+

WO2003000559A1 - Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient - Google Patents

Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient Download PDF

Info

Publication number
WO2003000559A1
WO2003000559A1 PCT/JP2001/005471 JP0105471W WO03000559A1 WO 2003000559 A1 WO2003000559 A1 WO 2003000559A1 JP 0105471 W JP0105471 W JP 0105471W WO 03000559 A1 WO03000559 A1 WO 03000559A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic container
wall surface
dlc film
vacuum chamber
container
Prior art date
Application number
PCT/JP2001/005471
Other languages
English (en)
French (fr)
Inventor
Kenichi Hama
Tsuyoshi Kage
Takumi Kobayashi
Original Assignee
Mitsubishi Shoji Plastics Corporation
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shoji Plastics Corporation, Youtec Co., Ltd. filed Critical Mitsubishi Shoji Plastics Corporation
Priority to PCT/JP2001/005471 priority Critical patent/WO2003000559A1/ja
Priority to EP01941260A priority patent/EP1400456A1/en
Priority to US10/478,904 priority patent/US20040146667A1/en
Priority to CNA018234119A priority patent/CN1522215A/zh
Priority to JP2003506774A priority patent/JPWO2003000559A1/ja
Publication of WO2003000559A1 publication Critical patent/WO2003000559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • DLC film-coated plastic container manufacturing apparatus DLC film-coated plastic container and method of manufacturing the same
  • the present invention relates to an apparatus for forming a DLC (diamond-like carbon) film on an inner wall or an outer wall of a plastic container by a plasma CVD (Chemical Vapor Deposition) method, and in particular, an ion energy control means.
  • DLC film coating plastic that can simultaneously deposit high-quality DLC films from the viewpoint of moisture and gas barrier properties by using high frequency (RF) and microwave (MW) as a means of controlling plasma density
  • RF high frequency
  • MW microwave
  • the present invention also relates to a method for manufacturing the above-mentioned DLC film-coated plastic container and a DLC film-coated plastic container having a DLC film coated on an outer wall surface.
  • a film forming apparatus using a plasma CVD method for forming a DLC film on the inner wall surface of a plastic container for the purpose of improving gas barrier properties as a container for a carbonated beverage or a high juice beverage container is disclosed in JP-A-8-5. It is disclosed in the 311 No. 17 bulletin.
  • This DLC film-coated plastic container manufacturing apparatus uses a high-frequency capacitive coupling discharge method and has the following features.
  • a hollow external electrode having a cavity for accommodating the container, the cavity forming a vacuum chamber, and having a shape substantially similar to the outer shape of the container accommodating the inner wall portion of the cavity;
  • the mouth of the container is in contact with the container and an insulating member is provided to insulate the external electrode.
  • An internal electrode inserted through the mouth, an exhaust means communicating with the space of the external electrode to exhaust the space, and a housing housed in the space of the external electrode.
  • a high-frequency power supply connected to an external electrode.
  • a high frequency is used as a plasma generation energy source.
  • High frequency is an idiomatic term, but is generally an electromagnetic wave of 100 kHz to 100 MHz.
  • the above publication does not describe a specific frequency.
  • the high frequency is 13.56 MHz, which is an industrial frequency.
  • a DLC film is formed on the inner wall surface of the plastic container.
  • the DLC film is formed to have a thickness of 0.05 to 5 m.
  • W0999 / 49991 discloses an apparatus for producing a DLC film coated on a plastic container using microwaves as a plasma generation energy source.
  • This device is of a microphone mouth-wave discharge type, and should be equipped with a space for accommodating a container to be a vacuum chamber, external electrodes, insulating members for insulating the external electrodes, exhaust means, source gas supply means, and a microphone mouth-wave power supply. It is characterized by.
  • a microwave in the UHF region 300 to 300 MHz
  • a microwave of 2.45 GHz is applied for several hundred W, and the microwave passes through a waveguide. Is introduced into the chamber.
  • the use of microwaves eliminates the need for an internal electrode, which is essential for the invention of Japanese Patent Application Laid-Open No. 8-5311.
  • the inside of the chamber is formed with a DLC film of not more than 300 OA at 0.01 to 0.50 torr on the inner wall surface or outer wall surface of the container. Disclosure of the invention
  • the above technique does not solve the following problems. Ie, generally in the high frequency capacitive coupling type discharge system can not be plasma density increase and plasma density to 1 0 9 c m_ 3, nor can be independently controlled for controlling the ion energy of the plasma density. Step When high-frequency power is used to increase the plasma density, ion collisions occur frequently and the etching effect increases. Therefore, it is not possible to increase the film forming speed by the high frequency capacitive coupling discharge method. Therefore, when DLC film coating is performed on a large number of containers in a short time, it is necessary to increase production efficiency by another means.
  • the supply of high-frequency output generates a self-bias voltage on the wall of the plastic container, and the raw material turned into plasma is attracted to the wall of the plastic container, causing ion bombardment. While a relatively dense DLC film can be obtained, ion energy cannot be properly controlled, resulting in large ion bombardment, causing the plastic to heat up and causing internal stress due to the difference in thermal expansion, which can cause microcracks. These minute cracks cause a decrease in moisture / gas barrier properties and cause film peeling due to washing of the plastic container.
  • microwave discharge method since the plasma density 1 0 " ⁇ 1 0 12 cm one 3 can be made dense, high concentrations of ionized material to be fed to bra stick surface, fast film formation speed
  • the ionized raw material is not attracted to the plastic surface, and no ion bombardment occurs, so that it is difficult to obtain a dense DLC film. Therefore, it is considered that the moisture and gas barrier properties are lower than that of the DLC film formed by the high frequency capacitively coupled discharge method, and that the film thickness needs to be increased in order to ensure the same water and gas barrier properties.
  • the present inventors have conducted intensive studies to solve the unique problems of the two manufacturing methods described above, and as a result, have found that a high-frequency capacitively-coupled discharge method and a microwave are used.
  • the present inventors have discovered a film forming mechanism that effectively forms a high quality film with high productivity, which is different from the film forming mechanism of each method by effectively combining the discharge methods, and completed the present invention.
  • the ions generated by the plasma generated by the microwaves are automatically generated by the high frequency. This mechanism produces a DLC film by forcibly attracting it to the outer or inner wall of a plastic container by self-biasing.
  • the first object of the present invention is to be able to uniformly form a DLC film on the outer wall surface of a plastic container, and not to apply a great thermal load to a plastic container as a material to be formed, and to make the film fine.
  • An object of the present invention is to provide a manufacturing apparatus for a plastic container coated with a DLC film capable of suppressing the occurrence of cracks and capable of forming a dense DLC film at a high film forming speed.
  • the DLC film of the present invention is a film called an i-carbon film or a hydrogenated amorphous carbon film (a—C: H), and includes a hard carbon film. Further, the DLC film is an amorphous carbon film, and has an SP 3 bond and an SP 2 bond. It also includes DLC films containing silicon Si elements.
  • the dense DLC film referred to in the present invention is not a viewpoint of high density, but a product of the solubility coefficient of gas molecules such as oxygen, hydrogen, carbon dioxide, nitrogen, or organic molecules in the film and the diffusion coefficient of gas molecules. Means a small DLC film.
  • the moisture and gas barrier properties in the present invention refer to the properties determined by the product (denseness) of the solubility coefficient of gas molecules in the film and the diffusion coefficient of gas molecules, the amount of fine cracks and the film thickness of the film.
  • an ideal DLC film satisfies that the film is dense, has a small amount of cracks, and has a film thickness within a predetermined thickness range. If the film is dense and the amount of cracks in the film is small, the required film thickness can be reduced. In general, if the film thickness is too small, the entire plastic surface cannot be covered, and if the film thickness is too large, the internal stress of the film increases, and it is impossible to follow the flexibility of plastic.
  • the thickness of the DLC film is 30 to 2000, preferably 50 to 100 OA.
  • a second object of the present invention is to provide the above-described manufacturing apparatus, DLC with electrode structure of high-frequency bias electrode that enables DLC film coating on the outer wall of container even when the plastic container has a shape with a partition plate that can accommodate multiple contents independently.
  • a third object of the present invention is to make it possible to form a DLC film uniformly on the inner wall surface of a plastic container, and to apply a large thermal load to the plastic container, which is a film-forming substance, and to prevent fine cracks.
  • An object of the present invention is to provide an apparatus for manufacturing a DLC film-coated plastic container capable of suppressing the generation and capable of forming a dense DLC film at a high film forming speed.
  • a fourth object of the present invention is to supply a microwave into a vacuum chamber to generate a source gas plasma in the vacuum chamber and, at the same time, to supply a high frequency output to a high frequency bias electrode to provide an outer wall surface of a plastic container.
  • a self-bias voltage at the surface By generating a self-bias voltage at the surface, ions of the source gas are attracted to the outer wall surface of the plastic container, and fine cracks in the film can be prevented without applying a significant thermal load to the plastic container that is the material to be formed.
  • An object of the present invention is to provide a method for producing a DLC film-coated plastic container capable of uniformly forming a dense DLC film on a container outer wall surface at a high film forming speed while suppressing generation thereof.
  • a fifth object of the present invention is to provide a DLC film coating on the outer wall of a container, even when the plastic container to be formed into a film has a partition plate for accommodating a plurality of contents independently.
  • An object of the present invention is to provide a method for producing a DLC film-coated plastic container capable of being coated.
  • a sixth object of the present invention is to supply a microwave into a plastic container to generate a source gas plasma in the plastic container, and at the same time, supply a high frequency output to a vacuum chamber to self-bias the inner wall surface of the plastic container.
  • An object of the present invention is to provide a method for producing a DLC film-coated plastic container which can uniformly form a dense DLC film at a large film forming speed on the inner wall surface of the container while suppressing the above problem.
  • a seventh object of the present invention is to provide a plastic container having a moisture / gas barrier property despite having a complicated form of having a partition plate for accommodating a plurality of contents independently. It is.
  • An apparatus for manufacturing a DLC film-coated plastic container according to the present invention is an apparatus for forming a DLC film on an outer wall surface of a plastic container.
  • a high-frequency bias electrode placed in the vacuum chamber via an insulator so as to be in contact with or near the inner wall surface of the plastic container;
  • Microwave supply means for generating a source gas plasma in the vacuum chamber by introducing microwaves into the vacuum chamber;
  • High-frequency output supply means connected to the high-frequency bias electrode so that a self-bias voltage is generated on the outer wall surface of the plastic container; source gas supply means for introducing the source gas into the vacuum chamber;
  • the high-frequency bias electrode is formed in an electrode structure that is in contact with or near the inner wall surface of the plastic container provided with the partition plate.
  • the manufacturing equipment is a device that forms a DLC film on the inner wall surface of a plastic container.
  • An external electrode serving also as a vacuum chamber for housing the plastic container so as to be located near the outer wall surface of the plastic container;
  • An internal electrode inserted into the opening of the plastic container so as to be insulated from the external electrode and grounded;
  • Microwave supply means for generating a source gas plasma in the plastic container by introducing a microphone mouth wave into the plastic container;
  • High-frequency output supply means connected to the external electrode so that a self-bias voltage is generated on the inner wall surface of the plastic container;
  • Source gas supply means for introducing the source gas into the plastic container
  • the external electrode which also serves as a vacuum chamber, has an inner surface shape for accommodating a plastic container so as to be located near the outer wall surface of the plastic container, and the outer surface shape of the plastic container and the inner surface shape of the external electrode are substantially similar. This includes the case where the outer surface of the plastic container is in contact with the inner surface of the external electrode.
  • the method for producing a DLC film-coated plastic container according to the present invention is a method for producing a DLC film-coated plastic container for forming a DLC film on an outer wall surface of a plastic container.
  • the plastic container is housed in a vacuum chamber at a ground potential, and the high-frequency bias electrode insulated from the vacuum chamber is set so as to be in contact with or near the inner wall surface of the plastic container.
  • a microwave is supplied into the vacuum chamber to generate the raw material gas plasma in the vacuum chamber, and at the same time, a high-frequency output is supplied to the high-frequency bias electrode so that a self-power is applied to the outer wall surface of the plastic container. It is characterized in that a DLC film is formed on the outer wall surface of the plastic container by generating a bias voltage.
  • the plastic container is a plastic container provided with a partition plate, and the high-frequency bias electrode has an electrode structure in contact with the inner wall surface of the plastic container provided with the partition plate or located near the inner wall surface. And also features.
  • the method for manufacturing a DLC film-coated plastic container according to the present invention is a method for manufacturing a DLC film-coated plastic container for forming a DLC film on an inner wall surface of a plastic container.
  • the plastic container is housed in the vacuum chamber so that the inner wall surface of the vacuum chamber and the outer wall surface of the plastic container are almost in contact with each other, and the inner electrode of the plastic container is insulated from the vacuum chamber and has an earth potential. After inserting from the opening of
  • a microwave is supplied into the plastic container to generate a source gas plasma in the plastic container, and at the same time, a high frequency output is supplied to the vacuum chamber to generate a self-bias voltage on the inner wall surface of the plastic container. Thereby, a DLC film is formed on the inner wall surface of the plastic container.
  • the DLC film-coated plastic container according to the present invention is characterized in that a DLC film having moisture / gas barrier properties is formed on an outer wall surface of a plastic container provided with a partition plate.
  • the outer wall surface of the plastic container refers to a contact surface with the outside air except for an opening (mouth)
  • the inner wall surface refers to a surface which is in front and back relation to the outer wall surface. Therefore, the front and back sides of the partition are not included in the inner wall.
  • the high-frequency output supply means can generate not only a self-bias but also a plasma, but the high-frequency output supply means generates the plasma only by the plasma generation means. It is merely an auxiliary means of the microwave output supply means. In the manufacturing method as well, plasma generation by supplying high-frequency power is auxiliary.
  • the inner wall surface or the outer wall surface of the plastic container is in contact with the plasma generation space without being separated from the plasma.
  • the self-bias voltage generated on the outer wall surface or the inner wall surface of the plastic container can be either positive or negative depending on the film forming pressure and the area ratio between the electrode and its counter electrode. It is preferable to apply a negative self-bias voltage to the gate.
