+

WO2003011133A1 - Medizinisches implantatsystem - Google Patents

Medizinisches implantatsystem Download PDF

Info

Publication number
WO2003011133A1
WO2003011133A1 PCT/EP2002/007927 EP0207927W WO03011133A1 WO 2003011133 A1 WO2003011133 A1 WO 2003011133A1 EP 0207927 W EP0207927 W EP 0207927W WO 03011133 A1 WO03011133 A1 WO 03011133A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant system
implant
radiation
glass fiber
measuring device
Prior art date
Application number
PCT/EP2002/007927
Other languages
English (en)
French (fr)
Inventor
Thomas Grupp
Josef Kozak
Original Assignee
Aesculap Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aesculap Ag & Co. Kg filed Critical Aesculap Ag & Co. Kg
Priority to DE50201594T priority Critical patent/DE50201594D1/de
Priority to EP02791457A priority patent/EP1424937B1/de
Priority to AT02791457T priority patent/ATE282358T1/de
Publication of WO2003011133A1 publication Critical patent/WO2003011133A1/de
Priority to US10/765,724 priority patent/US20040204647A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary devices, e.g. pins or nails
    • A61B17/7208Flexible pins, e.g. ENDER pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8085Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00004(bio)absorbable, (bio)resorbable or resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools for implanting artificial joints
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30668Means for transferring electromagnetic energy to implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants

Definitions

  • the invention relates to a medical implant system with an implant made of a composite material, in which glass fibers are embedded.
  • Medical implants for example bone plates, intramedullary nails, endoprostheses, osteosynthesis systems for the spine, etc. are usually made of metallic materials, but implants are also known which consist of a composite material in which glass fibers are embedded for reinforcement, in particular such medical implants consist of sterilizable, selected plastics such as polyether ether ketone, polyamides etc.
  • these implants When these implants are inserted into the body, they are exposed to different influences, for example different strains and stresses, temperature developments or chemical environments. It would be of interest to the treating type to experience these different parameters, since they provide information about the healing process or about any problems that may arise.
  • the object of the invention is to improve a generic medical implant system in such a way that information about physical properties in the implant and in its surroundings can be obtained.
  • This object is achieved according to the invention in a medical implant of the type described in the introduction in that a sensor element embedded in the implant and comprising at least one of the glass fibers is connected to a measuring device which determines a physical property of the sensor element or its environment and its change.
  • At least one glass fiber embedded in the composite material of the implant is therefore used for the transmission of signals which provide information about the physical properties of the implant or the surroundings of the implant.
  • glass fiber is understood to mean all fibrous substances which can be embedded in the composite material and are capable of carrying and transmitting electromagnetic radiation, these fibers preferably being made of quartz glass, but other substances can also be used, for example fibers Plastic, so-called plastic optical fibers (POF).
  • fibers Plastic so-called plastic optical fibers (POF).
  • glass fibers are embedded in the composite material as mechanical reinforcement.
  • the glass fibers are arranged in the form of a woven fabric, a knitted fabric or a fleece, that is to say form a network which is embedded overall in the composite material and thereby reinforces it.
  • the glass fibers can be concentrated in certain areas of the implant or distributed over the entire extent of the implant.
  • the measuring device is preferably designed in such a way that it feeds electromagnetic radiation into the sensor element and determines physical properties of the sensor element or its surroundings from the type of continuous and / or reflected radiation.
  • the glass fiber of the sensor element is provided with a radiation-reflecting coating.
  • the sensor element essentially consists of the glass fiber that forms a sensor fiber.
  • the glass fiber embedded in the composite material is simultaneously a sensor and a transmission element for the electromagnetic radiation.
  • the glass fiber acts as a sensor fiber; for example, at least one region acting as a Bragg grating can be incorporated into the sensor fiber.
  • a region which has periodic changes in the refractive index in the longitudinal direction of the sensor fiber, radiation is reflected which is superimposed on reflection and is only amplified in the reverse direction for very specific wavelengths. This wavelength depends on the periodicity of the Bragg grating region and changes with this periodicity. Any length Changes in the sensor fiber or any change in the periodicity of the Bragg grating that occurs due to external influences can be determined in this way in the form of a wavelength shift.
  • a substance which is excited to fluorescence by the electromagnetic radiation fed in and whose fluorescence properties undergo changes under the influence of the environment outside the sensor fiber is embedded in the sensor fiber.
  • These changes can be mechanical changes, but in particular the fluorescence property of the embedded substance can be influenced by the chemical environment of the sensor fiber, for example the fluorescence can be quenched by certain substances in the environment.
  • the radiation-reflecting coating consists of a substance which, under the influence of the surroundings outside the sensor fiber, changes the reflection behavior for the electromagnetic radiation in the sensor fiber. This alters the amount of radiation reflected and reflected through the sensor fiber, and this can be determined.
  • any change in the properties of the radiation can be detected; these can be changes in the wavelength, the phase position, the polarization, etc. It is only essential that these changes are clearly recognizable in connection with changes in the properties in the vicinity of the sensor fiber , so- for example with changes in mechanical tension, temperature or material composition.
  • the sensor element comprises the glass fiber and a further sensor element which is connected to the measuring device via the glass fiber.
  • the glass fiber essentially acts as a transmission element between the sensor element and the measuring device.
  • the sensor element can be a pressure sensor with a flexible membrane and a mirror element which can be moved by it and which reflects the electromagnetic radiation fed into the glass fiber differently depending on the position.
  • the sensor element can be a Fabry-Perot interferometer.
  • the Fabry-Perot interferometer is designed as a thin-layer interferometer which is contacted on the end of the glass fiber and whose active layer experiences dimensional changes under the influence of the environment.
  • Such an active layer can, for example, be porous and swell when it comes into contact with a liquid, in this way it can be determined, for example, whether an implant is still sealed or has a desired or undesired opening to the surroundings.
  • the Fabry-Perot interferometer comprises two glass fibers with polished end faces, whose distance can be changed by environmental influences. This configuration is particularly advantageous when strains or displacements are to be determined within an implant.
  • the glass fiber of the sensor element can be connected directly to the measuring device, wherein the measuring device can be worn inside the body, but also outside. In the latter case, the glass fiber is guided out of the implant through the body tissue to the outside, so that a connection to the measuring device can be made there.
  • the measuring device is a microcontroller that can be implanted in the body.
  • the glass fiber is connected to a transmitter which exchanges signals with the measuring device without a physical connection.
  • This transmitter can in particular be implantable in the body, for example it can be a transponder.
  • the transmitter is a light source to which a light receiver is assigned. It has been found that light of different wavelengths can penetrate body tissue to a certain extent, so that light can transmit radiation energy between a light receiver and a light source, part of which are arranged in the body and part outside, in particular if if the light source emits electromagnetic radiation in the range between 650 and 1000 nm.
  • the measuring device is assigned a radiation transmitter which transports radiation into the interior of the implant via a glass fiber in the implant.
  • a radiation transmitter can be used to act on the implant in addition to determining the physical properties of the implant by means of the injected radiation and to change the implant, for example by heating in certain areas or the like.
  • the radiation is transported via a glass fiber which is embedded in the implant in addition to the glass fiber of a sensor element, but it can also be provided that the radiation is transported via the glass fiber of a sensor element.
  • appropriate switching elements are used which optionally connect the glass fiber to the measuring device and to the radiation transmitter.
  • a particularly advantageous embodiment is one in which the wavelength and intensity of the transported radiation are selected such that the radiation in the composite material of the implant causes mechanical and / or material changes. For example, this makes it possible to carry out an additional curing of a polymer composite in certain areas or, conversely, to weaken it by destroying the composite, so that the mechanical properties of the implant can be changed in larger areas or else locally.
  • a control is assigned to the measuring device and the radiation transmitter, which activates the radiation transmitter as a function of the measured variables of the measuring device.
  • Figure 1 is a schematic view of an implant in the form of a bone plate with a wireless connection to a measuring device
  • Figure 2 is a schematic view of a plate-shaped
  • FIG. 3 a schematic view of an implant in the form of a bone plate with one of several glass fibers tern connected measuring device and with a radiation source for introducing radiation into a glass fiber not connected to the measuring device;
  • Figure 4 a view similar to Figure 3 with a switching device for the optional connection of glass fibers in the implant with the measuring device or with the radiation source;
  • Figure 5 a schematic side view of an optical fiber with
  • FIG. 6 a schematic side view of a glass fiber with embedded fluorescent dye particles
  • FIG. 7 a schematic side view of a glass fiber with a sheathing with variable transmission properties
  • Figure 8 is a schematic side view of one with a
  • Figure 9 a view similar to Figure 8 with a dimensionally variable active layer and Figure 10: a schematic side view of a glass fiber with a membrane pressure sensor.
  • the invention is explained below using the example of a bone plate, but it goes without saying that the invention can generally be used for medical implants that can be inserted into the body and is not restricted to bone plates.
  • An implant 1 in the form of a bone plate with openings 2 for receiving bone screws is connected in a known manner by means of bone screws to two bone fragments 3, 4 in such a way that they are fixed in a certain relative position to one another, so that, for example, a fracture point 5 can heal ( Figure 1).
  • the implant 1 consists of a plastic material, for example a resorbable plastic such as polylactide (PLLA, PL DLLA), polyglycolite (PGA) or trimethylene carbonate (TMC), and glass fibers 7 are embedded in this plastic material 6.
  • PLLA polylactide
  • PGA polyglycolite
  • TMC trimethylene carbonate
  • a large number of glass fibers 7 are indicated in the form of a network which is embedded overall in the plastic material 6,
  • the glass fibers reinforce the plastic material 6 through this embedding, and accordingly different distributions in the implant are selected, depending on the mechanical strength requirements.
  • the glass fibers 7 in the exemplary embodiment in FIG. 1 are connected to a transmission element 8, for example a conventional transponder, which can be arranged on the implant 1 itself or at a distance from the implant 1 inside the patient's body or else on the surface of the patient's body , It can also be an optical element that can receive and emit light, for example a small parabolic mirror, a lens or the like.
  • a transmission element 8 for example a conventional transponder
  • all the glass fibers 7 arranged in the implant 1 are connected to the transmission element 8, in the exemplary embodiment in FIG. 2 only a few, while other glass fibers serve exclusively to reinforce the implant 1. This can be selected differently from case to case, in extreme cases it is sufficient to connect a single glass fiber 7 in the implant 1 to such a transmission element 8.
