WO2003000735A2 - Acides nucleiques codant pour des recepteurs olfactifs - Google Patents
Acides nucleiques codant pour des recepteurs olfactifs Download PDFInfo
- Publication number
- WO2003000735A2 WO2003000735A2 PCT/IB2002/002481 IB0202481W WO03000735A2 WO 2003000735 A2 WO2003000735 A2 WO 2003000735A2 IB 0202481 W IB0202481 W IB 0202481W WO 03000735 A2 WO03000735 A2 WO 03000735A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- gpcr
- polypeptide
- agent
- gpcr gene
- Prior art date
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 283
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 247
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 247
- 108050002069 Olfactory receptors Proteins 0.000 title description 8
- 102000012547 Olfactory receptors Human genes 0.000 title description 8
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 claims abstract description 395
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 claims abstract description 302
- 238000000034 method Methods 0.000 claims abstract description 123
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 363
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 359
- 229920001184 polypeptide Polymers 0.000 claims description 356
- 239000003795 chemical substances by application Substances 0.000 claims description 164
- 230000014509 gene expression Effects 0.000 claims description 114
- 125000003729 nucleotide group Chemical group 0.000 claims description 102
- 239000002773 nucleotide Substances 0.000 claims description 101
- 108090000623 proteins and genes Proteins 0.000 claims description 101
- 239000012634 fragment Substances 0.000 claims description 84
- 230000000694 effects Effects 0.000 claims description 69
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 60
- 238000012360 testing method Methods 0.000 claims description 57
- 201000010099 disease Diseases 0.000 claims description 55
- 238000009396 hybridization Methods 0.000 claims description 55
- 230000000295 complement effect Effects 0.000 claims description 46
- 239000013598 vector Substances 0.000 claims description 44
- 239000011230 binding agent Substances 0.000 claims description 37
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 35
- 230000000692 anti-sense effect Effects 0.000 claims description 31
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 30
- 239000003814 drug Substances 0.000 claims description 27
- 241001465754 Metazoa Species 0.000 claims description 22
- 150000001413 amino acids Chemical class 0.000 claims description 22
- 230000003993 interaction Effects 0.000 claims description 21
- 238000013518 transcription Methods 0.000 claims description 21
- 230000035897 transcription Effects 0.000 claims description 21
- 229940124597 therapeutic agent Drugs 0.000 claims description 18
- 230000027455 binding Effects 0.000 claims description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims description 17
- 102000037865 fusion proteins Human genes 0.000 claims description 15
- 108020001507 fusion proteins Proteins 0.000 claims description 15
- 230000001105 regulatory effect Effects 0.000 claims description 14
- 108091006027 G proteins Proteins 0.000 claims description 13
- 102000030782 GTP binding Human genes 0.000 claims description 13
- 108091000058 GTP-Binding Proteins 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 230000009261 transgenic effect Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 239000005557 antagonist Substances 0.000 claims description 9
- 239000000427 antigen Substances 0.000 claims description 8
- 108091007433 antigens Proteins 0.000 claims description 8
- 102000036639 antigens Human genes 0.000 claims description 8
- 239000000651 prodrug Substances 0.000 claims description 8
- 229940002612 prodrug Drugs 0.000 claims description 8
- 108090000994 Catalytic RNA Proteins 0.000 claims description 7
- 102000053642 Catalytic RNA Human genes 0.000 claims description 7
- 108700008625 Reporter Genes Proteins 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 7
- 239000000556 agonist Substances 0.000 claims description 7
- 239000000816 peptidomimetic Substances 0.000 claims description 7
- 108091092562 ribozyme Proteins 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000001086 yeast two-hybrid system Methods 0.000 claims description 6
- 230000004568 DNA-binding Effects 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 3
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 claims description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 2
- 230000001124 posttranscriptional effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 105
- 239000000523 sample Substances 0.000 description 82
- 108020004414 DNA Proteins 0.000 description 57
- 239000000203 mixture Substances 0.000 description 39
- 239000003550 marker Substances 0.000 description 34
- 108020004999 messenger RNA Proteins 0.000 description 34
- 238000003556 assay Methods 0.000 description 29
- 235000018102 proteins Nutrition 0.000 description 28
- 102000004169 proteins and genes Human genes 0.000 description 28
- 235000001014 amino acid Nutrition 0.000 description 25
- 210000001519 tissue Anatomy 0.000 description 22
- 239000013604 expression vector Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 20
- 108091034117 Oligonucleotide Proteins 0.000 description 19
- 230000004927 fusion Effects 0.000 description 19
- 239000002299 complementary DNA Substances 0.000 description 18
- 241000282414 Homo sapiens Species 0.000 description 17
- 239000013615 primer Substances 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 15
- 239000002853 nucleic acid probe Substances 0.000 description 15
- 230000004075 alteration Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 230000035772 mutation Effects 0.000 description 14
- 108020004511 Recombinant DNA Proteins 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 12
- 239000002987 primer (paints) Substances 0.000 description 12
- 239000013068 control sample Substances 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 238000002560 therapeutic procedure Methods 0.000 description 11
- -1 for example Proteins 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 239000012707 chemical precursor Substances 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000003745 diagnosis Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 238000010561 standard procedure Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 108700028369 Alleles Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000002751 oligonucleotide probe Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000003259 recombinant expression Methods 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 239000012472 biological sample Substances 0.000 description 6
- 239000013592 cell lysate Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000006801 homologous recombination Effects 0.000 description 6
- 238000002744 homologous recombination Methods 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 206010013911 Dysgeusia Diseases 0.000 description 5
- 108010070675 Glutathione transferase Proteins 0.000 description 5
- 102000005720 Glutathione transferase Human genes 0.000 description 5
- 108091093037 Peptide nucleic acid Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000000074 antisense oligonucleotide Substances 0.000 description 4
- 238000012230 antisense oligonucleotides Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000037433 frameshift Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 108700026220 vif Genes Proteins 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- 208000010470 Ageusia Diseases 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 206010002653 Anosmia Diseases 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 108091060211 Expressed sequence tag Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101710082439 Hemagglutinin A Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108020004485 Nonsense Codon Proteins 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 206010064930 age-related macular degeneration Diseases 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 231100000221 frame shift mutation induction Toxicity 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000010874 in vitro model Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 238000002966 oligonucleotide array Methods 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 108050000824 Angiotensin II receptor Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108010073466 Bombesin Receptors Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 101100315479 Caenorhabditis elegans ttll-11 gene Proteins 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108010001789 Calcitonin Receptors Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 1
- 108050007331 Cannabinoid receptor Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241001327708 Coriaria sarmentosa Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 1
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 229940125633 GPCR agonist Drugs 0.000 description 1
- 229940125499 GPCR antagonist Drugs 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010027915 Glutamate Receptors Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 108010002059 Histamine Receptors Proteins 0.000 description 1
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 description 1
- 206010020989 Hypogeusia Diseases 0.000 description 1
- 206010050515 Hyposmia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000010645 MutS Proteins Human genes 0.000 description 1
- 108010038272 MutS Proteins Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 102000050267 Neurotensin Human genes 0.000 description 1
- 108060003370 Neurotensin receptor Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 208000012898 Olfaction disease Diseases 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 108090000137 Opioid Receptors Proteins 0.000 description 1
- 102000003840 Opioid Receptors Human genes 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010034018 Parosmia Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- CCAZWUJBLXKBAY-ULZPOIKGSA-N Tutin Chemical compound C([C@]12[C@@H]3O[C@@H]3[C@@]3(O)[C@H]4C(=O)O[C@@H]([C@H]([C@]32C)O)[C@H]4C(=C)C)O1 CCAZWUJBLXKBAY-ULZPOIKGSA-N 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108090000643 Vasopressin Receptors Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- DUDJTRNGXIUJEB-UHFFFAOYSA-N [N].NCC(O)=O Chemical group [N].NCC(O)=O DUDJTRNGXIUJEB-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 235000019666 ageusia Nutrition 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 238000007844 allele-specific PCR Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000002669 amniocentesis Methods 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 235000019558 anosmia Nutrition 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003172 anti-dna Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 238000007846 asymmetric PCR Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 150000003938 benzyl alcohols Chemical class 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000000723 chemosensory effect Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 210000004252 chorionic villi Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003936 denaturing gel electrophoresis Methods 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 235000019564 dysgeusia Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical group O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 108091005708 gustatory receptors Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000052301 human GNAZ Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 235000019570 hypogeusia Nutrition 0.000 description 1
- 235000019559 hyposmia Nutrition 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Substances N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000001706 olfactory mucosa Anatomy 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 125000005642 phosphothioate group Chemical group 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- KIWUVOGUEXMXSV-UHFFFAOYSA-N rhodanine Chemical compound O=C1CSC(=S)N1 KIWUVOGUEXMXSV-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 230000014860 sensory perception of taste Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000019669 taste disorders Nutrition 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
Definitions
- GPCRs G protein-coupled receptors
- GPCRs are a superfamily of intrinsic transmembrane cell-surface receptors that mediate the transmission of extracellular signals into the cell to produce a cellular response. There are thought to be anywhere from 400 to over 1000 different members of this family. GPCRs are intrinsic membrane proteins, and operate by a common transduction mechanism. In their inactive state, the GPCRs bind to the G proteins. Upon activation, they stimulate guanine nucleotide exchange on the G proteins, resulting in the release of GDP and the binding of GTP. The G-protein then dissociates from the GPCR, and interacts with the adenylate cyclases, which catalyze the conversion of ATP into cAMP. The cAMP then acts as a second messenger.
- the G proteins can cause intracellular coupling of the GPCRs with various intracellular enzymes, ion channels and transporters.
- GPCRs and perforce, G proteins are involved in an enormous range of biological processes, and have been found to regulate such processes as hydrolysis
- the signal can be endogenous or exogenous or, in the case of rhodopsin receptors, the stimulus can be light.
- Many drugs bind to a GPCR and either produce a response or block the actions of the normal signal.
- the GPCR superfamily includes the cannabinoid and opioid receptors, chemokine, histamine, angiotensin, neurotensin, vasopressin, calcitonin, dopamine, glutamate and bombesin receptors, taste and odorant receptors, and many others.
- the present invention relates to human G protein-coupled receptor (GPCR) genes that are specifically ordorant or olfactory receptors, particularly nucleic acids comprismg GPCR genes, and the amino acids encoded by such nucleic acids.
- GPCR G protein-coupled receptor
- the isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of SEQ 3D NOs:l-230 (odd numbers), as shown in Tables I and U, and the complements thereof.
- the invention further relates to a nucleic acid molecule which hybridizes under high stringency conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers), as shown in Tables I and II, and the complements thereof.
- the invention additionally relates to isolated nucleic acid molecules (e.g. , cDNA molecules) encoding a GPCR polypeptide (e.g. , encoding a polypeptide selected from the group consisting of SEQ JD NOs: 1-230 (even numbers), as shown in Tables I and II).
- the invention further provides a method for assaying a sample for the presence of a nucleic acid molecule comprising all or a portion of a GPCR in a sample, comprising contacting said sample with a second nucleic acid molecule comprising a nucleotide sequence encodmg a GPCR polypeptide (e.g., one of SEQ JD NOs: 1-230 (odd numbers), as shown in Tables I and II, or the complement of one of SEQ ID NOs: 1-230 (odd numbers); a nucleotide sequence encoding one of SEQ ID NOs:l-230 (even numbers), as shown in Tables I and JJ), or a fragment or derivative thereof, under conditions appropriate for selective hybridization.
- the invention additionally provides a method for assaying a sample for the level of expression of a GPCR polypeptide, or fragment or derivative thereof, comprising detecting (directly or indirectly) the level of expression of the GPCR polypeptide, fragment or derivative thereof.
- the invention also relates to a vector comprising an isolated nucleic acid molecule of the invention operatively linked to a regulatory sequence, as well as to a recombinant host cell comprising the vector.