  • FIG. 1 is a conceptual diagram showing an embodiment of a manufacturing apparatus for a DLC film-coated plastic container according to the present invention, in which a DLC film is coated on an outer wall surface of the container.
  • FIG. 2 is a view showing one embodiment of a plastic container provided with a partition plate for enabling a plurality of contents to be stored independently, (a) is a container having three spaces, and (b) is a container having three spaces. A container with six spaces.
  • Fig. 3 is a conceptual diagram showing one form of the electrode structure of the high-frequency bias electrode.
  • (A) is the electrode structure corresponding to the container of Fig. 2 (a)
  • (b) is the electrode structure corresponding to the container of Fig. 2 (b).
  • FIG. 4 is a conceptual diagram showing one embodiment of a plastic container manufacturing apparatus when a plurality of windows for supplying a microwave mouth wave are provided when a DLC film is coated on the outer wall surface of the container.
  • FIG. 3B is a diagram illustrating a case where a plurality of microwave supply units are provided, and FIG.
  • FIG. 5 is a conceptual diagram showing one embodiment of a manufacturing apparatus for a DLC film-coated plastic container according to the present invention, in which a DLC film is coated on the inner wall surface of the container.
  • a manufacturing apparatus 100 for a plastic container coated with a DLC film comprises: a grounded vacuum chamber 2 for accommodating a plastic container 1; and an inner wall surface of the plastic container 1
  • a source gas plasma is generated in the vacuum chamber 2 by introducing microwaves into the vacuum chamber 2 by introducing a microwave into the vacuum chamber 2 and a high-frequency bias electrode 4 installed in the vacuum chamber 2 via an insulator 3 so as to be located in the vicinity.
  • a microwave supply means 10 connected to the high-frequency bias electrode 4 so that a bias voltage is generated on the outer wall surface of the plastic container 1 by supplying a high-frequency output;
  • a source gas supply means (18) for introducing a source gas into the chamber (2) is provided.
  • the shape of the plastic container 1 is such that the opening (mouth) is narrower than the body, such as a bottle shape for a beverage, a tub shape, or a bead shape. Both the shape with the same or slightly larger diameter as the opening, such as the force shape, are included. Includes containers with stoppers and lids. Further, the present invention includes a plastic container provided with a partition plate as shown in FIG. By providing a partition plate, a plurality of contents can be stored independently. By coating the outer wall of a plastic container with a partition plate with a moisture and gas-permeable DLC film, it is possible to suppress the incorporation of atmospheric gas or water vapor gas into the contents or the volatilization of gas components from the contents. can do. Since the partition plate is not coated with a DLC film, there is no DLC film function to prevent the transfer of gas components between individual contents.
  • the material of the plastic container is polyethylene terephthalate resin (PET), polyethylene terephthalate-based copolyester resin (Polyethylene terephthalate-based copolyester resin is called PETG. , Polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), cycloolefin copolymer resin (coc, cyclic olefin copolymer), ionomer resin, poly- Methylpentene-11 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin Polyamide resin, polyacetal resin, polycarbonate resin, polysulfone resin, or tetrafluoroethylene resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-sty
  • the vacuum chamber 2 has at least a size enough to accommodate the plastic container 1.
  • Vacuum Champer 2 is not just a vacuum chamber, An electrode is formed in pairs with the high-frequency bias electrode 4. At this time, since it is grounded, the potential is 0 V.
  • the connection point between the microwave supply means 10 and the vacuum chamber 2 is changed.
  • a window 19 In the present invention, the position of the window is not limited to the location shown in FIG.
  • the material of the window 19 is preferably quartz glass.
  • the vacuum chamber 2 is provided with an opening / closing mechanism (not shown) that allows the plastic container 1 to be taken in and out.
  • the insulator 3 insulates the grounded vacuum chamber 2 from the high-frequency bias electrode 4. Any shape and material can be used as long as it fulfills this function. As an example, a sintered plate of alumina will be exemplified.
  • the high-frequency bias electrode 4 has a shape such that it is in contact with the inner wall surface of the plastic container 1 or is located near the inner wall surface. It is preferable that the inner surface of the plastic container 1 is in contact with the entire inner wall surface, but the inner wall surface and the outer surface of the high-frequency bias electrode 4 may be separated as long as they are not locally separated. That is, the inner shape of the plastic container 1 and the outer shape of the high-frequency bias electrode 4 have similar shapes. When the plastic container 1 has a shape as illustrated in FIG.
  • the high-frequency bias electrode 4 preferably has the electrode structure shown in FIG. 3 (a).
  • the high-frequency bias electrode corresponding to FIG. 2 (b) has the electrode structure shown in FIG. 3 (b). This is because the existence of the partition plate in the container hinders the high-frequency bias electrode 4 from contacting the inner wall surface of the container.
  • the high frequency bias electrode 4 is insulated from the grounded vacuum chamber 2.
  • the microwave supply means 10 generates a source gas plasma in the vacuum chamber 2 by introducing microwaves into the vacuum chamber 2.
  • the microwave supply means 10 is configured to generate a microwave wave (for example, 2.45 GHz). It consists of a wave generation unit 9, an isolator 8, an impedance matching unit 6, and a mode converter 5. Each of the microwave generating unit 9, the isolator 8 and the impedance matching unit 6 is connected via a waveguide 7 for transmitting microwaves.
  • the configuration of the microphone mouth wave supplying means 10 is not limited to the one shown in FIG. 1, and any configuration may be adopted as long as microwaves can be efficiently introduced into the vacuum chamber 2. As shown in FIG. 4, a plurality of windows for supplying microwaves may be provided. FIG.
  • FIG. 4 shows (a) a case in which a plurality of microwave supply means are provided and (b) a case in which one microwave supply means is provided, which is selected according to the size and shape of the container. If the plastic container is large, it is preferable to use the device shown in FIG. In Fig. 4, the waveguide, mode converter, isolator, impedance matching device, etc. are not shown.
  • the high-frequency output supply means 13 is composed of a high-frequency power supply 16 and an impedance matching device 11 as shown in FIG.
  • the impedance matcher 11 is insulated from the vacuum chamber and connected to the high-frequency bias electrode 4. Further, the impedance matching unit 11 is connected to a high frequency power supply (RF power supply, 13.56 MHz) 12 via a coaxial cable.
  • the high frequency power supply 1 2. is grounded.
  • the source gas supply means 18 is for introducing a source gas into the vacuum chamber 2.
  • One side of the vacuum valve 16 is connected to the output side of the source gas supply source 17, and a flow meter (mass flow controller 1) 15 for adjusting the source gas flow rate is connected to the other side of the vacuum valve 16.
  • One side of a vacuum valve 14 is connected to the other side of the flow meter 15, and the vacuum chamber 2 is connected to the other side of the vacuum valve 14.
  • the source gas supply means 18 may have a configuration other than the above-described configuration. There is no restriction on the connection point between the raw material gas supply means 18 and the vacuum chamber 2, but it is better that the raw material gas does not stay at a specific position in the vacuum chamber 2.
  • aliphatic or aromatic hydrocarbons As the raw material gas, aliphatic or aromatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc., which are gaseous or liquid at room temperature, are used. Particularly, benzene, toluene, 0-xylene, in-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable.
  • aliphatic hydrocarbons especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene such as acetylene, arylene or 1-butyne Based hydrocarbons are preferred.
  • These raw materials may be used alone or may be used as a mixed gas of two or more kinds. Further, these gases may be used after being diluted with a rare gas such as argon or helium.
  • a Si-containing hydrocarbon-based gas is used.
  • the space inside the vacuum chamber 2 is connected to one side of a pipe 20, and the other side of the pipe 20 is connected to a vacuum pump 22 via a vacuum valve 21.
  • This vacuum pump 22 is connected to the exhaust side.
  • the present invention is not limited to the above embodiment, but can be implemented with various modifications.
  • the present embodiment has been described in accordance with the apparatus for a single plastic container, but a film forming apparatus capable of simultaneously coating a plurality of plastic containers by providing a plurality of high-frequency via electrodes in the vacuum chamber 2. It can also be.
  • examples of containers for forming a thin film on the outer wall surface include food containers such as lunch boxes and beverage containers, as well as ink cartridges for ink jet recording type recording printers and the like. Use is not restricted.
  • the DLC film or the Si-containing DLC film is mentioned as a thin film to be formed by the CVD film forming apparatus, but the above film forming apparatus may be used when forming another thin film in a container. It is possible.
  • a method of forming a DLC film on the outer wall surface of the container using the apparatus 100 for manufacturing a DLC film-coated plastic container shown in FIG. 1 will be described.
  • a vacuum valve (not shown) is opened to release the inside of the vacuum chamber 2 to the atmosphere. As a result, air enters, and the inside of the vacuum chamber 2 is brought to atmospheric pressure.
  • the vacuum chamber is opened by an opening / closing mechanism (not shown) of the vacuum chamber 2, and the plastic container 1 is inserted into the high-frequency bias electrode 4 from the opening thereof and set. At this time, the outer surface of the high-frequency bias electrode 4 and the inner wall surface of the plastic container 1 are almost in contact.
  • the opening and closing mechanism (not shown) of the vacuum chamber 2 closes and seals the vacuum chamber.
  • the pressure in the vacuum tea Nba in 2 at this time is 5 X 1 0- 3 ⁇ 5 X 1 0 one 2 Torr.
  • the vacuum valve 16 is opened, a hydrocarbon gas is generated in the raw material gas supply source 17, the hydrocarbon gas is introduced into the piping, and the hydrocarbon gas whose flow rate is controlled by the flow meter 15 is supplied to the vacuum valve. After passing through 14, it is blown into the vacuum chamber 2. Thereby, the hydrocarbon gas is introduced into the vacuum chamber 2.
  • the inside of the vacuum chamber 2 is maintained at a pressure (for example, about 0.05 to 0.50 Torr) suitable for DLC film formation by a balance between the controlled gas flow rate and the exhaust capacity.
  • the microwave mouthpiece 50 to: L0000W is supplied to the vacuum chamber 2 by the microwave supply means 10.
  • This output value is an example, and is adjusted according to the size of the vacuum chamber and the container.
  • the impedance is adjusted so that the output is efficiently supplied into the chamber.
  • Source gas plasma is generated in the vacuum chamber 2 by the supply of microwaves.
  • the density of the plasma is 1 0 "can be set to ⁇ 1 0 1 2 cm- 3.
  • a high-frequency output (for example, 13.56 MHz) from the high-frequency power supply 12 to the high-frequency bias electrode 4 via the impedance matching device 11 10 to 100 000 Supply W
  • the impedance matching device 11 matches the impedance of the high-frequency bias electrode 4 and the vacuum chamber 2 with the inductance L and the capacitance C.
  • the supply of high frequency generates a self-bias voltage on the outer wall of plastic container 1.
  • Positively charged ions of the source gas plasma generated by the microwave are attracted to the high frequency bias electrode 4.
  • positively charged ions collide with the outer wall surface of the plastic container 1, and a DLC film is formed.
  • the film forming time at this time is as short as about several seconds.
  • the above high-frequency output value is an example, and is adjusted according to the size of the vacuum chamber or the container, etc., but is changed particularly for the purpose of adjusting the self-bias. This adjustment is performed so that a DLC film having a desired density corresponding to the container is obtained.
  • the supply amount of the microwave and the high-frequency output are independently controlled.
  • plasma is also generated by high-frequency output.
  • the plasma density at this time is a low density and up to 1 0 9 cm 3. That is, in the present invention, the contribution of the plasma generation by the high-frequency output is considered to be about 1/100 to 1Z100, which is the contribution of the plasma generation by the microwave. Therefore, in the present invention, it can be said that a mechanism for forming a DLC film by forcibly attracting the ions generated by the plasma generated by the microphone mouth wave to the outer wall surface of the plastic container by the self-bias caused by the high frequency output. This is different from the conventional high-frequency capacitive-coupling discharge method or microwave discharge method alone.
  • the DLC film obtained in the present invention is a higher quality film than the above-mentioned single method from the viewpoint of moisture and gas barrier properties, and can be formed with high productivity, as will be described in Examples below. it can.
  • the high-frequency output from the high-frequency power supply 12 is stopped, and at the same time, the microwave output from the microphone mouth-wave generation unit 9 is also stopped. Close the vacuum valves 16 and 14 to stop supplying the source gas. Thereafter, the vacuum valve 21 is opened, and the hydrocarbon gas in the vacuum chamber 2 is exhausted by the vacuum pump 22. Then, close the vacuum valve 21 and stop the vacuum pump 22. When the next plastic container is formed into a film, the vacuum pump 22 is operated without stopping.
  • the pressure in the vacuum chamber 2 at this time is 5 X 1 0 3 ⁇ 5 X 1 0- 2 Torr.
  • a vacuum valve (not shown) is opened to open the inside of the vacuum chamber 2 to the atmosphere, and the DLC film is formed on the outer wall surface of the next plastic container by repeating the above-described film forming method.
  • a plastic container provided with a partition plate for separately accommodating a plurality of contents shown in FIGS. 2 (a) and 2 (b). May be used.
  • a high-frequency bias electrode having the electrode structure shown in FIGS. 3 (a) and 3 (b) is used.
  • the DLC film-coated plastic container manufacturing apparatus 200 is an external electrode which also serves as a vacuum chamber for storing the plastic container 31 so as to be located near the outer wall surface of the plastic container 31. 3 2, an internal electrode 3 3 also serving as a gas introduction pipe inserted into the opening of the plastic container 3 1, and a microphone inside the external electrode 3 2 so as to be insulated from the external electrode 3 2 and grounded.
  • High frequency power supply means 5 3 connected to 2 and plastic container 3 1 is provided with source gas supply means 43 for introducing a source gas.
  • the plastic container 31 has the same shape and material as those described in the first embodiment.
  • the external electrode 32 accommodates the plastic container 31 so as to be located near the outer wall surface of the plastic container 31. That is, the external shape of the plastic container 31 and the internal shape of the external electrode 32 are similar. It is preferable that the outer wall of the plastic container 31 is in contact with the entire outer wall surface. However, the outer wall surface and the inner surface of the outer electrode 32 may be separated as long as they are not locally separated. In addition, the external electrode 32 also functions as a vacuum chamber and thus has a sealing property.
  • the external electrode 32 is a vacuum chamber and forms an electrode in combination with the internal electrode 33. Further, in order to introduce a microwave into the external electrode 32 from the microwave supply means 34 and to reduce the pressure of the chamber when introducing the microwave, the microphone mouth wave supply means 34 and the external electrode 32 are connected. A window is provided at the connection point. The material of the window 44 is preferably quartz glass.
  • the external electrode 32 is provided with an opening / closing mechanism (not shown) that allows the plastic container 1 to be taken in and out.
  • the internal electrode 33 is inserted into the opening of the plastic container 31 so as to be insulated from the external electrode 32 and grounded.
  • the structure of the internal electrode is, for example, a pipe shape and also serves as a source gas introduction pipe. The source gas is blown out from the end of the internal electrode 33 on the side inserted into the opening.
  • the length of the internal electrode 33 is appropriately adjusted so that the DLC film is uniformly formed on the inner wall surface of the plastic container 31 from the viewpoint of moisture and gas barrier.