  • a corresponding transmission element 9 is assigned to the transmission element 8 and is connected to a measuring device 11 via a line 10.
  • Signals can be exchanged between the transmission elements 8 and 9, it can be electrical signals, optical signals, mechanical signals (ultrasound), it is only essential that from the transmission element 8 into the glass fiber and possibly from the glass fiber into the Transmission element 8 is transmitted electromagnetic energy, which is converted into signals in the transmission element 8, which can then be passed in any way to the transmission element 9 and thus to the measuring device 11.
  • the transmission elements 8 and 9 can have an electromagnetic see exchanging radiation with a wavelength between 650 and 1000 nanometers, this electromagnetic radiation can penetrate the body tissue to a certain depth and can therefore establish a signal connection between the two transmission elements 8 and 9, both in the direction of radiation and in the direction of radiation.
  • the radiation thus coupled into the glass fiber 7 is guided in the glass fiber 7 and changed by the latter itself or by a sensor element 12 connected to it, depending on the physical status data of the glass fiber 7, the sensor element 12 or the surroundings thereof.
  • the radiation then supplied from the glass fiber 7 to the transmission element 8 in the reverse direction is changed accordingly, and this change can be determined by the measuring device 11, which thus receives feedback about changes in the physical state of the glass fiber, the sensor element 12 and / or the environment thereof ,
  • the possibilities for influencing the electromagnetic radiation fed into the glass fiber 7 are numerous, in this way length changes, deformations, mechanical tensile stresses, forces, vibrations, pressures, angles of rotation, electric or magnetic field strengths, currents, temperatures, humidity, ionizing radiation or determine the concentration or presence of chemical substances, this is just a selection of the possible physical states that can be determined in this way.
  • Some examples of influencing the electromagnetic radiation in a glass fiber are discussed below with reference to FIGS. 5 to 10.
  • a section of a glass fiber 7 is shown in FIG. 5, different regions 13, 14, 15 are provided in this glass fiber in the longitudinal direction at a distance from one another, in which periodic changes in the refractive index occur in the longitudinal direction of the fiber.
  • These can be produced, for example, by irradiating a quartz glass fiber, for example doped with germanium dioxide, through a microlithographic mask with ultraviolet light of a wavelength of 240 nm. This creates an arrangement of a Bragg grating in each area 13, 14, 15, the periodicity and thus the grating constant being selected differently in different areas 13, 14, 15.
  • a very specific wavelength is reflected on each of these Bragg gratings by interference radiation, this wavelength depends on the periodicity of the grating and therefore also changes when the latter changes the periodicity.
  • Such a change in the periodicity or lattice constant can be caused by external influences, for example by stretching the glass fiber, by bending the glass fiber, by heating etc. Since only radiation of a certain wavelength is reflected in each area 13, 14, 15, one can use the wavelength The reflected radiation can be read off immediately at which area a reflection has occurred.
  • the shift in the wavelength provides information about changes in the grating spacing in these areas, for example about the elongation of the glass fiber in certain areas.
  • the measuring device can use the reflected radiation to make statements about how great an expansion is in each of the areas 13, 14, 15. This gives you especially when using several Such glass fibers provide precise information about the deformation of the implant 1 in the body and thus, for example, about the progress of healing when bone fragments grow together. The stretch due to the forces exerted will be greatest when the bone fragments have not yet grown together, and will decrease continuously as the healing progresses.
  • 16 dye particles 17 are embedded in the glass fiber 7 in a specific region and are excited to fluorescence by electromagnetic radiation entering the glass fiber 7.
  • the radiation emitted in this way can be determined by the measuring device.
  • Environmental influences, for example certain chemical substances in the vicinity of the area 16 can influence the fluorescence, for example the fluorescence intensity can be reduced or the fluorescence can be completely extinguished. In this way, the measuring device receives information about the presence of certain chemical substances in the vicinity of area 16.
  • the glass fiber 7 is coated with a coating 18 which prevents the electromagnetic radiation guided through the glass fiber 7 from escaping.
  • This coating can react with chemical substances 19 in the environment and thereby react in such a way that the exit properties of the electromagnetic radiation are changed in the area in which the chemical substance 19 is located, and in this way a change in the reflected radiation is obtained again depending on certain chemical substances 19 in the vicinity of the glass fiber 7.
  • the flat-ground end 20 of the glass fiber 7 is opposite a likewise flat-ground end 21 of a glass fiber piece 22, a very narrow gap 23 being formed between the ends 20 and 21, the gap width A being, for example, of the order of 50 mm.
  • This arrangement forms a Fabry-Perot interferometer and reflects radiation of a very specific wavelength, this depends on the gap width A. If the two ends 20 and 21 move relative to one another, there is also a shift in the wavelength of the reflected radiation, and this can be determined very sensitively. In this way too, for example, stretching of the implant, which is transmitted to the glass fiber 7 and the glass fiber piece 22, can be determined without further notice.
  • an active layer 24 is inserted in the gap 23, which changes its dimension, for example its volume, as a function of environmental influences.
  • it can be a porous structure that swells when liquid enters the pores.
  • the gap width B changes as a result, and this leads to a change in the wavelength of the radiation reflected at the Fabry-Perot arrangement.
  • FIGS. 8 and 9 thus form a sensor element 12, which is connected to the measuring device 11 via the glass fiber 7, whereas in the exemplary embodiments of FIGS. 5 to 7 the glass fiber 7 itself is a sensor element So here are glass fibers that are themselves sensor fibers.
  • a sensor element 12 in the form of a pressure sensor 25 is assigned to the glass fiber 7. This comprises a flexible membrane 26, which is provided on one side with a mirror layer 27. If this pressure sensor 25 is arranged at the end of a glass fiber 7, the electromagnetic radiation reflected back into the glass fiber 7 changes with the deformation of the membrane 26, which takes place as a function of pressure, and this again gives a measure of the pressure at the end of the glass fiber 7 ,
  • glass fibers 7 which are led out of the implant 1 are connected directly or indirectly to the measuring device 11.
  • connection of the transmission element 8 to the measuring device 11 is via a line 10 symbolizes, it can be a physical line or a wireless transmission link.
  • a radiation source 29 is provided which is connected to one or more glass fibers 30 which are embedded in the plastic material 6 of the implant 1.
  • a radiation source 29 is provided which is connected to one or more glass fibers 30 which are embedded in the plastic material 6 of the implant 1.
  • only one such glass fiber 30 is shown, which is connected directly to the radiation source 29; this is only to be understood as a schematic representation.
  • several glass fibers 30 can be provided, which are similar How the glass fibers 7 are connected to the measuring device, in turn are connected to the radiation source 29, that is to say via transmission elements which could be arranged inside or outside, etc.
  • the radiation source 29 can feed an electromagnetic radiation into the glass fibers 30, which emerges in the interior of the implant 1 and there has a direct influence on the environment, for example a warming-up of the surrounding plastic material 6 or an additional hardening by increased polymerization or a dissolution of polymerization compounds etc.
  • a variety of effects are conceivable here, which depend on the nature of the plastic material 6 used and on the nature of the electromagnetic radiation fed in.
  • the effect of this fed-in electromagnetic radiation is in any case an influencing of the physical data of the plastic material 6 and possibly the surroundings of the implant 1, for example the strength of the implant can be increased or decreased locally or across the board.
  • the location of the action can be determined by appropriate arrangement of the glass fibers 30 in the implant 1, the type of action by a corresponding selection of a specific radiation.
  • the radiation source 29 can be activated completely independently of the measuring device 13, but it is particularly advantageous if, as shown in FIG. 3, a control 31 is assigned to the radiation source 29, which controls the radiation source 29 depending on the measurement data of the measuring device 11. and turns off.
  • the measuring device 11 is connected to the controller 31 via a line 28. If, for example, the measuring device 11 detects that the stretch of the implant 1 decreases in a certain area, this is a sign that part of the force transmission has been taken over by healing bone fragments, it can then be fed into the glass fibers 30 by feeding electromagnetic radiation Strength of the implant 1 can be reduced by dissolving part of the plastic material 6, so that the supporting function of the implant 1 decreases in accordance with the increase in the stability of the bone connection. This makes it possible to optimally adapt these sizes to one another, and it is also conducive to healing if the bone connection is increasingly stressed in accordance with the healing process.
  • the radiation generated by the radiation source 29 is introduced via glass fibers 30, which are different from the glass fibers 7 of the measuring device.
  • FIG. 7 It is also possible to carry out both the measurement of the physical state data and the feeding of electromagnetic radiation via the same glass fibers 7, this is shown schematically in FIG.
  • an optical switch 33 is switched on, which optionally enables a connection of the glass fibers 7 to the measuring device 11 or the radiation source 29.
  • this is symbolically indicated by the double arrow C.
  • Switches of this type are available in various ways. These can be mechanical switches that, for example, move an optical fiber between two coupling points, or also switches that are electrically work magnetically, piezoelectrically or thermally, a large number of different switches are known to the person skilled in the art which can be used for this purpose.
  • the optical switch 33 can optionally also be actuated automatically, so that it is ensured that, for example, measurement of the physical condition is carried out alternately via the glass fiber 7 and radiation energy is irradiated to influence the glass fiber environment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Prostheses (AREA)