- the invention also provides a method for preparing a polypeptide encoded by an isolated nucleic acid molecule described herein (a GPCR polypeptide), comprising culturing a recombinant host cell of the invention under conditions suitable for expression of said nucleic acid molecule.
- the invention further provides an isolated polypeptide encoded by isolated nucleic acid molecules of the invention (e.g., GPCR polypeptide), as well as fragments or derivatives thereof.
- the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ JD NOs: 1-230 (even numbers), as shown in Tables I and TJ.
- the invention also relates to an isolated polypeptide comprising an amino acid sequence which is greater than about 90 percent identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-230 (even numbers), preferably about 95, 96, 97, 98 and 99 percent identical.
- the invention also relates to an antibody, or an antigen-binding fragment thereof, which selectively binds to a polypeptide of the invention, as well as to a method for assaying the presence of a polypeptide encoded by an isolated nucleic acid molecule of the invention in a sample, comprising contacting said sample with an antibody which specifically binds to the encoded polypeptide.
- the invention further relates to methods of diagnosing a predisposition to a condition mediated by GPCRs.
- the methods of diagnosing such a predisposition in an individual include detecting the presence of a mutation in GPCR, as well as detecting alterations in expression of a GPCR polypeptide, such as the presence of different splicing variants of GPCR polypeptides.
- the alterations in expression can be quantitative, qualitative, or both quantitative and qualitative.
- the invention additionally relates to an assay for identifying agents that alter (e.g., enhance or inhibit) the activity or expression of one or more GPCR polypeptides.
- a cell, cellular fraction, or solution containing a GPCR polypeptide or a fragment or derivative thereof can be contacted with an agent to be tested, and the level of GPCR polypeptide expression or activity can be assessed.
- the activity or expression of more than one GPCR polypeptides can be assessed concurrently (e.g., the cell, cellular fraction, or solution can contain more than one type of GPCR polypeptide, such as different splicing variants, and the levels of the different polypeptides or splicing variants can be assessed).
- the invention in another embodiment, relates to assays to identify polypeptides that interact with one or more GPCR polypeptides.
- a first vector is used which includes a nucleic acid encoding a DNA binding domain and also an GPCR polypeptide, splicing variant, or fragment or derivative thereof
- a second vector is used which includes a nucleic acid encoding a transcription activation domain and also a nucleic acid encoding a polypeptide which potentially may interact with the GPCR polypeptide, splicing variant, or fragment or derivative thereof (e.g., a GPCR polypeptide binding agent or receptor).
- Incubation of yeast containing both the first vector and the second vector under appropriate conditions allows identification of polypeptides which interact with the GPCR polypeptide or fragment or derivative thereof, and thus can be agents which alter the activity of expression of an GPCR polypeptide.
- Agents that enhance or inhibit GPCR polypeptide expression or activity are also included in the current invention, as are methods of altering (enhancing or inhibiting) GPCR polypeptide expression or activity by contacting a cell containing GPCR and/or polypeptide, or by contacting the GPCR polypeptide, with an agent that enhances or inhibits expression or activity of GPCR or polypeptide.
- the invention pertains to pharmaceutical compositions comprising the nucleic acids of the invention, the polypeptides of the invention, and or the agents that alter activity of GPCR polypeptide.
- the invention further pertains to methods of treating conditions mediated by GPCRs, by administering GPCR therapeutic agents, such as nucleic acids of the invention, polypeptides of the invention, the agents that alter activity of GPCR polypeptide, or compositions comprising the nucleic acids, polypeptides, and/or the agents that alter activity of GPCR polypeptide.
- GPCR therapeutic agents such as nucleic acids of the invention, polypeptides of the invention, the agents that alter activity of GPCR polypeptide, or compositions comprising the nucleic acids, polypeptides, and/or the agents that alter activity of GPCR polypeptide.
- the present invention relates to nucleic acids comprising ordorant or olfactory receptors that are a subfamily of G protein-coupled receptors ("GPCRs”), and the amino acids encoded by those nucleic acids.
- GPCRs G protein-coupled receptors
- Odorant receptors are a large family of G-protein coupled receptors, typically expressed in the neurons of the olfactory epithelium. Odorant receptors are highly sensitive and selective, and provide a fast response through activation of G- proteins. Typically, the transmembrane regions II-VJJ delimit a hypervariable region that defines the ligand specificity.
- hyposmia distortion of normal smell
- dysosmia distortion of normal smell
- dysosmia complete loss of the ability to detect odors
- anosmia A reduction in the ability to taste sweet, sour, bitter and salty is known as hypogeusia.
- hypogeusia a distortion of normal taste, dysgeusia and a complete loss, ageusia.
- HMMs Hidden Markov Models of proteins to be compared against a genomic sequence, so that the translation of the sequence will match the model in a similar way to other HMM profile searches (Eddy, Curr. Opin. Struct. Biol. 6(3):361-5, 1996), and allowing the presence of long insertions as long as they include donor and acceptor site sequences at both ends.
- the present model was built from multiple sequence alignments of the different protein families obtained with DiAlign 2 (Morgenstem, Bioinformatics).
- DiAlign works based on segment-to-segment comparisons instead of arbitrary thresholds for gap opening and extension, which makes it ideally suited for building models that represent an entire, full-length sequence, since the alignments built this way have more match states that would be assigned as insertion states when using other alignment algorithms.
- the models were built using the standard HMMer package. To search for new genes, a genome-wide scan was done on the University of California at Santa Cruz sequences, using the GeneWise algorithm. It translates the genomic sequence on the fly to proteins and can therefore maintain a reading frame through insertions and deletions. The algorithm also rewards gaps in the genomic sequence relative to the model if they are encapsulated within introns, like splice structure.
- a classification was obtained in which the sequences are grouped by length and similarity. Each one of these groups was then used to build a HMM profile representing this group of sequences.
- This approach aims to have models that can represent the full length of the encoded proteins for a whole range of proteins, without being too specific for any one of them or being too general, as would be a HMM built for large groups of sequences.
- This classification was based either on existing expert-supervised classifications, or by retrieval of sequences and classification based on pairwise alignment distances. These models were then searched against the October 2000 Fixed Release
- the diseases were linked to the HMM genes in the following manner: (1) the HMM gene models were compared to the consensus of the human genome sequence, located and the results kept in a relational database; (2) all possible markers (Sequence Tagged Sites (STS's)) (public or deCODE genetics) are also located in the same consensus using ePCR or BLAT and results kept in a relational database; and (3) LOD scores for diseases are linked to markers. A span of one LOD drop around the marker, was also given. A computer program takes each LOD peak and linlcs it to the consensus through the markerhit in the database. The database is then queried for all HMM genes within the span of one LOD drop or a minimum of 15 Mb in each direction from the marker. The output is the name of the peak marker and its distance to the HMM gene.
- STS's Sequence Tagged Sites
- the invention pertains to isolated nucleic acid molecules comprising human GPCR genes.
- GPCR refers to an isolated nucleic acid molecule selected from the group shown in Tables I and II, and consisting of SEQ TD NOs:l-230 (odd numbers), and also to a portion or fragment of the isolated nucleic acid molecule (e.g., cDNA or the gene) that encodes GPCR polypeptide (e.g., apolypeptide selected from the group shown in Tables I and II, and consisting of SEQ ID NOs: 1-230 (even numbers)).
- the isolated nucleic acid molecule comprises a nucleic acid molecule selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers) or the complement of such a nucleic acid molecule.
- the isolated nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA, such as cDNA and genomic DNA.
- DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be either the coding, or sense, strand or the non-coding, or antisense, strand.
- the nucleic acid molecule can include all or a portion of the coding sequence of the gene and can further comprise additional non-coding sequences such as introns and non-coding 3' and 5' sequences (including regulatory sequences, for example). Additionally, the nucleic acid molecule can be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide.
- sequences include, but are not limited to, those that encode a glutathione-S-transferase (GST) fusion protein and those that encode a hemagglutinin A (HA) polypeptide marker from influenza.
- GST glutathione-S-transferase
- HA hemagglutinin A
- An "isolated" nucleic acid molecule is one that is separated from nucleic acids which normally flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library).
- an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix.
- the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC.
- an isolated nucleic acid molecule comprises at least about 50, 80 or 90% (on a molar basis) of all macromolecular species present.
- genomic DNA the term “isolated” also can refer to nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated.
- the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotides which flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid molecule is derived.
- nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
- recombinant DNA contained in a vector is included in the definition of "isolated” as used herein.
- isolated nucleic acid molecules include recombinant DNA molecules in heterologous host cells, as well as partially or substantially purified DNA molecules in solution.
- isolated nucleic acid molecules also encompass in vivo and in vitro RNA transcripts of the DNA molecules of the present invention.
- An isolated nucleic acid molecule or nucleotide sequence can include a nucleic acid molecule or nucleotide sequence that is synthesized chemically or by recombinant means.
- isolated DNA contained in a vector are included in the definition of "isolated” as used herein.
- isolated nucleotide sequences include recombinant DNA molecules in heterologous organisms, as well as partially or substantially purified DNA molecules in solution.
- RNA transcripts of the DNA molecules of the present invention are also encompassed by “isolated" nucleotide sequences.
- Such isolated nucleotide sequences are useful in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other mammalian species), for gene mapping (e.g., by in situ hybridization with chromosomes), or for detecting expression of the gene in tissue (e.g., human tissue), such as by Northern blot analysis.
- homologous sequences e.g., from other mammalian species
- gene mapping e.g., by in situ hybridization with chromosomes
- tissue e.g., human tissue
- the present invention also pertains to nucleic acid molecules which are not necessarily found in nature but which encode a GPCR polypeptide (e.g., a polypeptide having an amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ JD NOs: 1-230 (even numbers)), or another splicing variant of a GPCR polypeptide or polymorphic variant thereof.
- a GPCR polypeptide e.g., a polypeptide having an amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ JD NOs: 1-230 (even numbers)
- DNA molecules which comprise a sequence that is different from the naturally-occurring nucleotide sequence but which, due to the degeneracy of the genetic code, encode a GPCR polypeptide of the present invention are also the subject of this invention.
- the invention also encompasses nucleotide sequences encoding portions (fragments), or encoding variant polypeptides such as analogues or derivatives of a GPCR polypeptide.
- variants can be nafrffally-occ ⁇ rring, such as in the case of allelic variation or single nucleotide polymorphisms, or non- naturally-occurring, such as those induced by various mutagens and mutagenic processes.
- Intended variations include, but are not limited to, addition, deletion and substitution of one or more nucleotides that can result in conservative or non- conservative amino acid changes, including additions and deletions.
- nucleotide (and/or resultant amino acid) changes are silent or conserved; that is, they do not alter the characteristics or activity of a GPCR polypeptide.
- nucleotide sequences are fragments that comprise one or more polymorphic microsatellite markers.
- nucleotide sequences are fragments that comprise one or more single nucleotide polymorphisms in a GPCR gene.
- nucleic acid molecules of the invention can include, for example, labeling, methylation, intemucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates), charged linkages (e.g., phosphorothioates, phosphorodithioates), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids).
- uncharged linkages e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates
- charged linkages e.g., phosphorothioates, phosphorodithioates
- pendent moieties e.g., polypeptides
- intercalators e.g., acridine, ps
- synthetic molecules that mimic nucleic acid molecules in the ability to bind to a designated sequences via hydrogen bonding and other chemical interactions.
- Such molecules include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.
- the invention also pertains to nucleic acid molecules hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein (e.g., nucleic acid molecules which specifically hybridize to a nucleotide sequence encoding polypeptides described herein, and, optionally, have an activity of the polypeptide).
- the invention includes variants described herein which hybridize under high stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence comprising a nucleotide sequence selected from the group consistmg of SEQ ID NOs:l-230 (odd numbers).