  • the insulator 45 is for insulating the internal electrode 33 from the external electrode 32. Any shape and material is acceptable as long as it fulfills this function
  • the microwave supply means 34 is the same as that described in the first embodiment.
  • the first point is that the high-frequency output supply means 53 is connected to the external electrode 32 to supply a high-frequency output to the external electrode, and is installed on the inner wall surface of the plastic container 31 so as to generate a self-bias voltage.
  • the arrangement of the impedance matching unit 52 and the high-frequency power supply 51 is the same as that described in the first embodiment.
  • the source gas supply means 43 is connected to the other end of one end (supply port) of the internal electrode 33 inserted in the plastic container 31.
  • the internal electrode has a tubular shape, and is provided with a source gas supply port (not shown) at the tip thereof, and the source gas is blown out from the source gas supply port.
  • the configuration of the source gas supply means 43 is the same as the configuration described in the first embodiment.
  • the source gas is as described in the first embodiment.
  • the space inside the external electrode 32 is connected to one side of a pipe 46, and the other side of the pipe 46 is connected to a vacuum pump 48 via a vacuum valve 47.
  • This vacuum pump 48 is connected to the exhaust side.
  • the entire external electrode 32 is covered with a shield box 49. This is for preventing the high frequency from leaking to the outside.
  • the present invention is not limited to the above embodiment, but can be implemented with various modifications.
  • the description has been given of the apparatus for a single plastic container.
  • a film forming apparatus capable of simultaneously coating a plurality of plastic containers can be provided.
  • a food container or a beverage container can be exemplified as a container for forming a thin film on the inner wall surface, but the use is not limited.
  • the DLC film or the Si-containing DLC film is mentioned as a thin film to be formed by the CVD film forming apparatus, but the above film forming apparatus may be used when forming another thin film in a container.
  • the possible points are the same as those described in the first embodiment.
  • a vacuum chamber functions as a counter electrode of the high-frequency bias electrode.
  • an external power supply that also serves as a vacuum chamber is used.
  • the internal electrode functions as a counter electrode of the pole, these counter electrodes are merely examples, and a grounded counter electrode or the like may be separately used.
  • the present invention is not limited by the location of the counter electrode.
  • a vacuum valve (not shown) is opened to open the inside of the external electrode 32 to the atmosphere. Thereby, air enters and the inside of the external electrode 32 is brought to atmospheric pressure.
  • the external electrode is opened by an opening / closing mechanism (not shown) of the external electrode 32, and the plastic container 31 is housed and installed in the external electrode in a direction in which the bottom thereof contacts the quartz window 44. At this time, the inner surface of the external electrode 32 is almost in contact with the outer wall surface of the plastic container 31.
  • the external electrode 32 is opened and closed (not shown) to close and seal the external electrode.
  • the internal electrode 33 is inserted through the opening of the plastic container 32.
  • the pressure of the plastic container 3 1 at this time is 5 X 1 0 one 3 ⁇ 5 X 1 0- 2 Torr .
  • the vacuum valve 40 is opened, a hydrocarbon gas is generated in the raw material gas supply source 50, and this hydrocarbon gas is introduced into the piping.
  • the hydrocarbon gas whose flow rate is controlled by the flow meter 41 is supplied to the vacuum valve. After passing through 4, it is blown out from the supply port of the internal electrode 33 (the opening at the tip of the internal electrode 33) into the plastic container 31. Thereby, the hydrocarbon gas is introduced into the plastic container 31.
  • the pressure inside the plastic container 31 is maintained at a pressure (for example, 0.05 to 0.50 Torr) suitable for the DLC film formation by the balance between the controlled gas flow rate and the exhaust capacity.
  • microwaves for example, 2.45 GHz
  • L0000W are supplied into the plastic container 31 by the microwave supply means 34.
  • This output value is an example, and is adjusted according to the size of the external electrode and the container.
  • the impedance is adjusted so that the output is supplied efficiently into the chamber.
  • the supply of the microwave generates plasma of the raw material gas in the plastic container 31.
  • the density of the plasma can be from 10 11 to: L 0 12 cm— 3 .
  • a high-frequency output (for example, 13.56 MHz) 10 to 100 is supplied from the high-frequency power supply 51 to the external electrode 32 via the impedance matching device 52.
  • the impedance matching device 52 matches the impedance of the internal electrode 33 and the external electrode 32 with an inductance L and a capacitance C.
  • the supply of the high frequency generates a self-bias voltage on the inner wall surface of the plastic container 31.
  • Positively charged ions of the source gas plasma generated by the microwave are attracted to the external electrode 32 side.
  • positively charged ions collide with the inner wall surface of the plastic container 31, and a DLC film is formed.
  • the film forming time is as short as several seconds.
  • the above high-frequency output value is an example, and is adjusted according to the size of the vacuum chamber or the container, but is changed particularly for the purpose of adjusting the self-bias. This adjustment is performed so as to obtain a DLC film having a desired density corresponding to the container.
  • the supply amount of the microwave and the high-frequency output are independently controlled. Also in the second embodiment, it can be said that a mechanism for forming a DLC film by forcibly attracting ions generated by plasma generated by microwaves to the inner wall surface of the plastic container by self-bias due to high frequency output, This is different from the conventional high-frequency capacitive coupling discharge method or microwave discharge method alone.
  • the DLC film obtained in the present invention is a higher quality film than the above-mentioned single method from the viewpoint of moisture and gas barrier properties. Can be formed with high productivity.
  • the high-frequency output from the high-frequency power supply 51 is stopped, and at the same time, the microwave output from the microphone mouth-wave generation unit 39 is also stopped.
  • the vacuum valve 47 is opened, and the hydrocarbon gas in the plastic container 31 is exhausted by the vacuum pump 48.
  • the vacuum valve 47 is closed, and the vacuum pump 48 is stopped.
  • the vacuum pump 48 is operated without stopping.
  • the pressure in the external electrode 32 is 5 ⁇ 10 to 5 ⁇ 10 2 Torr.
  • a vacuum valve (not shown) is opened to open the inside of the external electrode 32 to the atmosphere, and the above-described film forming method is repeated, whereby a DLC film is formed on the inner wall surface of the next plastic container.
  • a DLC film was formed on the outer wall surface of the plastic container, and the evaluation was performed.
  • Plastic containers, containers equipped with a partition plate (FIG. 2 (a), the capacitance 2 0 0 0 ml, 1 0 c mX 2 0 c mX l 0 c mH, resin thickness 2 mm, surface area 8 0 0 cm 2) It was used. At this time, a high-frequency bias electrode having the electrode structure shown in Fig. 3 (a) was used. However, similar results were obtained with a container without a partition plate.
  • the container material was PETG. Acetylene was used as a source gas.
  • the film forming pressure in the vacuum chamber was 0.10 Torr, the raw material gas flow rate was 250 seem, the film forming time was 2 seconds, the high frequency output was 500 W, and the microwave output was 500 W.
  • Table 1 shows the conditions of plasma C VD.
  • Example 2 was the same as Example 1.
  • Example 3 was the same as Example 1 except that the high frequency output was 600 W and the microwave output was 250 W.
  • the third embodiment is an example in which high-frequency output is the main component and microwave output is the secondary component in generating plasma, and microwaves are supplemented to compensate for the disadvantage that the plasma density of the high-frequency capacitively coupled discharge method is low. This is a condition for increasing the plasma density by introducing the gas in a concentrated manner.
  • Example 4 was the same as Example 1 except that the container material was COC.
  • Example 5 was the same as Example 1 except that the container material was PP. (Comparative Example 1)
  • Comparative Example 1 was the same as Example 1 except that the high-frequency output was 0 W and the microwave output was 800 W.
  • Comparative Example 2 was performed in the same manner as in Example 1 except that the microwave output was 0 W, the high frequency output was 800 W, the raw material gas flow rate was 80 seem, and the film formation time was 6 seconds.
  • Comparative Example 3 was a control in which a PETG container was not subjected to film formation as a control.
  • Comparative Example 4 was a control in which no film was formed on a C ⁇ C container.
  • Comparative example 5 PP container without film formation was used as control.
  • Example 15 The containers of Example 15 and Comparative Example 5 were evaluated as follows.
  • the thickness of the DLC film was measured with a stylus-type step meter of Tench hol Company alpha-step500.
  • the film thickness at the lower part of the container, the body part and the bottom part was measured at three points, and the average value was obtained.
  • the film thickness distribution is defined by Equation 1 below.
  • the maximum or minimum film thickness shall be the appropriate film thickness based on the average film thickness at the lower part of the container, at the trunk, and at the bottom.
  • Film thickness distribution] (maximum film thickness-minimum film thickness) / (minimum film thickness + maximum film thickness) X 100
  • X indicates that the container was visually deformed, and X indicates that there was no deformation.
  • the average film forming speed was calculated by dividing the average film thickness in the lower part of the container, the body part and the bottom part in (1) by the film forming time.
  • the measurement was performed at 22 ° C. X 60% RH using Oxtran, a product of Modern Corporation. The oxygen permeation (oxygen permeating the outer wall) inside and outside of the container was determined.
  • the water permeability of the inside and outside of the entire vessel was determined.
  • the moisture permeability of the container calcium chloride was placed in each room of the container, the lid was sealed with a stainless steel plate, and the container was placed under the conditions of 40 ° C ⁇ 90% RH. Over time, calcium chloride absorbs moisture and changes its weight. Water permeability was evaluated by measuring the change.
  • Table 2 shows the evaluation results.
  • Example 1 it is considered that both the microwave introduction effect and the high frequency introduction effect have a high moisture / gas barrier property, a dense film is obtained, and the number of cracks is small. However, since the high-frequency output is large and an etching effect appears, the film forming speed is not the fastest in the examples.
  • Example 2 a high-density plasma was formed by microwaves, and a self-bias voltage was appropriately generated by the introduction of high frequency. Conceivable. In addition, since the etching effect is not as strong as in Example 1, the film forming speed is high.
  • Comparative Example 1 was a case where only microwaves were introduced. At this film thickness, sufficient moisture / gas barrier properties, particularly moisture / gas barrier properties, could not be obtained. Since the ionized raw material is not attracted to the plastic surface and no ion bombardment occurs, it is considered that the film lacks denseness. Although the film formation rate is high, it is considered that the film thickness capable of securing a certain level of moisture and gas barrier properties is larger than that of the other examples.
  • Comparative Example 2 is a case where only high frequency is introduced, and the moisture and gas barrier properties are inferior to those of the example. It is considered that the self-bias has caused the film to be dense, but the temperature of the container has risen significantly and many fine cracks have occurred. Also, the film thickness is small. Due to the low plasma density, the deposition rate is quite low. Therefore, productivity is low.
  • a manufacturing apparatus and a manufacturing method for forming a high-quality film with high productivity differing from the film forming mechanism of each method by effectively combining the high frequency capacitive coupling discharge method and the microwave discharge method.
  • a plastic container having a DLC film coated on the outer wall surface was provided.
  • a DLC film was formed on the inner wall surface of the plastic container, and the evaluation was performed.
  • the plastic container is a container without a partition plate and has a bottle shape for beverages (capacity: 500 ml, 68.5 ⁇ X207 mmH, resin thickness: 0.3 mm, inner surface area: 400 cm 2 ).
  • the container material was PET. Acetylene was used as a source gas.
  • the film forming pressure in the vacuum chamber was 0.1 O Torr, the raw material gas flow rate was 50 seem, the film forming time was 2 seconds, the high frequency output was 500 W, and the microwave output was 500 W.
  • Table 3 shows the conditions of plasma CVD.
  • Example 7 was the same as Example 6, except that the high frequency output was 350 W and the microwave output was 600 W.
  • Example 8 was the same as Example 6, except that the high frequency output was 600 W and the microwave output was 250 W.
  • Example 8 is an example in which high-frequency output is the main and plasma output is the secondary in generating plasma.
  • Example 9 was the same as Example 6, except that the container material was COC.
  • Example 10 was the same as Example 6, except that the container material was PP. ,
  • Comparative Example 6 was performed in the same manner as in Example 6 except that the high-frequency output was set to 0 W and the microwave output was set to 800 W.
  • Comparative Example 7 was performed in the same manner as in Example 6 except that the microwave output was set to 0 W, the high-frequency output was set to 800 W, the raw material gas flow rate was set to 150 seem, and the film formation time was set to 6 seconds.
  • a container in which no film was formed in a PET container was set as Comparative Example 8 as a control.
  • a container in which no film was formed in a container made of PP was designated as Comparative Example 10 as a control.
  • Table 4 shows the evaluation results.
  • Example 6 it is considered that both the microphone mouth wave introduction effect and the high frequency introduction effect have high moisture / gas barrier properties, a dense film can be obtained, and the number of cracks is small. However, since the high-frequency output is large and the etching effect appears, the film forming speed is not the highest value in the examples.
  • Example 7 since high-density plasma was generated by microwaves and the self-bias voltage was appropriately generated by the introduction of high frequency, the moisture and gas barrier properties were the best, a dense film was obtained, and cracks were extremely small. Conceivable. In addition, since the etching effect is not as strong as in Example 6, the film forming speed is high.
  • Example 8 the paper corrected for the generation of plasma due to high frequency and self-bias In a situation where ion collisions occur, microwaves are supplemented to increase the density of plasma. Although not as good as in Example 6, it is considered that the film has excellent moisture and gas barrier properties, high film density, and few fine cracks. '
  • Example 9 the material of the container was changed, but the effect was not particularly affected, and the same tendency as in Example 6 is observed.
  • Comparative Example 6 was a case where only microwaves were introduced. With this film thickness, sufficient moisture / gas barrier properties, particularly moisture / gas barrier properties, could not be obtained. Since the ionized raw material is not attracted to the plastic surface and no ion bombardment occurs, it is considered that the film lacks denseness. Although the film formation rate is high, it is considered that the film thickness capable of securing a certain level of moisture and gas barrier properties is larger than that of the other examples.
  • Comparative Example 7 is a case where only high frequency is introduced, and the moisture / gas barrier properties are slightly inferior to those of the example. It is thought that the self-biasing caused the film to be dense, but the temperature rise of the container was large and many fine cracks were generated. Also, the film thickness is small. Due to the low plasma density, the deposition rate is quite low. Therefore, productivity is low. As described above, even when a DLC film is formed on the inner wall of a container, a high-quality film, which is different from the film formation mechanism of each method, is effectively combined with the high-frequency capacitive coupling discharge method and the microwave discharge method. It is possible to provide an apparatus for manufacturing a plastic container coated with a DLC film, a container, and a method for manufacturing the container, which can form a film with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Description

