric acid activity of uricase comprising modifying said uricase by covalently bonding said uricase via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of from about 10,000 to about 30,000, and wherein the linking group is selected from the group consisting of a succinimide group, an amide group, an imide group, a carbamate group, an ester group, an epoxy group, a carboxyl group, a hydroxyl group, a carbohydrate, a tyrosine group, a cysteine group, a histidine group and combinations thereof.
- the present invention provides methods of reducing uric acid levels in a patient comprising administering to said patient a therapeutically effective amount of a compound comprising uricase covalently bonded via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of from about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- the present invention provides methods of treating uric acid related disorders in a patient comprising administering to said patient a therapeutically effective amount of a compound comprising uricase covalently bonded via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of from about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- the present invention provides a compound comprising uricase coupled to polyethylene glycol, without a linking group wherein the polyethylene glycol has a total weight average molecular weight of about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- Uricase may be found in many microorganisms and is useful for the treatment of many diseases and disorders in humans. However, uricase is antigenic and rapidly cleared from circulation in a patient. These problems may be overcome by covalently modifying uricase with polyethylene glycol (PEG).
- PEG polyethylene glycol
- the present invention is based on the discovery that uricase modified with polyethylene glycol provides excellent results in treating certain types of diseases and disorders related to elevated levels of uric acid in humans.
- uricase-PEG When compared to native uricase, uricase-PEG retains most of its enzymatic activity, is far less antigenic, has a greatly extended circulating half-life, and is much more efficacious in the treatment of diseases and disorders including hyperuricemia and tumor lysis syndrome, among others.
- PEG-20,000 is especially preferred as it possesses prefened enzymatic activity levels, antigenicity, circulating half-life, efficacy, and relative ease of manufacture. Definitions
- Uricase covalently modified with polyethylene glycol may be hereinafter referred to as "uricase-PEG”, “urate oxidase-PEG”, or “PEG- uricase”.
- Polyethylene glycol or “PEG” refers to mixtures of condensation polymers of ethylene oxide and water, in a branched or straight chain, represented by the general formula H(OCH 2 CH 2 ) n OH, wherein n is at least 4.
- Polyethylene glycol or “PEG” is used in combination with a numeric suffix to indicate the approximate weight average molecular weight thereof.
- PEG-5,000 refers to polyethylene glycol having a total weight average molecular weight of about 5,000
- PEG-12,000 refers to polyethylene glycol having a total weight average molecular weight of about 12,000
- PEG-20,000 refers to polyethylene glycol having a total weight average molecular weight of about 20,000.
- the term "patient” refers to an animal, preferably a mammal, and more preferably a human.
- uric acid related disease refers to diseases and disorders characterized by elevated levels of uric acid. Uric acid related disorders include without limitation, hyperuricemia, tumor lysis syndrome, and nephrolithiasis, among others.
- biocompatible refers to materials or compounds which are generally not injurious to biological functions and which will not result in any degree of unacceptable toxicity, including allergenic and disease states.
- Circulating half life refers to the period of time, after injection of the modified uricase into a patient, until a quantity of the uricase has been cleared to levels one half of the original peak serum level. Circulating half life may be determined in any relevant species, including humans or mice.
- covalently bonded and “coupled” are used interchangeably and refer a covalent bond linking uricase to the PEG molecule, either directly or through a linker.
- Uricase In the present invention, the uricase gene may be derived, cloned or produced from any source, including, for example, from microorganisms, or via recombinant biotechnology, or any combination thereof.
- uricase may be cloned from microorganisms including but not limited to Asperigillus flavus, Candida utilis, and Arthrobacter protoformiae.
- the uricase used in the present invention may have the amino acid sequence set forth in the appended Sequence Listing.
- Uricase may also may cloned from a large number of other organisms, including but not limited to bacteria, of the genera Streptomyces and Bacillus; fungi, (including the yeast) of the genera Saccharomyces, Schizosaccaromyces, Emericella, Aspergillus, and Neurospora; the fruit fly (Drosophila); mammals, including pig (Sus scrofa), squirrel monkey (Samiri sciureus), baboon (Papio), and rhesus macaque (Macaca mulatta); and plants including the chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), potato (Solanum tuberosum) and pea (Pisum sativum).
- Polyethylene Glycol Polyethylene Glycol
- the polyethylene glycol has a total weight average molecular weight of about 10,000 to about 50,000; more preferably from about 12,000 to about 40,000, more preferably from about 15,000 to about 30,000; and most preferably about 20,000.
- polyethylene glycol with a molecular weight of 30,000 or more is difficult to dissolve, and yields of the formulated product are greatly reduced.
- the polyethylene glycol may be a branched or straight chain, preferably a straight chain. Increasing the molecular weight of the polyethylene glycol generally tends to decrease the immunogenicity of the uricase.
- the polyethylene glycols having the molecular weights described in the present invention may be used in conjunction with uricase, and, optionally, a biocompatible linking group, to treat diseases and disorders relating to elevated levels of uric acid. Pegylation
- Uricase may be covalently bonded to PEG via a biocompatible linking group, using methods known in the art, as described, for example, by Park et al, Anticancer Res., 1:373- 376 (1981); and Zaplipsky and Lee, Polyethylene Glycol Chemistry: Biotechnical and Biomedical Applications, J.M. Harris, ed., Plenum Press, NY, Chapter 21 (1992), the disclosures of which are hereby incorporated by reference herein in their entirety.
- the linking group used to covalently attach PEG to uricase may be any biocompatible linking group.
- biocompatible indicates that the compound or group is non-toxic and may be utilized in vitro or in vivo without causing injury, sickness, disease or death.