Abstract

Um bei einem medizinischen Implantatsystem mit einem Implantat aus einem Verbundwerkstoff, in welchen Glasfasern eingebettet sind, Auskunft über physikalische Zustände des Implantates in seiner Umgebung zu erhalten, wird vorgeschlagen, dass ein in das Implantat eingebettetes, mindestens eine der Glasfasern umfassendes Sensorelement mit einer Messeinrichtung verbunden ist, die eine physikalische Eigenschaft des Sensorelementes oder dessen Umgebung und deren Änderung bestimmt.

Description

MEDIZINISCH ES IMPLANTATSYSTEM
Die Erfindung betrifft ein medizinisches Implantatsystem mit einem Implantat aus einem Verbundwerkstoff, in welchen Glasfasern eingebettet sind.
Medizinische Implantate, beispielsweise Knochenplatten, Marknägel, Endoprothesen, Osteosynthesesysteme für die Wirbelsäule etc. werden üblicherweise aus metallischen Werkstoffen hergestellt, es sind aber auch Implantate bekannt, die aus einem Verbundwerkstoff bestehen, in welchen zur Verstärkung Glasfasern eingebettet sind, insbesondere bestehen derartige medizinische Implantate aus sterilisierbaren, ausgesuchten Kunststoffen wie Polyetheretherketon, Polyamiden etc.
Wenn diese Implantate in den Körper eingesetzt sind, sind sie unterschiedlichen Einflüssen ausgesetzt, beispielsweise unterschiedlichen Dehnungen und Spannungen, Temperaturentwicklungen oder chemischen Umgebungen. Es wäre für den behandelnden Art von Interesse, diese unterschiedlichen Parameter zu erfahren, da sie Auskunft geben über den Heilungsverlauf oder über möglicherweise auftretende Probleme.
Es ist Aufgabe der Erfindung, ein gattungsgemäßes medizinisches Implantatsystem so zu verbessern, daß man Information über physikalische Eigenschaften im Implantat und in seiner Umgebung erhalten kann. Diese Aufgabe wird bei einem medizinischen Implantat der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß ein in das Implantat eingebettetes, mindestens eine der Glasfasern umfassendes Sensorelement mit einer Meßeinrichtung verbunden ist, die eine physikalische Eigenschaft des Sensorelementes oder dessen Umgebung und deren Änderung bestimmt.
Es wird also mindestens eine in den Verbundwerkstoff des Implantates eingebettete Glasfaser zur Übertragung von Signalen verwendet, die Auskunft über die physikalischen Eigenschaften des Implantates oder der Umgebung des Implantates geben.
Dabei werden unter dem Begriff „Glasfaser" alle faserförmigen, in den Verbundwerkstoff einbettbaren Substanzen verstanden, die in der Lage sind elektromagnetische Strahlung zu führen und zu übertragen, vorzugsweise bestehen diese Fasern aus Quarzglas, es können aber auch andere Substanzen Verwendung finden, beispielsweise Fasern aus Kunststoff, sogenannte Plastic Optical Fibres (POF).
Es ist vorteilhaft, wenn die Glasfasern als mechanische Verstärkung in den Verbundwerkstoff eingebettet sind.
Insbesondere kann dabei vorgesehen sein, daß die Glasfasern in Form eines Gewebes, eines Gewirkes oder eines Vlieses angeordnet sind, also ein Netzwerk ausbilden, das insgesamt in den Verbundwerkstoff eingebettet ist und diesen dadurch verstärkt. Je nach den mechanischen Anforderungen können die Glasfasern dabei in bestimmten Bereichen des Implantates konzentriert oder aber über die gesamte Ausdehnung des Implantates verteilt sein.
Vorzugsweise ist die Meßeinrichtung so ausgebildet, daß sie elektromagnetische Strahlung in das Sensorelement einspeist und aus der Art der durchgehenden und/oder reflektierten Strahlung physikalische Eigenschaften des Sensorelementes oder von dessen Umgebung bestimmt.
Die Glasfaser des Sensorelementes ist gemäß einer bevorzugten Ausführungsform mit einer Strahlungsreflektierenden Beschichtung versehen.
Bei einer ersten bevorzugten Ausführungsform besteht das Sensorelement im wesentlichen aus der eine Sensorfaser ausbildenden Glasfaser. Bei dieser Ausführungsform ist also die in den Verbundwerkstoff eingebettete Glasfaser gleichzeitig Sensor und Übertragungselement für die elektromagnetische Strahlung.
Es sind eine größere Anzahl von unterschiedlichen Ausgestaltungen möglich, bei denen die Glasfaser als Sensorfaser wirkt, beispielsweise kann in die Sensorfaser mindestens ein als Bragg-Gitter wirkender Bereich eingearbeitet sein. In einem solchen Bereich, der periodische Änderungen des Brechungsindex in Längsrichtung der Sensorfaser aufweist, wird Strahlung reflektiert, die sich bei der Reflexion überlagert und sich nur für ganz bestimmte Wellenlängen in Rückrichtung verstärkt. Diese Wellenlänge hängt von der Periodizität des Bragg- Gitterbereiches ab und ändert sich mit dieser Periodizität. Jede Länge- nänderung der Sensorfaser oder jede Änderung der Periodizität des Bragg-Gitters, die aufgrund von äußeren Einflüssen eintritt, kann auf diese Weise in Form einer Wellenlängenverschiebung festgestellt werden.
Bei einer anderen bevorzugten Ausführungsform kann vorgesehen sein, daß in die Sensorfaser eine durch die eingespeiste elektromagnetische Strahlung zu Fluoreszenz angeregte Substanz eingebettet ist, deren Fluoreszenzeigenschaften unter Einwirkung der Umgebung außerhalb der Sensorfaser Änderungen erfahren. Diese Änderungen können mechanische Änderungen sein, insbesondere kann jedoch die Fluoreszenzeigenschaft der eingebetteten Substanz durch die chemische Umgebung der Sensorfaser beeinflußt werden, beispielsweise kann die Fluoreszenz durch bestimmte Substanzen in der Umgebung gelöscht werden.
Bei einer weiteren bevorzugten Ausführungsform ist vorgesehen, daß die Strahlungsreflektierende Beschichtung aus einer Substanz besteht, die unter Einwirkung der Umgebung außerhalb der Sensorfaser das Reflexionsverhalten für die elektromagnetische Strahlung in der Sensorfaser verändert. Dadurch wird die durch die Sensorfaser hindurchtretende und reflektierte Strahlungsmenge verändert, und dies läßt sich feststellen.
Jede Änderung der Eigenschaften in der Strahlung kann detektiert werden, es kann sich dabei um Änderungen der Wellenlänge, der Phasenlage, der Polarisation etc. handeln, wesentlich ist lediglich, daß diese Änderungen in klar erkennbarem Zusammenhang mit Änderungen der Eigenschaften in der Umgebung der Sensorfaser stehen, also bei- spielsweise mit Änderungen der mechanischen Spannung, der Temperatur oder der stofflichen Zusammensetzung.
Bei einer weiteren bevorzugten Ausführungsform kann vorgesehen sein, daß das Sensorelement die Glasfaser umfaßt und ein weiteres Sensorglied, welches über die Glasfaser mit der Meßeinrichtung verbunden ist. Bei dieser Ausgestaltung wirkt die Glasfaser im wesentlichen als Übertragungselement zwischen dem Sensorglied und der Meßeinrichtung.
Beispielsweise kann das Sensorglied ein Drucksensor mit einer flexiblen Membran und einem von dieser bewegbaren Spiegelelement sein, welches die in die Glasfaser eingespeiste elektromagnetische Strahlung je nach Stellung unterschiedlich reflektiert.
Bei einer weiteren Ausführungsform kann das Sensorglied ein Fabry- Perot-Interferometer sein.
Beispielsweise kann dabei vorgesehen sein, daß das Fabry-Perot-Inter- ferometer als auf das Ende der Glasfaser aufkontaktiertes Dünn- schicht-Interferometer ausgebildet ist, dessen aktive Schicht unter dem Einfluß der Umgebung Dimensionsänderungen erfährt. Eine solche aktive Schicht kann beispielsweise porös ausgebildet sein und quellen, wenn sie mit einer Flüssigkeit in Verbindung kommt, auf diese Weise ist zum Beispiel feststellbar, ob ein Implantat noch abgedichtet ist oder eine erwünschte oder unerwünschte Öffnung zur Umgebung aufweist.
Bei einer anderen Ausführungsform ist vorgesehen, daß das Fabry- Perot-Interferometer zwei Glasfasern mit polierten Endflächen umfaßt, deren Abstand durch Umgebungseinflüsse veränderbar ist. Diese Ausgestaltung ist insbesondere dann günstig, wenn Dehnungen oder Verschiebungen innerhalb eines Implantates festgestellt werden sollen.
Die Glasfaser des Sensorelementes kann direkt mit der Meßeinrichtung verbunden sein, wobei die Meßeinrichtung im Innern des Körpers getragen werden kann, aber auch außerhalb. Im letzteren Fall wird die Glasfaser aus dem Implantat durch das Körpergewebe nach außen geführt, so daß dort eine Verbindung zu der Meßeinrichtung hergestellt werden kann.
Besonders günstig ist es, wenn die Meßeinrichtung ein in den Körper implantierbarer Mikrocontroller ist.
Bei einer besonders bevorzugten Ausführungsform ist die Glasfaser mit einem Übertrager verbunden, der ohne körperliche Verbindung Signale mit der Meßeinrichtung austauscht.
Dieser Übertrager kann insbesondere in den Körper implantierbar sein, beispielsweise kann es sich dabei um einen Transponder handeln.
Bei einer besonders günstigen Ausführungsform ist der Übertrager eine Lichtquelle, der ein Lichtempfänger zugeordnet ist. Es hat sich herausgestellt, daß Licht unterschiedlicher Wellenlänge Körpergewebe in gewissem Umfange durchdringen kann, so daß zwischen einem Lichtempfänger und einer Lichtquelle, von denen ein Teil im Körper und ein Teil außerhalb angeordnet sind, durch Licht eine Übertragung von Strahlungsenergie möglich ist, insbesondere dann, wenn die Lichtquelle elektromagnetische Strahlung im Bereich zwischen 650 und 1000 nm aussendet.
Bei einer besonders bevorzugten Ausführungsform ist der Meßeinrichtung ein Strahlungssender zugeordnet, der über eine Glasfaser im Implantat Strahlung in das Innere des Implantates transportiert. Ein solcher Strahlungssender kann dazu verwendet werden, zusätzlich zur Bestimmung der physikalischen Eigenschaften des Implantates durch die eingekoppelte Strahlung auf das Implantat einzuwirken und dieses zu verändern, beispielsweise durch Erwärmung in bestimmten Bereichen oder dergleichen.