- the invention includes variants described herein which hybridize under high stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence encoding an amino acid sequence selected from the group consisting of SEQ TD NOs:l-230 (even numbers) or a polymorphic variant thereof.
- the variant that hybridizes under high stringency hybridizations has an activity of a GPCR.
- nucleic acid molecules can be detected and/or isolated by specific hybridization (e.g., under high stringency conditions).
- Specific hybridization refers to the ability of a first nucleic acid to hybridize to a second nucleic acid in a manner such that the first nucleic acid does not hybridize to any nucleic acid other than to the second nucleic acid (e.g., when the first nucleic acid has a higher similarity to the second nucleic acid than to any other nucleic acid in a sample wherem the hybridization is to be performed).
- “Stringency conditions” for hybridization is a term of art which refers to the incubation and wash conditions, e.g., conditions of temperature and buffer concentration, which permit hybridization of a particular nucleic acid to a second nucleic acid; the first nucleic acid may be perfectly (i.e., 100%) complementary to the second, or the first and second may share some degree of complementarity which is less than perfect (e.g. , 70%, 75%, 85%, 95%). For example, certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity.
- the exact conditions which determine the stringency of hybridization depend not only on ionic strength (e.g., 0.2X SSC, 0.1X SSC), temperature (e.g., room temperature, 42 ° C, 68 ° C) and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS, but also on factors such as the length of the nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences.
- equivalent conditions can be determined by varying one or more of these parameters while maintaining a similar degree of identity or similarity between the two nucleic acid molecules.
- conditions are used such that sequences at least about 60%, at least about 70%, at least about 80%, at least about 90% or at least about 95% or more identical to each other remain hybridized to one another.
- hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, conditions which will allow a given sequence to hybridize (e.g., selectively) with the most similar sequences in the sample can be determined.
- washing conditions are described in Krause, M.H. and S.A. Aaronson, Methods in Enzymology 200:546-556, 1991, and in, Ausubel, et al., "Current Protocols in Molecular Biology", John Wiley & Sons, 1998, which describes the determination of washing conditions for moderate or low stringency conditions. Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each °C by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum extent of mismatching among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in T m of ⁇ 17 °C. Using these guidelines, the washing temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought.
- a low stringency wash can comprise washing in a solution containing 0.2X SSC/0.1% SDS for 10 minutes at room temperature;
- a moderate stringency wash can comprise washing in a prewarmed solution (42 °C) solution containing 0.2X SSC/0.1% SDS for 15 minutes at 42°C;
- a high stringency wash can comprise washing in prewarmed (68 °C) solution containing 0.1X SSC/0.1%SDS for 15 minutes at 68°C.
- washes can be performed repeatedly or sequentially to obtain a desired result as known in the art.
- Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleic acid molecule and the primer or probe used.
- the length of a sequence aligned for comparison purposes is at least 30%), preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80%, 90% or 95% of the length of the reference sequence.
- the actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm.
- a preferred, non-limiting example of such a mathematical algorithm is described in Karlin et ⁇ l., Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul et al. ,
- the percent identity between two amino acid sequences can be accomplished using the GAP program in the GCG software package using either a BLOSUM63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4.
- the percent identity between two nucleic acid sequences can be accomplished using the
- the present invention also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence comprising a nucleotide sequence selected from the group consisting of SEQ JD NOs: 1-230 (odd numbers), or the complement of such a sequence, and also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence encoding an amino acid sequence selected SEQ JD NOs: 1-230 (even numbers), or polymorphic variant thereof.
- the nucleic acid fragments of the invention are at least about 15, preferably at least about 18, 20, 23 or 25 nucleotides, and can be 30, 40, 50, 100, 200 or more nucleotides in length. Longer fragments, for example, 30 or more nucleotides in length, which encode antigenic polypeptides described herein are particularly useful, such as for the generation of antibodies as described below.
- the nucleic acid fragments of the invention are used as probes or primers in assays such as those described herein.
- Probes or “primers” are oligonucleotides that hybridize in a base-specific manner to a complementary strand of nucleic acid molecules.
- probes and primers include polypeptide nucleic acids, as described in Nielsen et al., Science 254:1497-1500, 1991.
- a probe or primer comprises a region of nucleotide sequence that hybridizes to at least about 15, typically about 20-25, and more typically about 40, 50 or 75, consecutive nucleotides of a nucleic acid molecule comprising a contiguous nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers), or the complement of such a sequence, or a sequence encoding an amino acid sequence selected from SEQ ID NOs: 1-230 (even numbers), or polymorphic variant thereof.
- a probe or primer comprises 100 or fewer nucleotides, preferably from 6 to 50 nucleotides, preferably from 12 to 30 nucleotides.
- the probe or primer is at least 70% identical to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence, preferably at least 80% identical, more preferably at least 90%) identical, even more preferably at least 95% identical, or even capable of selectively hybridizing to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence.
- the probe or primer further comprises a label, e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.
- nucleic acid molecules of the invention such as those described above can be identified and isolated using standard molecular biology techniques and the sequence information provided herein.
- nucleic acid molecules can be amplified and isolated by the polymerase chain reaction using synthetic oligonucleotide primers designed based on one or more of the sequences selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers), or the complement of such a sequence, or designed based on nucleotides based on sequences encoding one or more of the amino acid sequences provided herein. See generally PCR
- the nucleic acid molecules can be amplified using cDNA, mRNA or genomic DNA as a template, cloned into an appropriate vector and characterized by DNA sequence analysis.
- LCR ligase chain reaction
- NASBA nucleic acid based sequence amplification
- the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
- ssRNA single stranded RNA
- dsDNA double stranded DNA
- the amplified DNA can be radiolabelled and used as a probe for screening a cDNA library derived from human cells, mRNA in zap express, ZJRLOX or other suitable vector.
- Corresponding clones can be isolated, DNA can obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods to identify the correct reading frame encoding a polypeptide of the appropriate molecular weight.
- the direct analysis of the nucleotide sequence of nucleic acid molecules of the present invention can be accomplished using well-known methods that are commercially available.
- polypeptide and the DNA encoding the polypeptide can be isolated, sequenced and further characterized.
- Antisense nucleic acid molecules of the invention can be designed using the nucleotide sequences of one or more of SEQ JD NOs:l-230 (odd numbers) and/or the complement of one or more of SEQ JD NOs: 1 -230 (odd numbers), and/or a portion of one or more of SEQ ID NOs: 1-230 (odd numbers), or the complement of one or more of SEQ JD NOs: 1-230 (odd numbers) and/or a sequence encoding the amino acid sequences of one or more of SEQ ID NOs:l-230 (even numbers), or encoding a portion of one or more of SEQ ID NOs: 1-230 (even numbers), and constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid molecule e.g., an antisense oligonucleotide
- an antisense nucleic acid molecule can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides Gan be used.
- the antisense nucleic acid molecule can be produced biologically using an expression vector into which a nucleic acid molecule has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid molecule will be of an antisense orientation to a target nucleic acid of interest).
- the isolated nucleic acid sequences of the invention can be used as molecular weight markers on Southern gels, and as chromosome markers that are labeled to map related gene positions.
- the nucleic acid sequences can also be used to compare with endogenous DNA sequences in patients to identify one or more of the disorders described above, and as probes, such as to hybridize and discover related DNA sequences or to subtract out known sequences from a sample.
- the nucleic acid sequences can further be used to derive primers for genetic fingerprinting, to raise anti-polypeptide antibodies using DNA immunization techniques, and as an antigen to raise anti-DNA antibodies or elicit immune responses.
- nucleotide sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Additionally, the nucleotide sequences of the invention can be used to identify and express recombinant polypeptides for analysis, characterization or therapeutic use, or as markers for tissues in which the corresponding polypeptide is expressed, either constitutively, during tissue differentiation, or in diseased states.
- nucleic acid sequences can additionally be used as reagents in the screening and/or diagnostic assays described herein, and can also be included as components of kits (e.g., reagent kits) for use in the screening and/or diagnostic assays described herein.
- kits e.g., reagent kits
- nucleic acid constructs containing a nucleic acid molecule selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers) and the complements thereof (or a portion thereof).
- nucleic acid constructs containing a nucleic acid molecule encoding an amino acid sequence of SEQ JD NOs: 1 -230 (even numbers) or polymorphic variant thereof.
- the constructs comprise a vector (e.g., an expression vector) into which a sequence of the invention has been inserted in a sense or antisense orientation.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid which refers to a circular double stranded
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked.
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- the invention is intended to include such otlier forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
- viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
- Preferred recombinant expression vectors of the invention comprise a nucleic acid molecule of the invention in a form suitable for expression of the nucleic acid molecule in a host cell.
- the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
- "operably linked” or "operatively linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g. , in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, “Gene Expression Technology", Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed and the level of expression of polypeptide desired.
- the expression vectors of the invention can be introduced into host cells to thereby produce polypeptides, including fusion polypeptides, encoded by nucleic acid molecules as described herein.
- the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra.
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- a host cell can be any prokaryotic or eukaryotic cell.
- a nucleic acid molecule of the invention can be expressed in bacterial cells (e.g., E. coli), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
- bacterial cells e.g., E. coli
- insect cells e.g., insect cells
- yeast or mammalian cells such as Chinese hamster ovary cells (CHO) or COS cells.
- Other suitable host cells are known to those skilled in the art.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing a foreign nucleic acid molecule (e.g., DNA) into a host cell, mcluding calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for fransforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
- a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
- selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
- Nucleic acid molecules encoding a selectable marker can be introduced into a host cell on the same vector as the nucleic acid molecule of the invention or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid molecule can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
- a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i. e. , express) a polypeptide of the invention.
- the invention further provides methods for producing a polypeptide using the host cells of the invention.
- the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced.
- the method further comprises isolating the polypeptide from the medium or the host cell.
- a host cell of the invention can also be used to produce nonhuman transgenic animals.
- a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid molecule of the invention has been introduced (e.g. , an exogenous GPCR gene, or an exogenous nucleic acid encoding a GPCR polypeptide).
- a nucleic acid molecule of the invention e.g. , an exogenous GPCR gene, or an exogenous nucleic acid encoding a GPCR polypeptide.
- Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into the genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered.
- transgenic animal is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
- rodent such as a rat or mouse
- transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens and amphibians.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
- an "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813 and PCT Publication Nos. WO 97/07668 and WO 97/07669.
- the present invention also pertains to isolated polypeptides encoded by GPCRs ("GPCR polypeptides”) and fragments and variants thereof, as well as polypeptides encoded by nucleotide sequences described herein (e.g., other splicing variants).
- GPCR polypeptides refers to a polymer of amino acids, and not to a specific length; thus, peptides, oligopeptides and proteins are included within the definition of a polypeptide.
- a polypeptide is said to be “isolated” or “purified” when it is substantially free of cellular material when it is isolated from recombinant and non-recombinant cells, or free of chemical precursors or other chemicals when it is chemically synthesized.
- a polypeptide can be joined to another poly eptide with which it is not normally associated in a cell (e.g. , in a "fusion protein") and still be “isolated” or “purified.”
- polypeptides of the invention can be purified to homogeneity. It is understood, however, that preparations in which the polypeptide is not purified to homogeneity are useful. The critical feature is that the preparation allows for the desired function of the polypeptide, even in the presence of considerable amounts of other components. Thus, the invention encompasses various degrees of purity.
- the language "substantially free of cellular material” includes preparations of the polypeptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protem), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins.
- a polypeptide When a polypeptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20%, less than about 10%), or less than about 5% of the volume of the polypeptide preparation.
- the language "substantially free of chemical precursors or other chemicals” includes preparations of the polypeptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of the polypeptide having less thamabout 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.
