m 糸田 β 研磨装置及びこの研磨装置を用いた半導体デバイスの製造方法 技術分野 m Itoda β polishing apparatus and method for manufacturing semiconductor device using this polishing apparatus
本発明は、 シリコンウェハ等の被研磨物を平坦化する研磨装置に関し、 更 に詳しくは、 被研磨物の被研磨面にスラリーを供給しつつ化学的機械的に研 磨を行う研磨装置に関する。 また、 この研磨装置を半導体ウェハの表面の研 磨加工に用いた半導体デバイスの製造方法に関する。 背景技術 The present invention relates to a polishing apparatus for flattening an object to be polished such as a silicon wafer, and more particularly, to a polishing apparatus for performing chemical mechanical polishing while supplying a slurry to a surface to be polished of the object to be polished. The present invention also relates to a method for manufacturing a semiconductor device using the polishing apparatus for polishing a surface of a semiconductor wafer. Background art
近年、 I C構造の微細化 ·複雑化に伴って半導体基板に形成する多層配線 の層数は増加する傾向にあり、 各薄膜形成後に行う基板表面の平坦化はより 重要なものになってきている。 各薄膜形成後に行う表面平坦化の精度が悪く 凹凸が:^えると表面段差が大きくなつてしまい、 配線間の絶縁不良やショー ト等が発生する虞がある。 また、 リソグラフイエ程においては、 半導体基板 の表面に凹凸が多いとピンぼけが生じることがあり、 微細なパターンが形成 できなくなることもある。 In recent years, with the miniaturization and complexity of IC structures, the number of layers of multilayer wiring formed on semiconductor substrates has tended to increase, and planarization of the substrate surface after forming each thin film has become more important. . The accuracy of the surface flattening performed after the formation of each thin film is poor, and if unevenness is obtained, the surface step becomes large, and there is a possibility that insulation failure between wirings or short-circuit may occur. Further, in the lithographic process, if the surface of the semiconductor substrate has many irregularities, defocus may occur, and a fine pattern may not be formed.
従来、 半導体基板の表面を精度良く平坦化する技術として C Μ Ρ (Chemical Mechanical Polishing:化学的機械的研磨) 法が知られており、 この方法を実施する装置として C M P装置と呼ばれる装置が用いられている c この C M P装置は、 一般には、 シリカ粒子を含んだ研磨液 (スラリーと呼ば れる) を半導体基板の被研磨面に供給しながら、 研磨ヘッドに取り付けた研 磨パヅドを接触させて研磨する構成となっている。 Conventionally, a chemical mechanical polishing (CΜ) method has been known as a technique for precisely planarizing the surface of a semiconductor substrate, and an apparatus called a CMP apparatus is used as an apparatus for performing this method. C In general, this CMP apparatus performs polishing by contacting a polishing pad attached to a polishing head while supplying a polishing liquid (called slurry) containing silica particles to a surface to be polished of a semiconductor substrate. It has a configuration.
図 3はこのような従来の C M P装置の例を模式的に示すものである。 ここ
に示す C M P装置は、 研磨対象である半導体基板 9 1をほぼ水平に保持する 定盤 9 2と、 この定盤 9 2の上方に備えられて下面に研磨パッド 9 5が貼り 付けられた研磨へッド 9 3を有して構成される。 半導体基板 9 1を研磨する 際には、 半導体基板 9 1を保持した定盤 9 2を垂直軸まわりに回転させると ともに、 研磨へッド 9 3を垂直軸まわりに回転させて研磨パヅド 9 5を基板 9 1の上方より接触させる。 ここで、 研磨パヅド 9 5の直径は半導体基板 9 1の直径よりも小径に構成されており、 研磨へッド 9 3は半導体基板 9 1の 接触面と平行な方向 (水平方向) へ往復 (揺動) 移動することにより基板 9 1の表面を満遍なく研磨する。 なお、 この研磨中には、 スラリー槽内 9 6の スラリーをポンプ 9 7により吸い上げてスラリー供給管 9 8より研磨へヅド 9 3の内部に設けられたスラリ一供給管 9 4を介して研磨パッド 9 5の外部、 すなわち半導体基板 9 1の被研磨面上に供給される。 FIG. 3 schematically shows an example of such a conventional CMP apparatus. here The CMP apparatus shown in FIG. 1 has a surface plate 92 for holding a semiconductor substrate 91 to be polished substantially horizontally, and a polishing device provided above the surface plate 92 and having a polishing pad 95 adhered to a lower surface thereof. It has a head 93. When polishing the semiconductor substrate 91, the surface plate 92 holding the semiconductor substrate 91 is rotated about a vertical axis, and the polishing head 93 is rotated about the vertical axis to polish the polishing pad 95. From above the substrate 91. Here, the diameter of the polishing pad 95 is smaller than the diameter of the semiconductor substrate 91, and the polishing head 93 reciprocates in a direction (horizontal direction) parallel to the contact surface of the semiconductor substrate 91 (horizontal direction). (Swinging) The surface of the substrate 91 is evenly polished by moving. During this polishing, the slurry in the slurry tank 96 is sucked up by the pump 97 and polished from the slurry supply pipe 98 through the slurry supply pipe 94 provided inside the polishing head 93. It is supplied outside the pad 95, that is, on the surface to be polished of the semiconductor substrate 91.
更に、 このような半導体基板 9 1の研磨においては、 上記スラリーに目的 に応じた所要の添加液 (薬液) を添加する場合がある。 この添加液は基板表 面の平坦化を促進させるもの等が知られており、 スラリーに混ぜ合わせた状 態で半導体基板 9 1の被研磨面上に供給される。 添加液をスラリーに混ぜて 用いる場合には、 予めスラリー槽 9 6内においてスラリーと添加液とを混ぜ た混合液を作っておき、 これを上記スラリーのみを供給する場合と同様にし て半導体基板 9 1の被研磨面上に供給する。 Further, in such polishing of the semiconductor substrate 91, a necessary additive liquid (chemical solution) depending on the purpose may be added to the slurry. This additive is known to promote the flattening of the substrate surface, and is supplied onto the surface to be polished of the semiconductor substrate 91 in a state of being mixed with the slurry. When the additive liquid is mixed with the slurry, a mixed liquid in which the slurry and the additive liquid are mixed is prepared in advance in the slurry tank 96, and the mixed liquid is added to the semiconductor substrate 9 in the same manner as when only the slurry is supplied. Supply on the surface to be polished.
ところで、 上記のようにスラリーに添加液を混ぜて用いる場合、 添加液を 予めスラリーと混ぜ合わせておくと、 添加液の効果が十分に発揮されないこ とが知られている。 このためスラリーと添加液とは被研磨物の被研磨面上に 供給される直前に混合されることが好ましい。 しかしながら、 上述の従来の 研磨装置を用いる際にはスラリーと添加液とを予め混ぜ合わせておくほかは なく、このため添加液による効果を十分に得ることができない場合があつた。
発明の開示 By the way, when the additive liquid is mixed with the slurry as described above, it is known that if the additive liquid is mixed with the slurry in advance, the effect of the additive liquid is not sufficiently exhibited. For this reason, it is preferable that the slurry and the additive liquid are mixed immediately before being supplied onto the surface to be polished of the object to be polished. However, when the above-mentioned conventional polishing apparatus is used, there is no other way than to mix the slurry and the additive liquid in advance, and thus the effect of the additive liquid may not be sufficiently obtained. Disclosure of the invention
本発明はこのような問題に鑑みてなされたものであり、 スラリーと添加液 とを被研磨物の被研磨面上に供給する直前に混合することができ、 添加液に よる効果を十分に発揮させて基板の研磨精度を向上させることが可能な研磨 装置を提供することを目的とする。 The present invention has been made in view of such a problem, and the slurry and the additive liquid can be mixed immediately before being supplied onto the surface to be polished of the object to be polished, and the effect of the additive liquid is sufficiently exhibited. It is an object of the present invention to provide a polishing apparatus capable of improving the polishing accuracy of a substrate.
本発明はまた、 この研磨装置を半導体ウェハの表面の研磨加工に用いた半 導体デバイスの製造方法を提供することを目的としている。 Another object of the present invention is to provide a method for manufacturing a semiconductor device using the polishing apparatus for polishing a surface of a semiconductor wafer.
本発明に係る研磨装置は、 被研磨物を保持する定盤と、 この定盤に保持さ れた被研磨物の被研磨面と対向する面に研磨パッドが取り付けられた研磨へ ッドとを有し、 研磨パッドを被研磨物の被研磨面に接触させてこの被研磨面 の研磨を行う研磨装置において、 この研磨へッドにスラリーを供給するスラ リー供給機構と、 スラリーに添加される添加液を研磨へッドに供給する添加 液供給機構と、 研磨ヘッ ドの内部に設けられ、 スラリー供給機構から供給さ れたスラリーと添加液供機構から供給された添加液とを混合して研磨パッド の回転中心位置近傍に位置した開口より研磨パッドの外部に供給する混合液 供給部とを備える。 A polishing apparatus according to the present invention comprises: a platen for holding a workpiece; and a polishing head having a polishing pad attached to a surface of the workpiece held on the surface opposite to the surface to be polished. A polishing apparatus for polishing a surface to be polished by bringing a polishing pad into contact with the surface to be polished; a slurry supply mechanism for supplying slurry to the polishing head; An additive liquid supply mechanism for supplying the additive liquid to the polishing head; and a slurry provided inside the polishing head and mixing the slurry supplied from the slurry supply mechanism with the additive liquid supplied from the additive liquid supply mechanism. And a mixed liquid supply unit for supplying the mixture to the outside of the polishing pad from an opening located near the center of rotation of the polishing pad.
また、 本発明に係る研磨装置においては、 研磨ヘッド又は研磨ヘッドを回 転自在に保持する研磨へッド保持体のいずれか一方に固定された撹拌部材が 混合液供給部内に位置していることが好ましい。 また、 この場合、 撹拌部材 は突起状若しくは螺旋溝状の形状を有することが好ましい。 また、 混合液供 給部の少なくとも一部の内壁に突起状若しくは螺旋溝状の撹拌部材が設けら れていることが好ましい。 更に、 定盤は被研磨物を被研磨面が上方を向くよ うに保持し、 研磨パッドは被研磨物に上方より接触するようになっているこ とが好ましい。 In the polishing apparatus according to the present invention, the stirring member fixed to one of the polishing head and the polishing head holder that rotatably holds the polishing head is located in the mixed liquid supply section. Is preferred. In this case, it is preferable that the stirring member has a projection shape or a spiral groove shape. Further, it is preferable that at least a part of the inner wall of the mixed liquid supply section is provided with a protruding or spiral groove shaped stirring member. Further, it is preferable that the surface plate holds the object to be polished so that the surface to be polished faces upward, and the polishing pad comes into contact with the object to be polished from above.
また、 以上のようにして構成される研磨装置を半導体ウェハ (被研磨物) の表面の研磨加工に用いた半導体デバイス製造方法を構成する。 このような
PC蘭薦 150 Further, a semiconductor device manufacturing method using the polishing apparatus configured as described above for polishing a surface of a semiconductor wafer (object to be polished) is constituted. like this PC orchid recommendation 150
4 製造方法によれば、 高精度の半導体デバイスを高スループットかつ高い歩留 まりで製造することができるため、 低コストで良質の半導体デバイスを製造 することができる。 図面の簡単な説明 4 According to the manufacturing method, a high-precision semiconductor device can be manufactured with a high throughput and a high yield, so that a low-cost, high-quality semiconductor device can be manufactured. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る研磨装置の一実施形態である C M P装置の構成を模 式的に示す図である。 FIG. 1 is a view schematically showing a configuration of a CMP apparatus which is an embodiment of a polishing apparatus according to the present invention.
図 2は、 図 1に示す C M P装置の部分拡大断面図である。 FIG. 2 is a partially enlarged sectional view of the CMP device shown in FIG.
図 3は、 従来の C M P装置の一例を模式的に示す図である。 FIG. 3 is a diagram schematically showing an example of a conventional CMP device.
図 4は、 本発明に係る半導体デバイス製造方法の一例を示すフローチヤ一 トである。 発明を実施するための最良の形態 FIG. 4 is a flowchart showing an example of the semiconductor device manufacturing method according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の好ましい実施形態について説明する。 図 1 は、 本発明に係る研磨装置の一実施形態である C M P装置 1 0の構成を模式 的に示す図であり、 図 2はこの C M P装置 1 0を部分的に拡大して示す断面 図である。 この C M P装置 1 0は被研磨物である半導体基板 1をほぼ水平姿 勢に保持する定盤 2 0と、 この定盤 2 0に保持された半導体基板 1の被研磨 面 (ここでは上面) と対向する面に研磨パッド 3 6が取り付けられた研磨へ ヅド 3 0と、 この研磨ヘッド 3 0を垂直軸まわりで回転自在に保持する研磨 へッド保持体 4 0とを図示しないフレーム上に設置してなる装置本体、 及び 後に詳述するスラリー供給機構 5 0と添加液供給機構 6 0とを有して構成さ れている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view schematically showing a configuration of a CMP apparatus 10 which is an embodiment of a polishing apparatus according to the present invention, and FIG. 2 is a cross-sectional view showing the CMP apparatus 10 in a partially enlarged manner. is there. The CMP apparatus 10 includes a surface plate 20 for holding a semiconductor substrate 1 to be polished in a substantially horizontal posture, and a polishing surface (here, an upper surface) of the semiconductor substrate 1 held on the surface plate 20. A polishing head 30 having a polishing pad 36 attached to the opposing surface and a polishing head holder 40 for rotatably holding the polishing head 30 around a vertical axis are mounted on a frame (not shown). The apparatus includes an installed apparatus main body, and a slurry supply mechanism 50 and an additive liquid supply mechanism 60 described in detail later.
定盤 2 0はほぼ垂直に延びた回転支柱 2 1の上端に取り付けられており、 回転支柱が軸まわりに回転したときにはこの軸と垂直な面内(ほぼ水平面内) で回転するようになっている。 定盤 2 0の上面側には図示しない吸着チヤヅ
クが設けられており、 研磨対象となる半導体基板 1の下面側を吸着して保持 できるようになっている。 The surface plate 20 is attached to the upper end of a rotating column 21 extending substantially vertically. When the rotating column rotates around an axis, it rotates in a plane perpendicular to this axis (almost in a horizontal plane). I have. On the upper surface of the surface plate 20, a suction chuck (not shown) The lower surface side of the semiconductor substrate 1 to be polished can be sucked and held.
研磨へッド 3 0は胴部 3 1 a及びその下部に形成された円盤部 3 1 bとか らなる回転体 3 1と、 この回転体 3 1の円盤部 3 1 bの下面 (定盤 2 0に保 持された半導体基板 1の被研磨面と対向する面) に取り付けられた研磨パッ ド 3 6とから構成される。 回転体 3 1の胴部 3 1 aには円盤部 3 1 b (研磨 パッド 3 6 ) が設けられるのとは反対の側、 すなわち上側に開口した中空部 (以下、 この中空部を混合槽 3 2と称する) が形成されている。 円盤部 3 1 bの下面は精度良く平坦化されており、 研磨パッド 3 6を真っ平らの状態で 取り付けることができるようになつている。 研磨パヅド 3 6は不織布やウレ タン等を原材料として構成されており、 回転体 3 1の円盤部 3 1 bとほぼ同 じ直径を有する薄い円盤状に成形されている。 研磨パッド 3 6は消耗品であ るため、 接着剤や両面テープ等により円盤部 3 1 bの下面に着脱自在に取り 付けられる。 The polishing head 30 is composed of a rotating body 31 composed of a body 31a and a disk 31b formed below the body 31a, and the lower surface of the disk 31b of the rotating body 31 (platen 2). And a polishing pad 36 attached to the surface of the semiconductor substrate 1 held at 0 (the surface facing the surface to be polished). The body 3 1a of the rotator 3 1 has a hollow portion opened on the side opposite to the side on which the disk portion 3 1b (polishing pad 36) is provided, that is, an upper opening (hereinafter, this hollow portion is referred to as a mixing tank 3). 2) is formed. The lower surface of the disk portion 3 1b is flattened with high precision, so that the polishing pad 36 can be attached in a completely flat state. The polishing pad 36 is made of a nonwoven fabric, urethane or the like as a raw material, and is formed into a thin disk shape having substantially the same diameter as the disk portion 31 b of the rotating body 31. Since the polishing pad 36 is a consumable item, it can be detachably attached to the lower surface of the disc portion 31b with an adhesive or a double-sided tape.
研磨ヘッド保持体 4 0は、 図示しない複数のモータにより移動制御可能な 複数のステージを介してフレーム (前述。 図示せず) に対して三次元的に移 動できるようになつており、 図 2に示すように、 垂直下方に延びた延設部 4 1と、 この延設部 4 1の外周に設けられたベアリング 4 3とを有して構成さ れる。 延設部 4 1は研磨へッド 3 0の回転体 3 1に形成された上記混合槽 3 2内に上方より入り込んでおり、 上記ベアリング 4 3を介して研磨ヘッド 3 0全体を垂直軸まわり回転自在に支持している。 The polishing head holder 40 can be three-dimensionally moved with respect to a frame (described above; not shown) via a plurality of stages whose movement can be controlled by a plurality of motors (not shown). As shown in the figure, the structure includes an extended portion 41 extending vertically downward, and a bearing 43 provided on the outer periphery of the extended portion 41. The extending portion 41 enters the mixing tank 32 formed in the rotating body 31 of the polishing head 30 from above from above, and the entire polishing head 30 rotates around the vertical axis through the bearing 43. It is rotatably supported.
研磨へッド 3 0の回転体 3 1の胴部 3 l b外周面には従動ギヤ 3 7が設け られており、モ一夕 3 8により駆動される駆動ギヤ 3 9と常時嚙合している。 このためモ一夕 3 8を回転作動させることにより、 その回転動力を駆動ギヤ 3 9から従動ギヤ 3 7へ伝達させて、 研磨ヘッド 3 0全体を垂直軸回りに回 転させることができる。
研磨ヘッド保持体 4 0の延設部 4 1の内部には、 図 2に示すように、 垂直 方向に平行に延び、 延設部 4 1の側面に流出口が形成された第 1の液流路 4 4及び第 2の液流路 4 5が設けられている。 延設部 4 1の下端外周部には外 方に突出した突起状の保持体側撹拌部 4 2が形成されており、 混合槽 3 2の 内壁には混合槽 3 2の内方に突出した突起状の混合槽側撹拌部 3 3が形成さ れている。 また、 研磨へヅド 3 0の回転体 3 1の内部には、 混合槽 3 2より 下方へ延び、 研磨パッド 3 6の回転中心位置近傍及びその周辺部の複数位置 に開口した混合液供給管 3 4が形成されている。 A driven gear 37 is provided on the outer peripheral surface of the body 3 lb of the rotating body 31 of the polishing head 30, and is always engaged with a driving gear 39 driven by the motor 38. Therefore, by rotating the motor 38, its rotational power is transmitted from the drive gear 39 to the driven gear 37, and the entire polishing head 30 can be rotated around the vertical axis. As shown in FIG. 2, the first liquid flow extending in the vertical direction and having an outlet formed on the side surface of the extending portion 41 is inside the extending portion 41 of the polishing head holder 40. A channel 44 and a second liquid channel 45 are provided. An outwardly projecting holder-side stirring section 42 is formed on the outer periphery of the lower end of the extension section 41, and a projection protruding inward of the mixing tank 32 is formed on the inner wall of the mixing tank 32. A mixing tank-side stirring section 33 is formed. Further, inside the rotating body 31 of the polishing head 30, a mixed liquid supply pipe extending downward from the mixing tank 32 and opening at a plurality of positions near and around the rotation center position of the polishing pad 36. 3 4 are formed.
スラリー供給機構 5 0は、 セリア粒子を含んだ研磨液であるスラリーを蓄 えたスラリー貯蔵槽 5 1と、 一端がこのスラリー貯蔵槽 5 1内に位置して他 端が研磨へツド保持体 4 0の内部に形成された第 1の液流路 4 4の上部開口 にねじ込み接続されたスラリ一供給管 5 2と、 このスラリー供給管 5 2の管 路の途中に設けられてスラリー貯蔵槽 5 1内のスラリーを第 1の液流路 4 4 内に圧送する第 1のポンプ 5 3とからなる。 また、 添加液供給機構 6 0は、 スラリーに混ぜ合わされて使用される添加液 (薬液) を蓄えた添加液貯蔵槽 6 1と、 一端が添加液貯蔵槽 6 1内に位置して他端が研磨へッド保持体 4 0 の内部に形成された第 2の液流路 4 5の上部開口にねじ込み接続された添加 液供給管 6 2と、 この添加液供給管 6 2の管路の途中に設けられて添加液貯 蔵槽 6 1内の添加液を第 2の液流路 4 5内に圧送する第 2のポンプ 6 3とか らなる。 ここで、 スラリー供給管 5 2及び添加液供給管 6 2はいずれも内径 の小さいフレキシブルなホース (例えばゴムホース) からなつており、 研磨 へッド保持体 4 0を三次元的に移動させた場合にはこれに追随して自在に屈 曲させることができるようになつている。 The slurry supply mechanism 50 includes a slurry storage tank 51 storing a slurry as a polishing liquid containing ceria particles, and a polishing head holder 40 having one end located in the slurry storage tank 51 and the other end. A slurry supply pipe 52 screwed into the upper opening of the first liquid flow path 44 formed inside the slurry supply pipe 52, and a slurry storage tank 51 provided in the middle of the slurry supply pipe 52 And a first pump 53 for pumping the slurry therein into the first liquid flow path 44. Further, the additive liquid supply mechanism 60 includes an additive liquid storage tank 61 storing an additive liquid (chemical liquid) used by being mixed with the slurry, and one end located in the additive liquid storage tank 61 and the other end disposed therein. An additive liquid supply pipe 62 screwed into and connected to the upper opening of a second liquid flow path 45 formed inside the polishing head holder 40, and in the middle of the additive liquid supply pipe 62. And a second pump 63 for pumping the additive liquid in the additive liquid storage tank 61 into the second liquid flow path 45. Here, both the slurry supply pipe 52 and the additive liquid supply pipe 62 are made of a flexible hose (for example, a rubber hose) having a small inner diameter, and the polishing head holder 40 is moved three-dimensionally. Can be flexed freely following this.
このような構成の C M P装置 1 0を用いて半導体基板の平坦化研磨を行う には、 先ず、 研磨対象となる半導体基板 1 (例えばシリコンウェハ) を定盤 2 0の上面に吸着させる。 これにより半導体基板 1は被研磨面が上方に向く
ように定盤 2 0に保持された状態となる。 なお、 半導体基板 1はその中心が 定盤 2 0の回転中心と一致するように設置されることが好ましい。 半導体基 板 1が定盤 2 0に保持されたら定盤 2 0を半導体基板 1とともに水平面内で 回転させる。 続いてモ一夕 3 8を作動させて研磨へッド 3 0を垂直軸まわり に回転させ (これにより研磨パッド 3 6も水平面内で回転する) るとともに 研磨へッド保持体 4 0を降下させ、 研磨パッド 3 6を半導体基板 1の被研磨 面に上方から接触させる。 研磨パッド 3 6が半導体基板 1の被研磨面と接触 して半導体基板 1の研磨が始まったら、 研磨へッド保持体 4 0を半導体基板 1と研磨パッド 3 6との接触面と平行な方向 (ここで水平方向) に移動させ て被研磨面の全体を研磨していく。 In order to perform flattening and polishing of a semiconductor substrate using the CMP apparatus 10 having such a configuration, first, the semiconductor substrate 1 (for example, a silicon wafer) to be polished is adsorbed on the upper surface of the surface plate 20. As a result, the polished surface of the semiconductor substrate 1 faces upward. As a result, the platen is held on the platen 20. It is preferable that the semiconductor substrate 1 is installed so that the center thereof coincides with the rotation center of the platen 20. When the semiconductor substrate 1 is held on the surface plate 20, the surface plate 20 is rotated together with the semiconductor substrate 1 in a horizontal plane. Then, the polishing head 30 is operated to rotate the polishing head 30 around the vertical axis (the polishing pad 36 also rotates in the horizontal plane), and the polishing head holder 40 is lowered. Then, the polishing pad 36 is brought into contact with the surface to be polished of the semiconductor substrate 1 from above. When the polishing pad 36 comes into contact with the surface to be polished of the semiconductor substrate 1 and polishing of the semiconductor substrate 1 starts, the polishing head holder 40 is moved in a direction parallel to the contact surface between the semiconductor substrate 1 and the polishing pad 36. (Here, in the horizontal direction) to polish the entire surface to be polished.
半導体基板 1の研磨が開始される直前より、 スラリ一と添加液との混合液 が半導体基板 1の被研磨面上に供給される。 この混合液の供給は、 第 1のポ ンプを 5 3作動させてスラリ一槽 5 1内のスラリ一をスラリー供給管 5 2及 び研磨へッド保持体 4 0内の第 1の液流路 4 4より混合槽 3 2内に供給する とともに、 第 2のポンプ 6 3を作動させて添加液槽 6 1内の添加液を添加液 供給管 6 2及び研磨へッド保持体 4 0内の第 2の液流路 4 5より混合槽 3 2 内に供給することにより行う。 このようにスラリー供給機構 5 0により供給 されたスラリーと添加液供給機構 6 0により供給された添加液とは混合槽 3 2内で混合された状態で、 研磨へッド 4 0の回転体 4 1内に設けられた混合 液供給管 3 4より研磨パッド 3 6の回転中心位置近傍、 及びその周辺部の複 数箇所に位置した開口より研磨パヅド 3 6の外部 (すなわち研磨パヅド 3 6 の下面) に供給される。 なお、 スラリー槽 3 2内のスラリ一は固体成分が液 体成分と分離して槽内で沈殿しないように、常時撹拌されている必要がある。 このように、 定盤 2 0に保持された半導体基板 1の被研磨面は、 スラリー と添加液との混合液の供給を受けつつ、 半導体基板 1自身の回転運動と研磨 へヅド 3 0の (すなわち研磨パッド 3 6の) 回転及び揺動運動とにより全体
が満遍なく研磨され、 半導体基板 1の被研磨面は高精度に平坦化される。 な お、 上記研磨を続けていると研磨パッド 3 6は次第にへたってきて研磨特性 が変化 (劣化) するため、 一定時間おきにコンディショナー (図示せず) を 用いてこのへたりを回復する (目立てを行う) 必要がある。 Immediately before the polishing of the semiconductor substrate 1 is started, a mixed liquid of the slurry and the additive liquid is supplied onto the surface of the semiconductor substrate 1 to be polished. This mixed liquid is supplied by operating the first pump 53 to supply the slurry in the slurry tank 51 to the first liquid flow in the slurry supply pipe 52 and the polishing head holder 40. While supplying the mixture from the channel 4 4 into the mixing tank 32, the second pump 63 is operated to supply the additive liquid in the additive liquid tank 61 with the additive liquid supply pipe 62 and the polishing head holder 40. This is performed by supplying the mixture from the second liquid flow path 45 into the mixing tank 32. Thus, the slurry supplied by the slurry supply mechanism 50 and the additive liquid supplied by the additive liquid supply mechanism 60 are mixed in the mixing tank 32, and the rotating body 4 of the polishing head 40 is mixed. The outside of the polishing pad 36 (that is, the lower surface of the polishing pad 36) from the mixed liquid supply pipe 34 provided in the vicinity of the rotation center position of the polishing pad 36 through the mixed liquid supply pipe 34 and the openings located at a plurality of positions around the polishing pad 36. ). The slurry in the slurry tank 32 must be constantly stirred so that the solid component is separated from the liquid component and does not precipitate in the tank. In this way, the surface to be polished of the semiconductor substrate 1 held on the surface plate 20 receives the supply of the mixed liquid of the slurry and the additive liquid, while rotating the semiconductor substrate 1 itself and the polishing head 30. Rotation and oscillating movement (ie polishing pad 36) Are polished uniformly, and the surface to be polished of the semiconductor substrate 1 is flattened with high precision. If the above polishing is continued, the polishing pad 36 gradually degrades and the polishing characteristics change (deteriorate). Therefore, the polishing pad 36 is recovered at regular intervals by using a conditioner (not shown) ( Need to be sharpened).
このように本 C M P装置 1 0によれば、 スラリー供給機構 5 0により供給 されるスラリーと添加液供給機構 6 0により供給される添加液はともに研磨 ヘッド 3 0の内部に設けられた中空の混合槽 3 2内に供給され、 この混合槽 3 2内において混合されたスラリーと添加液の混合液が混合槽 3 2より研磨 へッド 4 0内を延びて研磨パッ ド 3 6の回転中心位置近傍に開口した混合液 供給管 3 4より研磨パヅド 3 6の外部 (下面) に供給されるようになってい るので、 スラリーと添加液とは半導体基板 1の被研磨面に供給される直前に おいて混合することになる。 このため従来の C M P装置に比して添加液の効 果が十分に発揮され、 基板の研磨精度を向上させることができる。 また、 混 合槽 3 2内において混合されたスラリーと添加液との混合液は、 研磨パッド 3 6より飛び出した後は研磨へッド 3 0の回転による遠心力により放射状に 飛散するが、 本 C M P装置 1 0では、 研磨ヘッド 3 0内の混合液の通路であ る混合液供給路 3 4は研磨パッド 3 6の中心位置近傍に開口しているので、 上記混合液を半導体基板 1の被研磨面の全域に余すところなく行き渡せるこ とが可能である。 As described above, according to the present CMP apparatus 10, the slurry supplied by the slurry supply mechanism 50 and the additive liquid supplied by the additive liquid supply mechanism 60 are both mixed by the hollow mixing head provided inside the polishing head 30. The mixed liquid of the slurry and the additive liquid supplied to the mixing tank 32 is supplied to the mixing tank 32, and extends from the mixing tank 32 to the polishing head 40 to be positioned at the rotation center of the polishing pad 36. The slurry and additive liquid are supplied to the outside (the lower surface) of the polishing pad 36 from the mixed liquid supply pipe 34 opened in the vicinity, so that the slurry and the additive liquid are supplied immediately before being supplied to the surface to be polished of the semiconductor substrate 1. Will be mixed. Therefore, the effect of the additive liquid is sufficiently exhibited as compared with the conventional CMP apparatus, and the polishing accuracy of the substrate can be improved. Also, the mixed liquid of the slurry and the additive liquid mixed in the mixing tank 32 scatters radially due to the centrifugal force generated by the rotation of the polishing head 30 after jumping out of the polishing pad 36. In the CMP apparatus 10, the mixed liquid supply path 34, which is a path for the mixed liquid in the polishing head 30, is opened near the center of the polishing pad 36, so that the mixed liquid is coated on the semiconductor substrate 1. It is possible to cover the entire area of the polished surface.
また、 本 C M P装置 1 0では、 研磨ヘッド保持体 4 0の延設部 4 1が研磨 へッド 3 0の混合槽 3 2内に位置しており、 研磨へッド 3 0はこの延設部 4 1の回りを回転するようになっているため、 研磨へヅド 3 0が回転している ときには、 相対的に延設部 4 1が混合槽 3 2の中で軸回りに回転することと なり、 混合槽 3 2内のスラリーと添加液は、 延設部 4 1により効果的に撹拌 される。 しかも、 本 C M P装置 1 0では、 延設部 4 1の外周部には上述のよ うに突起状の保持体側撹拌部 4 2が形成されているため、 スラリーと添加液
3150 Further, in the present CMP apparatus 10, the extension 41 of the polishing head holder 40 is located in the mixing tank 32 of the polishing head 30, and the polishing head 30 is Since the polishing head 30 is rotating, the extended portion 41 relatively rotates around the axis in the mixing tank 32 because the polishing head 30 is rotating. Thus, the slurry and the additive liquid in the mixing tank 32 are effectively stirred by the extension portion 41. In addition, in the present CMP apparatus 10, since the holding-member-side stirring section 42 having a protruding shape is formed on the outer periphery of the extension section 41 as described above, the slurry and the additive liquid are formed. 3150
9 の混合液は効率よく均一に混合される。 更に、 混合槽 3 2の内壁にも突起状 の混合槽側撹拌部 3 3が形成されているため、 混合液の混合はより効果的に なされる。 なお、 保持体側撹拌部 4 2及び混合槽側撹拌部 3 3は上述のよう な突起状のものに限られず、 螺旋溝状のものであっても構わない。 The mixed solution of No. 9 is efficiently and uniformly mixed. Further, since the mixing tank side stirring section 33 having a protruding shape is also formed on the inner wall of the mixing tank 32, mixing of the mixed liquid is more effectively performed. In addition, the holding body side stirring section 42 and the mixing tank side stirring section 33 are not limited to the above-mentioned protrusion-shaped ones, and may be spiral groove-shaped ones.
ここで、 上記延設部 4 1の混合槽 3 2内での回転は研磨ヘッド 3 0の回転 により相対的に得られるものであり、 他の動力を用いていないため撹拌機構 の構成が簡単になるという利点がある。 混合槽 3 2内においてスラリーと添 加液とを混合させる独立した撹拌機構を設ける構成を採ることも可能である が、 この場合には撹拌部材を回転させる動力源が別途必要となるため、 本 C M P装置 1 0よりも構成が複雑になってしまう。 Here, the rotation of the extension section 41 in the mixing tank 32 is relatively obtained by the rotation of the polishing head 30. Since no other power is used, the configuration of the stirring mechanism is simplified. There is an advantage that it becomes. It is also possible to adopt a configuration in which an independent stirring mechanism for mixing the slurry and the additive liquid is provided in the mixing tank 32.However, in this case, a power source for rotating the stirring member is separately required. The configuration becomes more complicated than the CMP apparatus 10.
これまで本発明の好ましい実施形態について説明してきたが、 本発明の範 囲は上述のものに限定されるものではない。 例えば上述の実施形態において は、 定盤は半導体基板を被研磨面が上方を向くように保持し、 研磨パッドは 半導体基板の被研磨面 (上面) に上方より接触するようになっていたが、 こ れとは反対に、 定盤が半導体基板を被研磨面が下方を向くように保持し、 研 磨パッドは半導体基板の被研磨面 (下面) に下方より接触するようになって いてもよい。 しかし、 このような構成では、 スラリー及び添加液を研磨へッ ド保持体 4 0内の両液流路 4 4 , 4 5及び研磨へッド 3 0内の混合液供給路 3 4を経て研磨パッド 3 6の外部に供給するには重力に逆らう分の強力な圧 送力が必要となる。 Although the preferred embodiment of the present invention has been described above, the scope of the present invention is not limited to the above. For example, in the embodiment described above, the surface plate holds the semiconductor substrate so that the surface to be polished faces upward, and the polishing pad comes into contact with the surface to be polished (upper surface) of the semiconductor substrate from above. Conversely, the surface plate may hold the semiconductor substrate so that the surface to be polished faces downward, and the polishing pad may contact the surface to be polished (lower surface) of the semiconductor substrate from below. . However, in such a configuration, the slurry and the additive liquid are polished through the two liquid flow paths 44, 45 in the polishing head holder 40 and the mixed liquid supply path 34 in the polishing head 30. To supply the outside of the pad 36, a strong pumping force against the gravity is required.
また、 上記両実施形態においては、 研磨ヘッドを垂直軸まわりに回転させ るほか、 半導体基板を保持する定盤も回転させる構成であつたが、 半導体基 板の被研磨面を研磨するには、 半導体基板と研磨ヘッド (研磨パッド) とが 相対的に移動していればよいため、定盤は必ずしも回転していなくてもよい。 また、使用するスラリーはセリア以外にもアルミナやシリカ等が使用できる。 さらに、 複数種の添加剤をスラリーに混合して使用するものでも、 本発明は
適用可能である。 , Further, in both of the above embodiments, in addition to rotating the polishing head around the vertical axis, the surface plate holding the semiconductor substrate is also rotated, but in order to polish the polished surface of the semiconductor substrate, Since the semiconductor substrate and the polishing head (polishing pad) only need to move relatively, the surface plate does not necessarily have to rotate. Further, as the slurry to be used, alumina, silica or the like can be used in addition to ceria. Further, the present invention is applicable to a case where a plurality of kinds of additives are mixed and used in a slurry. Applicable. ,
次に、 本発明に係る半導体デバイスの製造方法の実施形態について説明す る。 図 4は半導体デバイスの製造プロセスを示すフローチャートである。 半 導体製造プロセスをスタートすると、 先ずステップ S 2 0 0で次に挙げるス テツプ S 2 0 1 ~ S 2 0 4の中から適切な処理工程を選択し、 いずれかのス テヅプに進む。 ここで、 ステップ S 2 0 1はウェハの表面を酸化させる酸化 工程である。 ステップ S 2 0 2は C V D等によりウェハ表面に絶縁膜や誘電 体膜を形成する C V D工程である。 ステップ S 2 0 3はウェハに電極を蒸着 等により形成する電極形成工程である。 ステップ S 2 0 4はウェハにイオン を打ち込むイオン打ち込み工程である。 Next, an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described. FIG. 4 is a flowchart showing a semiconductor device manufacturing process. When the semiconductor manufacturing process is started, first, in step S200, an appropriate processing step is selected from the following steps S201 to S204, and the process proceeds to any one of the steps. Here, step S201 is an oxidation step of oxidizing the surface of the wafer. Step S202 is a CVD step of forming an insulating film or a dielectric film on the wafer surface by CVD or the like. Step S203 is an electrode forming step of forming electrodes on the wafer by vapor deposition or the like. Step S204 is an ion implantation step of implanting ions into the wafer.
C V D工程 (S 2 0 2 ) 若しくは電極形成工程 (S 2 0 3 ) の後で、 ステ ップ S 2 0 5に進む。 ステップ S 2 0 5は C M P工程である。 C M P工程で は本発明による研磨装置により、 層間絶縁膜の平坦化や半導体デバイス表面 の金属膜の研磨、 誘電体膜の研磨によるダマシン (damascene) の形成等が 行われる。 After the CVD step (S202) or the electrode forming step (S203), the process proceeds to step S205. Step S205 is a CMP step. In the CMP step, the polishing apparatus according to the present invention performs planarization of an interlayer insulating film, polishing of a metal film on the surface of a semiconductor device, formation of a damascene by polishing of a dielectric film, and the like.
C M P工程 (S 2 0 5 ) 若しくは酸化工程 (S 2◦ 1 ) の後でステップ S 2 0 6に進む。 ステップ S 2 0 6はフォトリソグラフイエ程である。 このェ 程ではウェハへのレジストの塗布、 露光装置を用いた露光によるウェハへの 回路パターンの焼き付け、 露光したウェハの現像が行われる。 更に、 次のス テツプ S 2◦ 7は現像したレジスト像以外の部分をェッチングにより削り、 その後レジスト剥離が行われ、 エツチングが済んで不要となったレジストを 取り除くエッチング工程である。 After the CMP step (S205) or the oxidation step (S2), the process proceeds to step S206. Step S206 is about the same as photolithography. In this process, a resist is applied to the wafer, a circuit pattern is printed on the wafer by exposure using an exposure apparatus, and the exposed wafer is developed. Further, the next step S2 • 7 is an etching step in which portions other than the developed resist image are etched away, the resist is stripped off, and the unnecessary resist after etching is removed.
次に、 ステップ S 2 0 8で必要な全工程が完了したかを判断し、 完了して いなければステップ S 2 0 0に戻り、 先のステップを繰り返してウェハ上に 回路パターンが形成される。 ステップ S 2 0 8で全工程が完了したと判断さ れればェンドとなる。
本発明による半導体デバイス製造方法では、 C M P工程において本発明に 係る研磨装置を用いているため、 C M P工程のスループットが向上する。 こ れにより、 従来の半導体デバイス製造方法に比べて低コストで半導体デバイ スを製造することができるという効果がある。 なお、 上記半導体デバイス製 造プロセス以外の半導体デバイス製造プロセスの C M P工程に本発明による 研磨装置を用いてもよい。 また、 本発明による半導体デバイス製造方法によ り製造された半導体デバイスでは、 高スループッ トで製造されるので、 低コ ス卜の半導体デバイスとなる。 Next, in step S208, it is determined whether or not all necessary processes have been completed. If not, the process returns to step S200, and the previous steps are repeated to form a circuit pattern on the wafer. . If it is determined in step S208 that all the processes have been completed, the process ends. In the semiconductor device manufacturing method according to the present invention, since the polishing apparatus according to the present invention is used in the CMP process, the throughput of the CMP process is improved. Thus, there is an effect that a semiconductor device can be manufactured at a lower cost than a conventional semiconductor device manufacturing method. The polishing apparatus according to the present invention may be used in a CMP step of a semiconductor device manufacturing process other than the semiconductor device manufacturing process. In addition, a semiconductor device manufactured by the semiconductor device manufacturing method according to the present invention is manufactured at a high throughput, so that it is a low-cost semiconductor device.
以上説明したように、 本発明に係る研磨装置によれば、 スラリーと添加液 とは被研磨物の被研磨面に供給される直前において混合することになる。 こ のため従来の研磨装置に比して添加液の効果が十分に発揮され、 被研磨物の 研磨精度を向上させることができる。 また、 混合されたスラリーと添加液と の混合液は、 研磨パッドより飛び出した後は研磨へッドの回転による遠心力 により放射状に飛散するが、 本発明に係る研磨装置では、 研磨ヘッド内の混 合液の通路である混合液供給路は研磨パッドの中心位置近傍に開口している ので、 上記混合液を被研磨物の被研磨面の全域に余すところなく行き渡せる ことが可能である。 As described above, according to the polishing apparatus of the present invention, the slurry and the additive liquid are mixed immediately before being supplied to the surface of the object to be polished. Therefore, the effect of the additive liquid is sufficiently exhibited as compared with the conventional polishing apparatus, and the polishing accuracy of the object to be polished can be improved. Further, after the mixed liquid of the mixed slurry and the additive liquid jumps out of the polishing pad, it is scattered radially by centrifugal force due to the rotation of the polishing head. Since the mixed liquid supply path, which is the path for the mixed liquid, is open near the center of the polishing pad, the mixed liquid can be spread over the entire surface of the surface of the object to be polished.
また、 以上のようにして構成される研磨装置を半導体ウェハの表面を研磨 加工する工程に用いて半導体デバイス製造方法を構成することにより、 高精 度の半導体デバイスを高スループットかつ高い歩留まりで製造することがで きるため、低コストで良質の半導体デバイスを製造することができる。また、 これにより良質の半導体デバイスを低コス卜で提供することができる。
In addition, a semiconductor device manufacturing method is configured by using the polishing apparatus configured as described above in a step of polishing a surface of a semiconductor wafer, thereby manufacturing a high-accuracy semiconductor device with a high throughput and a high yield. Therefore, a high-quality semiconductor device can be manufactured at low cost. In addition, a high-quality semiconductor device can be provided at low cost.