Es kann dabei vorgesehen sein, daß der Transport der Strahlung über eine Glasfaser erfolgt, die zusätzlich zu der Glasfaser eines Sensorelementes in das Implantat eingebettet ist, es kann aber auch vorgesehen sein, daß der Transport der Strahlung über die Glasfaser eines Sensorelementes erfolgt. In diesem Fall ist es vorteilhaft, wenn entsprechende Schaltelemente Verwendung finden, welche die Glasfaser wahlweise mit der Meßeinrichtung und mit dem Strahlungssender verbinden.
Besonders vorteilhaft ist eine Ausgestaltung, bei der Wellenlänge und Intensität der transportierten Strahlung so gewählt sind, daß die Strahlung in dem Verbundwerkstoff des Implantates mechanische und/oder stoffliche Veränderungen hervorruft. Beispielsweise ist es dadurch möglich, eine zusätzliche Aushärtung eines polymeren Verbundwerkstoffes in bestimmten Bereichen vorzunehmen oder umgekehrt eine Schwächung durch Zerstörung des Verbundwerkstoffes, so daß auf diese Weise die mechanischen Eigenschaften des Implantates in größeren Bereichen oder aber auch lokal geändert werden können. Bei einer besonders bevorzugten Ausführungsform ist dabei vorgesehen, daß der Meßeinrichtung und dem Strahlungssender eine Steuerung zugeordnet ist, die den Strahlungssender in Abhängigkeit von den Meßgrößen der Meßeinrichtung aktiviert. Bei dieser Ausgestaltung ist es möglich, die physikalischen Daten des Implantates laufend zu bestimmen, beispielsweise die auf das Implantat übertragenen mechanischen Spannungen, die zum Beispiel ein Maß für den Heilungsprozeß sind, diese Spannungen nehmen mit zunehmender Stabilität an der Knochenverbindung ab, da ein Teil der Belastungen durch den Knochen übernommen wird. Es ist dann günstig, entsprechend dieser Regeneration der Knochenverbindung die Festigkeit des Implantates herabzusetzen, so daß die Kraftübertragungsfunktion zunehmend von dem heilenden Knochen übernommen wird.
Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen:
Figur 1: eine schematische Ansicht eines Implantats in Form einer Knochenplatte mit einer drahtlosen Verbindung zu einer Meßeinrichtung;
Figur 2: eine schematische Ansicht eines plattenförmigen
Implantates mit einer netzförmigen Glasfaserverstärkung;
Figur 3: eine schematische Ansicht eines Implantats in Form einer Knochenplatte mit einer an mehrere Glasfa- sern angeschlossenen Meßeinrichtung und mit einer Strahlungsquelle zur Einführung von Strahlung in eine nicht mit der Meßeinrichtung verbundene Glasfaser;
Figur 4: eine Ansicht ähnlich Figur 3 mit einer Schalteinrichtung zur wahlweisen Verbindung von Glasfasern im Implantat mit der Meßeinrichtung oder mit der Strahlungsquelle;
Figur 5: eine schematische Seitenansicht einer Glasfaser mit
Bragg-Gitter-Bereichen unterschiedlicher Periodizität;
Figur 6: eine schematische Seitenansicht einer Glasfaser mit eingebetteten fluoreszierenden Farbstoffpartikeln;
Figur 7: eine schematische Seitenansicht einer Glasfaser mit einer Ummantelung mit veränderlichen Transmissionseigenschaften;
Figur 8: eine schematische Seitenansicht eines mit einer
Glasfaser verbundenen Fabry-Perot-Interferometers mit zwei gegeneinander bewegten Glasfaserstük- ken;
Figur 9: eine Ansicht ähnlich Figur 8 mit einer dimensionsveränderlichen aktiven Schicht und Figur 10: eine schematische Seitenansicht einer Glasfaser mit einem Membrandrucksensor.
Die Erfindung wird nachfolgend am Beispiel einer Knochenplatte erläutert, es versteht sich aber, daß die Erfindung allgemein für in den Körper einsetzbare medizinische Implantate verwendbar ist und nicht auf Knochenplatten beschränkt ist.
Ein Implantat 1 in Form einer Knochenplatte mit Öffnungen 2 zur Aufnahme von Knochenschrauben ist in an sich bekannter Weise mittels Knochenschrauben so mit zwei Knochenfragmenten 3, 4 verbunden, daß diese in einer bestimmten Relativposition zueinander fixiert sind, so daß beispielsweise eine Bruchstelle 5 verheilen kann (Figur 1). Das Implantat 1 besteht aus einem Kunststoffmaterial, beispielsweise aus einem resorbierbaren Kunststoff wie Polylactid (PLLA, PL DLLA), Poly- glycolit (PGA) oder Trimethylencarbonat (TMC), und in dieses Kunststoffmaterial 6 sind Glasfasern 7 eingebettet. Im Ausführungsbeispiel der Figur 1 sind schematisch nur zwei einzelne Glasfasern 7 dargestellt, die sich in Längsrichtung des plattenförmigen Implantates 1 erstrecken, im Ausführungsbeispiel der Figur 2 sind eine Vielzahl von Glasfasern 7 in Form eines Netzes angedeutet, welches insgesamt in das Kunststoffmaterial 6 eingebettet ist, hier sind die unterschiedlichsten Anordnungen und Konzentrationen von Glasfasern in dem Kunst- stoffmaterial 6 möglich. Die Glasfasern verstärken durch diese Einbettung das Kunststoffmaterial 6, und dementsprechend werden unterschiedliche Verteilungen im Implantat gewählt, je nach den mechanischen Festigkeitsanforderungen. Die Glasfasern 7 im Ausführungsbeispiel der Figur 1 sind mit einem Übertragungselement 8 verbunden, beispielsweise einem üblichen Transponder, der am Implantat 1 selbst oder im Abstand vom Implantat 1 im Innern des Körpers des Patienten oder aber auch auf der Oberfläche des Körpers des Patienten angeordnet werden kann, es kann sich dabei auch um ein optisches Element handeln, welches Licht empfangen und aussenden kann, beispielsweise ein kleiner Parabolspiegel, eine Linse oder dergleichen. Im Ausführungsbeispiel der Figur 1 sind alle im Implantat 1 angeordneten Glasfasern 7 mit dem Übertragungselement 8 verbunden, im Ausführungsbeispiel der Figur 2 nur einige, während andere Glasfasern ausschließlich der Verstärkung des Implantates 1 dienen. Dies kann von Fall zu Fall unterschiedlich gewählt werden, im Extremfall genügt es, eine einzige Glasfaser 7 im Implantat 1 mit einem solchen Übertragungselement 8 zu verbinden.
Dem Übertragungselement 8 ist ein entsprechendes Übertragungselement 9 zugeordnet, welches über eine Leitung 10 mit einer Meßeinrichtung 11 verbunden ist. Zwischen den Übertragungselementen 8 und 9 können Signale ausgetauscht werden, es kann sich dabei um elektrische Signale, um optische Signale, um mechanische Signale (Ultraschall) handeln, wesentlich ist lediglich, daß von dem Übertragungselement 8 in die Glasfaser und gegebenenfalls von der Glasfaser in das Übertragungselement 8 elektromagnetische Energie übertragen wird, die im Übertragungselement 8 in Signale umgesetzt wird, die dann in beliebiger Weise zum Übertragungselement 9 und damit zur Meßeinrichtung 11 geleitet werden können. Insbesondere können die Übertragungselement 8 und 9 bei einer Anordnung des Übertragungselements 8 im Innern des Körpers zwischen sich eine eiektromagneti- sehe Strahlung mit einer Wellenlänge zwischen 650 und 1000 Nano- meter austauschen, diese elektromagnetische Strahlung kann das Körpergewebe bis zu einer bestimmten Tiefe durchdringen und kann somit eine Signalverbindung zwischen den beiden Übertragungselementen 8 und 9 herstellen, und zwar sowohl in Einstrahlrichtung als auch in Ausstrahlrichtung.
Die auf diese Weise in die Glasfaser 7 eingekoppelte Strahlung wird in der Glasfaser 7 geführt und durch diese selbst oder durch ein mit ihr verbundenes Sensorglied 12 verändert, und zwar abhängig von den physikalischen Zustandsdaten der Glasfaser 7, des Sensorgliedes 12 oder der Umgebung derselben. Die daraufhin aus der Glasfaser 7 dem Übertragungselement 8 in Rückrichtung zugeführte Strahlung ist dementsprechend verändert, und diese Veränderung läßt sich von der Meßeinrichtung 11 feststellen, die damit eine Rückmeldung über Änderungen des physikalischen Zustands der Glasfaser, des Sensorgliedes 12 und/oder der Umgebung derselben erhält.
Die Möglichkeiten zur Einwirkung auf die in die Glasfaser 7 eingespeiste elektromagnetische Strahlung sind vielfältig, es lassen sich auf diese Weise Längenänderungen, Verformungen, mechanische Zugspannungen, Kräfte, Schwingungen, Drücke, Drehwinkel, elektrische oder magnetische Feldstärken, Ströme, Temperaturen, Feuchte, ionisierende Strahlungen oder Konzentration oder Anwesenheit von chemischen Substanzen bestimmen, dies ist lediglich eine Auswahl der möglichen physikalischen Zustände, die auf diese Weise feststellbar sind. Anhand der Figuren 5 bis 10 werden nachstehend einige Beispiele der Beeinflussung der elektromagnetischen Strahlung in einer Glasfaser erörtert. In Figur 5 ist ein Ausschnitt einer Glasfaser 7 dargestellt, in dieser Glasfaser sind in Längsrichtung im Abstand voneinander angeordnet verschiedene Bereiche 13, 14, 15 vorgesehen, bei denen in Längsrichtung der Faser periodische Änderungen des Brechungsindex auftreten. Diese lassen sich zum Beispiel dadurch erzeugen, daß eine beispielsweise mit Germaniumdioxid dotierte Quarzglasfaser über eine mikrolithographische Maske mit Ultraviolettlicht von 240 nm Wellenlänge bestrahlt wird. Es entsteht dadurch in jedem Bereich 13, 14, 15 eine Anordnung eines Bragg-Gitters, wobei die Periodizität und damit die Gitterkonstante in verschiedenen Bereichen 13, 14, 15 unterschiedlich gewählt werden.