- a polypeptide of the invention comprises an arriino acid sequence encoded by a nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:l-230 (odd numbers), or the complement of such a nucleic acid, or portions thereof, e.g. , SEQ ID NO: 1 -230 (even numbers), or a portion or polymorphic variant thereof.
- the polypeptides of the invention also encompass fragment and sequence variants. Variants include a substantially homologous polypeptide encoded by the same genetic locus in an organism, i.e., an allelic variant, as well as other splicing variants.
- Variants also encompass polypeptides derived from other genetic loci in an organism, but having substantial homology to a polypeptide encoded by a nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-230 (odd numbers), or a complement of such a sequence, or portions thereof, or having substantial homology to a polypeptide encoded by a nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of nucleotide sequences encoding SEQ TD NOs: 1-230 (even numbers), or polymorphic variants thereof.
- Variants also include polypeptides substantially homologous or identical to these polypeptides but derived from another organism, i.e., an ortholog. Variants also include polypeptides that are substantially homologous or identical to these polypeptides that are produced by chemical synthesis. Variants also include polypeptides that are substantially homologous or identical to these polypeptides that are produced by recombinant methods.
- two polypeptides are substantially homologous or identical when the amino acid sequences are at least about 45-55%o, typically at least about 70-75%, more typically at least about 80-85%), and most typically greater than about 90% or more homologous or identical.
- a substantially homologous amino acid sequence will be encoded by a nucleic acid molecule hybridizing to one or more of SEQ 3D NOs: 1-230 (odd numbers), or portion thereof, under stringent conditions as more particularly described above, or will be encoded by a nucleic acid molecule hybridizing to a nucleic acid sequence encoding one of SEQ 3D NOs: 1-230 (even numbers), a portion thereof or polymorphic variant thereof, under stringent conditions as more particularly described thereof.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide or nucleic acid molecule for optimal alignment with the other polypeptide or nucleic acid molecule).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence, then the molecules are homologous at that position.
- amino acid or nucleic acid "homology” is equivalent to amino acid or nucleic acid "identity”.
- the percent homology between the two sequences is a function of the number of identical positions shared by the sequences
- percent homology equals the number of identical positions/total number of positions times 100.
- the invention also encompasses polypeptides having a lower degree of identity but having sufficient similarity so as to perform one or more of the same functions performed by a polypeptide encoded by a nucleic acid molecule of the invention. Similarity is determined by conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Conservative substitutions are likely to be phenotypically silent.
- a variant polypeptide can differ in amino acid sequence by one or more substitutions, deletions, insertions, inversions, fusions, and truncations or a combination of any of these.
- variant polypeptides can be fully functional or can lack function in one or more activities.
- Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions.
- Functional variants can also contain 'substitution of similar amino acids that result in no change or an insignificant change in function.
- Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.
- Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanme-scanning mutagenesis (Cunningham et al, Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro proliferative activity. Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffmity labeling (Smith et al, J. Mol. Biol. 224:899-904 (1992); de Vos et al, Science 255:306-312 (1992)).
- the mvention also includes polypeptide fragments of the polypeptides of the invention. Fragments can be derived from a polypeptide encoded by a nucleic acid molecule comprising one of SEQ 3D NOs: 1-230 (odd numbers), or a complement of such a nucleic acid (e.g., SEQ 3D NOs.T-230 (even numbers), or other variants). However, the invention also encompasses fragments of the variants of the polypeptides described herein. As used herein, a fragment comprises at least 6 contiguous amino acids. Useful fragments include those that retain one or more of the biological activities of the polypeptide as well as fragments that can be used as an immunogen to generate polypeptide-specific antibodies.
- Biologically active fragments can comprise a domain, segment, or motif that has been identified by analysis of the polypeptide sequence using well-known methods, e.g. , signal peptides, extracellular domains, one or more transmembrane segments or loops, hgand binding regions, zinc finger domains, DNA binding domains, acylation sites, glycosylation sites, or phosphorylation sites.
- Fragments can be discrete (not fused to other amino acids or polypeptides) or can be within a larger polypeptide. Further, several fragments can be comprised within a single larger polypeptide.
- a fragment designed for expression in a host can have heterologous pre- and pro-polypeptide regions fused to the amino terminus of the polypeptide fragment and an additional region fused to the carboxyl terminus of the fragment.
- the invention thus provides chimeric or fusion polypeptides. These comprise a polypeptide of the invention operatively linked to a heterologous protein or polypeptide having an amino acid sequence not substantially homologous to the polypeptide. "Operatively linked" indicates that the polypeptide and the heterologous protein are fused in-frame.
- the heterologous protein can be fused to the N-terminus or C-terminus of the polypeptide.
- the fusion polypeptide does not affect function of the polypeptide r se.
- the fusion polypeptide can be a GST-fusion polypeptide in which the polypeptide sequences are fused to the C-terminus of the GST sequences.
- Other types of fusion polypeptides include, but are not limited to, enzymatic fusion polypeptides, for example /3-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions and Ig fusions.
- fusion polypeptides can facilitate the purification of recombinant polypeptide.
- expression and/or secretion of a polypeptide can be increased by using a heterologous signal sequence. Therefore, in another embodiment, the fusion polypeptide contains a heterologous signal sequence at its N-terminus.
- EP-A-O 464 533 discloses fusion proteins comprising various portions of immunoglobulin constant regions. The Fc is useful in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232262).
- this invention also encompasses soluble fusion polypeptides containing a polypeptide of the invention and various portions of the constant regions of heavy or light chains of immunoglobulins of various subclass (IgG, IgM, IgA, IgE).
- a chimeric or fusion polypeptide can be produced by standard recombinant
- DNA techniques For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of nucleic acid fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive nucleic acid fragments which can subsequently be annealed and re-amplified to generate a chimeric nucleic acid sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992).
- many expression vectors are commercially available that afready encode a fusion moiety (e.g., a GST protein).
- a nucleic acid molecule encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide.
- the isolated polypeptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protem synthesis methods.
- the polypeptide is produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the polypeptide is cloned into an expression vector, the expression vector introduced into a host cell and the polypeptide expressed in the host cell. The polypeptide can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques.
- polypeptides of the present invention can be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using art-recognized methods.
- the polypeptides of the present invention can be used to raise antibodies or to elicit an immune response.
- the polypeptides can also be used as a reagent, e.g., a labeled reagent, in assays to quantitatively determine levels of the polypeptide or a molecule to which it binds (e.g., a ligand) in biological fluids.
- polypeptides can also be used as markers for cells or tissues in which the corresponding polypeptide is preferentially expressed, either constitutively, during tissue differentiation, or in a diseased state.
- the polypeptides can be used to isolate a corresponding binding agent, e.g., ligand, such as, for example, in an interaction trap assay, and to screen for peptide or small molecule antagonists or agonists of the binding interaction.
- Polyclonal and/or monoclonal antibodies that specifically bind one form of the gene product but not to the other form of the gene product are also provided.
- Antibodies are also provided that bind a portion of either the variant or the reference gene product that contains the polymorphic site or sites.
- the invention provides antibodies to the polypeptides and polypeptide fragments of the mvention, e.g., having an amino acid sequence of one of SEQ 3D NOs: 1-230 (even numbers) or a portion thereof, or having an amino acid sequence encoded by a nucleic acid molecule comprising all or a portion of SEQ 3D NOs: 1-230 (odd numbers), or a complement or another variant or portion thereof.
- antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen.
- a molecule that specifically binds to a polypeptide of the invention is a molecule that binds to that polypeptide or a fragment thereof, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide.
- immunologically active portions of immunoglobulin molecules include F(ab) and F(ab') 2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
- the invention provides polyclonal and monoclonal antibodies that bind to a polypeptide of the invention.
- a monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the invention with which it immunoreacts.
- Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., polypeptide of the invention or fragment thereof.
- the antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
- ELISA enzyme linked immunosorbent assay
- the antibody molecules directed against the polypeptide can be isolated from the mammal (e.g. , from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction.
- antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques.
- the technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994)
- an immortal cell line typically a myeloma
- lymphocytes typically splenocytes
- the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a polypeptide of the invention.
- a monoclonal antibody to a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide to thereby isolate immunoglobulin hbrary members that bind the polypeptide.
- Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612).
- recombinant antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
- chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art.
- antibodies of the invention can be used to isolate a polypeptide of the invention by standard techniques, such as affinity chromatography or immunoprecipitation.
- a polypeptide-specific antibody can facilitate the purification of natural polypeptide from cells and of recombinantly produced polypeptide expressed in host cells.
- an antibody specific for a polypeptide of the invention can be used to detect the polypeptide (e.g., in a cellular lysate, cell supernatant, or tissue sample) in order to evaluate the abundance and pattern of expression of the polypeptide.
- Antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, /3-galactosidase, or acetylcholinesterase;
- suitable prosthetic group complexes include sfreptavidin/biotin and avidin/biotin;
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhoda nine, dicWorofriazinylamine fluorescein, dansyl chloride or phycoerythrin;
- an example of a luminescent material includes luminol;
- bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include I, I, S or H.
- the present invention also pertains to a method of diagnosing or aiding in the diagnosis of a disease or condition associated with a GPCR gene or gene product in an individual.
- Diagnostic assays can be designed for assessing GPCR gene expression, or for assessing activity of GPCR polypeptides of the invention.
- the assays are used in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or condition associated with a GPCR, or a defect in a GPCR.
- the invention also provides for prognostic (or predictive) assays for determining whether an individual is susceptible to a disease of condition associated with a GPCR, e.g., if an individual is at risk for addiction to an opoid. For example, mutations in the gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of symptoms associated with a susceptibility to a disease or condition associated with a GPCR.
- Another aspect of the invention pertains to assays for monitoring the influence of agents (e.g., drugs, compounds or other agents) on the gene expression or activity of polypeptides of the invention, as well as to assays for identifying agents that bind to a polypeptides.
- agents e.g., drugs, compounds or other agents
- assays for identifying agents that bind to a polypeptides are described in further detail in the following sections.
- nucleic acids, probes, primers, polypeptides and antibodies described herein can be used in methods of diagnosis of a susceptibility to a disease or condition associated with a GPCR, as well as in kits useful for diagnosis of a susceptibility to a disease or condition associated with a GPCR.
- diagnosis of a susceptibihty to a disease or condition associated with a GPCR is made by detecting a polymorphism in a GPCR as described herein.
- the polymorphism can be a mutation in a GPCR, such as the insertion or deletion of a single nucleotide, or of more than one nucleotide, resulting in a frame shift mutation; the change of at least one nucleotide, resulting in a change in the encoded amino acid; the change of at least one nucleotide, resulting in the generation of a premature stop codon; the deletion of several nucleotides, resulting in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, resulting in an interruption of the coding sequence of the gene; duplication of all or apart of the gene; transposition of all or apart of the gene; or rearrangement df all or
- More than one such mutation may be present in a single gene.
- sequence changes cause a mutation in the polypeptide encoded by a GPCR gene.
- the mutation is a frame shift mutation
- the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide.
- a polymorphism associated with a susceptibility to a disease or condition associated with a GPCR can be a synonymous mutation in one or more nucleotides (i.e., a mutation that does not result in a change in the polypeptide encoded by a GPCR gene).
- Such a polymorphism may alter splicing sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of the gene.
- a GPCR gene that has any of the mutations described above is referred to herein as a "mutant gene.”
- hybridization methods such as Southern analysis, Northern analysis, or in situ hybridizations, can be used (see Current Protocols in Molecular Biology, Ausubel, F. et al, eds., John Wiley & Sons, including all supplements through 1999).
- a biological sample from a test subject (a "test sample") of genomic DNA, RNA, or cDNA, is obtained from an individual suspected of having, being susceptible to or predisposed for, or carrying a defect for, a susceptibility to a disease or condition associated with a GPCR (the "test individual”).
- the individual can be an adult, child, or fetus.