- PEG can be bonded to the linking group, for example, via an ether bond, an ester bond, a thiol bond or an amide bond.
- Suitable biocompatible linking groups include, for example, an ester group, an amide group, an imide group, a carbamate group, a carboxyl group, a hydroxyl group, a carbohydrate, a succinimide group (including, for example, succinimidyl succinate (SS), succinimidyl propionate (SPA), succinimidyl carboxymethylate (SCM), succinimidyl succinamide (SSA) or N-hydroxy succinimide (NHS)), an epoxide group, an oxycarbonylimidazole group (including, for example, carbonyldimidazole (CDI)), a nitro phenyl group (including, for example, nitrophenyl carbonate (NPC) or trichlorophenyl carbonate (TPC)), a trysylate group, an aldehyde group, an isocyanate group, a vinylsulfone group, a tyrosine group, a cysteine group, a
- the biocompatible linking group is an ester group and/or a succinimide group. More preferably, the linking group is SS, SPA, SCM, SSA or NHS; with SS, SPA or NHS being more preferred, and with SS or SPA being most prefened.
- a common feature of the most preferred biocompatible linking groups is that they attach to a primary amine of uricase via a maleimide group. Once coupled with uricase, SS-PEG has an ester linkage next to the PEG, which may render this site sensitive to serum esterase, which may release PEG from uricase in the body.
- SPA-PEG and PEG2-NHS do not have an ester linkage, so they are not sensitive to serum esterase.
- the particular linking groups do not appear to influence the circulating half- life of PEG-uricase or its specific enzyme activity.
- a linking group it is important to use a biocompatible linking group.
- the PEG which is attached to the protein may be either a single chain, as with SS-PEG, SPA-PEG and SC- PEG, or a branched chain of PEG may be used, as with PEG2-NHS.
- uricase may be coupled directly to PEG (i.e., without a linking group) through an amino group, a sulfhydral group, a hydroxyl group or a carboxyl group.
- PEG is coupled to lysine residues on uricase.
- the attachment of PEG to uricase increases the circulating half- life of uricase.
- the number of PEG units on uricase appears to be related to the circulating half life of the enzyme, while the amount of retained enzymatic activity appears related to the average molecular weight of the PEG used.
- PEG is attached to a primary amine of uricase. Selection of the attachment site of polyethylene glycol on the uricase is determined by the role of each of the sites within the active domain of the protein, as would be known to the skilled artisan.
- PEG may be attached to the primary amines of uricase without substantial loss of enzymatic activity.
- the amount of retained enzymatic activity appears to be related to the average molecular weight of the PEG used.
- uricase cloned from C. utilis has about 32 lysines that may be pegylated by this procedure.
- the 32 lysines are all possible points at which uricase can be attached to PEG via a biocompatible linking group, such as SS, SPA, SCM, SSA and/or NHS.
- PEG may also be attached to other sites on uricase, either via a linking group or by direct attachment to a group on one or more residues, as would be apparent to one skilled in the art in view of the present disclosure.
- From 1 to about 32 PEG molecules may be covalently bonded to uricase at lysine residues.
- uricase is modified with about 5 to about 30 PEG molecules, more preferably from about 10 to about 25 PEG molecules, more preferably from about 18 to about 22 PEG molecules and most preferably about 20 PEG molecules.
- uricase is modified with PEG-20,000.
- Uricase may be pegylated at many different sites. In a prefened embodiment, uricase is pegylated at sites other than one or more of the following (numbers refer to the amino acid residue of C.
- uricase is pegylated with about twenty PEG-20,000 molecules. In one such prefened embodiment, uricase is not pegylated at Lys 156 . In another prefened embodiment, uricase is not pegylated at Lys 167 . In another prefened embodiment, uricase is not pegylated at Lys 12 . In another prefened embodiment, uricase is not pegylated at Lys 64 .
- uricase is not pegylated at Lys 262 . In another prefened embodiment, uricase is not pegylated at Lys 64 . In another prefened embodiment, uricase is not pegylated at Lys 262 . In another prefened embodiment, uricase is not pegylated at Lys 117 . In another prefened embodiment, uricase is not pegylated at Lys 16 . In another prefened embodiment, uricase is not pegylated at Lys 28 . In another prefened embodiment, uricase is not pegylated at Lys 72 .
- uricase is not pegylated at Lys 156 and Lys 167 . In a more preferred embodiment, uricase is not pegyolated at Lys 156 , Lys 167 , Lys 12 , Lys 64 , and Lys 262 . In an even more prefened embodiment, uricase is not pegylated at Lys 156 , Lys 167 , Lys 12 , Lys 64 , Lys 262 , and Lys 117 .
- uricase is not pegylated at Lys 156 , Lys 167 , Lys 12 , Lys 64 , Lys 262 , Lys 117 , Lys 16 , Lys 28 , and Lys 72 .
- enzymatic activity is decreased by increasing the number of PEG units on an enzyme.
- the present inventors have discovered that the enzymatic activity of uricase bound to about twenty PEG-20,000 molecules is actually higher that the enzymatic activity of the uricase-PEG-5,000 when each is bound to the same number of PEG molecules.
- Such increased activity of uricase-PEG-20,000 allows for treatment using lower doses than previously considered possible.
- Lower doses of uricase-PEG-20,000 provide the advantages of minimizing immune responses to the uricase-PEG including reducing potential hypersensitivity problems, minimizing anaphalxsis, and lessening the occunence of rashes resulting in patients administered uricase-PEG.