An jedem dieser Bragg-Gitter wird durch Interferenzstrahlung eine ganz bestimmte Wellenlänge reflektiert, diese Wellenlänge ist abhängig von der Periodizität des Gitters und ändert sich damit auch, wenn dieses die Periodizität ändert. Eine solche Änderung der Periodizität oder Gitterkonstante kann durch äußere Einflüsse erfolgen, beispielsweise durch Dehnung der Glasfaser, durch Biegung der Glasfaser, durch Erwärmung etc. Da in jedem Bereich 13, 14, 15 nur Strahlung einer bestimmten Wellenlänge reflektiert wird, kann man an der Wellenlänge der reflektierten Strahlung sofort ablesen, an welchem Bereich eine Reflexion erfolgt ist, außerdem gibt die Verschiebung der Wellenlänge Auskunft über Änderungen der Gitterabstände in diesen Bereichen, also zum Beispiel über die Dehnung der Glasfaser in bestimmten Bereichen. Diese kann in den Bereichen 13, 14, 15 unterschiedlich sein, die Meßeinrichtung kann aus der reflektierten Strahlung Aussagen darüber machen, wie groß eine Dehnung in jedem der Bereiche 13, 14, 15 ist. Damit erhält man insbesondere bei der Verwendung von mehreren derartigen Glasfasern eine genaue Auskunft über die Verformung des Implantates 1 im Körper und damit zum Beispiel über den Heilungsfortgang beim Zusammenwachsen von Knochenfragmenten. Die Dehnung aufgrund der ausgeübten Kräfte wird am größten sein, wenn die Knochenfragmente noch nicht zusammengewachsen sind, und sie wird mit dem Heilungsfortgang laufend abnehmen.
Bei dem Ausführungsbeispiel der Figur 6 sind in die Glasfaser 7 in einem bestimmten Bereich 16 Farbstoffpartikel 17 eingebettet, die durch in die Glasfaser 7 eintretende elektromagnetische Strahlung zur Fluoreszenz angeregt werden. Die auf diese Weise abgegebene Strahlung kann von der Meßeinrichtung bestimmt werden. Umgebungseinflüsse, beispielsweise bestimmte chemische Substanzen in der Umgebung des Bereiches 16, können die Fluoreszenz beeinflussen, beispielsweise kann die Fluoreszenzintensität herabgesetzt oder aber die Fluoreszenz ganz gelöscht werden. Die Meßeinrichtung erhält auf diese Weise Information über die Anwesenheit bestimmter chemischer Substanzen in der Umgebung des Bereiches 16.
Beim Ausführungsbeispiel der Figur 7 ist die Glasfaser 7 mit einer Beschichtung 18 umhüllt, die einen Austritt der durch die Glasfaser 7 geführten elektromagnetischen Strahlung verhindert. Diese Beschichtung kann mit chemischen Stoffen 19 in der Umgebung reagieren und sich dabei so umsetzen, daß die Austrittseigenschaften der elektromagnetischen Strahlung in dem Bereich geändert werden, in dem sich der chemische Stoff 19 befindet, und auf diese Weise erhält man wieder eine Änderung der reflektierten Strahlung in Abhängigkeit von bestimmten chemischen Stoffen 19 in der Umgebung der Glasfaser 7. Beim Ausführungsbeispiel der Figur 8 steht das plangeschliffene Ende 20 der Glasfaser 7 einem ebenfalls plangeschliffenen Ende 21 eines Glasfaserstückes 22 gegenüber, wobei zwischen den Enden 20 und 21 ein sehr schmaler Spalt 23 entsteht, die Spaltbreite A kann beispielsweise in der Größenordnung von 50 mm liegen. Diese Anordnung bildet ein Fabry-Perot-Interferometer aus und reflektiert Strahlung einer ganz bestimmten Wellenlänge, diese ist abhängig von der Spaltbreite A. Verschieben sich die beiden Enden 20 und 21 relativ zueinander, ergibt sich also auch eine Verschiebung der Wellenlänge der reflektierten Strahlung, und dies läßt sich sehr empfindlich feststellen. Auch auf diese Weise lassen sich zum Beispiel Dehnungen des Implantates, die auf die Glasfaser 7 und das Glasfaserstück 22 übertragen werden, ohne weiteres feststellen.
Beim Ausführungsbeispiel der Figur 9 ist eine ähnliche Anordnung gewählt, jedoch ist in den Spalt 23 eine aktive Lage 24 eingesetzt, die ihre Dimension, beispielsweise ihr Volumen, in Abhängigkeit von Umgebungseinflüssen ändert. Es kann sich dabei beispielsweise um eine poröse Struktur handeln, die beim Eintritt von Flüssigkeit in die Poren aufquillt. Die Spaltbreite B verändert sich dadurch, und dies führt zu einer Veränderung der Wellenlänge der an der Fabry-Perot-Anordnung reflektierten Strahlung.
Die Fabry-Perot-Anordnungen der Figuren 8 und 9 bilden somit ein Sensorglied 12 aus, das über die Glasfaser 7 mit der Meßeinrichtung 11 in Verbindung steht, bei den Ausführungsbeispielen der Figuren 5 bis 7 dagegen ist die Glasfaser 7 selbst ein Sensorelement, es handelt sich hier also um Glasfasern, die selbst Sensorfasern sind. Bei dem Ausführungsbeispiel der Figur 10 ist der Glasfaser 7 ein Sensorglied 12 in Form eines Drucksensors 25 zugeordnet. Dieser umfaßt eine flexible Membran 26, die einseitig mit einer Spiegelschicht 27 versehen ist. Ordnet man diesen Drucksensor 25 am Ende einer Glasfaser 7 an, so ändert sich mit der Verformung der Membran 26, die druckabhängig erfolgt, die in die Glasfaser 7 zurückgeworfene elektromagnetische Strahlung, und damit erhält man wieder ein Maß für den Druck am Ende der Glasfaser 7.
Bei dem Ausführungsbeispiel der Figuren 1 und 2 sind Glasfasern 7, die aus dem Implantat 1 herausgeführt sind, direkt oder indirekt mit der Meßeinrichtung 11 verbunden.
Dies ist bei der Ausführung gemäß Figur 3, die ähnlich aufgebaut ist wie die der Figur 1 und bei der gleiche Teile entsprechende Bezugszeichen tragen, ähnlich gelöst, die Verbindung des Übertragungselementes 8 mit der Meßeinrichtung 11 ist bei dem Ausführungsbeispiel in der Figur 3 durch eine Leitung 10 symbolisiert, es kann sich dabei um eine körperliche Leitung oder um eine leitungslose Übertragungsstrecke handeln.
Zusätzlich ist bei dieser Ausführungsform eine Strahlungsquelle 29 vorgesehen, die mit einer oder mehreren Glasfasern 30 in Verbindung stehen, die in das Kunststoffmaterial 6 des Implantates 1 eingebettet sind. Im Ausführungsbeispiel der Figur 3 ist nur eine derartige Glasfaser 30 dargestellt, die direkt mit der Strahlungsquelle 29 verbunden ist, dies ist lediglich als schematische Darstellung aufzufassen. Auch hier können mehrere Glasfasern 30 vorgesehen sein, die in ähnlicher Weise, wie die Glasfasern 7 mit der Meßeinrichtung verbunden sind, ihrerseits mit der Strahlungsquelle 29 verbunden sind, also über Übertragungselemente, die im Körper oder außerhalb angeordnet sein könnten, etc.
Die Strahlungsquelle 29 kann in die Glasfasern 30 eine elektromagnetische Strahlung einspeisen, die im Innern des Implantates 1 austritt und dort eine direkte Beeinflussung der Umgebung erzeugt, beispielsweise eine Aufwärmung des umgebenden Kunststoffmaterials 6 oder aber eine zusätzliche Aushärtung durch erhöhte Polymerisation oder aber eine Auflösung von Polymerisationsverbindungen etc. Hier sind eine Vielzahl von Wirkungen denkbar, die abhängen von der Natur des verwendeten Kunststoffmaterials 6 und von der Natur der eingespeisten elektromagnetischen Strahlung. Die Wirkung dieser eingespeisten elektromagnetischen Strahlung ist in jedem Falle eine Beeinflussung der physikalischen Daten des Kunststoffmaterials 6 und eventuell der Umgebung des Implantates 1, beispielsweise kann die Festigkeit des Implantates lokal oder flächendeckend erhöht oder erniedrigt werden. Den Ort der Einwirkung kann man durch entsprechende Anordnung der Glasfasern 30 im Implantat 1 bestimmen, die Art der Einwirkung durch eine entsprechende Auswahl einer bestimmten Strahlung.
Die Strahlungsquelle 29 kann völlig unabhängig von der Meßeinrichtung 13 aktiviert werden, es ist aber besonders vorteilhaft, wenn, wie in Figur 3 dargestellt, der Strahlungsquelle 29 eine Steuerung 31 zugeordnet ist, die die Strahlungsquelle 29 in Abhängigkeit von den Meßdaten der Meßeinrichtung 11 ein- und ausschaltet. Zu diesem Zweck ist die Meßeinrichtung 11 über eine Leitung 28 mit der Steuerung 31 verbunden. Stellt beispielsweise die Meßeinrichtung 11 fest, daß die Dehnung des Implantates 1 in einem bestimmten Bereich abnimmt, so ist dies ein Zeichen dafür, daß ein Teil der Kraftübertragung durch verheilende Knochenfragmente übernommen worden ist, es kann dann durch Einspeisen von elektromagnetischer Strahlung in Glasfasern 30 die Festigkeit des Implantates 1 durch Auflösen eines Teils des Kunststoffmaterials 6 herabgesetzt werden, so daß die Stützfunktion des Implantates 1 entsprechend der Zunahme der Stabilität der Knochenverbindung abnimmt. Damit ist eine optimale Anpassung dieser Größen aneinander möglich, außerdem ist es für die Heilung förderlich, wenn die Knochenverbindung entsprechend dem Heilvorgang zunehmend belastet wird.
Bei dem Ausführungsbeispiel der Figur 3 erfolgt die Einführung der von der Strahlungsquelle 29 erzeugten Strahlung über Glasfasern 30, die von den Glasfasern 7 der Meßeinrichtung verschieden sind.
Es ist auch möglich, sowohl die Messung der physikalischen Zustands- daten als auch die Einspeisung von elektromagnetischer Strahlung über dieselben Glasfasern 7 vorzunehmen, dies ist in Figur 4 schematisch dargestellt. Zu diesem Zweck ist zwischen das Übertragungselement 8 einerseits und die Meßeinrichtung 11 und die Strahlungsquelle 29 andererseits ein optischer Schalter 33 eingeschaltet, der wahlweise eine Verbindung der Glasfasern 7 mit der Meßeinrichtung 11 oder der Strahlungsquelle 29 ermöglicht. In Figur 4 ist dies durch den Doppelpfeil C symbolisch angedeutet. Schalter dieser Art stehen in verschiedener Weise zur Verfügung, es kann sich dabei um mechanische Schalter handeln, die beispielsweise ein Glasfaser zwischen zwei Einkoppelstellen verschieben, oder aber auch um Schalter, die elektro- magnetisch, piezoelektrisch oder thermisch arbeiten, hier sind dem Fachmann eine große Anzahl unterschiedlicher Schalter bekannt, die zu diesem Zweck eingesetzt werden können.
Der optische Schalter 33 kann gegebenenfalls auch automatisch betätigt werden, so daß sichergestellt ist, daß beispielsweise abwechselnd über die Glasfaser 7 eine Messung des physikalischen Zusandes vorgenommen wird und Strahlungsenergie zur Beeinflussung der Glasfaserumgebung eingestrahlt wird.

Claims

PATENTANSPRUCHE
Medizinisches Implantatsystem mit einem Implantat (1) aus einem Verbundwerkstoff, in welchen Glasfasern (7) eingebettet sind, dadurch gekennzeichnet, daß ein in das Implantat (1) eingebettetes, mindestens eine der Glasfasern (7) umfassendes Sensorelement mit einer Meßeinrichtung (11) verbunden ist, die eine physikalische Eigenschaft des Sensorelementes oder dessen Umgebung und deren Änderung bestimmt.
Implantatsystem nach Anspruch, dadurch gekennzeichnet, daß die Glasfasern (7) als mechanische Verstärkung in den Verbundwerkstoff eingebettet sind.
3. Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Glasfasern (7) in Form eines Gewebes, eines Gewirkes oder eines Vlieses angeordnet sind.
Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Glasfasern (7) im Verbundwerkstoff über die gesamte Ausdehnung des Implantates (1) verteilt sind. Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Meßeinrichtung (11) elektromagnetische Strahlung in das Sensorelement einspeist und aus der Art der durchgehenden und/oder reflektierenden Strahlung physikalische Eigenschaften des Sensorelementes oder von dessen Umgebung bestimmt.
Implantatsystem nach Anspruch 5, dadurch gekennzeichnet, daß die Glasfaser (7) des Sensorelementes mit einer Strahlungsreflektierenden Beschichtung (18) versehen ist.
7. Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Sensorelement im wesentlichen aus der eine Sensorfaser ausbildenden Glasfaser (7) besteht.
8. Implantatsystem nach Anspruch 7, dadurch gekennzeichnet, daß in die Sensorfaser mindestens ein als Bragg-Gitter wirkender Bereich (13, 14, 15) eingearbeitet ist.
9. Implantatsystem nach Anspruch 7, dadurch gekennzeichnet, daß in die Sensorfaser eine durch die eingespeiste elektromagnetische Strahlung zur Fluoreszenz angeregte Substanz (17) eingebettet ist, deren Fluoreszenzeigenschaften unter Einwirkung der chemischen Umgebung außerhalb der Sensorfaser Änderungen erfahren.
10. Implantatsystem nach Anspruch 6 und 7, dadurch gekennzeichnet, daß die Strahlungsreflektierende Beschichtung (18) aus einer Substanz besteht, die unter Einwirkung der chemischen Umgebung (19) außerhalb der Sensorfaser das Reflexionsverhalten für die elektromagnetische Strahlung in der Sensorfaser verändert.
11. Implantatsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Sensorelement die Glasfaser (7) umfaßt und ein weiteres Sensorglied (12), welches über die Glasfaser (7) mit der Meßeinrichtung (11) verbunden ist.
12. Implantatsystem nach Anspruch 11 dadurch gekennzeichnet, daß das Sensorglied (12) ein Drucksensor (25) mit einer flexiblen Membran (26) und einem von dieser bewegbaren Spiegelelement (27) ist, welches die in die Glasfaser (7) eingespeiste elektromagnetische Strahlung je nach Stellung unterschiedlich reflektiert.
13. Implantatsystem nach Anspruch 11, dadurch gekennzeichnet, daß das Sensorglied (12) ein Fabry-Perot-Interferometer ist.
14. Implantatsystem nach Anspruch 13, dadurch gekennzeichnet, daß das Fabry-Perot-Interferometer als auf das Ende (20) der Glasfaser (7) aufkontaktiertes Dünnschicht-Interferometer (21, 22, 24) ausgebildet ist, dessen aktive Schicht (24) unter dem Einfluß der Umgebung Dimensionsänderungen erfährt.
15. Implantatsystem nach Anspruch 13, dadurch gekennzeichnet, daß das Fabry-Perot-Interferometer zwei Glasfasern (7, 22) mit polierten Endflächen (20, 21) umfaßt, deren Abstand (B) durch Umgebungseinflüsse veränderbar ist.
16. Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Glasfaser (7) des Sensorelementes direkt mit der Meßeinrichtung (11) verbunden ist.
17. Implantatsystem nach Anspruch 16, dadurch gekennzeichnet, daß die Meßeinrichtung ein in den Körper implantierbarer Mikro- controller ist.
18. Implantatsystem nach einem Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Glasfaser (7) mit einem Übertrager (8) verbunden ist, der ohne körperliche Verbindung Signale mit der Meßeinrichtung (11) austauscht.
19. Implantatsystem nach Anspruch 18, dadurch gekennzeichnet, daß der Übertrager (8) in den Körper implantierbar ist.
20. Implantatsystem nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß der Übertrager (8) ein Transponder ist.
21. Implantatsystem nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß der Übertrager eine Lichtquelle ist, der ein Lichtempfänger zugeordnet ist.
22. Implantatsystem nach Anspruch 21, dadurch gekennzeichnet, daß die Lichtquelle elektromagnetische Strahlung im Bereich zwischen 650 und 1000 nm aussendet.
23. Implantatsystem nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Meßeinrichtung (11) ein Strahlungssender (29) zugeordnet ist, der über eine Glasfaser (7; 30) im Implantat (1) Strahlung in das Innere des Implantates (1) transportiert.
24. Implantatsystem nach Anspruch 23, dadurch gekennzeichnet, daß der Transport der Strahlung über die Glasfaser (7) eines Sensorelementes erfolgt.
25. Implantatsystem nach Anspruch 23, dadurch gekennzeichnet, daß der Transport der Strahlung über eine Glasfaser (30) erfolgt, die zusätzlich zu der Glasfaser (7) eines Sensorelementes in das Implantat (1) eingebettet ist.
26. Implantatsystem nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, daß Wellenlänge und Intensität der transportierten Strahlung so gewählt sind, daß die Strahlung in dem Verbundwerkstoff des Implantates mechanische und/oder stoffliche Veränderungen hervorruft.
27. Implantatsystem nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß der Meßeinrichtung (11) und dem Strahlungssender (29) eine Steuerung (31) zugeordnet ist, die den Strahlungssender in Abhängigkeit von den Meßgrößen der Meßeinrichtung (11) aktiviert.
PCT/EP2002/007927 2001-07-28 2002-07-17 Medizinisches implantatsystem WO2003011133A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50201594T DE50201594D1 (de) 2001-07-28 2002-07-17 Medizinisches implantatsystem
EP02791457A EP1424937B1 (de) 2001-07-28 2002-07-17 Medizinisches implantatsystem
AT02791457T ATE282358T1 (de) 2001-07-28 2002-07-17 Medizinisches implantatsystem
US10/765,724 US20040204647A1 (en) 2001-07-28 2004-01-26 Medical implant system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20112482U DE20112482U1 (de) 2001-07-28 2001-07-28 Medizinisches Implantatsystem
DE10137011A DE10137011C2 (de) 2001-07-28 2001-07-28 Medizinisches Implantatsystem
DE10137011.3 2001-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/765,724 Continuation US20040204647A1 (en) 2001-07-28 2004-01-26 Medical implant system

Publications (1)

Publication Number Publication Date
WO2003011133A1 true WO2003011133A1 (de) 2003-02-13

Family

ID=27623826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007927 WO2003011133A1 (de) 2001-07-28 2002-07-17 Medizinisches implantatsystem

Country Status (2)

Country Link
DE (2) DE10137011C2 (de)
WO (1) WO2003011133A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110272A1 (en) * 2003-06-19 2004-12-23 Integration Diagnostics Ltd Method and arrangement relating to testing objects
US8391958B2 (en) 2003-06-19 2013-03-05 Osstell Ab Method and arrangement relating to testing objects

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006501A1 (de) 2004-02-10 2005-09-01 Charité-Universitätsmedizin Berlin Bauteil und Verfahren zum Zusammenbau einer Implantatanordnung
KR101189732B1 (ko) 2004-06-07 2012-10-11 신세스 게엠바하 센서를 구비한 정형외과용 임플란트
WO2006032362A2 (de) * 2004-09-17 2006-03-30 Michael Buhr Partiell resorbierbare osteosynthesen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914164C1 (de) * 1989-04-28 1991-01-03 Aesculap Ag, 7200 Tuttlingen, De
WO1996017223A1 (en) * 1994-11-29 1996-06-06 United Technologies Corporation Optical fiber bragg grating coating removal detection
US5792076A (en) * 1995-01-17 1998-08-11 Smith & Nephew, Inc. Fracture consolidation measuring apparatus
WO1999045352A1 (en) * 1998-03-06 1999-09-10 Leiv Eiriksson Nyfotek As Optical pressure sensor
US6005242A (en) * 1997-08-15 1999-12-21 Alconi Sensline Environmental media and pressure sensor
WO2001022880A1 (en) * 1999-09-30 2001-04-05 Uab Research Foundation Implantable mechanical force sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135671A (ja) * 1984-12-04 1986-06-23 三菱鉱業セメント株式会社 インプラント材
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914164C1 (de) * 1989-04-28 1991-01-03 Aesculap Ag, 7200 Tuttlingen, De
WO1996017223A1 (en) * 1994-11-29 1996-06-06 United Technologies Corporation Optical fiber bragg grating coating removal detection
US5792076A (en) * 1995-01-17 1998-08-11 Smith & Nephew, Inc. Fracture consolidation measuring apparatus
US6005242A (en) * 1997-08-15 1999-12-21 Alconi Sensline Environmental media and pressure sensor
WO1999045352A1 (en) * 1998-03-06 1999-09-10 Leiv Eiriksson Nyfotek As Optical pressure sensor
WO2001022880A1 (en) * 1999-09-30 2001-04-05 Uab Research Foundation Implantable mechanical force sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIE L ET AL: "Sol-gel glass as a matrix for chemical and biochemical sensing", TRAC, TRENDS IN ANALYTICAL CHEMISTRY, ANALYTICAL CHEMISTRY. CAMBRIDGE, GB, vol. 16, no. 4, 1 April 1997 (1997-04-01), pages 200 - 211, XP004064451, ISSN: 0165-9936 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110272A1 (en) * 2003-06-19 2004-12-23 Integration Diagnostics Ltd Method and arrangement relating to testing objects
US8391958B2 (en) 2003-06-19 2013-03-05 Osstell Ab Method and arrangement relating to testing objects

Also Published As

Publication number Publication date
DE10137011A1 (de) 2003-02-20
DE10137011C2 (de) 2003-12-04
DE20112482U1 (de) 2001-10-31

Similar Documents

Publication Publication Date Title
EP1424937B1 (de) Medizinisches implantatsystem
DE60130351T2 (de) Faseroptischer verbinder und optisches bauelement
EP0354362B1 (de) Verfahren zum Aufbringen und Lesen von und Flasche mit optisch lesbaren Codemarkierungen
EP1716820B1 (de) Gerät zum Polymerisieren von polymerisierbarem Dentalmaterial sowie Verfahren zur Bestimmung des Polymerisationsgrades
EP1576356B1 (de) Vorrichtung und Verfahren ZUR ERZEUGUNG ELEKTROMAGNETISCHER FELDVERTEILUNGEN
DE69523094T2 (de) Faseroptischer Isolator
DE69031707T2 (de) Anordnung zur Neuorientierung und Fokussierung von Licht unter Verwendung eines optischen Wellenleiter-Bragg-Gitters
CA2333111A1 (en) Composite of polymer or ceramic materials and component made of such a composite
EP1857983A1 (de) Durchgangssperre mit einer die Anwesenheit einer Person innerhalb der Durchgangssperre detektierenden Sensorik
EP2802709A1 (de) Walze mit sensoren für eine maschine zur herstellung und/oder verarbeitung einer materialbahn und maschine zur herstellung und/oder verarbeitung einer materialbahn
DE10011284A1 (de) Vorrichtung für eine In-vivo Messung der Konzentration eines Inhaltsstoffs einer Körperflüssigkeit
AU6505290A (en) Fibres of increased specific surface area, a method for their manufacture, fluff pulp consisting of such fibres and the use of the fibres as absorption material
DE2833352A1 (de) Vorrichtung zur uebertragung und fokussierung von laserstrahlen
WO2012167907A1 (de) Vorrichtung und verfahren zur bestimmung von material-eigenschaften einer substrat-probe im tera-hertz-frequenzspektrum
DE69828788T2 (de) Integriertes optisches wellenleiterbauelement
DE102019108299B4 (de) THz-Messvorrichtung und THz-Messverfahren zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes
WO2003011133A1 (de) Medizinisches implantatsystem
WO1998053739A1 (de) In vivo detektion von langer-linien
EP1337298A1 (de) Vorrichtung zur akupunktur mittels laserstrahlung
DE3516773A1 (de) Vorrichtung zum aushaerten von lichthaertendem fingernagel- oder fussnagelersatz
EP0812679A2 (de) Mehrlagiger Bauteil
EP3047793B1 (de) Wundverband
DE20005496U1 (de) Erfassungssystem für chirurgische Instrumente und Materialien
WO2003098846B1 (de) Vorrichtung zur optischen signalübertragung zwischen zwei gegeneinander beweglichen einheiten
WO2018060045A1 (de) Kurzpulslasersystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002791457

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10765724

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002791457

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002791457

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载