明 細 書'
D L C膜コーティ ングプラスチック容器の製造装置、 D L C膜コー ティ ングプラスチック容器及びその製造方法 技術分野
本発明は、 プラズマ C V D (Chemical Vapor Deposition, 化学 気相成長) 法によってプラスチック容器の内壁面或いは外壁面に D L C (ダイヤモンドライクカーボン) 膜を製膜する装置であって、 特にイオンエネルギー制御手段である高周波 (R F) とプラズマ密 度制御手段であるマイクロ波 (MW) を同時に使用して、 水分 · ガ スバリア性の観点から高品質の D L C膜を高速で析出させることが 可能な D L C膜コーティ ングプラスチック容器の製造装置に関する , また本発明は、 上記 D L C膜コーティ ングプラスチック容器の製造 方法及び外壁面に D L C膜をコ一ティ ングした D L C膜コーティン グプラスチック容器に関する。 背景技術
炭酸飲料や高果汁飲料容器等の容器としてガスバリァ性等の向上 の目的でプラスチック容器の内壁面に D L C膜を製膜するために、 プラズマ C V D法を用いた製膜装置が、 特開平 8 — 5 3 1 1 7号公 報に開示されている。 この D L C膜コーティ ングプラスチック容器 の製造装置は高周波容量結合式放電方式であり、次の特徴を有する。 すなわち、 容器を収容する空所を有しこの空所が真空室を形成する とともに空所の内壁部が収容される容器の外形とほぼ相似形に形成 された中空状の外部電極と、 この外部電極の空所内に容器が収容さ れた際にこの容器の口部が当接されるとともに外部電極を絶縁する 絶縁部材と、 接地され外部電極の空所内に収容された容器の内側に 容器の口部から掙入される内部電極と、 外部電極の空所内に連通さ れて空所内の排気を行う排気手段と、 外部電極の空所内に収容され た容器の内側に原料ガスを供給する供給手段と、 外部電極に接続さ れた高周波電源と、 を備えていることを特徴とする。 上記公報では、 プラズマ発生エネルギー源として高周波を使用している。 高周波は 慣用語であるが、 一般に 1 0 0 k H z〜 l 0 0 0 MH z の電磁波で ある。 上記公報では具体的な周波数の記載はない。 なお、 一般的に 高周波は工業用周波数である 1 3. 5 6 MH zが使用される。
上記公報では、 チャンバ内を 1 0— 2〜 1 0 _ 5 t o r r に真空引 きした後、 原料ガスを導入して 0. 5〜 0. 0 0 1 t o r r に調節 して、 高周波電力を例えば 5 0〜 1 0 0 0 W印加して、 プラスチッ ク容器内壁面に D L C膜を製膜している。 D L C膜の膜厚は 0. 0 5〜 5 mとなるように形成する。
一方、 プラズマ発生エネルギー源としてマイクロ波を使用して、 プラスチック容器に D L C膜をコーティ ングする製造する装置の発 明が、 W09 9 / 4 9 9 9 1 に開示されている。 この装置はマイク 口波放電方式であり、 真空室となる容器を収納する空所、 外部電極、 外部電極を絶縁する絶縁部材、 排気手段、 原料ガス供給手段及びマ イク口波電源を具備することを特徴とする。 この公報では、 UH F 領域 ( 3 0 0〜 3 0 0 0 MH z ) のマイクロ波、 例えば 2. 4 5 G H z のマイクロ波を数百 W印加すること、 マイクロ波は導波管を通 してチャンバに導入されることが開示されている。 マイクロ波を用 いることで特開平 8 _ 5 3 1 1 7号公報の発明に必須である内部電 極は不要としている。 チャンバ内を 0. 0 1〜 0. 5 0 t o r rで 3 0 0 O A以下の D L C膜を容器内壁面又は外壁面に形成する。 発明の開示
しかし、 上記技術には下記のような問題が解決されずにいる。 す なわち、 一般に高周波容量結合式放電方式ではプラズマ密度が 1 0 9 c m_ 3までとプラズマ密度を上げることが出来ず、 プラズマ密度 の制御とイオンエネルギーの制御を独立にすることも出来ない。 プ ラズマ密度を上げるために高周波を高出力にするとイオン衝突が多 発し、 エッチング効果も大きくなる。 したがって高周波容量結合式 放電方式では製膜速度を速くすることが出来ない。 このため短時間 に大量の容器に D L C膜コーティ ングを行う場合には、 生産効率を 別手段で上げる必要がある。 また、 高周波出力の供給により 自己バ ィァス電圧がプラスチック容器壁面に発生して、 プラズマ化した原 料がプラスチック容器壁面に引き寄せられ、 イオン衝撃が生ずる。 比較的緻密な D L C膜が得られる反面、 イオンエネルギーの制御が 適切にできないためイオン衝撃が大きく、 プラスチックが昇温して 熱膨張差による内部応力が発生して微細クラックが生じ得る。 この 微細クラックは、 水分 · ガスバリア性の低下、 プラスチック容器の 洗浄による膜剥離の発生の原因となる。
一方マイクロ波放電方式では、 プラズマ密度を 1 0 "〜 1 0 12 c m一3と高密度にできるため、 高濃度のイオン化された原料をブラ スチック表面に供給することができ、 製膜速度を速くすることがで きる。 しかし、 自己バイアス電圧がプラスチック容器壁面に発生し ないため、 イオン化した原料がプラスチック表面に引き寄せられる こともなく、 イオン衝撃も生じないため、 緻密な D L C膜が得られ にくい。 したがって、 高周波容量結合式放電方式で製膜した D L C 膜よりも水分 · ガスバリア性が低いと考えられる。 また、 同等の水 分 · ガスバリア性を確保するためには、 膜厚を大きくする必要があ る。 本発明者らは、 上記した 2つの製造方法が有する特有の問題を解 決すべく鋭意研究した結果、 高周波容量結合式放電方式とマイクロ 波放電方式を効果的に組み合わせて各方法の製膜メカニズムとは異 なる、 高品質膜を生産性良く製膜する製膜メカニズムを発見し、 本 発明を完成させた。 すなわちこの製膜メカニズムとは、 マイクロ波 で発生させたプラズマによって生ずるイオンを高周波に起因する自 己バイアスによってプラスチック容器の外壁面あるいは内壁面に強 制的に引付けて D L C膜を製腠するメカニズムである。
本発明の第一目的は、 プラスチック容器の外壁面に均一に D L C 膜を製膜することが可能なこと、 被製膜物質であるプラスチック容 器に多大な熱的負荷を与えず、 膜の微細クラックの発生を抑止する こと、 及び緻密な D L C膜を高い製膜速度で製膜することが出来る D L C膜コーティ ングプラスチック容器の製造装置を提供すること である。 ,
ここで本発明の D L C膜とは、 i 力一ボン膜又は水素化ァモルフ ァスカ一ボン膜(a — C : H ) と呼ばれる膜のことであり、 硬質炭 素膜も含まれる。 また D L C膜は、 アモルファス状の炭素膜であり、 S P 3結合及び S P 2結合も有する。 またケィ素 S i元素を含有した D L C膜も含む。
本発明でいう緻密な D L C膜とは、 密度が大きいという観点では なく、 酸素、 水素、 二酸化炭素、 窒素、 又は有機分子等の気体分子 の膜中への溶解度係数と気体分子の拡散係数の積が小さい D L C膜 を意味する。
また、 本発明でいう水分 , ガスバリア性とは、 上記の気体分子の 膜中への溶解度係数と気体分子の拡散係数の積 (緻密性)、 膜の微 細クラック量及び膜厚によって決まる性質をいう。 水分 ' ガスバリ ァ性の観点から、 理想的な D L C膜とは、 緻密であること、 膜のク ラック量が少ないこと及び膜厚が所定厚さ範囲内にあることを満た すものである。 緻密で且つ膜のクラック量が少ないと、 必要な膜厚 を小さくすることが出来る。 なお、 一般的に膜厚が小さ過 るとプ ラスチック表面をすベて被覆することができず、 膜厚が大きすぎる と膜の内部応力が大きくなり、 しかもプラスチックの柔軟性に追随 出来なくなる。 本発明では、 D L C膜の膜厚は、 3 0〜 2 0 0 0人、 好ましくは、 5 0〜 1 0 0 O Aである。
本発明の第二の目的は、 上記の製造装置において、 製膜対象であ るプラスチック容器が複数の内容物を独立に収容可能とするための 間仕切板を備えた形状であるときにも容器外壁面に D L C膜コ一テ イング可能な、 高周波バイアス電極の電極構造を有する D L C膜コ —ティ ングプラスチック容器の製造装置を提供することである。 本発明の第三の目的は、 プラスチック容器の内壁面に均一に D L C膜を製膜することが可能なこと、 被製膜物質であるプラスチック 容器に多大な熱的負荷を与えず、 微細クラックの発生を抑止するこ と、 及び緻密な D L C膜を高い製膜速度で製膜することが出来る D L C膜コ一ティングプラスチック容器の製造装置を提供することで ある。
本発明の第四の目的は、 真空チャンバ内にマイクロ波を供給して 真空チャンバ内に原料ガス系プラズマを発生させると同時に、 高周 波バイアス電極に高周波出力を供給してプラスチック容器の外壁面 に自己バイァス電圧を発生させることにより、 原料ガス系のイオン をプラスチック容器の外壁面に引付けて、 被製膜物質であるプラス チック容器に多大な熱的負荷を与えないで膜の微細クラックの発生 を抑止しつつ、 緻密な D L C膜を高い製膜速度で均一に容器外壁面 に製膜することが出来る D L C膜コーティ ングプラスチック容器の 製造方法を提供することである。
本発明の第五の目的は、 製膜対象であるプラスチック容器が複数 の内容物を独立に収容可能とするための間仕切板を備えた形状であ るときにも、 容器外壁面に D L C膜コーティ ング可能な D L C膜コ 一ティ ングプラスチック容器の製造方法を提供することである。 本発明の第六の目的は、 プラスチック容器内にマイクロ波を供給 してプラスチック容器内に原料ガス系プラズマを発生させると同時 に真空チヤンバに高周波出力を供給してプラスチック容器の内壁面 に自己バイアス電圧を発生させることにより、 原料ガス系のイオン をプラスチック容器の内壁面に引付けて、 被製膜物質であるプラス チック容器に多大な熱的負荷を与えないで膜の微細クラックの発生 を抑止しつつ、 緻密な D L C膜を大きな製膜速度で均一に容器内壁 面に製膜することが出来る D L C膜コ一ティ ングプラスチック容器 の製造方法を提供することである。
本発明の第七の目的は、 複数の内容物を独立に収容可能とするた めの間仕切板を備えるという複雑な形態を有するにもかかわらず、 水分 · ガスバリア性を有するプラスチック容器を提供することであ る。 上記の各目的を達成させるための解決手段は、 次の通りである。 本発明に係る D L C膜コーティ ングプラスチック容器の製造装置 は、 プラスチック容器の外壁面に D L C膜を製膜する装置におい て、
前記プラスチック容器を収納するための接地された真空チャンバ と、
前記プラスチック容器の内壁面と接するか又は該内壁面の近傍に 位置するように前記真空チヤンバ内に絶縁体を介して設置した高周 波バイァス電極と、
前記真空チャンバ内にマイクロ波を導入することにより、 該真空 チャンバ内に原料ガス系プラズマを発生させるマイクロ波供給手段 と、
前記プラスチック容器の外壁面に自己バイアス電圧が発生するよ うに該高周波バイアス電極に接続した高周波出力供給手段と、 前記真空チヤンバ内に前記原料ガスを導入する原料ガス供給手段 と、
を具備することを特徴とする。 また、 この製造装置では、 前記高 周波バイアス電極は、 間仕切板を備えたプラスチック容器の内壁面 と接するか又は該内壁面の近傍に位置する電極構造に形成したこと をも特徴とする。
また、 本発明に係る D L C膜コーティ ングプラスチック容器の製 造装置は、 プラスチック容器の内壁面に D L C膜を製膜する装置に おいて、
前記プラスチック容器の外壁面の近傍に位置するように該プラス チック容器を収納する真空室を兼ねた外部電極と、
該外部電極に対して絶縁状態で且つ接地するように、 前記プラス チック容器の開口部に挿入した内部電極と、
前記プラスチック容器内にマイク口波を導入することにより、 該 プラスチック容器内で原料ガス系プラズマを発生させるマイクロ波 供給手段と、
前記プラスチック容器の内壁面に自己バイアス電圧が発生するよ うに該外部電極に接続した高周波出力供給手段と、
前記プラスチック容器内に前記原料ガスを導入する原料ガス供耠 手段と、
を具備することを特徴とする。 真空室を兼ねた外部電極は、 ブラ スチック容器の外壁面の近傍に位置するようにプラスチック容器を 収納する内面形状を有し、 プラスチック容器の外面形状と外部電極 の内面形状がほぼ相似形で、 プラスチック容器の外面と外部電極の 内面が接する場合も含む。
また、 本発明に係る D L C膜コーティ ングプラスチック容器の製 造方法は、 プラスチック容器の外壁面に D L C膜を製膜する D L C 膜コーティ ングプラスチック容器の製造方法において、
アース電位の真空チャンバに前記プラスチック容器を収納し、 前 記真空チヤンバに対して絶縁状態の高周波バイァス電極を前記ブラ スチック容器の内壁面と接するか又は該内壁面の近傍に位置するよ うにセッ トした後、
前記真空チヤンバ内に原料ガスを供給し、
該真空チャンバ内にマイクロ波を供給して該真空チャンバ内に前 記原料ガス系プラズマを発生させると同時に、 前記高周波バイアス 電極に高周波出力を供給して前記プラスチック容器の外壁面に自己 バイアス電圧を発生させることにより、 前記プラスチック容器の外 壁面に D L C膜を製膜することを特徵とする。 この製造方法では、 前記プラスチック容器は間仕切板を備えたプラスチック容器であり 前記高周波バイアス電極は該間仕切板を備えたプラスチック容器の 内壁面と接するか又は該内壁面の近傍に位置する電極構造であるこ とをも特徴とする。
また、 本発明に係る D L C膜コーティ ングプラスチック容器の製 造方法は、 プラスチック容器の内壁面に D L C膜を製膜する D L C 膜コ一ティ ングプラスチック容器の製造方法において、
真空チャンバの内壁面と前記プラスチック容器の外壁面とがほぼ 接するように該真空チャンバ内に該プラスチック容器を収納し、 該 真空チヤンバに対して絶縁状態で且つアース電位の内部電極を該プ ラスチック容器の開口部から挿入した後、
前記プラスチック容器内に原料ガスを供給し、
該プラスチック容器内にマイクロ波を供給して該プラスチック容 器内に原料ガス系プラズマを発生させると同時に前記真空チャンバ に高周波出力を供給して該プラスチック容器の内壁面に自己バイァ ス電圧を発生させることにより、 該プラスチック容器の内壁面に D L C膜を製膜することを特徴とする。
さらに、本発明に係る D L C膜コーティ ングプラスチック容器は、 間仕 ¾|板を備えたプラスチック容器の外壁面に、 水分 · ガスバリァ 性を有する D L C膜を製膜したことを特徴とする。
本発明におけるプラスチック容器の外壁面とは開口部 (口部) を 除く外気との接触面をいい、 内壁面とは外壁面に対し表裏関係にあ る面をいう。 したがって、 間仕切板の表裏の両面は内壁面に含まれ ない。
なお、 前述した製造装置において、 高周波出力供給手段は自己バ ィァスを生じさせるだけでなくプラズマも発生させ得るが、 高周波 出力供給手段のプラズマ発生は、 あく までもプラズマ発生手段であ るマイクロ波出力供給手段の補助手段に過ぎない。 製造方法におい ても、 高周波出力供給によるプラズマ発生は補助的なものである。
また、 プラスチック容器の内壁面或いは外壁面がプラズマから離 れることなく、 プラズマ発生空間に接する方が好ましい。
本発明においてプラスチック容器の外壁面或いは内壁面に発生す る自己バイアス電圧は、 製膜圧力及び電極とその対向電極との面積 比に依存して正負のいずれも取り得るが、 外壁面或いは内壁面に負 の自己バイアス電圧をかける方が好ましい。 図面の簡単な説明
図 1は、 本発明に係る D L C膜コーティ ングプラスチック容器の 製造装置の一形態を示す概念図であって、 容器の外壁面に D L C膜 をコーティ ングする場合のものである。
図 2は、 複数の内容物を独立に収容可能とするための間仕切板を 備えたプラスチック容器の一形態を示す図であり、 (a )は、 3つの 空間を具備する容器、 (b)は 6つの空間を具備する容器である。
図 3は、 高周波バイァス電極の電極構造の一形態を示す概念図で あり、 ( a ) は図 2 (a)の容器に対応した電極構造、 (b ) は図 2 (b) の容器に対応した電極構造、 を示す図である。
図 4は、 容器の外壁面に D L C膜をコーティ ングするときにマイ ク口波供給用の窓を複数設けた場合のプラスチック容器製造装置の 一形態を示す概念図であって、 (a )は複数のマイクロ波供給手段を 設けた場合、 (b)はマイクロ波供給手段を 1つ設けた場合、 を示す 図である。
図 5は、 本発明に係る D L C膜コーティ ングプラスチック容器の 製造装置の一形態を示す概念図であって、 容器の内壁面に D L C膜 をコーティ ングする場合のものである。
図中の符号の説明は次の通りである。 1, 3 1 プラスチック容器、
2, 3 2真空チャンバ、 3 , 4 5絶縁体、 4高周波バイアス電極、 5, 3 5 モード変換器、 7 , 3 7導波管、 8, 3 8 アイソレータ、 9 , 3 9マイクロ波発生ユニッ ト、 1 0, 3 4マイクロ波供給手段、 6, 3 6 , 1 1 , 5 2ィンピーダンス整合器 (マッチングュニッ ト)、 1 2, 5 1高周波電源、 1 3 , 5 3高周波出力供給手段、 1 4 , 1 6 , 2 1,
4 0 , 4 2 , 4 7真空バルブ、 1 5 , 4 1マスフローコントローラ一、 1 7, 5 0原料ガス供給源、 1 8, 4 3原料ガス供給手段、 1 9 , 4 4窓 (石英窓)、 2 0, 4 6配管、 2 2, 4 8真空ポンプ、 3 2外部 電極、 3 3内部電極、 4 9 シールドボックス、 1 0 0 , 2 0 0 D L C膜コ一ティ ングプラスチック容器の製造装置、 である。 発明を実施するための最良の形態
以下本発明の実施の形態について詳細に説明するが、 本発明はこ れらの実施形態 · 実施例に限定して解釈されない。
[第 1の実施形態 : プラスチック容器の外壁面へ D L C膜をコ一テ ィ ングする場合]
実施の一形態を図 1 に基いて説明する。
本発明に係る D L C膜コーティ ングプラスチック容器の製造装置 1 0 0は、 プラスチック容器 1 を収納するための接地された真空チ ヤ ンバ 2 と、 プラスチック容器 1 の内壁面と接するか又は該内壁面 の近傍に位置するように真空チャンバ 2内に絶縁体 3 を介して設置 した高周波バイアス電極 4と、 真空チャンバ 2内にマイクロ波を導 入することにより、 真空チャンバ 2内に原料ガス系プラズマを発生 させるマイクロ波供給手段 1 0 と、 高周波出力を供給することによ りプラスチック容器 1 の外壁面にバイアス電圧が発生するように高 周波バイアス電極 4に接続した高周波出力供給手段 1 3 と、 真空チ ヤ ンバ 2内に原料ガスを導入する原料ガス供給手段 1 8 とを具備す る。
プラスチック容器 1 は、 形状として、 飲料用ボトル形状のように 開口部 (口部) が胴部に対して狭くなつた形状、 桶形状或いはビー 力一形状のように開口部が胴部に対して同じかあるいはやや大きい 径の形状のいずれも含む。 栓 ' 蓋をする容器も含む。 さらに本発明 では図 2 に示すような間仕切板を備えたプラスチック容器を含む。 間仕切板を備えることにより、 複数の内容物を独立に収容可能とす る。 間仕切板を備えたプラスチック容器の外壁面に水分 · ガスパリ ァ性を有する D L C膜をコーティ ングすることによって、 内容物へ の大気ガスや水蒸気ガスの混入あるいは、 内容物からガス成分の揮 発を抑制することができる。 なお、 間仕切板には D L C膜をコーテ ィ ングしないため、 個々の内容物同士のガス成分移入を防止する D L C膜機能はない。
プラスチック容器の材質は、ポリエチレンテレフ夕レート樹脂( P E T ) 、 ポリエチレンテレフ夕レート系コポリエステル樹脂 (ポリ エステルのアルコール成分にエチレングリコールの代わりに、 シク 口へキサンディメタノールを使用したコポリマーを P E T Gと呼ん でいる、 イース トマン製) 、 ポリブチレンテレフタレート樹脂、 ポ リエチレンナフタレート樹脂、 ポリエチレン樹脂、 ポリプロピレン 樹脂 (P P ) 、 シクロォレフィ ンコポリマー樹脂 (c o c、 環状ォ レフイ ン共重合) 、 アイオノマ樹脂、 ポリ一 4—メチルペンテン一 1樹脂、 ポリメタクリル酸メチル樹脂、 ポリスチレン樹脂、 ェチレ ン—ビニルアルコール共重合樹脂、 アク リロニトリル樹脂、 ポリ塩 化ビニル樹脂、 ポリ塩化ビニリデン樹脂、 ポリアミ ド樹脂、 ポリア ミ ドイミ ド樹脂、 ポリアセタール樹脂、 ポリカーボネート樹脂、 ポ リスルホン樹脂、 または、 4弗化工チレン樹脂、 アクリ ロニトリル —スチレン樹脂、 アクリロニト リル一ブタジエン一スチレン樹脂、 がよいが、 P E T、 P E T G , P P又は C O Cが好ましく、 優れた 性能を発揮する。 本実施例では P E T、 P E T G、 C O C、 又は P P製の容器を使用する。
真空チャンバ 2は、 少なく ともプラスチック容器 1 を収納するだ けの大きさを有する。 真空チャンパ 2は、 単なる真空室ではなく、 高周波バイアス電極 4 と対となって、 電極を形成している。 このと き接地されているため、 0 V電位である。 また、 マイクロ波供給手 段 1 0より、 真空チャンバ 2内にマイクロ波を導入するため、 かつ マイクロ波導入時にチャンバを減圧とするために、 マイクロ波供給 手段 1 0 と真空チャンバ 2の接続箇所には窓 1 9を設ける。 なお、 本発明では、 窓の位置は図 1の場所に限定されない。 窓 1 9の材質 は石英ガラスであることが好ましい。 なお、 真空チャンバ 2には、 プラスチック容器 1 を出し入れ可能とする開閉機構 (不図示) が備 わっている。
絶縁体 3は、 接地した真空チャンバ 2 と高周波バイアス電極 4 と を絶縁するためのものである。 この機能を果たす限り、 形状及び材 質はいずれでも良い。 例として、 アルミナの焼結平板を例示する。 高周波バイアス電極 4は、 プラスチック容器 1 の内壁面と接する か又は該内壁面の近傍に位置するような形状を有する。 プラスチッ ク容器 1 の内壁面全体に渡って接していることが好ましいが、 内壁 面と高周波バイアス電極 4の外面が局所的に離れていない限り離隔 していても良い。 すなわち、 プラスチック容器 1 の内形と高周波 バイアス電極 4の外形は相似形状となる。 なお、 プラスチック容器 1が図 2 ( a ) に例示するような形状である場合には、 高周波バイ ァス電極 4は図 3 ( a ) に示す電極構造であることが好ましい。 図 2 ( b ) に対応する高周波バイアス電極は、 図 3 ( b ) に示す電極 構造である。 容器の間仕切板の存在が邪魔となって、 高周波バイァ ス電極 4と容器内壁面が接することが出来ないからである。 また、 高周波バイアス電極 4は、 接地した真空チャンバ 2 と絶縁状態にさ れる。
マイクロ波供給手段 1 0は、 真空チャンバ 2内にマイクロ波を導 入することにより、 真空チャンバ 2内に原料ガス系プラズマを発生 させるものである。 図 1 に示したように、 マイクロ波供給手段 1 0 は、 マ.イク口波 (例えば、 2 . 4 5 G H z ) を発生させるマイクロ 波発生ユニッ ト 9、 アイソレータ 8、 インピーダンス整合器 6及び モード変換器 5から構成される。 マイクロ波発生ユニッ ト 9、 アイ ソレー夕 8及びインピーダンス整合器 6のそれぞれは、 マイクロ波 を通過させる導波管 7 を介してつながっている。 マイク口波供給手 段 1 0の構成は、 図 1 に示したものに限定されず、 マイクロ波を真 空チャンバ 2内に効率良く導入することが出来れば、 いかなる構成 を取っても良い。 図 4に示したように、 マイクロ波供給用の窓を複 数設けても良い。 図 4には、 (a)複数のマイクロ波供給手段を設け た場合と(b)マイクロ波供給手段を 1つ設けた場合を示したが、 容 器の大きさ形状により選択する。 プラスチック容器が大型の場合に は、 図 4に示した装置を用いることが好ましい。 なお、 図 4は導波 管、 モード変換機、 アイソレータ、 インピーダンス整合器等は不図 示とした。
高周波出力供給手段 1 3は、 図 1 に示す如く、 高周波電源 1 6及 びインピーダンス整合器 1 1 とから構成される。.インピーダンス整 合器 1 1は、 真空チャンバとは絶縁され、 高周波バイアス電極 4に 接続されている。 さらに、 インピーダンス整合器 1 1は同軸ケ一ブ ルを介して高周波電源( RF 電源、 1 3 . 5 6 M H z ) 1 2に接続さ れている。 なお、 高周波電源 1 2.は、 接地されている。
原料ガス供給手段 1 8は、 真空チャンバ 2の内部に原料ガスを導 入するためのものである。 原料ガス供給源 1 7の出力側に真空バル ブ 1 6の一方側が接続され、 真空バルブ 1 6の他方側に原料ガス流 量調整のための流量計 (マスフローコントローラ一) 1 5が接続さ れ、 流量計 1 5の他方側に真空バルブ 1 4の一方側が接続され、 真 空バルブ 1 4の他方側に真空チャンバ 2が接続されている。 所望の 流量で原料ガスを真空チャンバ 2内に供給することが出来れば、 原 料ガス供給手段 1 8は上述の構成以外とすることもできる。 原料ガ ス供給手段 1 8 と真空チヤンバ 2の接続箇所について制限はないが, 原料ガスが真空チャンバ 2内の特定箇所によどまないところが良い 原料ガスとしては、 常温で気体または液体の脂肪族炭化水素類、 芳香族炭化水素類、 含酸素炭化水素類、 含窒素炭化水素類などが使 用される。 特に炭素数が 6以上のベンゼン, トルエン, 0 -キシレン, in-キシレン, p-キシレン, シクロへキサン等が望ましい。 食品等の 容器に使用する場合には、 衛生上の観点から脂肪族炭化水素類、 特 にエチレン、 プロピレン又はブチレン等のエチレン系炭化水素、 又 は、 アセチレン、 ァリ レン又は 1ーブチン等のアセチレン系炭化水 素が好ましい。 これらの原料は、 単独で用いても良いが、 2種以上 の混合ガスとして使用するようにしても良い。 さらにこれらのガス をアルゴンやヘリウムの様な希ガスで希釈して用いる様にしても良 い。
また、 ケィ素含有 D L C膜を製膜する場合には、 Si 含有炭化水 素系ガスを使用する。
真空チヤンバ 2内の空間は配管 2 0の一方側に接続されており、 配管 2 0の他方側は真空バルブ 2 1 を介して真空ポンプ 2 2 に接続 されている。 この真空ポンプ 2 2は排気側に接続されている。
本発明は上記実施の形態に限定されず、 種々変更して実施するこ とが可能である。 例えば、 本実施形態ではプラスチック容器一個用 装置にしたがって説明したが、 真空チヤンバ 2内に複数の高周波バ ィァス電極を設けることで複数のプラスチック容器を同時にコ一テ イ ングすることが出来る製膜装置とすることもできる。
本実施の形態では、 外壁面に薄膜を製膜する容器として弁当箱等 の食品容器、 飲料用容器をはじめ、 インクジェッ ト記録方式記録プ リ ン夕一用インクカートリ ッジ等を例示できるが、 用途制限されな い。
本実施の形態では、 C V D製膜装置で製膜する薄膜として D L C 膜又は S i含有 D L C膜を挙げているが、 容器内に他の薄膜を製膜 する際に上記製膜装置を用いることも可能である。 次に、 図 1 に示す D L C膜コ一ティ ングプラスチック容器の製造 装置 1 0 0 を用いて容器の外壁面に D L C膜を製膜する方法につい て説明する。
まず、 真空バルブ (不図示) を開いて真空チャンバ 2内を大気開 放する。 これにより空気が入り、 真空チャンバ 2内が大気圧にされ る。 次に、 真空チャンバ 2の開閉機構 (不図示) により、 真空チヤ ンバを開き、 プラスチック容器 1 をその開口部から高周波バイアス 電極 4に差し込み、 設置する。 このとき,高周波バイアス電極 4の 外面とプラスチック容器 1 の内壁面がほぼ接した状態となる。 次に 真空チャンバ 2の開閉機構 (不図示) により、 真空チャンバを閉じ て密閉する。
この後、 真空バルブ (不図示) を閉じた後、 真空バルブ 2 1 を開 き、 真空ポンプ 2 2 によって排気する。 これにより、 真空チャンバ 2内が配管 2 0を通して排気され、真空チャンバ 2内が減圧となる。 このときの真空チャ ンバ 2 内の圧力は 5 X 1 0— 3〜 5 X 1 0一 2 Torrである。
次に真空バルブ 1 6 を開き、 原料ガス供給源 1 7において炭化水 素ガスを発生させ、 この炭化水素ガスを配管内に導入し、 流量計 1 5によって流量制御された炭化水素ガスが真空バルブ 1 4を経て、 真空チャンバ 2の中へ吹き出す。 これにより、 炭化水素ガスが真空 チャンバ 2内に導入される。 そして、 真空チャンバ 2内は、 制御さ れたガス流量と排気能力のバランスによって、 D L C製膜に適した 圧力(例えば 0.0 5〜 0.5 0 Torr程度)に保たれる。
この後、 真空チャンバ 2 にマイクロ波供給手段 1 0 によって、 マ イク口波 (例えば、 例えば、 2. 4 5 GH z ) 5 0〜: L 0 0 0 Wを 供給する。 この出力値は例示であり、 真空チャンバや容器の大きさ 等によって調整する。 チヤンバ内に効率良く出力が供給されるよう にインピーダンスが調整される。 マイクロ波の供給により真空チヤ ンバ 2内に原料ガス系のプラズマが発生する。 プラズマの密度は、 1 0 "〜 1 0 1 2 c m— 3とすることができる。
前記マイクロ波を供給すると同時或いは殆ど同時に、 高周波バイ ァス電極 4にインピーダンス整合器 1 1 を介して高周波電源 1 2か ら高周波出力(例えば 1 3 . 5 6 MHz) 1 0〜 1 0 0 0 Wを供給する。 このときインピーダンス整合器 1 1は、 高周波バイアス電極 4と真 空チャンバ 2のインピ一ダンスに、 インダクタンス L、 キャパシタ ンス C によって合わせている。 高周波の供給により、 プラスチッ ク容器 1 の外壁面に自己バイアス電圧が発生する。 マイクロ波によ つて発生した原料ガス系プラズマのうち、 プラスに帯電したイオン が高周波バイアス電極 4に引き付けられる。 これにより、 プラスに 帯電したイオンがプラスチック容器 1 の外壁面に衝突し、 D L C膜 が製膜される。 このときの製膜時間は数秒程度と短いものとなる。 なお、 上記の高周波出力値は例示であり、 真空チャンバや容器の大 きさ等によって調整するが、 特に自己バイアスを調整する目的で変 える。 この調整は、 容器に応じた、 所望の緻密性の D L C膜となる ようにするためである。
以上のように本発明ではマイクロ波の供給量と高周波出力はそれ ぞれ独立に制御する。 一般的に高周波出力によってもプラズマが発 生する。 しかし、 そのときのプラズマ密度は 1 0 9 c m 3までと低 密度である。 すなわち、 本発明において高周波出力によるプラズマ 発生の寄与は、 マイクロ波によるプラズマ発生の寄与の 1 / 1 0 0 〜 1 Z 1 0 0 0程度と考えられる。 したがって本発明では、 マイク 口波で発生させたプラズマによって生ずるイオンを高周波出力に起 因する自己バイアスによってプラスチック容器の外壁面に強制的に 引付けて D L C膜を製膜するメカニズムといえる。 これは、 従来の 高周波容量結合式放電方式或いはマイクロ波放電方式の単独方式と は異なるものである。 また、 本発明で得られた D L C膜は後述の実 施例で説明するように、 水分 · ガスバリァ性の観点から上記単独方 式より も高品質膜であり、しかも生産性良く製膜することができる。 次に、 高周波電源 1 2からの高周波出力を停止し、 同時にマイク 口波発生ュニッ ト 9からのマイクロ波出力も停止する。 真空バルブ 1 6, 1 4を閉じて原料ガスの供給を停止する。 この後、 真空バル プ 2 1 を開き、 真空チャンバ 2内の炭化水素ガスを真空ポンプ 2 2 によって排気する。 その後、 真空バルブ 2 1 を閉じ、 真空ポンプ 2 2 を停止する。 次のプラスチック容器を製膜する場合には、 真空ポ ンプ 2 2は停止させずに運転状態とする。 このときの真空チャンバ 2内の圧力は 5 X 1 0 3〜 5 X 1 0—2Torr である。 この後、 真空 バルブ (不図示) を開いて真空チャンバ 2内を大気開放し、 前述し た製膜方法を繰り返すことにより、 次のプラスチック容器の外壁面 に D L C膜が製膜される。
なお、 本実施形態では間仕切板の無いプラスチック容器を用いて 説明したが、 図 2 ( a ) ( b ) に示した複数の内容物を独立に収容 可能とするための間仕切板を備えたプラスチック容器を用いても良 い。 この場合には、 例えば図 3 ( a ) ( b ) に示した電極構造を有 する高周波バイアス電極を用いる。
(第 2の実施形態 : プラスチック容器の内壁面へ D L C膜をコ一テ ィ ングする場合)
実施の一形態を図 5 に基いて説明する。 本発明に係る D L C膜コ 一ティ ングプラスチック容器の製造装置 2 0 0 は、 プラスチック容 器 3 1の外壁面の近傍に位置するようにプラスチック容器 3 1 を収 納する真空室を兼ねた外部電極 3 2 と、 外部電極 3 2 に対して絶縁 状態で且つ接地するように、 プラスチック容器 3 1 の開口部に挿入 したガス導入パイプを兼ねた内部電極 3 3 と、 外部電極 3 2内にマ イク口波を導入することにより、 プラスチック容器 3 1内で原料ガ ス系プラズマを発生させるマイクロ波供給手段 3 4と、 プラスチッ ク容器 3 1 の内壁面に自己バイアス電圧を発生させるように外部電 極 3 2 に接続した高周波出力供給手段 5 3 と、 プラスチック容器 3 1 内に原料ガスを導入する原料ガス供給手段 4 3 とを具備する。 プラスチック容器 3 1 は、 第 1 の実施形態で説明したものと同様 の形状 · 材質である。
外部電極 3 2は、 プラスチック容器 3 1 の外壁面の近傍に位置す るようにプラスチック容器 3 1 を収納する。 すなわち、 プラスチッ ク容器 3 1 の外形と外部電極 3 2 の内部形状は相似形状である。 プ ラスチック容器 3 1 の外壁面全体に渡って接していることが好まし いが、 外壁面と外部電極 3 2の内面が局所的に離れていない限り離 隔していても良い。 また、 外部電極 3 2は真空室を兼ねるので密封 性を有する。
外部電極 3 2は、 真空室であるとともに、 内部電極 3 3 と対とな つて、 電極を形成する。 また、 マイクロ波供給手段 3 4より、 外部 電極 3 2内にマイクロ波を導入するため、 かつマイクロ波導入時に チヤンバを減圧とするために、 マイク口波供給手段 3 4と外部電極 3 2 との接続箇所には窓 4 4を設ける。 窓 4 4の材質は石英ガラス であることが好ましい。 なお、 外部電極 3 2には、 プラスチック容 器 1 を出し入れ可能とする開閉機構 (不図示) が備わっている。 内部電極 3 3は、 外部電極 3 2に対して絶縁状態で且つ接地する ように、 プラスチック容器 3 1の開口部に揷入される。 内部電極の 構造は、 例えばパイプ形状であり、 原料ガス導入パイプを兼ねる。 内部電極 3 3の開口部に揷入された側の端部から、 原料ガスが吹出 す。 内部電極 3 3の長さは、 プラスチック容器 3 1 の内壁面に D L C膜が水分 · ガスバリァの観点から均一に製膜されるように適宜調 整される。
絶縁体 4 5は、 内部電極 3 3 と外部電極 3 2 とを絶縁するための ものである。 この機能を果たす限り、 形状及び材質はいずれでも良 い
マイクロ波供給手段 3 4は、 第 1の実施形態で説明したものと同 様である。 高周波出力供給手段 5 3は、 外部電極 3 2に接続され、 外部電極 に高周波出力を供給する点、 及びプラスチック容器 3 1 の内壁面に 自己バイアス電圧を発生させるように設置する点は第 1 の実施形態 と異なるが、 インピ一ダンス整合器 5 2及び高周波電源 5 1等の配 置は第 1 の実施形態で説明したものと同様である。
原料ガス供給手段 4 3は、 プラスチック容器 3 1 に挿入された内 部電極 3 3の一端 (供給口) の他端に接続される。 内部電極は、 管 状であり、 その先端に原料ガス供給口 (不図示) が設けてあり、 原 料ガス供給口から原料ガスが吹出す。 原料ガス供給手段 4 3 におけ る構成は、 第 1の実施形態で説明した構成と同様である。
原料ガスは、 第 1の実施形態で説明した通りである。
外部電極 3 2内の空間は配管 4 6の一方側に接続されており、 配 管 4 6の他方側は真空バルブ 4 7を介して真空ポンプ 4 8 に接続さ れている。 この真空ポンプ 4 8は排気側に接続されている。
第 2実施形態では、 外部電極 3 2全体をシールドボックス 4 9で 覆う。 高周波が外部に漏洩することを防止するためである。
本発明は上記実施の形態に限定されず、 種々変更して実施するこ とが可能である。 例えば、 本実施形態ではプラスチック容器一個用 装置にしたがって説明したが、 これらのユニッ トを複数設けること で複数のプラスチック容器を同時にコーティ ングすることが出来る 製膜装置とすることもできる。
本実施の形態では、 内壁面に薄膜を製膜する容器として食品容器 や飲料用容器を例示できるが、 用途制限されない。
本実施の形態では、 C V D製膜装置で製膜する薄膜として D L C 膜又は S i含有 D L C膜を挙げているが、 容器内に他の薄膜を製膜 する際に上記製膜装置を用いることも可能である点は第 1 の実施形 態で説明したことと同様である。
第 1実施形態では、 高周波バイアス電極の対向電極として真空チ ヤンバが機能し、 第 2実施形態では、 真空チャンバを兼ねる外部電 極の対向電極として内部電極が機能しているが、 これらの対向電極 は例示であり、 別途に、 接地した対向電極等を用いても良い。 本発 明は、 対向電極をどこにするかによつて制限されることはない。 次に、 図 5 に示す D L C膜コーティ ングプラスチック容器の製造 装置 2 0 0 を用いて容器の内壁面に D L C膜を製膜する方法につい て説明する。
まず、 真空バルブ (不図示) を開いて外部電極 3 2内を大気開放 する。 これにより空気が入り、 外部電極 3 2内が大気圧にされる。 次に、 外部電極 3 2 の開閉機構 (不図示) により、 外部電極を開き、 プラスチック容器 3 1 をその底部が石英窓 4 4 と接する方向に外部 電極内に収容して、 設置する。 このとき、 外部電極 3 2の内面とプ ラスチック容器 3 1の外壁面がほぼ接した状態となる。 次に外部電 極 3 2 の開閉機構 (不図示) により、 外部電極を閉じて密閉する。 内部電極 3 3はプラスチック容器 3 2の開口部を通して挿入された 状態となる。
この後、 真空バルブ (不図示) を閉じた後、 真空バルブ 4 7 を開 き、 真空ポンプ 4 8 によって排気する。 これにより、 プラスチック 容器 3 1 内が配管 4 6 を通して排気され、 プラスチック容器 3 1内 が減圧となる。 このときのプラスチック容器 3 1内の圧力は 5 X 1 0一3〜 5 X 1 0— 2 Torrである。
次に真空バルブ 4 0 を開き、 原料ガス供給源 5 0 において炭化水 素ガスを発生させ、 この炭化水素ガスを配管内に導入し、 流量計 4 1 によって流量制御された炭化水素ガスが真空バルブ 4 2 を経て、 内部電極 3 3の供給口 (内部電極 3 3先端部の口部) からプラスチ ック容器 3 1の中へ吹き出す。 これにより、 炭化水素ガスがプラス チック容器 3 1内に導入される。 そして、 プラスチック容器 3 1内 は、 制御されたガス流量と排気能力のバランスによって、 DLC 製 膜に適した圧力(例えば 0 . 0 5〜 0 . 5 0 Torr)に保たれる。 この後、 プラスチック容器 3 1内にマイクロ波供給手段 3 4によ つて、 マイクロ波 (例えば、 例えば、 2 . 4 5 G H z ) 5 0〜; L 0 0 0 Wを供給する。 この出力値は例示であり、 外部電極や容器の大 きさ等によって調整する。 チャンバ内に効率良く出力が供給される ようにインピーダンスが調整される。 マイクロ波の供給によりブラ スチック容器 3 1内に原料ガス系のプラズマが発生する。 プラズマ の密度は、 1 0 1 1〜: L 0 1 2 c m— 3とすることができる。
前記マイクロ波を供給すると同時或いは殆ど同時に、 外部電極 3 2 にインピーダンス整合器 5 2 を介して高周波電源 5 1から高周波 出力(例えば 1 3 . 5 6 MHz) 1 0〜 1 0 0 0 を供給する。 このと きィンピーダンス整合器 5 2は、 内部電極 3 3 と外部電極 3 2のィ ンピーダンスに、 インダクタンス L、 キャパシタンス Cによって合 わせている。 高周波の供給により、 プラスチック容器 3 1 の内壁面 に自己バイアス電圧が発生する。 マイクロ波によって発生した原料 ガス系プラズマのうち、 プラスに帯電したイオンが外部電極 3 2側 に引き付けられる。 これにより、 プラスに帯電したイオンがプラス チック容器 3 1の内壁面に衝突し、 D L C膜が製膜される。 このと きの製膜時間は数秒程度と短いものとなる。 なお、 上記の高周波出 力値は例示であり、 真空チャンバや容器の大きさ等によって調整す るが、 特に自己バイアスを調整する目的で変える。 この調整は、 容 器に応じた、所望の緻密性の D L C膜となるようにするためである。
第 2の実施形態においても第 1の実施形態と同様にマイクロ波の 供給量と高周波出力はそれぞれ独立に制御する。 第 2の実施形態に おいてもマイクロ波で発生させたプラズマによって生ずるイオンを 高周波出力に起因する自己バイアスによってプラスチック容器の内 壁面に強制的に引付けて D L C膜を製膜するメカニズムといえ、 従 来の高周波容量結合式放電方式或いはマイクロ波放電方式の単独方 式とは異なるものである。また、本発明で得られた D L C膜は水分 · ガスバリア性の観点から上記単独方式よりも高品質膜であり、 しか も生産性良く製膜することができる。
次に、 高周波電源 5 1からの高周波出力を停止し、 同時にマイク 口波発生ュニッ ト 3 9からのマイクロ波出力も停止する。 真空バル プ 4 0, 4 2を閉じて原料ガスの供給を停止する。 この後、 真空バ ルブ 4 7 を開き、 プラスチック容器 3 1 内の炭化水素ガスを真空ポ ンプ 4 8によって排気する。 その後、 真空バルブ 4 7 を閉じ、 真空 ポンプ 4 8 を停止する。次のプラスチック容器を製膜する場合には、 真空ポンプ 4 8は停止させずに運転状態とする。 このときの外部電 極 3 2内の圧力は 5 X 1 0 〜 5 X 1 0 2Torr である。 この後、 真空バルブ (不図示) を開いて外部電極 3 2内を大気開放し、 前述 した製膜方法を繰り返すことにより、 次のプラスチック容器の内壁 面に D L C膜が製膜される。
[実施例]
(プラスチック容器外壁面への製膜)
(実施例 1 )
第 1 の実施形態で説明した図 1の製造装置を用いて、 プラスチッ ク容器の外壁面に D L C膜を製膜して評価を行った。
プラスチック容器は、 間仕切板を備えている容器 (図 2 ( a )、 容量 2 0 0 0 m l 、 1 0 c mX 2 0 c mX l 0 c mH、 樹脂厚み 2 mm、 表面積 8 0 0 c m2) を使用した。 このとき図 3 ( a ) に示 した電極構造の高周波バイアス電極を使用した。 ただし、 間仕切板 を備えていない容器であっても同様の結果を得た。
容器材質は、 P E T Gとした。 原料ガスはアセチレンを用いた。 真空チャンバ内の製膜圧力は 0. 1 0 Tor r、 原料ガス流量は 2 5 0 seem, 製膜時間は 2秒、 高周波出力は 5 0 0 W、 マイクロ波出力 は 5 0 0 Wとした。 表 1 にプラズマ C VDの条件を示した。
(実施例 2 )
高周波出力を 3 5 0 W、 マイクロ波出力は 6 0 0 Wとした以外は 実施例 1 と同様とし、 実施例 2 とした。
(実施例 3 )
高周波出力を 6 0 0 W、 マイクロ波出力は 2 5 0 Wとした以外は 実施例 1 と同様とし、 実施例 3 とした。 なお実施例 3は、 プラズマ を発生させるにおいて高周波出力が主、 マイクロ波出力が副となる 例であって、 高周波容量結合式放電方式のプラズマ密度が小さいと いう欠点を補うため、 マイクロ波を補助的に導入してプラズマ密度 を上げる条件である。
(実施例 4 )
容器材質を C O Cとした以外は実施例 1 と同様とし、 実施例 4 とし た。
(実施例 5 )
容器材質を P Pとした以外は実施例 1 と同様とし、実施例 5 とした。 (比較例 1 )
高周波出力を 0 W、 マイクロ波出力を 8 0 0 Wとした以外は実施例 1 と同搽とし、 比較例 1 とした。
(比較例 2 )
マイクロ波出力を 0 W、 高周波出力を 8 0 0 W、 原料ガス流量を 8 0 seem, 製膜時間を 6秒とした以外は実施例 1 と同様とし、 比較例 2 とした。
(比較例 3 )
P E T G製の容器に製膜を施さないものをコントロールとして比較 例 3 とした。
(比較例 4 )
C〇 C製の容器に製膜を施さないものをコントロールとして比較例 4とした。
(比較例 5 )
P P製の容器に製膜を施さないものをコントロ一ルとして比較例 5 とした。
【表 1】
Figure imgf000026_0001
実施例 1 5及び比較例 5の容器について、 次の評価を行な つた。
(l ) D L C膜の分布
T e n c h o l社 a l p h a— s t e p 5 0 0の触針式段差計で D L C膜の厚みを測定した。 容器の開口部下部、 胴部及び底部にお ける膜厚を各 3点測定し、 平均値を求めた。 膜厚分布を下記の式 1 で定義する。 最大膜厚又は最小膜厚は、 容器の開口部下部、 胴部及 び底部における平均膜厚から該当する膜厚とする。
【式 1】
膜厚分布 ] = (最大膜厚-最小膜厚) / (最小膜厚 +最大膜 厚) X 1 0 0
膜厚分布が、 0〜 4 %未満の場合を〇、 4 %〜 8 %未満の場合を △、 8 %以上の場合を Xとして D L C膜の分布について総合 価を した。
訂正された用紙 (繊1 (2 )容器の変形の有無、
目視により容器の変形があったものを X、 無かった場合を〇とし た。
(3 )製膜速度
(1 )における容器の開口部下部、 胴部及び底部における膜厚の平 均膜厚を製膜時間で除して、 平均製膜速度を算出した。
(4)酸素透過度
M o d e r n C o n t r o l社製 O x t r a nにて 2 2 °CX 6 0 % RHの条件にて測定した。 容器全体として内外における酸素透 過度 (外壁面を透過する酸素) を求めた。
( 5 ) 水分透過度
容器全体として内外における水分透過度 (内壁面を透過する水 分) を求めた。 容器の水分透過度としては、 容器各部屋に塩化カル シゥムを入れ、 ステンレス板で蓋を密封し、 4 0 °CX 9 0 % RHの 条件下においた。 時間経過するにつれ、 塩化カルシウムが吸湿し重 量が変化する。 その変化量を測定することににより水分透過度を評 価した。
評価結果を表 2に示す。
以下余白
【表 2】
Figure imgf000028_0001
実施例 1〜 5では、 容器外壁面に自己バイアス電圧が発生するた め、 自己バイアスのかからない比較例 1 と比較して、 膜厚分布は良 好である。
実施例 1では、 マイクロ波導入効果と高周波導入効果の双方があ つて水分 ·ガスバリア性が高く、 緻密な膜が得られ、 クラックも少 ないと考えられる。 ただし、 高周波出力が大きく、 エッチング効果 が現れてくるため、 製膜速度は実施例中の最速ではない。
実施例 2では、 マイクロ波による高密度のプラズマが形成され、 高周波導入による自己バイアス電圧が適度に発生したため、 水分 · ガスバリア性が最も優れ、 緻密な膜が得られ、 且つクラックも非常 に少ないと考えられる。 また、 エッチング効果も実施例 1ほど強く ないため、 製膜速度が大きい。
実施例 3では、 高周波によるプラズマの発生及び自己バイアスに よるイオン衝突が起こる状況下で、 マイクロ波を補助的にかけてプ ラズマの高密度化を図ったものである。 実施例 1 ほどではないが、
S¾きれ 用紙 (規則 91) 水分 ·ガスバリア性に優れ、 膜の緻密性が高く、 微細クラックも少 ないと考えられる。
実施例 4及び 5は容器の材質を変更したものであるが、 その影響 は特に受けず、 実施例 1 と同様の傾向が見られる。 _
比較例 1は、 マイクロ波のみを導入した場合であり、 この膜厚で は十分な水分 ·ガスパリァ性、 特に水分ガスバリァ性が得られなか つた。 イオン化した原料がプラスチック表面に引き寄せられること もなく、 イオン衝撃も生じないため、 膜の緻密性に欠けると考えら れる。 また製膜速度は速いが、 一定レベルの水分 · ガスバリア性を 確保できる膜厚は他の実施例と比較して大きいと考えられる。
比較例 2は高周波のみを導入した場合であり、 水分,ガスバリア 性は実施例と比較して劣る。 自己バイアスが発生しているので膜の 緻密性は高いものの、 容器の温度上昇が大きく微細クラックが多く 発生していると考えられる。 また膜厚が小さい。 プラズマ密度が低 いため、 製膜速度はかなり低い。 したがって、 生産性は低い。
以上から、 本実施例では高周波容量結合式放電方式とマイクロ波 放電方式を効果的に組み合わせて各方法の製膜メカニズムとは異な る、 高品質膜を生産性良く製膜する製造装置、 製造方法及び外壁面 に D L C膜をコーティ ングしたプラスチック容器を提供することが 出来た。
(プラスチック容器内壁面への製膜)
(実施例 6 )
第 2の実施形態で説明した図 5の製造装置を用いて、 プラスチッ ク容器の内壁面に D L C膜を製膜して評価を行った。
プラスチック容器は、 間仕切板を備えていない容器で飲料用ポト ル形状のもの (容量 5 0 0 m l 、 6 8 . 5 φ X 2 0 7 mmH、 樹脂厚 み 0 . 3 m m、 内表面積 4 0 0 c m 2 ) を使用した。
容器材質は、 P E Tとした。 原料ガスはアセチレンを用いた。 真空チャンバ内の製膜圧力は 0. 1 O Torr、 原料ガス流量は 5 0 seem, 製膜時間は 2秒、 高周波出力は 5 0 0 W、 マイクロ波出力は 5 0 0 Wとした。 表 3 にプラズマ C V Dの条件を示した。
(実施例 7 )
高周波出力を 3 5 0 W、 マイクロ波出力は 6 0 0 Wとした以外は 実施例 6 と同様とし、 実施例 7 とした。
(実施例 8 )
高周波出力を 6 0 0 W、 マイクロ波出力は 2 5 0 Wとした以外は 実施例 6 と同様とし、 実施例 8 とした。 なお実施例 8は、 プラズマ を発生させるにおいて高周波出力が主、 マイクロ波出力が副となる 例である。
(実施例 9 )
容器材質を C O Cとした以外は実施例 6 と同様とし、 実施例 9 と した。
(実施例 1 0 )
容器材質を P Pとした以外は実施例 6 と同様とし、 実施例 1 0 と した。 ,
(比較例 6 )
高周波出力を 0 W、 マイクロ波出力を 8 0 0 Wとした以外は実施 例 6 と同様とし、 比較例 6 とした。
(比較例 7 )
マイクロ波出力を 0 W、 高周波出力を 8 0 0 W、 原料ガス流量を 1 5 0 seem, 製膜時間を 6秒とした以外は実施例 6 と同様とし、 比較 例 7 とした。
(比較例 8 )
P E T製の容器に製膜を施さないものをコントロールとして比較例 8 とした。
(比較例 9 )
C O C製の容器に製膜を施さないものをコントロールとして比較例 9 とした。
(比較例 1 0 )
P P製の容器に製膜を施さないものをコント口一ルとして比較例 1 0 とした。
【表 3】
Figure imgf000031_0001
実施例 6 〜 1 0及び比較例 6 〜 1 0の容器について、 実施例 5及び比較例 1 〜 5の容器の場合と同様の評価を行なった。
評価結果を表 4に示した。
以下余白
【表 4】
Figure imgf000032_0001
容器内壁面に D L C膜を製膜した場合、 容器外壁面に D L C膜を 製膜した場合と同様の傾向が見られる。
すなわち、 実施例 6 〜 1 0では、 自己バイアスをかけるため、 自 己バイアスのかからない比較例 6 と比較して、 膜厚分布は良好であ る。
実施例 6では、 マイク口波導入効果と高周波導入効果の双方があ つて水分 ·ガスバリァ性が高く、 緻密な膜が得られ、 クラックも少 ないと考えられる。 ただし、 高周波出力が大きく、 エッチング効果 が現れてく るため、 製膜速度は実施例中で最高値ではない。
実施例 7では、 マイクロ波による高密度のプラズマが形成され、 高周波導入による自己バイアス電圧が適度に発生したため、 水分 · ガスバリア性が最も優れ、 緻密な膜が得られ、 且つクラックも非常 に少ないと考えられる。 また、 エッチング効果も実施例 6 ほど強く ないため、 製膜速度が大きい。
実施例 8では、 高周波によるプラズマの発生及び自己バイアスに 訂正された用紙 よるィオン衝突が起こる状況下で、 マイクロ波を補助的にかけてプ ラズマの高密度化を図ったものである。 実施例 6ほどではないが、 水分,ガスバリア性に優れ、 膜の緻密性が高く、 微細クラックも少 ないと考えられる。 '
実施例 9及び 1 0は容器の材質を変更したものであるが、 その影 響は特に受けず、 実施例 6 と同様の傾向が見られる。
比較例 6は、 マイクロ波のみを導入した場合であり、 この膜厚で は十分な水分 ·ガスバリァ性、 特に水分ガスバリァ性が得られなか つた。 イオン化した原料がプラスチック表面に引き寄せられること もなく、 イオン衝撃も生じないため、 膜の緻密性に欠けると考えら れる。 また製膜速度は速いが、 一定レベルの水分 · ガスバリア性を 確保できる膜厚は他の実施例と比較して大きいと考えられる。
比較例 7 は高周波のみを導入した場合であり、 水分 ·ガスバリア 性は実施例と比較してやや劣る。 自己バイアスが発生しているので 膜の緻密性は高いものの、 容器の温度上昇が大きく微細クラックが 多く発生していると考えられる。 また膜厚が小さい。 プラズマ密度 が低いため、 製膜速度はかなり'低い。 したがって、 生産性は低い。 以上より、 容器内壁面に D L C膜を製膜した場合においても、 高 周波容量結合式放電方式とマイクロ波放電方式を効果的に組み合わ せて各方法の製膜メカニズムとは異なる、 高品質膜を生産性良く製 膜する、 D L C膜をコーティ ングしたプラスチック容器の製造装置、 その容器、 及びその容器の製造方法を提供することが出来た。

Claims

請 求 の 範 囲
1 . プラスチック容器の外壁面に D L C (ダイヤモンドライク力 一ボン) 膜を製膜する装置において、
前記プラスチック容器を収納するための接地された真空チャンバ と、
前記プラスチック容器の内壁面と接するか又は該内壁面の近傍に 位置するように前記真空チヤンバ内に絶縁体を介して設置した高周 波バイアス電極と、
前記真空チャンバ内にマイクロ波を導入することにより、 該真空 チャンパ内に原料ガス系プラズマを発生させるマイクロ波供給手段 と、
前記プラスチック容器の外壁面に自己バイアス電圧が発生するよ うに該高周波バイアス電極に接続した高周波出力供給手段と、 前記真空チャンバ内に前記原料ガスを導入する原料ガス供給手段 と、
を具備することを特徴とする D L C膜コーティ ングプラスチック 容器の製造装置。
2 . 前記高周波バイアス電極は、 間仕切板を備えたプラスチック容 器の内壁面と接するか又は該内壁面の近傍に位置する電極構造に形 成したことを特徴とする請求項 1記載の D L C膜コーティ ングブラ スチック容器の製造装置。
3 .プラスチック容器の内壁面に D L C膜を製膜する装置において、 前記プラスチック容器の外壁面の近傍に位置するように該プラス チック容器を収納する真空室を兼ねた外部電極と、
該外部電極に対して絶縁状態で且つ接地するように、 前記プラス チック容器の開口部に揷入した内部電極と、
前記プラスチック容器内にマイク口波を導入することにより、 該 プラスチック容器内で原料ガス系プラズマを発生させるマイクロ波 供給手段と、
前記プラスチック容器の内壁面に自己バイアス電圧が発生するよ うに該外部電極に接続した高周波出力供給手段と、
前記プラスチック容器内に前記原料ガスを導入する原料ガス供給 手段と、
を具備することを特徴とする D L C膜コーティ ングプラスチック 容器の製造装置。
4 . プラスチック容器の外壁面に D L C膜を製膜する D L C膜コー ティ ングプラスチック容器の製造方法において、
アース電位の真空チャンバに前記プラスチック容器を収納し、 前 記真空チヤンバに して絶縁状態の高周波バイァス電極を前記ブラ スチック容器の内壁面と接するか又は該内壁面の近傍に位置するよ うにセッ トした後、
前記真空チャンバ内に原料ガスを供給し、
該真空チャンバ内にマイクロ波を供給して該真空チャンバ内に前 記原料ガス系プラズマを発生させると同時に、 前記高周波バイアス 電極に高周波出力を供給して前記プラスチック容器の外壁面に自己 バイアス電圧を発生させることにより、 前記プラスチック容器の外 壁面に D L C膜を製膜することを特徴とする D L C膜コ一ティ ング プラスチック容器の製造方法。
5 . 前記プラスチック容器は間仕切板を備えたプラスチック容器で あり、 前記高周波バイアス電極は該間仕切板を備えたプラスチック 容器の内壁面と接するか又は該内壁面の近傍に位置する電極構造で あることを特徴とする請求項 4記載の D L C膜コーティ ングプラス チック容器の製造方法。
6 . プラスチック容器の内壁面に D L C膜を製膜する D L C膜コー ティ ングプラスチック容器の製造方法において、
真空チャンバの内壁面と前記プラスチック容器の外壁面とがほぼ 接するように該真空チャンバ内に該プラスチック容器を収納し、 該 真空チャンバに対して絶縁状態で且つアース電位の内部電極を該プ ラスチック容器の開口部から揷入した後、
前記プラスチック容器内に原料ガスを供給し、
該プラスチック容器内にマイクロ波を供給して該プラスチック容 器内に原料ガス系プラズマを発生させると同時に前記真空チャンバ に高周波出力を供給して該プラスチック容器の内壁面に自己バイァ ス電圧を発生させる ことにより; 該プラスチック容器の内壁面に D L C膜を製膜することを特徴とする D L C膜コーティ ングプラスチ ック容器の製造方法。
7 . 間仕切板を備えたプラスチック容器の外壁面に、 水分 ' ガスバ リア性を有する D L C膜を製膜したことを特徴とする D L C膜コ一 ティ ングプラスチック容器。
PCT/JP2001/005471 2001-06-26 2001-06-26 Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient WO2003000559A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2001/005471 WO2003000559A1 (fr) 2001-06-26 2001-06-26 Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient
EP01941260A EP1400456A1 (en) 2001-06-26 2001-06-26 MANUFACTURING DEVICE FOR DLC FILM COATED PLASTIC CONTAINER; DLC FILM COATED PLASTIC CONTAINER, AND METHOD OF MANUFACTURING THE DLC FILM COATED PLASTIC CONTAINER
US10/478,904 US20040146667A1 (en) 2001-06-26 2001-06-26 Manufacturing device for dlc film coated plastic container, dlc film coated plastic container, and method of manufacturing the dlc film coated plastic container
CNA018234119A CN1522215A (zh) 2001-06-26 2001-06-26 用于制造涂有dlc膜的塑料容器的装置、涂有dlc膜的塑料容器及其制造方法
JP2003506774A JPWO2003000559A1 (ja) 2001-06-26 2001-06-26 Dlc膜コーティングプラスチック容器の製造装置、dlc膜コーティングプラスチック容器及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005471 WO2003000559A1 (fr) 2001-06-26 2001-06-26 Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient

Publications (1)

Publication Number Publication Date
WO2003000559A1 true WO2003000559A1 (fr) 2003-01-03

Family

ID=11737484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005471 WO2003000559A1 (fr) 2001-06-26 2001-06-26 Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient

Country Status (5)

Country Link
US (1) US20040146667A1 (ja)
EP (1) EP1400456A1 (ja)
JP (1) JPWO2003000559A1 (ja)
CN (1) CN1522215A (ja)
WO (1) WO2003000559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080360A (ja) * 2004-09-10 2006-03-23 Toppan Printing Co Ltd メンブレンマスク及びその製造方法
JP2008152940A (ja) * 2006-12-14 2008-07-03 Toppan Printing Co Ltd マイクロ波プラズマ発生装置及びプラズマアシスト蒸着装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1922435A1 (en) * 2005-09-09 2008-05-21 Sidel Barrier layer
KR101660557B1 (ko) * 2009-02-18 2016-09-27 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 성형 물품의 내부 표면 상에 보호 코팅으로서 다이아몬드상 카본을 증착하는 방법
CN102776483A (zh) * 2011-05-09 2012-11-14 无锡尚德太阳能电力有限公司 等离子体辅助气相传输沉积装置及方法
US10074524B2 (en) * 2012-03-26 2018-09-11 Tokyo Electron Limited Plasma processing apparatus and high frequency generator
JP6427478B2 (ja) * 2015-11-04 2018-11-21 学校法人慶應義塾 薄膜積層フィルム、その製造方法及びその製造装置
WO2018197595A1 (en) * 2017-04-28 2018-11-01 Tetra Laval Holdings & Finance S.A. Barrier film
CN109402612B (zh) * 2018-11-21 2020-12-01 哈尔滨工业大学 利用自源自偏压空心阴极放电法沉积dlc薄膜的装置及基于该装置沉积dlc薄膜的方法
CN109887817A (zh) * 2019-04-03 2019-06-14 郭盘林 一种静电多通路的束流偏转装置
CN115613004A (zh) * 2021-07-12 2023-01-17 北京印刷学院 内壁镀膜的塑料管及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329879A (ja) * 1991-04-30 1992-11-18 Shimadzu Corp ダイヤモンド状カーボン膜形成方法
JPH0853117A (ja) * 1994-08-11 1996-02-27 Kirin Brewery Co Ltd 炭素膜コーティングプラスチック容器の製造装置および製造方法
JPH11106920A (ja) * 1997-10-08 1999-04-20 Nissin Electric Co Ltd 容器及びその製造方法
JPH11246974A (ja) * 1998-03-05 1999-09-14 Nissin Electric Co Ltd プラズマcvd法、プラズマcvd装置及び電極
JP2000511478A (ja) * 1996-05-23 2000-09-05 ペプシコ,インコーポレイテッド. 隔壁を備えたボトルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma
US5951887A (en) * 1996-03-28 1999-09-14 Sumitomo Metal Industries, Ltd. Plasma processing apparatus and plasma processing method
DE19634795C2 (de) * 1996-08-29 1999-11-04 Schott Glas Plasma-CVD-Anlage mit einem Array von Mikrowellen-Plasmaelektroden und Plasma-CVD-Verfahren
JP4595276B2 (ja) * 2000-12-25 2010-12-08 東洋製罐株式会社 マイクロ波プラズマ処理方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329879A (ja) * 1991-04-30 1992-11-18 Shimadzu Corp ダイヤモンド状カーボン膜形成方法
JPH0853117A (ja) * 1994-08-11 1996-02-27 Kirin Brewery Co Ltd 炭素膜コーティングプラスチック容器の製造装置および製造方法
JP2000511478A (ja) * 1996-05-23 2000-09-05 ペプシコ,インコーポレイテッド. 隔壁を備えたボトルの製造方法
JPH11106920A (ja) * 1997-10-08 1999-04-20 Nissin Electric Co Ltd 容器及びその製造方法
JPH11246974A (ja) * 1998-03-05 1999-09-14 Nissin Electric Co Ltd プラズマcvd法、プラズマcvd装置及び電極

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080360A (ja) * 2004-09-10 2006-03-23 Toppan Printing Co Ltd メンブレンマスク及びその製造方法
JP2008152940A (ja) * 2006-12-14 2008-07-03 Toppan Printing Co Ltd マイクロ波プラズマ発生装置及びプラズマアシスト蒸着装置

Also Published As

Publication number Publication date
EP1400456A1 (en) 2004-03-24
US20040146667A1 (en) 2004-07-29
CN1522215A (zh) 2004-08-18
JPWO2003000559A1 (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
JP3698887B2 (ja) ダイヤモンド状炭素膜の製造装置
AU781825B2 (en) Method of treatment with a microwave plasma
JP4774635B2 (ja) 3次元中空容器への薄膜成膜装置及びそれを用いた薄膜成膜方法
US20090148633A1 (en) Vapor Deposited Film by Plasma Cvd Method
WO2003053801A1 (fr) Systeme de formation de revetements de carbone sur la surface interieur de recipients de plastique et procede de production de recipients de plastique a revetement interieur de carbone
EP1493839A1 (en) Plasma cvd film forming apparatus and method for manufacturing cvd film coating plastic container
WO2003000559A1 (fr) Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient
US20030049468A1 (en) Cascade arc plasma and abrasion resistant coatings made therefrom
JP3993971B2 (ja) ガスバリア被覆層を有するプラスチック製容器及びその製法
JP4132982B2 (ja) Dlc膜コーティングプラスチック容器の製造装置
JP4664658B2 (ja) プラズマcvd成膜装置及びガスバリア性を有するプラスチック容器の製造方法
WO2003000558A1 (fr) Contenant en plastique a cloisons de separation et caracteristique d'isolation contre l'humidite et les gaz, dispositif et procede de fabrication dudit contenant en plastique
WO2005035825A1 (ja) Cvd成膜装置及びcvd膜コーティングプラスチック容器の製造方法
JP4241050B2 (ja) ガスバリア性合成樹脂製容器及びその製造装置並びに物品入りガスバリア性合成樹脂製容器
JP2001335947A (ja) Cvd成膜装置及びcvd成膜方法
WO2005035826A1 (ja) プラズマcvd成膜装置
JP4854983B2 (ja) プラズマcvd成膜装置及びガスバリア性を有するプラスチック容器の製造方法
JP2002212728A (ja) ダイヤモンドライクカーボン膜の製膜装置及び製膜方法
JP5233333B2 (ja) 中空容器成膜装置
JP2004218079A (ja) ガスバリア性薄膜コーティングプラスチック容器の製造装置及びその製造方法
JP4078326B2 (ja) 成膜装置及び方法
JP2005022727A (ja) プラスチック容器内面へのバリヤ膜形成装置および内面バリヤ膜被覆プラスチック容器の製造方法
JP2003328131A (ja) ガスバリアー性に優れたケイ素酸化物膜及び包装体
JP3979031B2 (ja) ケイ素酸化物被膜
JP2003138379A (ja) 成膜装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003506774

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10478904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001941260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018234119

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001941260

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001941260

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载