- the present invention provides methods of reducing uric acid levels in a patient comprising administering to said patient a therapeutically effective amount of a compound comprising uricase covalently bonded via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of from about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- the present invention provides methods of treating uric acid related disorders in a patient comprising administering to said patient a therapeutically effective amount of a compound comprising uricase covalently bonded via a linking group to polyethylene glycol, wherein the polyethylene glycol has a total weight average molecular weight of from about 10,000 to about 30,000.
- uricase is modified with polyethylene glycol having a total weight average molecular weight of about 20,000.
- a therapeutically effective amount of one of the compounds of the present invention is an amount that is effective to reduce uric acid levels.
- treatment is initiated with small dosages which can be increased by small increments until the optimum effect under the circumstances is achieved.
- a therapeutic dosage of compounds of the present invention may be from about 1 to about 200 mg/kg twice a week to about once every two weeks.
- the dosage may be about 1 mg/kg once a week as a 2 ml intravenous injection to about 20 mg/kg once every 3 days.
- Uricase-PEG20,000 maybe administered several times each day, once a day, once a week, or once every two weeks.
- PEG-uricase may be mixed with a phosphate buffered saline solution, or any other appropriate solution known to those skilled in the art, prior to injection.
- the PEG-uricase formulation may be administered as a solid (lyophilate) or as a liquid formulation, as desired.
- the methods of the present invention can involve either in vitro or in vivo applications.
- in vitro applications including cell culture applications
- the compounds described herein can be added to cells in cultures and then incubated.
- the compounds of the present invention may also be used to facilitate the production of monoclonal and/or polyclonal antibodies, using antibody production techniques well known in the art.
- the monoclonal and/or polyclonal antibodies can then be used in a wide variety of diagnostic applications, as would be apparent to one skilled in the art.
- administration of the PEG-uricase composition of the present invention can be carried out, for example, orally, intranasally, intraperitoneally, parenterally, intravenously, intralymphatically, intratumorly, intramuscularly, interstitial ly, intra-arterially, subcutaneously, intraocularly, intrasynovial, transepithelial, and transdermally.
- Example 1 Isolation of the Candida utilis uricase coding sequence and construction of the expression plasmid.
- Genomic DNA was isolated from C. utilis (ATCC 9950) and used as the template in PCR for the isolation of the uricase gene.
- C. utilis was grown lOOmL YPD medium in an incubator shaker at 30° C x 250 rpm. The next day, cells from 50mL of the culture were pelleted by centrifugation at 1500 x g for 10 minutes at room temperature. The pellet was resuspended in 15 ml of SCED buffer, pH 7.5 (1 M sorbitol, 10 mM sodium citrate, pH7.5, 10 mM EDTA, 10 mM DTT). Three mg of LyticaseTM (Sigma, St. Louis, MO, Cat. No.
- the pellet was resuspended in 10 ml of TE buffer, pH 7.4 (10 mM Tris-HCl, pH 7.4, 1 mM EDTA). The solution was gently extracted with an equal volume of phenolxhloroform (1:1 v/v) followed by an equal volume of chloroform:isoamyl alcohol (24: 1). One half volume of 7.5 M ammonium acetate, pH 7.5, and 2 volumes of ethanol was added and the tube placed at -70°C for 10 minutes. The DNA was pelleted centrifuge at 10,000 x g for 10 minutes at 4°C. The pellet was air dried the and resuspended in 1 ml of TE buffer, pH 7.5 containing 50 ⁇ g RNase A.
- the DNA was incubated at room temperature for 1 hour and then reprecipitated with an equal volume of ethanol.
- the DNA was pelleted by centrifugation at 10,000 x g for 10 minutes at 4°C.
- the pellet was resuspended in 1 ml TE buffer, pH 7.5.
- the concentration of the DNA was detenriined by measuring the optical density at 260 nm.
- PCR was used to isolated the uricase gene from the C. utilis genomic DNA.
- the primers for the PCR have the following sequences: Forward primer, URIUforSna: 5'- GTG TAC GTA ATG TCA ACA ACG CTC TCA TCA -3' (SEQ. ID. NO.1)
- Reverse primer URIUrevH: 5'- AGA AAG CTT TTA CCA CTT GGT CTT CTC CTT A -3' (SEQ. ID. NO.2)
- PCR primers place a SnaB I site at the 5' end of the coding sequence and a Hind III site at the 3' end for subcloning into pQE70 (Qiagen, Valencia, CA) for expression.
- the PCR mixture contained IX Vent polymerase buffer, 2.5 mM magnesium sulfate, 0.2 mM each dNTPs, 30 pmole of each primer, 1.8 ⁇ g of C. utilis genomic DNA and 2.5 U Vent polymerase (New England Biolabs, Beverly, MA) in a 50 ⁇ l final reaction volume. PCR was carried out at 98°C for 2 minutes, followed by 30 cycles of 98°C for 30 seconds, 55°C for 30 seconds and 72°C for 60 seconds.
- Taq polymerase (Gibco, Rockville, MD) was then added and the reaction incubated at 72°C for 7 minutes. Twenty ml of the PCR was run on an 0.8% agarose gel. The PCR product was excised from the gel and extracted using the Qiagen gel extraction kit. The PCR product was subcloned into pCR2.1 (Invitrogen, Carlsbad, CA). The uricase PCR product was excised from pCR2.1 using SnaB I and Hind III and purified by agarose gel electrophoresis.
- pQE70 was digested with Sph I at 37° C for 1 hour, treated with Klenow fragment at room temperature for 15 minutes to create blunt ends, and then incubated at 80°C for 15 minutes to inactivate the Klenow enzyme.
- the treated plasmid was then digested with Hind III at 37°C for 1 hour, run on an agarose gel and then purified from the gel.
- the uricase fragment was then ligated into the digested pQE70 to create pQE-URIC.
- E. coli DG101 ATCC 47041
- transformants were selected in the presence of ampicillin.
- Transformants were screened for uricase production by growing cells in 3 mL LB containing ampicillin (100 mg/mL) until the OD600 reached 0.5 to 0.6. Isopropyl -b- D-galactopyranoside (IPTG) was added to 1 mM final concentration and the cultures incubated for an additional 2 hours. Cell extracts were then analysed by SDS- polyacrylamide gel electrophoresis and gels examined for the presence of a 34,000 Da protein. One transformant found to produce a 34,000 Da protein was tested and found to have uricase activity. pQE-URIC was isolated from this transformant and the gene for tetracycline resistance was inserted into the plasmid.
- IPTG Isopropyl -b- D-galactopyranoside
- pBR322 For insertion of the gene conferring tetracycline resistance into pQE-URIC, pBR322 was digested with Eco RI and Ava I, and then treated with Klenow polymerase and dNTPs to create blunt ends on the digested DNA fragments. pQE-URIC was digested with Xbal and then treated with Klenow polymerase and dNTPs. The -1400 bp fragment from pBR322 containing the tetracycline resistance gene was gel purified and ligated into pQE-URIC to create pPHX12.
- Example 2 Expression of uricase in E. coli.
- E. coli non-defined medium #1 was used for the growth of PHX12 in a Bioflo IV Benchtop Fermentor (New Brunswick Scientific, Edison, NJ).
- Components of E. coli non-defined medium #1 consist of Basal Medium, 50 % glycerol, 100X salts solution, 100X calcium chloride solution, and 1000X vitamin solution. These components are prepared as described below.
- Basal Medium Per Liter of Medium casamino acids 30 g ammonium sulfate 3 g potassium phosphate, dibasic 2.5 g
- Vitamin solution 1000 X
- thiamine hydrochloride 0.26 g
- E. coli Non-defined Medium #1 was used for the growth of PHX12 in the fermentor.
- E. coli Non-defined Basal Medium was prepared by dissolving 600 g casamino acids, 60 g ammonium sulfate, and 50 g potassium phosphate, dibasic, in 2 L of nanopure water. The fermentor was filled with 18.4 L of Basal Medium, 50 mL of Antifoam B was added to the Basal Medium and then sterilized using the sterilization cycle of the fermentor set at 121°C for 30 minutes.
- the medium was allowed to cool to 37°C or below and 200 mL of 100X calcium chloride solution, 200 mL of 100X concentrated salts solution, 20 mL of 1000X vitamin solution, and 1200 mL of 50% glycerol solution was aseptically added to the fermentor.
- Parameters of the fermentation were as follows: Agitation was set to 700 rpm, the temperature was set to 37°C, and the air flow was set at 20 Lpm. The inoculum was then used to seed the fermentor. The culture was grown in the fermentor to an optical density (A600nm) of approximately 8. IPTG was then aseptically added to the fermentor to a final concentration of 1 mM. The fermentation was allowed to continue for 2 hours after the addition of IPTG. The cells were then harvested and then immediately concentrated to 2 to 3 L by diafiltration using a hollow fiber filter. The cells were pelleted by centrifugation at 8,000 x g for 10 minutes and the cell paste was transfened to plastic storage containers and stored at -70°C until further processed. A typical 20 liter fermentation produced 0.5 to 0.6 Kg of cell paste.
- Cell paste from a 20 L fermentation was resuspended in 0.4 L of Lysis buffer (20 mM sodium phosphate, pH 8.5, 1 mM EDTA) using a PolytronTM homogenizer to achieve a homogenous suspension.
- Lysis buffer (20 mM sodium phosphate, pH 8.5, 1 mM EDTA)
- the cells were lysed by passing two times through a microfluidizer at >15,000 psi.
- the lysed cell suspension was then centrifuged at 13,000 x g for 10 minutes. Ammonium sulfate was added to the supernatant to achieve 30% saturation.
- the suspension was stined at room temperature for 10 minutes and then centrifuged at 13,000 x g for 15 minutes.
- Ammonium sulfate was added to the supernatant to 64% saturation and the solution was stined at room temperature for 10 minutes and the solution was then centrifuged at 13,000 x g for 15 minutes. The pellet was resuspended in 0.4 L of Diafiltration buffer (20 mM sodium phosphate buffer, pH 8.5) and diafiltered against 5 volumes of Diafiltration Buffer using a filter with a 50,000 MW cutoff. The diafiltered solution was then applied to a Poros HQ50 column previously equilibrated with Column Buffer (20 mM sodium phosphate buffer, pH 8.5). The column was washed with Column Buffer and the flow through collected.
- Diafiltration buffer (20 mM sodium phosphate buffer, pH 8.5
- the flow through material was then applied to a BioRad HA column equilibrated with Column Buffer.
- the HA column was washed with 10 volumes of Column Buffer and the uricase eluted by running a gradient from 100%) Column Buffer to 100% 0.5 M sodium phosphate, pH 8.5.
- the eluted uricase was again passed over a Poros HQ column equilibrated with Column Buffer.
- the flow through fraction containing the uricase was collected and stored at 4°C.
- Example 4 Characterization of purified uricase Uricase assay Uricase activity was assayed using the uric acid diagnostic kit from Sigma (St.
- the specific activity of the enzyme was determined by incubating the enzyme with uric acid and monitoring the production of hydrogen peroxide.
- the production of hydrogen peroxide is determined by reaction with 4-aminoantipyrine and 3,5-dichloro-2- hydroxybenzenesulfonate in the presence of peroxidase.
- a quinoeimine dye is formed with an absorbance maximum at 520 nm.
- the intensity of the color produced is directly proportional to the amount of hydrogen peroxide formed.
- the amount of hydrogen peroxide formed is determined by comparison with standards containing known amounts of hydrogen peroxide.
- Specific Enzyme activity nmol of hydrogen peroxide produced/min/mg of protein in the assay. Enzyme activity is expressed in IU/mL. 1 JJ is defined as that amount of enzyme which produces 1 nmol of hydrogen peroxide/min.
- the expression level of the uricase was determined by SDS-PAGE. Samples (1 ml) from the 20 L fermentation culture were taken prior to the IPTG induction (pre-induction sample) of the uricase expression, and 2 hours following the addition of IPTG (post- induction sample). These samples were quickly centrifuged in a micro-centrifuge (12,000 x g for 1 min) then frozen at -70°C. The frozen cell pellet of was resuspended in 1 ml of water and sonicated for 15 sec with a probe sonicator. The resulting sonicate was electrophoresed on a 10-20% SDS-PAGE gel run under reducing conditions. The gels were stained using Coomassie Blue.
- Example 5 Pegylation
- Purified uricase in Column Buffer (20 mM sodium phosphate buffer, pH 8.5) was pegylated with methoxy-SS-polyethyleneglycol MW 5,000 at a ratio of PEG to uricase of 30: 1 (wt/wt).
- the PEG 5000 was added to the uricase solution and stined for 1 hour at room temperature.
- the conjugated uricase-PEG 5000 was concentrated by diafiltration to approximately 1/10 volume and then diafiltered against 10 volumes of Formulation Buffer (20 mM sodium phosphate buffer, pH 6.8, 130 mM sodium chloride).
- Pegylation of uricase with PEG-20,000 Purified uricase in Column Buffer (20 mM sodium phosphate buffer, pH 8.5) was pegylated with methoxy-SS-polyethyleneglycol MW-20,000 at a ratio of PEG to uricase of 30:1 (wt/wt).
- the PEG 20000 was added to the uricase solution and stirred for 2 hours at room temperature.
- the conjugated uricase-PEG-20000 was concentrated by diafiltration to approximately 1/10 volume and then diafiltered against 10 volumes of Formulation Buffer (20 mM sodium phosphate buffer, pH 6.8, 130 mM sodium chloride).
- TNBS trinitrobenzenesulfonic acid
- Each protein sample was assayed at three different protein concentrations. Each concentration was assayed in duplicate. The protein concentration of each sample was adjusted to 0.2, 0.4 and 0.8 mg/mL with nanopure water and vortexed for 3 to 5 seconds. 0.25 mL of each protein sample was added into a 10 x 75 mm glass tube. 0.25 mL of 4% sodium bicarbonate was added to each tube followed by 0.25 mL of 0.1% TNBS. Tubes were incubated for 2 hours at 40° C. The tubes were then removed from the heating block and 0.25 mL of 10% sodium dodecyl sulfate (SDS) added to each tube followed by 0.125 mL of IN HCl. The absorbance of each reaction was measured at 335 nm. The absorbances of the protein samples were plotted and linear regression was performed to determine the slope of the line. The number of primary amine residues pegylated was determined by the following formula:
- Number of primary amines pegylated 1 -(slope of pegylated protein/ slope of unpegylated protein) x total number of primary amine residues in the protein
- uricase-PEG-20,000 retains a higher specific activity than the uricase-PEG-5,000 even though the same average number of PEG molecules are attached to the protein.
- Uricase- PEG 20,000 retains 75% of the specific activity of the native enzyme, while uricase- PEG 5,000 retains only 56% of the native enzyme's activity. This means that less of the uricase-PEG 20,000 can be used to produce a given enzymatic activity than would be required if uricase-PEG 5,000 were being used.
- the enzymatic activity of uricase-PEG failed to increase relative to PEG-20,000 when PEGs larger than 20,000 were covalently bonded to uricase.
- the average molecular weight of the PEG covalently bonded to uricase also plays an important role in determining both circulating half-life and production yield.
- the yield of uricase-PEG increases with increasing average molecular weight of the bound polyethylene glycol as the average molecular weight of the PEGs increases up to PEG-20,000.
- the yield of uricase-PEG decreased significantly.
- the relative yield is 1.0.
- the relative yield is about 0.5.
- the relative yield is about 0.66.
- the relative yield drops to about 0.1.
- Example 9 Application to Humans
- the circulating half life of PEG conjugated uricase has a circulating half life that is 5 to 10 times longer than the same fonnulations in mice. What this has meant in the past is that the human dose is most often 1/5 to 1/10 of that used in mice. Accordingly, the circulating half-life of PEG-uricase should circulate even longer in humans than it does in mice.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003516443A JP2005528881A (en) | 2001-08-02 | 2002-04-26 | PEG-modified uricase |
EP02791530A EP1420748A4 (en) | 2001-08-02 | 2002-04-26 | Peg-modified uricase |
AU2002308487A AU2002308487A1 (en) | 2001-08-02 | 2002-04-26 | Peg-modified uricase |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/921,380 US6913915B2 (en) | 2001-08-02 | 2001-08-02 | PEG-modified uricase |
US09/921,380 | 2001-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003011211A2 true WO2003011211A2 (en) | 2003-02-13 |
WO2003011211A3 WO2003011211A3 (en) | 2003-10-16 |
Family
ID=25445342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/013265 WO2003011211A2 (en) | 2001-08-02 | 2002-04-26 | Peg-modified uricase |
Country Status (6)
Country | Link |
---|---|
US (2) | US6913915B2 (en) |
EP (1) | EP1420748A4 (en) |
JP (1) | JP2005528881A (en) |
CN (1) | CN1288243C (en) |
AU (1) | AU2002308487A1 (en) |
WO (1) | WO2003011211A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007052326A3 (en) * | 2005-11-07 | 2007-11-29 | Univ Parma | Method for conversion of uric acid to allantoin and related enzymes |
CN102260653A (en) * | 2011-06-30 | 2011-11-30 | 北京盛宏生物技术有限公司 | Preparation and application method of PEG recombinant pig-human urate oxidase fusion protein |
US8129330B2 (en) | 2002-09-30 | 2012-03-06 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US9017980B2 (en) | 2005-04-11 | 2015-04-28 | Crealta Pharmaceuticals Llc | Variant forms of urate oxidase and use thereof |
CN106554948A (en) * | 2015-09-29 | 2017-04-05 | 上海生物制品研究所有限责任公司 | Saltant type uricase, the saltant type uricase of PEG modifications and its application |
US9885024B2 (en) | 1998-08-06 | 2018-02-06 | Duke University | PEG-urate oxidase conjugates and use thereof |
US10139399B2 (en) | 2009-06-25 | 2018-11-27 | Horizon Pharma Rheumatology Llc | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during PEGylated uricase therapy |
WO2020228618A1 (en) * | 2019-05-10 | 2020-11-19 | 重庆派金生物科技有限公司 | Polyethylene glycol-modified urate oxidase |
USRE49736E1 (en) * | 2009-07-06 | 2023-11-28 | Jazz Pharmaceuticals Ii Sas | Pegylated L-asparaginase |
EP4335454A4 (en) * | 2020-11-05 | 2025-03-26 | Hangzhou Grand Biologic Pharmaceutical Inc | Uratoxidase production and use thereof |
US12269875B2 (en) | 2023-08-03 | 2025-04-08 | Jeff R. Peterson | Gout flare prevention methods using IL-1BETA blockers |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783965B1 (en) | 2000-02-10 | 2004-08-31 | Mountain View Pharmaceuticals, Inc. | Aggregate-free urate oxidase for preparation of non-immunogenic polymer conjugates |
US20040062748A1 (en) * | 2002-09-30 | 2004-04-01 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US20080317728A1 (en) * | 2004-06-21 | 2008-12-25 | University Of Florida Research Foundation, Inc. | Lowering Uric Acid to Prevent or Accelerate Recovery of Acute Renal Failure |
EP2918676B1 (en) | 2005-04-11 | 2018-01-31 | Crealta Pharmaceuticals LLC | A variant form of urate oxidase and use thereof |
US20080159976A1 (en) * | 2005-04-11 | 2008-07-03 | Jacob Hartman | Methods for lowering elevated uric acid levels using intravenous injections of PEG-uricase |
US8148123B2 (en) | 2005-04-11 | 2012-04-03 | Savient Pharmaceuticals, Inc. | Methods for lowering elevated uric acid levels using intravenous injections of PEG-uricase |
EP1883425A1 (en) * | 2005-05-23 | 2008-02-06 | Universite De Geneve | Injectable superparamagnetic nanoparticles for treatment by hyperthermia and use for forming an hyperthermic implant |
US7985839B2 (en) * | 2006-03-31 | 2011-07-26 | Baxter International Inc. | Factor VIII polymer conjugates |
KR20080108147A (en) | 2006-03-31 | 2008-12-11 | 백스터 인터내셔널 인코포레이티드 | Pegylated Factor VIII |
US7645860B2 (en) | 2006-03-31 | 2010-01-12 | Baxter Healthcare S.A. | Factor VIII polymer conjugates |
US7982010B2 (en) * | 2006-03-31 | 2011-07-19 | Baxter International Inc. | Factor VIII polymer conjugates |
PL2013225T3 (en) * | 2006-04-12 | 2015-06-30 | Crealta Pharmaceuticals Llc | Purification of proteins with cationic surfactant |
DK2101821T3 (en) | 2006-12-15 | 2014-10-06 | Baxter Healthcare Sa | Factor VIIA (poly) sialic acid conjugate with extended half-life in vivo |
CN101302501B (en) * | 2007-05-10 | 2012-07-04 | 刘国安 | PEGylated uricoxidase compound, preparing method, preparation and use thereof |
CN101875922B (en) * | 2009-04-30 | 2012-02-22 | 重庆医科大学 | A recombinant Bacillus fastidiosa intracellular uricase and its polyethylene glycol modification and application |
US8809501B2 (en) | 2009-07-27 | 2014-08-19 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
ES2590679T3 (en) | 2009-07-27 | 2016-11-23 | Lipoxen Technologies Limited | Glycopolyallylation of proteins other than blood coagulation proteins |
CN106110311A (en) | 2009-07-27 | 2016-11-16 | 百深公司 | Blood coagulation protein conjugates |
JP5908401B2 (en) * | 2009-07-27 | 2016-04-26 | バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated | Blood coagulation protein complex |
US8642737B2 (en) | 2010-07-26 | 2014-02-04 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
PL2654794T3 (en) | 2010-12-22 | 2020-07-27 | Baxalta GmbH | Materials and methods for conjugating a water soluble fatty acid derivative to a protein |
CN102634492B (en) | 2011-02-14 | 2015-06-10 | 重庆富进生物医药有限公司 | Polyethylene glycol dog source urate oxidase analogue, and preparation method and applications thereof |
EP2704750B1 (en) | 2011-04-29 | 2023-11-01 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells |
CN102229924A (en) * | 2011-05-18 | 2011-11-02 | 华林 | Polyethylene glycol-modified Serratia protein-digesting enzyme as well as preparation method and application thereof |
CN103083678B (en) * | 2011-10-31 | 2018-07-06 | 重庆医科大学 | The method that the activated polyethylene glycol modification uricase for amino is used under competitive inhibitor protection |
CA2910417C (en) | 2013-05-03 | 2023-10-03 | Selecta Biosciences, Inc. | Delivery of immunosuppressants having a specified pharmacodynamic effective-life and antigen for the induction of immune tolerance |
KR20230053709A (en) | 2014-09-07 | 2023-04-21 | 셀렉타 바이오사이언시즈, 인크. | Methods and compositions for attenuating anti-viral transfer vector immune responses |
AU2015328503B2 (en) * | 2014-10-10 | 2019-02-14 | Dow Global Technologies Llc | Surfactant composition |
AU2016265677B2 (en) * | 2015-05-15 | 2021-12-09 | Medimmune, Llc | Improved uricase sequences and methods of treatment |
CN105412942B (en) * | 2015-12-23 | 2019-02-26 | 沈阳三生制药有限责任公司 | The recombination candida utili urate oxidase freeze dried injection of Pegylation |
HRP20241127T1 (en) | 2016-03-11 | 2024-11-22 | Cartesian Therapeutics, Inc. | FORMULATIONS AND DOSES OF PEGYLATED URIKASE |
WO2018169811A1 (en) | 2017-03-11 | 2018-09-20 | Selecta Biosciences, Inc. | Methods and compositions related to combined treatment with anti-inflammatories and synthetic nanocarriers comprising an immunosuppressant |
EP3655527A4 (en) | 2017-07-07 | 2021-06-16 | Allena Pharmaceuticals Inc. | Recombinant uricase enzyme |
US20190309269A1 (en) | 2018-03-20 | 2019-10-10 | Rubius Therapeutics, Inc. | Therapeutic cell systems and methods for treating hyperuricemia and gout |
US12121566B2 (en) | 2019-01-30 | 2024-10-22 | Horizon Therapeutics Usa, Inc. | Methods for treating gout |
CN114207440A (en) | 2019-06-04 | 2022-03-18 | 西莱克塔生物科技公司 | PEGylated uricase formulations and dosages |
CN112522225B (en) * | 2019-09-17 | 2025-03-18 | 鲁南制药集团股份有限公司 | A method for modifying uricase with polyethylene glycol |
AU2020380944A1 (en) | 2019-11-08 | 2022-06-02 | Selecta Biosciences, Inc. | Formulations and doses of pegylated uricase |
CN113995718A (en) * | 2020-07-28 | 2022-02-01 | 鲁南制药集团股份有限公司 | Pegylated recombinant canine human uricase injection preparation |
EP4240423A1 (en) | 2020-11-03 | 2023-09-13 | Protalix Ltd. | Modified uricase and uses thereof |
CN113995771B (en) * | 2021-12-06 | 2023-05-23 | 昆明品品生物科技有限公司 | Application of polyethylene glycol in preparation of medicine with blood uric acid reducing effect |
CN117427180A (en) * | 2022-07-22 | 2024-01-23 | 派格生物医药(苏州)股份有限公司 | Preparation method of polyethylene glycol conjugate of active polypeptide or protein |
WO2025015090A1 (en) | 2023-07-11 | 2025-01-16 | Kriya Therapeutics, Inc. | Vector constructs for delivery of nucleic acids encoding uricase and methods of using the same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179337A (en) * | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4064010A (en) | 1976-07-21 | 1977-12-20 | Eastman Kodak Company | Purification of uricase |
US4062731A (en) | 1976-07-21 | 1977-12-13 | Eastman Kodak Company | Production of uricase from micrococcus luteus |
JPS6031472B2 (en) | 1978-12-14 | 1985-07-22 | 協和醗酵工業株式会社 | acid uricase |
IT1141061B (en) | 1980-09-19 | 1986-10-01 | Anic Spa | PROCEDURE FOR THE PRODUCTION OF URICASI |
DE3126759A1 (en) | 1981-07-07 | 1983-01-27 | Boehringer Mannheim Gmbh, 6800 Mannheim | SOLUBLE LIVER URICASE, METHOD FOR THE PRODUCTION AND USE THEREOF |
US4394450A (en) | 1982-03-01 | 1983-07-19 | Miles Laboratories, Inc. | Method for purification of uricase |
JPH0671425B2 (en) | 1985-06-05 | 1994-09-14 | サッポロビール株式会社 | Uricase and method for producing the same |
US5728562A (en) | 1988-08-17 | 1998-03-17 | Toyo Boseki Kabushiki Kaisha | Isolated recombinant uricase |
JP2971218B2 (en) | 1991-12-04 | 1999-11-02 | 協和醗酵工業株式会社 | Uricase gene and method for producing uricase |
US5728652A (en) * | 1995-02-10 | 1998-03-17 | Texas United Chemical Company, Llc. | Brine fluids having improved rheological charactersitics |
JP3462313B2 (en) | 1995-08-24 | 2003-11-05 | キッコーマン株式会社 | Mutant uricase, mutant uricase gene, novel recombinant DNA, and method for producing mutant uricase |
US6783965B1 (en) | 2000-02-10 | 2004-08-31 | Mountain View Pharmaceuticals, Inc. | Aggregate-free urate oxidase for preparation of non-immunogenic polymer conjugates |
EP1588716B1 (en) * | 1998-08-06 | 2011-02-16 | Mountain View Pharmaceuticals, Inc. | Peg-urate oxidase conjugates and use thereof |
JP5183836B2 (en) * | 1998-08-06 | 2013-04-17 | マウンテン ビュー ファーマシューティカルズ,インコーポレイテッド | PEG-uric acid oxidase conjugate and use thereof |
-
2001
- 2001-08-02 US US09/921,380 patent/US6913915B2/en not_active Expired - Lifetime
-
2002
- 2002-04-26 CN CNB028193873A patent/CN1288243C/en not_active Expired - Lifetime
- 2002-04-26 AU AU2002308487A patent/AU2002308487A1/en not_active Abandoned
- 2002-04-26 EP EP02791530A patent/EP1420748A4/en not_active Withdrawn
- 2002-04-26 JP JP2003516443A patent/JP2005528881A/en active Pending
- 2002-04-26 WO PCT/US2002/013265 patent/WO2003011211A2/en active Application Filing
-
2005
- 2005-05-27 US US11/140,371 patent/US20050226859A1/en not_active Abandoned
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9885024B2 (en) | 1998-08-06 | 2018-02-06 | Duke University | PEG-urate oxidase conjugates and use thereof |
US8129330B2 (en) | 2002-09-30 | 2012-03-06 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US10160958B2 (en) | 2005-04-11 | 2018-12-25 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and use thereof |
US11781119B2 (en) | 2005-04-11 | 2023-10-10 | Horizon Therapeutics Usa, Inc. | Variant forms of urate oxidase and use thereof |
US9017980B2 (en) | 2005-04-11 | 2015-04-28 | Crealta Pharmaceuticals Llc | Variant forms of urate oxidase and use thereof |
US11345899B2 (en) | 2005-04-11 | 2022-05-31 | Horizon Therapeutics Usa, Inc. | Variant forms of urate oxidase and use thereof |
US9670467B2 (en) | 2005-04-11 | 2017-06-06 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and use thereof |
US9926537B2 (en) | 2005-04-11 | 2018-03-27 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and use thereof |
US9926538B2 (en) | 2005-04-11 | 2018-03-27 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and use thereof |
US10731139B2 (en) | 2005-04-11 | 2020-08-04 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and use thereof |
WO2007052326A3 (en) * | 2005-11-07 | 2007-11-29 | Univ Parma | Method for conversion of uric acid to allantoin and related enzymes |
US11639927B2 (en) | 2009-06-25 | 2023-05-02 | Horizon Therapeutics Usa, Inc. | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during PEGylated uricase therapy |
US10139399B2 (en) | 2009-06-25 | 2018-11-27 | Horizon Pharma Rheumatology Llc | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during PEGylated uricase therapy |
US10823727B2 (en) | 2009-06-25 | 2020-11-03 | Horizon Pharma Rheumatology Llc | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy |
US12188927B2 (en) | 2009-06-25 | 2025-01-07 | Horizon Therapeutics Usa, Inc. | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during PEGylated uricase therapy |
US11982670B2 (en) | 2009-06-25 | 2024-05-14 | Horizon Therapeutics Usa, Inc. | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy |
US11598767B2 (en) | 2009-06-25 | 2023-03-07 | Horizon Therapeutics Usa, Inc. | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy |
USRE49736E1 (en) * | 2009-07-06 | 2023-11-28 | Jazz Pharmaceuticals Ii Sas | Pegylated L-asparaginase |
CN102260653B (en) * | 2011-06-30 | 2013-04-03 | 荣俊 | Preparation and application method of PEG recombinant pig-human urate oxidase fusion protein |
CN102260653A (en) * | 2011-06-30 | 2011-11-30 | 北京盛宏生物技术有限公司 | Preparation and application method of PEG recombinant pig-human urate oxidase fusion protein |
CN106554948B (en) * | 2015-09-29 | 2019-06-25 | 上海生物制品研究所有限责任公司 | Saltant type uricase, the saltant type uricase of PEG modification and its application |
CN106554948A (en) * | 2015-09-29 | 2017-04-05 | 上海生物制品研究所有限责任公司 | Saltant type uricase, the saltant type uricase of PEG modifications and its application |
WO2020228618A1 (en) * | 2019-05-10 | 2020-11-19 | 重庆派金生物科技有限公司 | Polyethylene glycol-modified urate oxidase |
EP4335454A4 (en) * | 2020-11-05 | 2025-03-26 | Hangzhou Grand Biologic Pharmaceutical Inc | Uratoxidase production and use thereof |
US12269875B2 (en) | 2023-08-03 | 2025-04-08 | Jeff R. Peterson | Gout flare prevention methods using IL-1BETA blockers |
Also Published As
Publication number | Publication date |
---|---|
EP1420748A4 (en) | 2006-04-26 |
US20050226859A1 (en) | 2005-10-13 |
CN1288243C (en) | 2006-12-06 |
US6913915B2 (en) | 2005-07-05 |
JP2005528881A (en) | 2005-09-29 |
AU2002308487A1 (en) | 2003-02-17 |
CN1561390A (en) | 2005-01-05 |
WO2003011211A3 (en) | 2003-10-16 |
US20030082786A1 (en) | 2003-05-01 |
EP1420748A2 (en) | 2004-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6913915B2 (en) | PEG-modified uricase | |
EP1100880B1 (en) | Urate oxidase | |
US9885024B2 (en) | PEG-urate oxidase conjugates and use thereof | |
EP0981607B1 (en) | Modified arginine deiminase | |
Bomalaski et al. | Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. | |
RU2349341C2 (en) | Peg-urate oxidase conjugates, their application, method of tetrameric uricase form separation | |
US6635462B1 (en) | Mutated form of arginine deiminase | |
WO2002044360A2 (en) | Modified arginine deiminase | |
US20060188971A1 (en) | Urate oxidase | |
CN112852772A (en) | Urate oxidase based on intramolecular cross-linking and polyethylene glycol modification and preparation method thereof | |
MXPA01001342A (en) | Urate oxidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG US Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003516443 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002791530 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028193873 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002791530 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |