+

WO2003080237A1 - Procede de regeneration d'un adsorbant par le rechauffement de celui-ci - Google Patents

Procede de regeneration d'un adsorbant par le rechauffement de celui-ci Download PDF

Info

Publication number
WO2003080237A1
WO2003080237A1 PCT/JP2003/003842 JP0303842W WO03080237A1 WO 2003080237 A1 WO2003080237 A1 WO 2003080237A1 JP 0303842 W JP0303842 W JP 0303842W WO 03080237 A1 WO03080237 A1 WO 03080237A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
magnetic material
heating
substance
adsorbed
Prior art date
Application number
PCT/JP2003/003842
Other languages
English (en)
French (fr)
Inventor
Satoru Kobayashi
Nobuyuki Kikukawa
Masami Sugasawa
Itsuo Yamaura
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to KR10-2004-7015121A priority Critical patent/KR20040104549A/ko
Priority to JP2003578055A priority patent/JPWO2003080237A1/ja
Priority to AU2003227275A priority patent/AU2003227275A1/en
Priority to EP20030715519 priority patent/EP1491256A1/en
Priority to US10/508,778 priority patent/US20050184062A1/en
Publication of WO2003080237A1 publication Critical patent/WO2003080237A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling

Definitions

  • the present invention relates to a method for regenerating a used adsorbent by heating, which contains an adsorbent, and an adsorbent.
  • Granular or fibrous activated carbon, silica gel, alumina, zeolite and the like are known as adsorbents. These adsorbents are used to adsorb adsorbing substances such as organic substances, but after the adsorption treatment, the adsorbent heats it and desorbs the adsorbed substances adsorbed on it This will require regeneration.
  • a method of heating and regenerating an adsorbent containing an adsorbent a method of bringing the adsorbent into contact with steam at 105 to 150 ° C is generally adopted.
  • the desorbed substance from the adsorbent is a mixture with steam
  • the mixture was cooled and liquefied in order to recover the desorbed substance, and the desorbed substance was generated by steam condensation.
  • the method of separation from water is performed.
  • An object of the present invention is to provide a method for heating and regenerating an adsorbent containing an adsorbent, which method can easily and efficiently perform the heat regeneration, and an adsorbent. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
  • the adsorbent containing the adsorbed substance has a Curie point of 50 to 350 °.
  • a method for heating and regenerating an adsorbent comprising irradiating a microwave or applying a high frequency in the presence of the magnetic substance C to generate heat in the magnetic substance and heating the adsorbent by the generated heat. Provided.
  • an adsorbent comprising an adsorbent and a magnetic material, wherein the magnetic material has a Curie point of 50 to 350 ° C. .
  • FIG. 1 is a diagram showing a time change of a temperature when a magnetic material is irradiated with a microwave
  • FIG. 2 is a graph showing a relationship between the temperature and the irradiation power when the magnetic material is irradiated with a microwave.
  • the present invention provides a method for heating an adsorbent containing an adsorbent to desorb the adsorbate from the adsorbent and regenerating the adsorbent, wherein the adsorbent containing the adsorbent contains a magnetic material in the presence of a magnetic substance.
  • the magnetic material is heated by irradiating a microphone mouth wave or applying a high frequency, thereby heating the adsorbent.
  • the present inventors have conducted various studies on a method of heating and regenerating an adsorbent containing an adsorbent substance, and found that the adsorbent was irradiated with microwaves or a high frequency was applied in the presence of a magnetic substance. It has been found that when the magnetic material is heated (hereinafter also referred to as irradiation with microwaves or the like) and the adsorbent is heated using the heat generated, the adsorbent can be easily and efficiently regenerated.
  • FIG. 1 shows a temperature change of the magnetic material when a magnetic material having a Curie point at 140 ° C. is irradiated with microwaves at 200 W.
  • the temperature of the magnetic material rises rapidly due to micro irradiation. , And is kept at a constant temperature (near one Curie point).
  • the present inventors varied the microwave power (watts) of the heat generated by the microwave irradiation, as shown in FIG.
  • the temperature of the magnetic material did not change significantly, and it was confirmed that the temperature of the magnetic material did not rise above one point of the Curie of the magnetic material.
  • the fact that the temperature of the magnetic material does not rise to one or more Curie points is due to the fact that the magnetic material loses magnetism and does not generate heat above the Curie point.
  • the heat generation behavior of the magnetic material by microwave irradiation described above indicates that it is very suitable as a method for heating an adsorbent containing an adsorbent.
  • the fact that the temperature of the magnetic body does not rise to one point or more of the Curie indicates that the heating operation can be safely performed.
  • the fact that the rate of temperature rise of the magnetic material when irradiated with the microwave is high indicates that the adsorbent can be efficiently heated without taking much time to heat the adsorbent.
  • the magnetic material can be heated at a heating rate of usually 20 to 200 ° CZ.
  • the adsorbent-filled layer is evenly and uniformly and quickly. Further, it can be heated to a predetermined temperature (one point of Curie) with energy efficiency.
  • the heat generation temperature is a constant temperature (near one point of Curie) without particular dependence on the strength of the microwaves or the like. Therefore, when the adsorbent or the adsorbent-packed layer in which the magnetic material is dispersed is heated by irradiating microwaves or the like, a constant temperature (near one point of Curie) is obtained regardless of whether the intensity of the microwaves is weak or strong. Therefore, even with irradiation of microwaves or the like from one direction, the entire adsorbent packed layer can be uniformly heated to a predetermined temperature (near one Curie point).
  • adsorbent used in the present invention various conventionally known adsorbents are used. Such adsorbents include activated carbon, silica gel, alumina, magnesia, calcite, silica alimina, zeolite, and the like.
  • the shape of the adsorbent is powdery fiber It can be in various shapes such as fiber or granule, and is not particularly limited.
  • the magnetic material used in the present invention one having a Curie point of 50 to 350 ° C., preferably 100 to 200 ° C. is used.
  • Such magnetic materials include soft magnetic ferrites (Curie single point: 100 to 350 ° C) such as Ukkel zinc ferrite, and garnet-based ferrites (Curie single point: 100 to 300 ° C) such as iturium iron garnet. C), alloys such as iron chrome (Curie one point at 50 to 350 ° C), and nickel alone such as nickel (Curie one point at more than 300 ° C) are included.
  • the adsorbent in the presence of a magnetic substance.
  • the adsorbent is usually used in the form of a packed bed filled in a container, column, or the like.
  • the magnetic material is uniformly dispersed in the filling layer.
  • the magnetic material As a method for obtaining a packed bed in which the magnetic material is uniformly dispersed, there is a method in which, when the adsorbent is filled in a container or a column, the magnetic material is uniformly mixed and dispersed in the adsorbent and the mixture is filled.
  • the shape of the magnetic material may be any shape as long as it is easily mixed with the adsorbent, and the magnetic material is used in the form of powder or granule depending on the shape of the adsorbent.
  • a preferable method is a method using a molded article comprising a mixture of an adsorbent and a magnetic substance, or a method using a magnetic substance contained in or carried on an adsorbent.
  • the ratio of the magnetic material is 0.05 to 50 volumes based on the total amount of the adsorbent (without the adsorbed substance) and the magnetic material. %, Preferably 0.1 to 20% by volume, more preferably 0.5 to 10% by volume.
  • a preferred adsorbent used in the present invention is one in which the adsorbent does not carry or contain a magnetic substance in advance. It is.
  • Such an adsorbent is a molded product obtained by molding a mixture of a powdery adsorbent and a powdery magnetic substance into a required shape.
  • a binder is used as a molding aid.
  • the binder may be any of those conventionally used, such as water, bentonite, water glass, and a polymer.
  • those made by a method of partially or wholly magnetizing the adsorbent at the stage of synthesizing the adsorbent those in which an ultrafine magnetic material is carried and adhered to the adsorbent, and Those having an adsorbent attached to the surface of the child are also preferable adsorbents.
  • the shape of the molded product can be various shapes such as a sphere, a column, and a cylinder.
  • Such an adsorbent supporting a molded product or a magnetic material contains a magnetic material therein, and thus generates heat when irradiated with a microwave or the like.
  • the ratio of the magnetic substance in the molded product or the adsorbent is 0.05 to 50% by volume, preferably 0.1 to 20% by volume, more preferably 0.5 to 10% by volume. It is better to set to a range.
  • the microwave used in the present invention has a wavelength of 10 MHz to 25 GHz, preferably in the ISM frequency band. Generally, microwaves of about 2.45 GHz are used. In the high frequency wave used in the present invention, the wavelength is 1 ⁇ to 10 MHz, preferably 101: 112 ⁇ 1 ⁇ 112.
  • a gas containing an adsorbent substance is passed through the adsorbent or the packed bed in which the magnetic material is dispersed, and the adsorbent is adsorbed on the adsorbent.
  • Adsorb substances first, in the adsorption step, a gas containing an adsorbent substance is passed through the adsorbent or the packed bed in which the magnetic material is dispersed, and the adsorbent is adsorbed on the adsorbent.
  • the filling layer is irradiated with microwaves or the like.
  • the f magnets present in the packed layer absorb the microwaves and generate heat, which heats the adsorbent.
  • the adsorbed substances contained in the adsorbent are desorbed and recovered.
  • the binding agent is an organic solvent
  • the gaseous organic solvent desorbed from the adsorbent in the desorption step is cooled and liquefied and recovered.
  • Adsorbed raw materials adsorbed by the adsorbent include volatile organic substances (for example, aromatic solvents such as benzene, toluene, xylene, alcohols, organic amines, ketones, aldehydes, etc.), and polar gases. (Sulfurous acid gas, carbon dioxide gas, nitrogen-containing gas, etc.).
  • a mixture of hydrophobic zeolite as an adsorbent and nickel-zinc ferrite (Curie single-point 140 ° C) as a magnetic material (content of nickel-zinc ferrite: 20 volumes) %) was press-molded (particle size: about lmm) and filled into a glass tube with a diameter of 8 mm to produce an adsorption column.
  • a helium containing 500 p of benzene as an adsorbent was passed through the adsorption column at a temperature of 25 ° C., and the benzene was adsorbed on the adsorption column.
  • a microwave (3W, wavelength: 2.45 GHz) was irradiated to the adsorption column while flowing helium.
  • the temperature of the adsorption column rises rapidly (heating rate: about 150 ° C / min), and the temperature rises to about 140 ° C, which is one point of the nickel zinc light's Curie point in one minute of microwave irradiation. Reached and stabilized at this temperature.
  • the benzene concentration in the helium flowing through the adsorption column rose immediately after irradiation with the microphone mouth wave, and all of the benzene adsorbed on the adsorbent was desorbed within 5 minutes after the start of microwave irradiation.
  • the helium containing the desorbed benzene was liquefied and recovered by cooling the helium contained in the helium.
  • the adsorbent heating and regeneration method of the present invention it is not necessary to use steam, so that the adsorbed substance can be desorbed with high thermal efficiency.
  • the equipment is compact, the running cost is greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

明 細 書
吸着剤の加熱再生方法及び吸着剤 技術分野
本発明は、 吸着物質を含有する使用済み吸着剤の加熱再生方法及び吸着剤に関 するものである。 背景技術
吸着剤としては、 粒状や繊維状の活性炭や、 シリカゲルやアルミナ、 ゼォライ ト等が知られている。 これらの吸着剤は、 有機物質等の吸着性物質の吸着に用い られているが、 その吸着処理後には、 吸着剤は、 これを加熱して、 それに吸着さ れている吸着物質を脱離させることにより、 再生することが必要とされる。 吸着物質を含有する吸着剤の加熱再生方法としては、 吸着剤を 1 0 5〜 1 5 0 °Cのスチームと接触させる方法が一般に採用されている。 そして、 この方法の場 合、 吸着剤からの脱着物はスチームとの混合物であることから、 脱着物を回収す るために、 その混合物を冷却液化し、 そして脱着物をスチームの凝縮により生じ た水から分離させる方法が行なわれて 、る。
しかしながら、 このようなスチームを用いた脱着と再生は、 一般に装置が大掛 かりとなり、 蒸気管理を必要とする上、 スチームによる吸着剤の加熱は、 外部か らの伝熱によっているためにその加熱効率は余り高くなく、 さらに装置全体にお ける熱のロスを考慮に入れるとその加熱効率はかなり低く、 ランニングコストが 高くつくのが現状であった。 また、 脱着物の回収には、 脱着物を水から分離せね ばならないため、 公害防止のための厳しい水管理が必要であつた。
吸着剤からの吸着物質の加熱脱着を、 スチームを用いずに、 マイクロ波照射に よる方法も提案されているが、 この方法の場合、 吸着剤の温度コントロールや均 一加熱が困難である等の問題点を含み、 未だ満足すべき方法ではなかった。 本発明は、 吸着剤を含有する吸着剤の加熱再生方法において、 その加熱再生を 簡便かつ効率よく実施し得る方法及び吸着剤を提供することをその課題とする。 発明の開示
本発明者らは、 前記課題を解決すべく鋭意研究を重ねた結果、 本発明を完成す るに至った。
即ち、 本発明によれば、 吸着剤に吸着された吸着物質を加熱脱着させて該吸着 剤を再生する方法において、 該吸着物質を含有する吸着剤に、 キューリ一点が 5 0〜3 5 0 °Cの磁性体の存在下でマイクロ波を照射するか又は高周波を印加して 、 該磁性体を発熱させるとともに、 この発熱によって該吸着剤を加熱することを 特徴とする吸着剤の加熱再生方法が提供される。
また、 本発明によれば、 吸着剤と磁性体とからなる吸着剤であって、 該磁性体 のキューリ一点が 5 0〜3 5 0 °Cであることを特徴とする吸着剤が提供される。 図面の簡単な説明
第 1図は、 磁性体にマイクロ波を照射したときのその温度の時間変化を示す 図であり、 第 2図は、 磁性体にマイクロ波を照射したときのその温度と照射パヮ 一の関係を示す図である。 発明を実施するための最良の形態
本発明は、 吸着物質を含有する吸着剤を加熱して該吸着物質を該吸着剤から脱 離し、 該吸着剤を再生する方法において、 該吸着物質を含有する吸着剤に、 磁性 体の存在下でマイク口波を照射するか又は高周波を印加して該磁性体を発熱させ 、 これによつて該吸着剤を加熱することを特徴とする。
本発明者らは、 吸着物質を含有する吸着剤を加熱して再生する方法について種 々の研究を重ねたところ、 該吸着剤に磁性体の存在下でマイクロ波を照射するか 又は高周波を印加して (以下マイクロ波等を照射してともいう) 該磁性体を発熱 させ、 その発熱を利用して該吸着剤を加熱するときには、 吸着剤を簡便かつ効率 よく再生し得ることを見出した。
第 1図に、 キューリ一点が 1 4 0 °Cである磁性体にマイクロ波 2 0 0 Wを照射 したときの磁性体の温度変化を示す。
この第 1図からわかるように、 磁性体はマイクロ照射により迅速に温度上昇し 、 そして一定温度 (キューリ一点近く) に保持される。
本発明者らは、 マイクロ波照射による磁性体の発熱について、 第 2図に示すよ うに、 そのマイクロ波パワー (ワット) を種々変化させたところ、 1 0 0〜3 0 0ワットのマイク口波照射では、 その磁性体温度は大きく変化せず、 その磁性体 温度は、 その磁性体のキューリ一点以上には上昇しないことが確認された。 なお、 磁性体がそのキューリ一点以上の温度に上昇しないことは、 磁性体がキ ユーリー点以上では磁性を失ない、 発熱を生じないことによるものである。 以上に示したマイクロ波照射による磁性体の発熱挙動は、 吸着物質を含有する 吸着剤の加熱方法として非常に適していることを示している。
即ち、 磁性体の温度がそのキューリ一点以上に上昇しないことは、 加熱操作を 安全に実施し得ることを示す。 - また、 そのマイクロ波を照射したときの磁性体の昇温速度が大きいことは、 吸 着剤の加熱に時間がかからず吸着剤を効率よく加熱し得ることを示している。 磁性体のマイクロ波照射によると、 通常 2 0〜2 0 0 °CZ分の昇温速度で磁性 体を発熱させることができる。
本発明によれば、 磁性体を吸着剤あるいは吸着剤充填層中に均一に分散させ、 この状態でマイクロ波等照射により発熱させることにより、 その吸着剤充填層を むらなく、 均一にかつ迅速にさらにエネルギー効率よく所定温度 (キューリ一点 ) に加熱することができる。
磁性体をマイクロ波等照射により発熱させる場合、 前記したように、 その発熱 温度は、 マイクロ波等強度に格別依存することなく、 一定の温度 (キューリ一点 近く) となる。 従って、 磁性体を分散させた吸着剤あるいは吸着剤充填層をマイ クロ波等照射して加熱する場合、 そのマイクロ波等強度が弱い箇所でも強い箇所 でも一定の温度 (キューリ一点近く) となることから、 一方向からのマイクロ波 等照射であっても、 吸着剤充填層全体を所定温度 (キューリ一点近く) に均一に 加熱することができる。
本発明で用いる吸着剤としては、 従来公知の各種の吸着剤が用いられる。 この ような吸着剤には、 活性炭、 シリカゲル、 アルミナ、 マグネシア、 力ルシア、 シ リカーアリミナ、 ゼォライト等が包含される。 その吸着剤の形状は、 粉末状ゃ繊 維状、 顆粒状等の種々の形状であることができ、 特に制約されない。 本発明で用いる磁性体としては、 そのキューリ一点が 5 0〜3 5 0 °C、 好まし くは 1 0 0〜2 0 0 °Cであるものが用いられる。 このような磁性体には、 ュッケ ル亜鉛フェライトなどの軟磁性フェライト (キューリ一点 1 0 0〜3 5 0 °C) 、 イツトリゥム鉄ガーネットなどのガーネット系フェライト (キューリ一点 1 0 0 〜3 0 0 °C) 、 鉄クロムなどの合金 (キューリ一点 5 0〜3 5 0 °C) 、 ニッケノレ など金属単体 (キューリ一点 3 0 0 °C以上) 等が包含される。
本発明においては、 吸着剤に对し、 磁性体の存在下でマイクロ波等照射を行う が、 この場合、 吸着剤は、 通常、 容器やカラム等に充填された充填層の形態で用 いられる。 この充填層を均一加熱するには、 磁性体は、 その充填層に均一に分散 させることが好ましい。
磁性体が均一に分散した充填層を得る方法としては、 吸着剤を容器やカラムに 充填する際に、 その吸着剤に磁性体を均一に混合分散させ、 この混合物を充填す る方法がある。 吸着剤と磁性体を混合する場合、 磁性体の形状は、 その吸着剤と 均一混合しやすい形状であればよく、 吸着剤の形状に応じて、 粉末状や顆粒状等 の形状で用いられる。 また、 吸着剤と磁性体混合物からなる成形物や、 磁性体を 吸着剤に含有させたり、 担持させたものを用いる方法も好ましい方法である。 充填塔内に吸着剤と磁性体を混合充填する場合、 その磁性体の割合は、 吸着剤 (吸着物質を含有しない状態) と磁性体の合計量に対して、 0 . 0 5〜5 0容積 %、 好ましくは 0 . 1〜2 0容積%、 より好ましくは 0 . 5〜1 0容積%である 本発明で用いる好ましい吸着剤は、 あらかじめその吸着剤に磁性体を担持ない し含有させたものである。 このような吸着剤は、 粉末状の吸着剤と粉末状の磁性 体との混合物を、 所要形状に成形することによって得られる成形物である。 この 場合、 成形助剤としてバインダーが用いられるが、 このバインダーは従来慣用さ れているものであればよく、 例えば、 水、 ベントナイト、 水ガラス、 高分子物質 等が用いられる。
また、 吸着剤を合成する段階で部分的又は全体的に磁性を持たせる方法で作ら れたものや、 吸着剤に超微粒子状の磁性体を担持 ·付着させたものや、 磁性体粒 子表面に吸着剤を付着させたもの等も好ましい吸着剤である。
この成形物の形状は、 球形状、 円柱状、 円筒状等の各種の形状であることがで きる。
このような成形物や磁性体を担持させた吸着剤は、 その中に磁性体を含むこと から、 これにマイクロ波等を照射すると、 発熱を生じる。 本発明においては、 そ の成形物中や吸着剤中の磁性体の割合は、 0. 05〜 50容積%、 好ましくは 0 . 1〜20容積%、 より好ましくは 0. 5〜10容積%の範囲に設定するのがよ い。
本発明で用いるマイクロ波において、 その波長は 10MHz〜25GHz、 好 ましくは I SM周波数帯である。 一般的には、 約 2. 45 GHzのマイクロ波が 用いられる。 また、 本発明で用いる高周波において、 その波長は、 1ΚΗζ〜1 0MHz、 好ましくは 101:112〜1]^112でぁる。
本発明の方法を好ましく実施するには、 先ず、 吸着工程において、 磁性体を分 散させた吸着剤あるいは充填層に対して、 吸着性物質を含む気体を流通させて、 該吸着剤に吸着性物質を吸着させる。
次に、 脱着工程において、 その充填層にマイクロ波等を照射する。 充填層に存 在する磁性 f本は、 このマイクロ波等を吸収して発熱を生じ、 その発熱により吸着 剤は加熱される。 これにより、 吸着剤中に含有される吸着物質は脱着され、 回収 される。 p及着性物質が有機溶剤である場合、 脱着工程で吸着剤から脱着されたガ ス状の有機溶剤は、 冷却液化され、 回収される。
吸着剤に吸着される吸着 1·生物質には、 揮発性有機物質 (例えば、 ベンゼン、 ト ルェン、 キシレン等の芳香族系溶剤や、 アルコール、 有機ァミン、 ケトン、 アル デヒド等) や、 極性ガス (亜硫酸ガス、 炭酸ガス、 含窒素ガス等) がある。 実施例
次に本発明を実施例によりさらに詳細に説明する。
実施例 1
吸着剤としての疎水性ゼォライトと磁性体としてのニッケル亜鉛フエライト ( キューリ一点 140°C) の混合物 (ニッケル亜鉛フェライ トの含有量: 20容積 %) をプレス成型して (粒径約 lmm) l gを、 直径: 8mmのガラス管に充填 して、 吸着カラムを作製した。
次に、 この吸着カラムに、 吸着性物質としてベンゼン 500 p を含むヘリ ゥムを温度 25°Cで流通させて、 そのベンゼンを吸着カラムに吸着させた。 次に、 この吸着カラムに、 ヘリウムを流通させながら、 マイクロ波 (3ひ 0W 、 波長: 2. 45GHz) を照射した。 その結果、 吸着カラムは、 急速 (昇温速 度:約 150°C/分) に温度上昇し、 その温度はマイクロ波照射 1分間でニッケ ル亜鉛フヱライ トのキューリ一点である 140°C近辺に到達し、 この温度に一定 した。
吸着カラムを流通するヘリゥム中のベンゼン濃度は、 マイク口波照射直後から 一気に上昇し、 マイクロ波照射開始後 5分間でその吸着剤に吸着していたべンゼ ンは全量脱着された。 この脱着ベンゼンを含むヘリウムは、 これを冷却すること により、 そのヘリゥム中に含まれるベンゼンを液化回収した。 産業上の利用可能性
本発明による吸着剤の加熱再生方法によれば、 スチームを用いる必要がないこ とから、 高い熱効率で吸着物質を脱着させることができる。 しかも、 装置もコン パク トなものとなることから、 ランニングコストも大幅に低減化される。

Claims

請 求 の 範 囲
1 . 吸着剤に吸着された吸着物質を加熱脱着させて該吸着剤を再生する方法にお いて、 該吸着物質を含有する吸着剤に、 キューリ一点が 5 0〜3 5 0 °Cの磁性体 の存在下でマイクロ波を照射するか又は高周波を印加して、 該磁性体を発熱させ るとともに、 この発熱によつて該吸着剤を加熱することを特徴とする吸着剤の加 熱再生方法。
2 . 該吸着剤に該磁性体が分散されて含んでいることを特徴とする請求の範囲第 1項記載の方法。
3 . 該磁性体を含まない該吸着剤が充填層の形態に保持され、 該磁性体が該充填 層に分散されていることを特徴とする請求の範囲第 1項記載の方法。
4 . 吸着剤と磁性体とからなる吸着剤であって、 該磁性体のキューリ一点が 5 0 〜3 5 0 °Cであることを特徴とする吸着剤。
PCT/JP2003/003842 2002-03-27 2003-03-27 Procede de regeneration d'un adsorbant par le rechauffement de celui-ci WO2003080237A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR10-2004-7015121A KR20040104549A (ko) 2002-03-27 2003-03-27 흡착제의 가열 재생 방법 및 흡착제
JP2003578055A JPWO2003080237A1 (ja) 2002-03-27 2003-03-27 吸着剤の加熱再生方法及び吸着剤
AU2003227275A AU2003227275A1 (en) 2002-03-27 2003-03-27 Method for regenerating adsorbent by heating
EP20030715519 EP1491256A1 (en) 2002-03-27 2003-03-27 Method for regenerating adsorbent by heating
US10/508,778 US20050184062A1 (en) 2002-03-27 2003-03-27 Method for regenerating adsorbent by heating

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-88617 2002-03-27
JP2002088617 2002-03-27
JP2002-118405 2002-04-19
JP2002118405 2002-04-19

Publications (1)

Publication Number Publication Date
WO2003080237A1 true WO2003080237A1 (fr) 2003-10-02

Family

ID=28456282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003842 WO2003080237A1 (fr) 2002-03-27 2003-03-27 Procede de regeneration d'un adsorbant par le rechauffement de celui-ci

Country Status (6)

Country Link
US (1) US20050184062A1 (ja)
EP (1) EP1491256A1 (ja)
JP (1) JPWO2003080237A1 (ja)
KR (1) KR20040104549A (ja)
AU (1) AU2003227275A1 (ja)
WO (1) WO2003080237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187767A (ja) * 2004-12-10 2006-07-20 Nippon Steel Chem Co Ltd 揮発性有機化合物の処理方法
US7744824B2 (en) 2005-12-23 2010-06-29 Hamilton Sundstrand Corporation On-board fuel desulfurization unit
JP5064600B2 (ja) * 2009-05-08 2012-10-31 新日本製鐵株式会社 ガス中の二酸化炭素の回収方法及び装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9968881B2 (en) 2012-08-17 2018-05-15 Biokol Lilliestrâle & Co Kb Magnetic activated carbon and methods for preparing and regenerating such materials
CN112337425A (zh) * 2020-11-20 2021-02-09 天津工业大学 一种可快速再生的脱水分子筛及其制备方法
CN115382523B (zh) * 2022-08-31 2024-06-21 聊城鲁西双氧水新材料科技有限公司 一种利用微波技术回收氧化铝球及双氧水工作液的处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101229A (ja) * 1984-10-25 1986-05-20 Mitsubishi Heavy Ind Ltd 除湿装置
JPH07227420A (ja) * 1994-02-18 1995-08-29 Sharp Corp 脱臭素子及びその脱臭素子を用いた脱臭装置
DE19703068A1 (de) * 1997-01-29 1998-07-30 Dornier Gmbh Verfahren zur thermischen Regeneration eines dielektrischen Adsorbers
US6022399A (en) * 1997-06-27 2000-02-08 Daimler Chrysler Ag. Process for the adsorption of organic substances in the air
EP1018358A1 (en) * 1997-06-30 2000-07-12 Sanyo Electric Co., Ltd. Adsorbing device, method of deodorizing therewith, and method of supplying high-concentration oxygen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322394A (en) * 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101229A (ja) * 1984-10-25 1986-05-20 Mitsubishi Heavy Ind Ltd 除湿装置
JPH07227420A (ja) * 1994-02-18 1995-08-29 Sharp Corp 脱臭素子及びその脱臭素子を用いた脱臭装置
DE19703068A1 (de) * 1997-01-29 1998-07-30 Dornier Gmbh Verfahren zur thermischen Regeneration eines dielektrischen Adsorbers
US6022399A (en) * 1997-06-27 2000-02-08 Daimler Chrysler Ag. Process for the adsorption of organic substances in the air
EP1018358A1 (en) * 1997-06-30 2000-07-12 Sanyo Electric Co., Ltd. Adsorbing device, method of deodorizing therewith, and method of supplying high-concentration oxygen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187767A (ja) * 2004-12-10 2006-07-20 Nippon Steel Chem Co Ltd 揮発性有機化合物の処理方法
JP4704903B2 (ja) * 2004-12-10 2011-06-22 新日鐵化学株式会社 揮発性有機化合物の処理方法
US7744824B2 (en) 2005-12-23 2010-06-29 Hamilton Sundstrand Corporation On-board fuel desulfurization unit
US8466079B2 (en) 2005-12-23 2013-06-18 Hamilton Sundstrand Corporation On-board fuel desulfurization unit
JP5064600B2 (ja) * 2009-05-08 2012-10-31 新日本製鐵株式会社 ガス中の二酸化炭素の回収方法及び装置
US8500856B2 (en) 2009-05-08 2013-08-06 Nippon Steel & Sumitomo Metal Corporation Hybrid adsorbent method of capturing carbon dioxide in gas and apparatus for capturing carbon dioxide in gas

Also Published As

Publication number Publication date
JPWO2003080237A1 (ja) 2005-07-21
EP1491256A1 (en) 2004-12-29
AU2003227275A1 (en) 2003-10-08
US20050184062A1 (en) 2005-08-25
KR20040104549A (ko) 2004-12-10

Similar Documents

Publication Publication Date Title
US4322394A (en) Adsorbent regeneration and gas separation utilizing microwave heating
US5282886A (en) Gas adsorption and desorption method
JP5064600B2 (ja) ガス中の二酸化炭素の回収方法及び装置
WO2003080237A1 (fr) Procede de regeneration d'un adsorbant par le rechauffement de celui-ci
Ondon et al. Effect of microwave heating on the regeneration of modified activated carbons saturated with phenol
JP3044279B2 (ja) 簡易ガス吸着回収方法
JP4872060B2 (ja) 溶媒又はガスの回収方法
KR100708331B1 (ko) 휘발성탄화수소 회수용 흡착제 및 그 제조방법
KR20190086000A (ko) 산업용 가스들의 비극저온 분리를 위한 제올라이트 흡착제 재료, 제조 방법 및 용도
JPH11285632A (ja) オゾン吸着剤、オゾン吸着用成形体及びその製造方法
JP3629743B2 (ja) 活性炭の製造方法
JP2014014760A (ja) 揮発性有機化合物の濃縮回収方法及び装置
EP2767323B1 (en) System and method for collecting carbon dioxide utilizing dielectric heating
ATE527043T1 (de) Verfahren zur thermo-chromatographischen erwärmung von feststoffbetten
Schoukens et al. Enhancing Desorption Performance of a Compressible Hybrid Structured Adsorbent via Localized Magnetic Induction Heating
WO1979000251A1 (en) Adsorbent regeneration and gas separation utilizing dielectric heating
KR20070004227A (ko) 마이크로파를 이용한 voc 흡착회수장치 및 그 방법
CN113164913B (zh) 沸石附聚材料、制备方法和用于气体非低温分离的用途
JP2003170022A (ja) ガス処理方法及びガス処理装置
JP2010192849A (ja) 電磁波吸収体およびその加熱方法
JPH03193124A (ja) ゼオライトを含有したガス分離膜及び該膜を使用した装置
JPS60227831A (ja) ガス吸着剤
JPH1176812A (ja) 吸着剤及びそれを用いた有機化合物の吸着分離方法
CN116272876A (zh) 一种吸附污染气体中硫含量的活性炭吸附剂及其制备方法
JPH1179706A (ja) 高濃度酸素供給方法およびそれに用いる組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578055

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003715519

Country of ref document: EP

Ref document number: 1020047015121

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047015121

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003715519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10508778

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载