- the test sample can be from any source which contains genomic DNA, such as a blood sample, sample of amniotic fluid, sample of cerebrospinal fluid, or tissue sample from skin, muscle, buccal or conjunctival mucosa, placenta, gastrointestinal tract or other organs.
- a test sample of DNA from fetal cells or tissue can be obtained by appropriate methods, such as by amniocentesis or chorionic villus sampling.
- the DNA, RNA, or cDNA sample is then examined to determine whether a polymorphism in a GPCR is present, and/or to determine which splicing variant(s) encoded by the GPCR is present.
- the presence of the polymorphism or splicing variant(s) can be indicated by hybridization of the gene in the genomic DNA, RNA, or cDNA to a nucleic acid probe.
- a “nucleic acid probe”, as used herein, can be a DNA probe or an RNA probe; the nucleic acid probe can contain at least one polymorphism in a GPCR or contains a nucleic acid encoding a particular splicing variant of a GPCR.
- the probe can be any of the nucleic acid molecules described above (e.g., the gene, a fragment, a vector comprising the gene, a probe or primer, etc.).
- a hybridization sample is formed by contacting the test sample containing a GPCR, with at least one nucleic acid probe.
- a preferred probe for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein.
- the nucleic acid probe can be, for example, a full-length nucleic acid molecule, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
- the nucleic acid probe can be all or a portion of one of SEQ ID NOs: 1-230 (odd numbers), or the complement thereof, or a portion thereof; or can be a nucleic acid encoding a portion of one of SEQ ID NOs: 1-230 (even numbers).
- Other suitable probes for use in the diagnostic assays of the invention are described above (see e.g., probes and primers discussed under the heading, "Nucleic Acids of the Invention").
- hybridization sample is maintained under conditions that are sufficient to allow specific hybridization of the nucleic acid probe to a GPCR.
- Specific hybridization indicates exact hybridization (e.g., with no mismatches).
- Specific hybridization can be performed under high stringency conditions or moderate stringency conditions, for example, as described above. In a particularly preferred embodiment, the hybridization conditions for specific hybridization are high stringency.
- Specific hybridization if present, is then detected using standard methods. If specific hybridization occurs between the nucleic acid probe and the GPCR in the test sample, then the GPCR has the polymorphism, or is the splicing variant, that is present in the nucleic acid probe. More than one nucleic acid probe can also be used concurrently in this method. Specific hybridization of any one of the nucleic acid probes is indicative of a polymorphism in the GPCR, or of the presence of a particular splicing variant encoding the GPCR and is therefore diagnostic for a susceptibility to a susceptibility to a disease or condition associated with a GPCR. In Northern analysis (see Current Protocols in Molecular Biology, Ausubel, F.
- RNA from the individual is obtained from the individual by appropriate means.
- Specific hybridization of a nucleic acid probe, as described above, to RNA from the individual is indicative of a polymorphism in a GPCR, or of the presence of a particular splicing variant encoded by a GPCR, and is therefore diagnostic for a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- PNA peptide nucleic acid
- a peptide nucleic acid (PNA) probe can be used instead of a nucleic acid probe in the hybridization methods described above.
- PNA is a DNA mimic having a peptide-like, inorganic backbone, such as N-(2-aminoethyl)glycine units, with an organic base (A, G, C, T or U) attached to the glycine nitrogen via a methylene carbonyl linker (see, for example, Nielsen, P.E. et al, Bioconjugate Chemistry 5, American Chemical Society, p. 1 (1994).
- the PNA probe can be designed to specifically hybridize to a gene having a polymorphism associated with a susceptibility to a susceptibility to a disease or condition associated with a GPCR. Hybridization of the PNA probe to a GPCR is diagnostic for a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- mutation analysis by restriction digestion can be used to detect a mutant gene, or genes containing a polymorphism(s), if the mutation or polymorphism in the gene results in the creation or elimination of a restriction site.
- a test sample containing genomic DNA is obtained from the individual.
- PCR Polymerase chain reaction
- GPCR Polymerase chain reaction
- RFLP analysis is conducted as described (see Current Protocols in Molecular Biology, supra). The digestion pattern of the relevant DNA fragment indicates the presence or absence of the mutation or polymo ⁇ hism in the GPCR, and therefore indicates the presence or absence of this susceptibihty to a susceptibility to a disease or condition associated with a GPCR.
- Sequence analysis can also be used to detect specific polymorphisms in a GPCR.
- a test sample of DNA or RNA is obtained from the test individual.
- PCR or other appropriate methods can be used to amplify the gene, and/or its flanking sequences, if desired.
- the sequence of a GPCR, or a fragment of the gene, or cDNA, or fragment of the cDNA, or mRNA, or fragment of the mRNA, is determined, using standard methods.
- the sequence of the gene, gene fragment, cDNA, cDNA fragment, mRNA, or mRNA fragment is compared with the known nucleic acid sequence of the gene, cDNA (e.g., one or more of SEQ ID NOs: 1-230 (odd numbers), or a complement thereof, or a nucleic acid sequence encoding one of SEQ ID NOs: 1-230 (even numbers) or a fragment thereof) or mRNA, as appropriate.
- the presence of a polymo ⁇ hism in the GPCR indicates that the individual has a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- Allele-specific oligonucleotides can also be used to detect the presence of a polymo ⁇ hism in a GPCR, through the use of dot-blot hybridization of amplified oligonucleotides with allele-specific ohgonucleotide (ASO) probes (see, for example, Saiki, R. et al, Nature 324:163-166 (1986)).
- ASO allele-specific ohgonucleotide
- an “allele-specific oligonucleotide” (also referred to herein as an “allele-specific oligonucleotide probe”) is an oligonucleotide of approximately 10-50 base pairs, preferably approximately 15-30 base pairs, that specifically hybridizes to a GPCR, and that contains a polymo ⁇ hism associated with a susceptibility to a susceptibihty to a disease or condition associated with a GPCR.
- An allele-specific oligonucleotide probe that is specific for particular polymo ⁇ hisms in a GPCR can be prepared, using standard methods (see Current Protocols in Molecular Biology, supra).
- a test sample of DNA is obtained from the individual.
- PCR can be used to amplify all or a fragment of a GPCR, and its flanking sequences.
- the DNA containing the amplified GPCR (or fragment of the gene) is dot-blotted, using standard methods (see Current Protocols in Molecular Biology, supra), and the blot is contacted with the oligonucleotide probe. The presence of specific hybridization of the probe to the amplified GPCR is then detected.
- Specific hybridization of an allele-specific oligonucleotide probe to DNA from the individual is indicative of a polymo ⁇ hism in the GPCR, and is therefore indicative of a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- arrays of oligonucleotide probes that are complementary to target nucleic acid sequence segments from an individual can be used to identify polymo ⁇ hisms in a GPCR.
- an oligonucleotide array can be used.
- Ohgonucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations. These oligonucleotide arrays, also described as "GenechipsTM,” have been generally described in the art, for example, U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092.
- arrays can generally be produced using mechanical synthesis methods or light directed synthesis methods which inco ⁇ orate a combination of photolithographic methods and solid phase oligonucleotide synthesis methods. See Fodor et al, Science 251:767-777 (1991), Pirrung et al, U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al, PCT Publication No. WO 92/10092 and U.S. Pat. No. 5,424,186, the entire teachings of each of which are inco ⁇ orated by reference herein. Techniques for the synthesis of these arrays using mechanical synthesis methods are described in, e.g., U.S. Pat. Nos. 5,384,261, the entire teachings of which are inco ⁇ orated by reference herein.
- a nucleic acid of interest is hybridized with the a ⁇ ay and scanned for polymo ⁇ hisms.
- Hybridization and scanning are generally carried out by methods described herein and also in, e.g., Published PCT Apphcation Nos. WO 92/10092 and WO 95/11995, and U.S. Pat. No. 5,424,186, the entire teachings of which are inco ⁇ orated by reference herein.
- a target nucleic acid sequence which includes one or more previously identified polymo ⁇ hic markers is amplified by well known amphfication techniques, e.g., PCR.
- Asymmetric PCR techniques may also be used.
- Amplified target generally inco ⁇ orating a label, is then hybridized with the array under appropriate conditions.
- the a ⁇ ay is scanned to determine the position on the array to which the target sequence hybridizes.
- the hybridization data obtained from the scan is typically in the form of fluorescence intensities as a function of location on the array.
- arrays can include multiple detection blocks, and thus be capable of analyzing multiple, specific polymo ⁇ hisms.
- detection blocks may be grouped within a single a ⁇ ay or in multiple, separate a ⁇ ays so that varying, optimal conditions may be used during the hybridization of the target to the a ⁇ ay. For example, it may often be desirable to provide for the detection of those polymo ⁇ hisms that fall within G-C rich stretches of a genomic sequence, separately from those falling in A-T rich segments. This allows for the separate optimization of hybridization conditions for each situation.
- oligonucleotide a ⁇ ays for detection of polymo ⁇ hisms can be found, for example, in U.S. Patents 5,858,659 and 5,837,832, the entire teachings of which are inco ⁇ orated by reference herein.
- Other methods of nucleic acid analysis can be used to detect polymo ⁇ hisms in a GPCR or variants encoding by a GPCR. Representative methods include direct manual sequencing (Church and Gilbert, Proc. Natl. Acad. Sci. USA 81:1991-1995 (1988); Sanger, F. et al. Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977); Beavis et al, U.S.
- CMC chemical mismatch cleavage
- RNase protection assays Myers, R.M. et al, Science 230:1242 (1985)
- polypeptides which recognize nucleotide mismatches such as E. coli mutS protein
- allele-specific PCR for example.
- diagnosis of a susceptibility to a susceptibihty to a disease or condition associated with a GPCR can also be made by examining expression and/ ⁇ r composition of a GPCR polypeptide, by a variety of methods, including enzyme linked immunosorbent assays (ELISAs), Western blots, ⁇ nmunoprecipitations and immunofluorescence.
- ELISAs enzyme linked immunosorbent assays
- Western blots Western blots
- ⁇ nmunoprecipitations and immunofluorescence.
- a test sample from an individual is assessed for the presence of an alteration in the expression and/or an alteration in composition of the polypeptide encoded by a GPCR, or for the presence of a particular variant encoded by a GPCR.
- An alteration in expression of a polypeptide encoded by a GPCR can be, for example, an alteration in the quantitative polypeptide expression (i.e., the amount of polypeptide produced); an alteration in the composition of a polypeptide encoded by a GPCR is an alteration in the qualitative polypeptide expression (e.g., expression of a mutant GPCR polypeptide or of a different splicing variant).
- diagnosis of a susceptibility to a susceptibility to a disease or condition associated with a GPCR is made by detecting a particular splicing variant encoded by that GPCR, or a particular pattern of splicing variants.
- An "alteration" in the polypeptide expression or composition refers to an alteration in expression or composition in a test sample, as compared with the expression or composition of polypeptide by a GPCR in a control sample.
- a control sample is a sample that co ⁇ esponds to the test sample (e.g., is from the same type of cells), and is from an individual who is not affected by a susceptibility to a disease or condition associated with a GPCR.
- An alteration in the expression or composition of the polypeptide in the test sample, as compared with the control sample is indicative of a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- the presence of one or more different splicing variants in the test sample, or the presence of significantly different amounts of different splicing variants in the test sample, as compared with the control sample, is indicative of a susceptibility to a susceptibility to a disease or condition associated with a GPCR.
- Various means of examining expression or composition of the polypeptide encoded by a GPCR can be used, including speetroscopy, colorimetry, electrophoresis, isoelectric focusing, and immunoassays (e.g., David et al. , U.S. Pat. No. 4,376,110) such as immunoblotting (see also Current Protocols in Molecular
- an antibody capable of binding to the polypeptide e.g., as described above
- Antibodies can be polyclonal, or more preferably, monoclonal.
- An intact antibody, or a fragment thereof e.g., Fab or F(ab') 2
- the term "labeled", with regard to the probe or antibody is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
- Examples of indirect labehng include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
- Western blotting analysis using an antibody as described above that specifically binds to a polypeptide encoded by a mutant GPCR, or an antibody that specifically binds to a polypeptide encoded by a non-mutant gene, or an antibody that specifically binds to a particular splicing variant encoded by a GPCR, can be used to identify the presence in a test sample of a particular splicing variant or of a polypeptide encoded by a polymo ⁇ hic or mutant GPCR, or the absence in a test sample of a particular splicing variant or of a polypeptide encoded by a non- polymo ⁇ hic or non-mutant gene.
- the presence of a polypeptide encoded by a polymo ⁇ hic or mutant gene, or the absence of a polypeptide encoded by a non- polymo ⁇ hic or non-mutant gene, is diagnostic for a susceptibility to a susceptibility to a disease or condition associated with a GPCR, as is the presence (or absence) of particular splicing variants encoded by the GPCR gene.
- the level or amount of polypeptide encoded by a GPCR in a test sample is compared with the level or amount of the polypeptide encoded by the GPCR in a control sample.
- a level or amount of the polypeptide in the test sample that is higher or lower than the level or amount of the polypeptide in the control sample, such that the difference is statistically significant is indicative of an alteration in the expression of the polypeptide encoded by the GPCR, and is diagnostic for a susceptibility to a susceptibility to a disease or condition associated with that GPCR.
- composition of the polypeptide encoded by a GPCR in a test sample is compared with the composition of the polypeptide encoded by the GPCR in a control sample (e.g., the presence of different splicing variants).
- a difference in the composition of the polypeptide in the test sample, as compared with the composition of the polypeptide in the control sample is diagnostic for a susceptibility to a susceptibility to a disease or condition associated with that GPCR.
- both the level or amount and the composition of the polypeptide can be assessed in the test sample and in the control sample.
- a difference in the amount or level of the polypeptide in the test sample, compared to the control sample; a difference in composition in the test sample, compared to the control sample; or both a difference in the amount or level, and a difference in the composition, is indicative of a susceptibility to a susceptibihty to a disease or condition associated with that GPCR.
- Kits useful in the methods of diagnosis comprise components useful in any of the methods described herein, including for example, hybridization probes or primers as decribed herein (e.g., labeled probes or primers), reagents for detection of labeled molecules, restriction enzymes (e.g., for RFLP analysis), allele-specific oligonucleotides, antibodies which bind to mutant or to non-mutant (native) GPCR polypeptide, means for amplification of nucleic acids comprising a GPCR, or means for analyzing the nucleic acid sequence of a GPCR or for analyzing the amino acid sequence of a GPCR polypeptide, etc.
- hybridization probes or primers as decribed herein e.g., labeled probes or primers
- restriction enzymes e.g., for RFLP analysis
- allele-specific oligonucleotides e.g., antibodies which bind to mutant or to non-mutant (native) GPCR polypeptide
- the invention provides methods (also refe ⁇ ed to herein as "screening assays”) for identifying the presence of a nucleotide that hybridizes to a nucleic acid of the invention, as well as for identifying the presence of a polypeptide encoded by a nucleic acid of the invention.
- the presence (or absence) of a nucleic acid molecule of interest e.g. , a nucleic acid that has significant homology with a nucleic acid of the invention
- a nucleic acid comprising a nucleic acid of the invention e.g.
- nucleic acid having the sequence of one of SEQ 3D NOs:l-230 (odd numbers), or the complement thereof, or a nucleic acid encoding an amino acid having the sequence of one of SEQ ID NOs:l-230 (even numbers), or a fragment or variant of such nucleic acids) under stringent conditions as described above, and then assessing the sample for the presence (or absence) of hybridization.
- high stringency conditions are conditions appropriate for selective hybridization.
- a sample containing the nucleic acid molecule of interest is contacted with a nucleic acid containing a contiguous nucleotide sequence (e.g., a primer or a probe as described above) that is at least partially complementary to a part of the nucleic acid molecule of interest (e.g., a GPCR nucleic acid), and the contacted sample is assessed for the presence or absence of hybridization.
- a nucleic acid containing a contiguous nucleotide sequence is completely complementary to a part of the nucleic acid molecule of interest.
- all or a portion of the nucleic acid of interest can be subjected to amplification prior to performing the hybridization.
- the presence (or absence) of a polypeptide of interest, such as a polypeptide of the invention or a fragment or variant thereof, in a sample can be assessed by contacting the sample with an antibody that specifically hybridizes to the polypeptide of interest (e.g., an antibody such as those described above), and then assessing the sample for the presence (or absence) of binding of the antibody to the polypeptide of interest.
- an antibody that specifically hybridizes to the polypeptide of interest e.g., an antibody such as those described above
- the invention provides methods for identifying agents (e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, other receptors associated with GPCRs, binding agents, antibodies, small molecules or other drugs, or ribozymes which alter (e.g. , increase or decrease) the activity of the polypeptides described herein, or which otherwise interact with the polypeptides herein.
- agents e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, other receptors associated with GPCRs, binding agents, antibodies, small molecules or other drugs, or ribozymes which alter (e.g. , increase or decrease) the activity of the polypeptides described herein, or which otherwise interact with the polypeptides herein.
- such agents can be agents which bind to polypeptides described herein (e.g., GPCR binding agents); which have a stimulatory or inhibitory effect on, for example, activity of polypeptides of the invention; or which change (e.g., enhance or inhibit) the ability of the polypeptides of the invention to interact with GPCR binding agents (e.g., G-proteins, other receptors associated with GPCRs, or other binding agents); or which alter posttranslational processing of the GPCR polypeptide (e.g., agents that alter proteolytic processing to direct the polypeptide from where it is normally synthesized to another location in the cell, such as the cell surface; agents that alter proteolytic processing such that more polypeptide is released from the cell, etc.
- GPCR binding agents e.g., G-proteins, other receptors associated with GPCRs, or other binding agents
- alter posttranslational processing of the GPCR polypeptide e.g., agents that alter proteolytic processing to direct the polypeptide from where it is normally synth
- the invention provides assays for screening candidate or test agents that bind to or modulate the activity of polypeptides described herein (or biologically active portion(s) thereof), as well as agents identifiable by the assays.
- Test agents can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel sohd phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K.S., Anticancer Drug Des. 12:145 (1997)).
- a cell, cell lysate, or solution containing or expressing a GPCR polypeptide e.g., one of SEQ 3D NOs: 1-230 (even numbers), or another splicing variant encoded by a GPCR), or a fragment or derivative thereof (as described above)
- a GPCR polypeptide e.g., one of SEQ 3D NOs: 1-230 (even numbers), or another splicing variant encoded by a GPCR
- a fragment or derivative thereof as described above
- the level (amount) of GPCR activity is assessed (e.g., the level (amount) of GPCR activity is measured, either directly or indirectly), and is compared with the level of activity in a control (i.e., the level of activity of the GPCR polypeptide or active fragment or derivative thereof in the absence of the agent to be tested). If the level of the activity in the presence of the agent differs, by an amount that is statistically significant, from the level of the activity in the absence of the agent, then the agent is an agent that alters the activity of a GPCR polypeptide. An increase in the level of GPCR activity relative to a control, indicates that the agent is an agent that enhances (is an agonist of) GPCR activity.
- a decrease in the level of GPCR activity relative to a control indicates that the agent is an agent that inhibits (is an antagonist of) GPCR activity.
- the level of activity of a GPCR polypeptide or derivative or fragment thereof in the presence of the agent to be tested is compared with a control level that has previously been established. A level of the activity in the presence of the agent that differs from the control level by an amount that is statistically significant indicates that the agent alters GPCR activity.
- the present invention also relates to an assay for identifying agents which alter the expression of a GPCR gene (e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, other receptors associated with GPCRs, G- proteins, binding agents, antibodies, small molecules or other drugs, or ribozymes) which alter (e.g., increase or decrease) expression (e.g., transcription or translation) of the gene or which otherwise interact with the nucleic acids described herein, as well as agents identifiable by the assays.
- a solution containing a nucleic acid encoding a GPCR polypeptide e.g., a GPCR gene
- an agent to be tested e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, other receptors associated with GPCRs, G- proteins, binding agents, antibodies, small molecules or other drugs, or ribozymes
- the solution can comprise, for example, cells containing the nucleic acid or cell lysate containing the nucleic acid; alternatively, the solution can be another solution which comprises elements necessary for transcription translation of the nucleic acid. Cells not suspended in solution can also be employed, if desired.
- the level and/or pattern of GPCR expression e.g., the level and/or pattern of mRNA or of protein expressed, such as the level and/or pattern of different splicing variants
- a control i e. , the level and/or pattern of the GPCR expression in the absence of the agent to be tested.
- the agent is an agent that alters the expression of GPCR. Enhancement of GPCR expression indicates that the agent is an agonist of GPCR activity. Similarly, inhibition of GPCR expression indicates that the agent is an antagonist of GPCR activity.
- the level and/or pattern of GPCR polypeptide(s) e.g., different splicing variants
- the level and/or pattern of GPCR polypeptide(s) in the presence of the agent to be tested, is compared with a control level and/or pattern that has previously been established.
- agents which alter the expression of a GPCR gene or which otherwise interact with the nucleic acids described herein can be identified using a cell, cell lysate, or solution containing a nucleic acid encoding the promoter region of the GPCR gene operably linked to a reporter gene.
- the level of expression of the reporter gene (e.g., the level of mRNA or of protein expressed) is assessed, and is compared with the level of expression in a confrol (i.e., the level of the expression of the reporter gene in the absence of the agent to be tested). If the level in the presence of the agent differs, by an amount or in a manner that is statistically significant, from the level in the absence of the agent, then the agent is an agent that alters the expression of the GPCR, as indicated by its ability to alter expression of a gene that is operably linked to the GPCR gene promoter. Enhancement of the expression of the reporter indicates that the agent is an agonist of GPCR activity.
- inhibition of the expression of the reporter indicates that the agent is an antagonist of GPCR activity.
- the level of expression of the reporter in the presence of the agent to be tested is compared with a control level that has previously been established. A level in the presence of the agent that differs from the control level by an amount or in a manner that is statistically significant indicates that the agent alters expression. Agents which alter the amounts of different splicing variants encoded by a
- GPCR e.g., an agent which enhances activity of a first splicing variant, and which inhibits activity of a second splicing variant
- agents which are agonists of activity of a first splicing variant and antagonists of activity of a second splicing variant can easily be identified using these methods described above.
- assays can be used to assess the impact of a test agent on the activity of a polypeptide in relation to a GPCR binding agent.
- a cell that expresses a compound that interacts with a GPCR (herein refe ⁇ ed to as a "GPCR binding agent", which can be a polypeptide or other molecule that interacts with a GPCR, such as a G-protein) is contacted with a GPCR in the presence of a test agent, and the ability of the test agent to alter the interaction between the GPCR and the GPCR binding agent is determined.
- a cell lysate or a solution containing the GPCR binding agent can be used.
- An agent which binds to the GPCR or the GPCR binding agent can alter the interaction by interfering with, or enhancing the ability of the GPCR to bind to, associate with, or otherwise interact with the GPCR binding agent.
- Determining the ability of the test agent to bind to a GPCR or a GPCR binding agent can be accomplished, for example, by coupling the test agent with a radioisotope or enzymatic label such that binding of the test agent to the polypeptide can be determined by detecting the labeled with 1, 3 S, C or H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
- test agents can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. It is also within the scope of this invention to determine the ability of a test agent to interact with the polypeptide without the labeling of any of the interactants.
- a microphysiometer can be used to detect the interaction of a test agent with a GPCR or a GPCR binding agent without the labeling of either the test agent, GPCR, or the GPCR binding agent. McConnell, H.M. et al, Science 257:1906-1912 (1992).
- a "microphysiometer” e.g., CytosensorTM
- LAPS light-addressable potentiometric sensor
- Changes in this acidification rate can be used as an indicator of the interaction between ligand and polypeptide.
- these receptors can be used to screen for compounds that are agonists for use in treating a susceptibility to a disease or condition associated with a GPCR or antagonists for studying a susceptibility to a disease or condition associated with a GPCR.
- Drugs could be designed to regulate GPCR activation that in turn can be used to regulate signaling pathways and transcription events of genes downstream.
- assays can be used to identify polypeptides that interact with one or more GPCR polypeptides, as described herein.
- a yeast two-hybrid system such as that described by Fields and Song (Fields, S. and Song, O., Nature 340:245-246 (1989)) can be used to identify polypeptides that interact with one or more GPCR polypeptides.
- vectors are constructed based on the flexibility of a transcription factor which has two functional domains (a DNA binding domain and a transcription activation domain).
- transcriptional activation can be achieved, and transcription of specific markers (e.g., nutritional markers such as His and Ade, or color markers such as lacZ) can be used to identify the presence of interaction and transcriptional activation.
- specific markers e.g., nutritional markers such as His and Ade, or color markers such as lacZ
- a first vector which includes a nucleic acid encoding a DNA binding domain and also a GPCR polypeptide, splicing variant, or fragment or derivative thereof
- a second vector is used which includes a nucleic acid encoding a transcription activation domain and also a nucleic acid encoding a polypeptide which potentially may interact with the GPCR polypeptide, splicing variant, or fragment or derivative thereof (e.g., a GPCR polypeptide binding agent or G-protein).
- yeast containing the first vector and the second vector under appropriate conditions (e.g., mating conditions such as used in the MatchmakerTM system from Clontech (Palo Alto, California, USA)) allows identification of colonies which express the markers of interest. These colonies can be examined to identify the polypeptide(s) that interact with the GPCR polypeptide or fragment or derivative thereof. Such polypeptides may be useful as agents that alter the activity of expression of a GPCR polypeptide, as described above.
- binding of a test agent to the polypeptide, or interaction of the polypeptide with a binding agent in the presence and absence of a test agent can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes.
- a fusion protein e.g., a glutathione-S-transferase fusion protein
- a fusion protein e.g., a glutathione-S-transferase fusion protein
- modulators of expression of nucleic acid molecules of the invention are identified in a method wherein a cell, cell lysate, or solution containing a nucleic acid encodmg a GPCR is contacted with a test agent and the expression of appropriate mRNA or polypeptide (e.g. , splicing variant(s)) in the cell, cell lysate, or solution, is determined.
- appropriate mRNA or polypeptide e.g. , splicing variant(s)
- the level of expression of appropriate mRNA or polypeptide(s) in the presence of the test agent is compared to the level of expression of RNA or polypeptide(s) in the absence of the test agent.
- the test agent can then be identified as a modulator of expression based on this comparison.
- the test agent when expression of mRNA or polypeptide is greater (statistically significantly greater) in the presence of the test agent than in its absence, the test agent is identified as a stimulator or enhancer of the mRNA or polypeptide expression.
- the test agent when expression of the mRNA or polypeptide is less (statistically significantly less) in the presence of the test agent than in its absence, the test agent is identified as an inhibitor of the mRNA or polypeptide expression.
- the level of mRNA or polypeptide expression in the cells can be determined by methods described herein for detecting mRNA or polypeptide.
- This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model.
- an agent identified as described herein e.g., a test agent that is a modulating agent, an antisense nucleic acid molecule, a specific antibody, or a polypeptide-binding agent
- an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
- an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
- this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein, hi addition, an agent identified as described herein can be used to alter activity of a polypeptide encoded by a GPCR, or to alter expression of a GPCR, by contacting the polypeptide or the gene (or contacting a cell comprising the polypeptide or the gene) with the agent identified as described herein.
- the present invention also pertains to pharmaceutical compositions comprising nucleic acids described herein, particularly nucleotides encoding the polypeptides described herein; comprising polypeptides described herein (e.g. , one or more of SEQ ID NOs: 1-230 (even numbers)); and/or comprising other splicing variants encoded by a GPCR; and/or an agent that alters (e.g., enhances or inhibits) GPCR gene expression or GPCR polypeptide activity as described herein.
- nucleic acids described herein particularly nucleotides encoding the polypeptides described herein; comprising polypeptides described herein (e.g. , one or more of SEQ ID NOs: 1-230 (even numbers)); and/or comprising other splicing variants encoded by a GPCR; and/or an agent that alters (e.g., enhances or inhibits) GPCR gene expression or GPCR polypeptide activity as described herein.
- a polypeptide, protein e.g., a G-protein
- an agent that alters GPCR gene expression or a GPCR binding agent or binding partner, fragment, fusion protein or prodrug thereof, or a nucleotide or nucleic acid construct (vector) comprising a nucleotide of the present invention, or an agent that alters GPCR polypeptide activity
- a physiologically acceptable carrier or excipient can be formulated with a physiologically acceptable carrier or excipient to prepare a pharmaceutical composition.
- the carrier and composition can be sterile. The fonnulation should suit the mode of administration.
- Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc., as well as combinations thereof.
- the pharmaceutical preparations can, if desired, be mixed with auxiliary agents, e.g.
- the composition can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- the composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrolhdone, sodium saccharine, cellulose, magnesium carbonate, etc.
- compositions of introduction of these compositions include, but are not limited to, intradermal, intramuscular, intraperitoneal, intraocular, intravenous, subcutaneous, topical, oral and intranasal.
- Other suitable methods of introduction can also include gene therapy (as described below), rechargeable or biodegradable devices, particle acceleration devises ("gene guns") and slow release polymeric devices.
- the pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents.
- compositions for intravenous administration typically are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicat- ing the quantity of active agent.
- composition is to be adn ⁇ nistered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water.
- an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- nonsprayable forms, viscous to semi-solid or solid forms comprising a carrier compatible with topical application and having a dynamic viscosity preferably greater than water, can be employed.
- Suitable formulations include but are not limited to solutions, suspensions, emulsions, creams, ointments, powders, enemas, lotions, sols, liniments, salves, aerosols, etc., which are, if desired, sterihzed or mixed with auxiliary agents, e.g. , preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc.
- auxiliary agents e.g. , preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc.
- the agent may be inco ⁇ orated into a cosmetic formulation.
- sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier material, is packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant, e.g. , pressurized air.
- a pressurized volatile, normally gaseous propellant e.g. , pressurized air.
- Agents described herein can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- the agents are administered in a therapeutically effective amount.
- the amount of agents which will be therapeutically effective in the freatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques.
- in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the symptoms of a susceptibility to a disease or condition associated with a GPCR, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use of sale for human administration.
- the pack or kit can be labeled with information regarding mode of administration, sequence of drug administration (e.g., separately, sequentially or concu ⁇ ently), or the like.
- the pack or kit may also include means for reminding the patient to talce the therapy.
- the pack or kit can be a single unit dosage of the combination therapy or it can be a plurality of unit dosages.
- the agents can be separated, mixed together in any combination, present in a single vial or tablet.
- Agents assembled in a blister pack or other dispensing means is prefe ⁇ ed.
- unit dosage is intended to mean a dosage that is dependent on the individual pharmacodynamics of each agent and administered in FDA approved dosages in standard time courses.
- the present invention also pertains to methods of treatment (prophylactic and/or therapeutic) for a susceptibility to a disease or condition associated with a GPCR, using a GPCR therapeutic agent.
- GPCR therapeutic agent is an agent that alters (e.g., enhances or inhibits) GPCR polypeptide activity and/or GPCR gene expression, as described herein (e.g., a GPCR agonist or antagonist).
- GPCR therapeutic agents can alter GPCR polypeptide activity or gene expression by a variety of means, such as, for example, by providing additional GPCR polypeptide or by upregulating the transcription or translation of the GPCR gene; by altering posttranslational processing of the GPCR polypeptide; by altering transcription of GPCR splicing variants; or by interfering with GPCR polypeptide activity (e.g., by binding to a GPCR polypeptide), or by downregulating the transcription or translation of a GPCR gene.
- GPCR therapeutic agents include the following: nucleic acids or fragments or derivatives thereof described herein, particularly nucleotides encoding the polypeptides described herein and vectors comprising such nucleic acids (e.g., a gene, cDNA, and or mRNA, such as a nucleic acid encoding a GPCR polypeptide or active fragment or derivative thereof, or an oligonucleotide; for example, one of SEQ ID NOs : 1 -230 (odd numbers), or a complement thereof, or a nucleic acid encoding one of SEQ JD NOs: 1-230 (even numbers), or fragments or derivatives thereof); polypeptides described herein (e.g., one or more of SEQ JD NOs:l-230 (even numbers), and/or other splicing variants encoded by a GPCR, or fragments or derivatives thereof); other polypeptides (e.g., G-proteins); GPCRbmding agents; peptidomime
- a GPCR therapeutic agent that is a nucleic acid is used in the treatment of a susceptibility to a disease or condition associated with a GPCR.
- treatment refers not only to ameliorating symptoms associated with the disease, but also preventing or delaying the onset of the disease, and also lessening the severity or frequency of symptoms of the disease.
- the therapy is designed to alter (e.g., inhibit or enhance), replace or supplement activity of a GPCR polypeptide in an individual.
- a GPCR therapeutic agent can be administered in order to upregulate or increase the expression or availability of the GPCR gene or of specific splicing variants of GPCR, or, conversely, to downregulate or decrease the expression or availability of the GPCR gene or specific splicing variants of the GPCR.
- Upregulation or increasing expression or availabihty of a native GPCR gene or of a particular splicing variant could interfere with or compensate for the expression or activity of a defective gene or another splicing variant; downregulation or decreasing expression or availability of a native GPCR gene or of a particular splicing variant could minimize the expression or activity of a defective gene or the particular splicing variant and thereby minimize the impact of the defective gene or the particular splicing variant.
- the GPCR therapeutic agent(s) are administered in a therapeutically effective amount (i.e., an amount that is sufficient to treat the disease, such as by ameliorating symptoms associated with the disease, preventing or delaying the onset of the disease, and/or also lessening the severity or frequency of symptoms of the disease).
- a therapeutically effective amount i.e., an amount that is sufficient to treat the disease, such as by ameliorating symptoms associated with the disease, preventing or delaying the onset of the disease, and/or also lessening the severity or frequency of symptoms of the disease.
- the amount which will be therapeutically effective in the treatment of a particular individual's disorder or condition will depend on the symptoms and severity of the disease, and can be determined by standard clinical techniques.
- in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of a practitioner and each patient's circumstances
- a nucleic acid of the invention e.g., a nucleic acid encoding a GPCR polypeptide, such as one of SEQ 3D NOs: 1-230 (odd numbers), or a complement thereof; or another nucleic acid that encodes a GPCR polypeptide or a splicing variant, derivative or fragment thereof, such as a nucleic acid encoding one of SEQ ID NOs: 1-230 (even numbers)
- a nucleic acid of the invention can be used, either alone or in a pharmaceutical composition as described above.
- a GPCR or a cDNA encoding a GPCR polypeptide can be introduced into cells (either in vitro or in vivo) such that the cells produce native GPCR polypeptide.
- cells that have been transformed with the gene or cDNA or a vector comprising the gene or cDNA can be introduced (or re- introduced) into an individual affected with the disease.
- cells which, in nature, lack native GPCR expression and activity, or have mutant GPCR expression and activity, or have expression of a disease-associated GPCR splicing variant can be engineered to express the GPCR polypeptide or an active fragment of the GPCR polypeptide (or a different variant of the GPCR polypeptide).
- nucleic acid encoding a GPCR polypeptide, or an active fragment or derivative thereof can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal.
- an expression vector such as a viral vector
- Other gene transfer systems including viral and nonviral fransfer systems, can be used.
- nonviral gene transfer methods such as calcium phosphate coprecipitation, mechanical techniques (e.g., microinjection); membrane fusion- mediated transfer via liposomes; or direct DNA uptake, can also be used.
- a nucleic acid of the invention in another embodiment, can be used in "antisense" therapy, in which a nucleic acid (e.g., an oligonucleotide) which specifically hybridizes to the mRNA and/or genomic DNA of a GPCR is administered or generated in situ.
- a nucleic acid e.g., an oligonucleotide
- the antisense nucleic acid that specifically hybridizes to the mRNA and/or DNA inhibits expression of the GPCR polypeptide, e.g., by inhibiting translation and/or transcription.
- Binding of the antisense nucleic acid can be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interaction in the major groove of the double hehx.
- An antisense construct of the present invention can be delivered, for example, as an expression plasmid as described above. When the plasmid is transcribed in the cell, it produces RNA which is complementary to a portion of the mRNA and/or DNA which encodes the GPCR polypeptide.
- the antisense construct can be an oligonucleotide probe which is generated ex vivo and introduced into cells; it then inhibits expression by hybridizing with the mRNA and/or genomic DNA of the GPCR.
- the ohgonucleotide probes are modified oligonucleotides which are resistant to endogenous nucleases, e.g. exonucleases and/or endonucleases, thereby rendering them stable in vivo.
- exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Pat. Nos. 5,176,996; 5,264,564; and 5,256,775).
- oligodeoxyribonucleotides derived from the translation initiation site are prefe ⁇ ed.
- oligonucleotides mRNA, cDNA or DNA
- the antisense oligonucleotides bind to GPCR mRNA transcripts and prevent translation.
- a sequence "complementary" to a portion of an RNA, as refe ⁇ ed to herein, indicates that a sequence has sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
- the ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid, as described in detail above.
- the longer the hybridizing nucleic acid the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be).
- One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures.
- the oligonucleotides used in antisense therapy can be DNA, RNA, or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
- the oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc.
- the oligonucleotides can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al, Proc. Natl. Acad. Sci.
- the oligonucleotide may be conjugated to another molecule (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent).
- the antisense molecules are delivered to cells that express GPCR in vivo.
- antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systemically.
- a recombinant DNA construct is utihzed in which the antisense oligonucleotide is placed under the control of a strong promoter (e.g., pol III or pol II).
- a vector can be introduced in vivo such that it is taken up by a cell and directs the transcription of an antisense RNA.
- Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the deshed antisense RNA.
- Such vectors can be constracted by recombinant DNA technology methods standard in the art and described above.
- a plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct that can be introduced directly into the tissue site.
- viral vectors can be used which selectively infect the desired tissue, in which case administration may be accomplished by another route (e.g. , systemically).
- Endogenous GPCR expression can also be reduced by inactivating or "knocking out” GPCR or its promoter using targeted homologous recombination (e.g., see Smithies et al, Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al, Cell 5:313-321 (1989)).
- GPCR endogenous GPCR expression
- endogenous GPCR expression can also be reduced by inactivating or "knocking out" GPCR or its promoter using targeted homologous recombination (e.g., see Smithies et al, Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al, Cell 5:313-321 (1989)).
- a mutant, non-functional GPCR flanked by
- DNA homologous to the endogenous GPCR can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express the GPCR in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the GPCR.
- the recombinant DNA constructs can be directly administered or targeted to the required site in vivo using appropriate vectors, as described above.
- targeted homologous recombination can be used to insert a DNA construct comprising a non-mutant, functional GPCR, e.g., a gene having one of SEQ ID NOs: 1-230 (odd numbers), or the complement thereof, or a portion thereof, in place of a mutant GPCR in the cell, as described above.
- targeted homologous recombination can be used to insert a DNA construct comprising a nucleic acid that encodes a GPCR polypeptide variant that differs from that present in the cell.
- endogenous GPCR expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of a GPCR (i. e. , the GPCR promoter and/or enhancers) to form triple helical structures that prevent transcription of the GPCR in target cells in the body.
- a GPCR i. e. , the GPCR promoter and/or enhancers
- the antisense constructs described herein by antagonizing the normal biological activity of one of the GPCR proteins, can be used in the manipulation of tissue, e.g., tissue differentiation, both in vivo and for ex vivo tissue cultures.
- tissue e.g., tissue differentiation
- the anti-sense techniques e.g., microinjection of antisense molecules, or transfection with plasmids whose transcripts are anti-sense with regard to a GPCR mRNA or gene sequence
- Such techniques can be utilized in cell culture, but can also be used in the creation of transgenic animals.
- GPCR therapeutic agents as described herein can also be used in the treatment or prevention of a susceptibility to a disease or condition associated with a GPCR.
- the therapeutic agents can be delivered in a composition, as described above, or by themselves. They can be administered systemically, or can be targeted to a particular tissue.
- the therapeutic agents can be produced by a variety of means, including chemical synthesis; recombinant production; in vivo production (e.g., a transgenic animal, such as U.S.
- MOOSE06904 ctgl5285 7136188..7136217, 7137011..7137334,
- MOOSE06952 ctg22fin2 127652..127674, 157267..158171, 190073..190089, ME3 KNRFAFVNEFILQGFSCEWTIQIFLFSLFTTTYALTITGNGAIAFV
- MOOSE07094 ctg832 2478916..2478965, 2485728-2486631, MLPSNITSTHPAVFLLVGIPGLEHLHAWISIPFCFAYTLALLGNCTLLFI
- MOOSE07098 ctg832 3016603-3017389, 3027231..3027272, 3037428..3037502, 3041988..3042031, MNTTLFHPYSFLLLGIPGLESMHLWVGFPFFAVFLTAVLGNITILFVIQ TDSSL3I3JPIV[FYFLAILSSIDPGLSTSTIP1?
- MOOSE07115 ctg832 2583967-2584016, 2596315-2597225, MTTHNSTGSSHSLFILLSIPGLEDQHTWMSLPFFISYLVAFLGNSLIIF ⁇
- NIDDM Non-insulin dep. Diabetes
- MOOSE07021 Olfactory DISTANCE -9.88 Mb
- MOOSE07022 Olfactory DISTANCE -9.77 Mb
- MI Myocardial Infarction
- MOOSE07018 Olfactory DISTANCE 13.20 Mb ttt I li ft It tt II it II It il tr ⁇ r ⁇ rtt1til It i it 11 lt ⁇ t ⁇ r7T ⁇ r ⁇ ti ti II 11 It ITIt TrTTttlt ttll 11 It titrlt ll ll ti ll 1111 t ⁇ TT1 ⁇ ttt ⁇ rtr 1111 TrTrT trJ
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002309196A AU2002309196A1 (en) | 2001-06-26 | 2002-06-24 | Nucleic acids encoding olfactory receptors |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30109501P | 2001-06-26 | 2001-06-26 | |
US60/301,095 | 2001-06-26 | ||
US33275801P | 2001-11-06 | 2001-11-06 | |
US60/332,758 | 2001-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003000735A2 true WO2003000735A2 (fr) | 2003-01-03 |
WO2003000735A3 WO2003000735A3 (fr) | 2004-07-22 |
Family
ID=26972158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2002/002481 WO2003000735A2 (fr) | 2001-06-26 | 2002-06-24 | Acides nucleiques codant pour des recepteurs olfactifs |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2002309196A1 (fr) |
WO (1) | WO2003000735A2 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051984A3 (fr) * | 2003-11-21 | 2005-10-20 | Arena Pharm Inc | Procedes de production de recepteurs couples a la proteine g olfactifs |
WO2005035731A3 (fr) * | 2003-10-09 | 2006-01-12 | Inverseon Inc | Methodes de traitement de maladies et de troubles avec des agonistes inverses et de criblage d'agents agissant en tant qu'agonistes inverses |
US7528175B2 (en) | 2004-10-08 | 2009-05-05 | Inverseon, Inc. | Method of treating airway diseases with beta-adrenergic inverse agonists |
EP2333112A2 (fr) | 2004-02-20 | 2011-06-15 | Veridex, LLC | Pronostics de cancer du sein |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027158A2 (fr) * | 1999-10-08 | 2001-04-19 | Digiscents | Sequences de recepteurs olfactifs |
AU2001247366A1 (en) * | 2000-03-13 | 2001-09-24 | Senomyx Inc. | Human olfactory receptors and genes encoding same |
AU2001261814A1 (en) * | 2000-05-22 | 2001-12-03 | Incyte Genomics, Inc. | G-protein coupled receptors |
WO2002006345A2 (fr) * | 2000-07-18 | 2002-01-24 | Curagen Corporation | Nouvelles proteines et acides nucleiques les codant |
-
2002
- 2002-06-24 AU AU2002309196A patent/AU2002309196A1/en not_active Abandoned
- 2002-06-24 WO PCT/IB2002/002481 patent/WO2003000735A2/fr not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005035731A3 (fr) * | 2003-10-09 | 2006-01-12 | Inverseon Inc | Methodes de traitement de maladies et de troubles avec des agonistes inverses et de criblage d'agents agissant en tant qu'agonistes inverses |
WO2005051984A3 (fr) * | 2003-11-21 | 2005-10-20 | Arena Pharm Inc | Procedes de production de recepteurs couples a la proteine g olfactifs |
JP2008503201A (ja) * | 2003-11-21 | 2008-02-07 | アリーナ ファーマシューティカルズ, インコーポレイテッド | 嗅覚gpcrを産生するための方法 |
EP2333112A2 (fr) | 2004-02-20 | 2011-06-15 | Veridex, LLC | Pronostics de cancer du sein |
US7528175B2 (en) | 2004-10-08 | 2009-05-05 | Inverseon, Inc. | Method of treating airway diseases with beta-adrenergic inverse agonists |
Also Published As
Publication number | Publication date |
---|---|
AU2002309196A1 (en) | 2003-01-08 |
WO2003000735A3 (fr) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7816499B2 (en) | Antibodies that selectively bind HDAC9 | |
US20020045577A1 (en) | Human schizophrenia gene | |
WO2002022871A2 (fr) | Gene humain de l'osteoporose | |
CA2502359A1 (fr) | Gene de susceptibilite d'un infarctus du myocarde | |
WO2003000893A2 (fr) | Acides nucleiques codants pour des recepteurs couples a une proteine g | |
US20020094954A1 (en) | Human schizophrenia gene | |
WO2003076658A2 (fr) | Gene de predisposition a la maladie de parkinson idiopathique a apparition tardive | |
WO2003000901A2 (fr) | Acides nucleiques codant des proteines kinases | |
WO2003000735A2 (fr) | Acides nucleiques codant pour des recepteurs olfactifs | |
US20030157599A1 (en) | Gene for peripheral arterial occlusive disease | |
AU2002341602B2 (en) | Human schizophrenia gene | |
WO2003002606A2 (fr) | Acides nucleiques codant des canaux ioniques | |
AU2002341602A1 (en) | Human schizophrenia gene | |
US20020165144A1 (en) | Human schizophrenia gene | |
WO2003062469A2 (fr) | Gene lie a l'arthrose | |
WO2003002741A2 (fr) | Acides nucleiques codant pour des recepteurs nucleaires | |
WO2003040393A2 (fr) | Acides nucleiques codant des proteases | |
WO2004065938A2 (fr) | Gene humain de l'osteoporose | |
WO2003040392A2 (fr) | Acides nucleiques codant des enzymes d'une biosynthese d'acide gras a tres longue chaine | |
JP2006515992A (ja) | ヒト骨粗鬆症遺伝子 | |
AU2002322112A1 (en) | HDAC9 polypeptides and polynucleotides and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |