+

WO2003069709A1 - Liquid fuel cell - Google Patents

Liquid fuel cell Download PDF

Info

Publication number
WO2003069709A1
WO2003069709A1 PCT/JP2003/001595 JP0301595W WO03069709A1 WO 2003069709 A1 WO2003069709 A1 WO 2003069709A1 JP 0301595 W JP0301595 W JP 0301595W WO 03069709 A1 WO03069709 A1 WO 03069709A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
fuel cell
cell according
liquid
storage unit
Prior art date
Application number
PCT/JP2003/001595
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kashino
Yasuo Arishima
Shinsuke Shibata
Gun Seki
Shoji Saibara
Ryo Nagai
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to KR1020047010486A priority Critical patent/KR100623257B1/ko
Priority to AU2003211193A priority patent/AU2003211193A1/en
Priority to CN038013398A priority patent/CN1572036B/zh
Priority to US10/490,528 priority patent/US7998637B2/en
Priority to DE10392147T priority patent/DE10392147T5/de
Publication of WO2003069709A1 publication Critical patent/WO2003069709A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquid fuel cell.
  • an air battery, a fuel cell, and the like can be considered as examples of a battery that can meet the above demand.
  • An air battery is a battery that uses oxygen in the air as the active material of the positive electrode, and can use most of its internal volume to fill the negative electrode. It is considered a battery.
  • this air battery has a problem that the self-discharge is large because the alkaline solution used as an electrolyte reacts with carbon dioxide in the air and deteriorates.
  • fuel cells do not have the above-mentioned problems.
  • fuel cells that directly use liquid fuel for cell reactions such as direct methanol fuel cells, can be miniaturized and are promising as future portable power sources.
  • the electrodes of this direct methanol fuel cell both contain a catalyst in which noble metal particles are highly dispersed on carbon powder, a proton exchange resin, and polytetrafluoroethylene (PTFE).
  • an electrode having a certain strength can be formed and, at the same time, water repellency can be imparted to the electrode (for example, Kordesch, 2 others; (See ECSP roceedings), (USA), 1982, Vol. 82122, No. 265, p. 427-428).
  • fuel is supplied to the negative electrode to react, and oxygen reacts to the positive electrode. Therefore, it can be used continuously only by supplying fuel and oxygen.
  • a conventional fuel cell is configured by stacking a plurality of fuel cell unit cells, so that the whole cell is bulky.
  • oxygen and fuel had to be supplied to the respective positive and negative electrodes by flowing them, and auxiliary equipment for that purpose was required.
  • fuel cells were much larger than small rechargeable batteries such as lithium-ion rechargeable batteries.
  • each fuel cell unit cell In addition to the structure of the entire cell, there was room for improvement in the configuration of each fuel cell unit cell.
  • gaseous oxygen reacts, and therefore, water repellency is required because it is necessary to remove water that inhibits this reaction.
  • liquid fuel such as methanol
  • both the positive electrode and the negative electrode contain PTFE as a binder, and both the positive electrode and the negative electrode have water repellency. It was not.
  • the present invention includes a plurality of fuel cell unit cells each including a positive electrode for reducing oxygen, a negative electrode for oxidizing liquid fuel, and an electrolyte layer disposed between the positive electrode and the negative electrode, and stores liquid fuel.
  • a liquid fuel cell having a liquid fuel storage unit,
  • liquid fuel cell in which a plurality of the fuel cell unit cells are arranged on substantially the same plane.
  • FIG. 1 is a sectional view of a liquid fuel cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view of a liquid fuel cell according to Embodiment 2 of the present invention.
  • FIG. 3 is a sectional view of a liquid fuel cell according to Embodiment 3 of the present invention.
  • FIG. 4 is a sectional view of a liquid fuel cell according to Embodiment 4 of the present invention.
  • FIG. 5 is a sectional view of a liquid fuel cell according to Embodiment 5 of the present invention.
  • FIG. 6 is a sectional view of a liquid fuel cell according to Embodiment 6 of the present invention.
  • FIG. 7 is a plan view of an electrolyte / insulator continuous film used in Embodiment 6 of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 9 is a sectional view of a liquid fuel cell according to Embodiment 5 of the present invention.
  • Embodiment of the Invention is a sectional view of a liquid fuel cell according to Embodiment 5 of the present invention.
  • the present invention solves the above-mentioned problems of the conventional liquid fuel cell, and provides a small-sized liquid fuel cell capable of stably generating power.
  • the liquid fuel cell according to the present invention includes a plurality of fuel cell unit cells each including a positive electrode for reducing oxygen, a negative electrode for oxidizing the liquid fuel, and an electrolyte layer disposed between the positive electrode and the negative electrode.
  • a liquid fuel cell including a liquid fuel storage unit for storing, wherein a plurality of fuel cell unit cells are arranged on substantially the same plane.
  • each electrolyte layer of the plurality of fuel cell unit cells constitutes an integrated electrolysis layer continuous with each other.
  • the gap between each fuel cell unit cell is covered with the electrolyte layer, which is conventionally required for each unit cell Can be omitted or simplified to prevent the leakage of the fuel, and the liquid fuel Not only can leakage be prevented, but also battery simplification and further miniaturization of the battery can be achieved.
  • each of the electrolyte layers of the plurality of fuel cell unit cells may constitute a continuous layer which is independent of each other via the insulator layer and integrated with the insulator layer. preferable.
  • the integrated electrolyte layers connected to each other are used, it is possible to prevent the discharge reaction from proceeding between the electrodes of the adjacent fuel cell unit cells.
  • the discharge reaction proceeds between the positive and negative electrodes of the same unit cell.
  • the liquid fuel storage unit includes a gas-liquid separation hole including a gas-liquid separation membrane.
  • the gas-liquid separation membrane is a porous fluororesin membrane subjected to an oil-repellent treatment, or a laminated composite of the porous fluororesin membrane and another gas-permeable material. It is preferable that the oil-repellent treatment is applied. Gas-liquid separation membranes made of these materials can prevent lipophilic liquid fuels such as methanol and ethanol from permeating through the gas-liquid separation holes. Liquid fuel leakage can be prevented.
  • the negative electrode has no ionic conductivity and It is preferable to include a binder containing no fluorine.
  • a binder containing no fluorine thereby, the wettability between the negative electrode and the liquid fuel is improved, and the electrode characteristics are improved, so that the discharge characteristics of the unit cell of the fuel cell can be improved.
  • the binder does not have ionic conductivity, the binder does not easily swell and dissolve with the liquid fuel, so that the stability of the electrode is improved and the reliability of the fuel cell can be improved.
  • FIG. 1 shows a sectional view of a liquid fuel cell according to Embodiment 1 of the present invention.
  • the positive electrode 8 is formed, for example, by laminating a diffusion layer 8a made of a porous carbon material and a catalyst layer 8b containing carbon powder carrying a catalyst, a proton conductive substance and a fluororesin binder.
  • the positive electrode 8 has a function of reducing oxygen, and for the catalyst, for example, platinum fine particles, alloy fine particles of platinum with iron, nickel, cobalt, tin, ruthenium, or gold and the like are used.
  • the proton conductive substance for example, resins having sulfonic acid groups such as polyperfluorosulfonic acid resin, sulfonated polyestersulfonic acid resin, and sulfonated polyimide resin can be used. It is not limited to them.
  • the content of such a proton conductive substance is preferably 2 parts by mass to 200 parts by mass with respect to 100 parts by mass of the catalyst-supporting carbon powder. Within this range, sufficient proton conductivity is obtained, the electrical resistance does not increase, and the battery performance does not decrease.
  • the fluororesin binder include PTFE and tetrafluoroethylene-perfluoroalkyl vinyl ether.
  • PFA Tetrafluoroethylene-hexafluoropropylene copolymer
  • FEP Tetrafluoroethylene-ethylene copolymer
  • STYFE Tetrafluoroethylene-ethylene copolymer
  • the amount of the binder is preferably from 0.01 to 100 parts by mass based on 100 parts by mass of the catalyst-supporting carbon powder.
  • the binder may not be used. However, when the binder is contained in an amount of 0.01 mass part or more, sufficient binding properties are generated, and the formation and maintenance of the catalyst layer are facilitated. In addition, when the amount is 100 parts by mass or less, an increase in electric resistance can be suppressed, so that a decrease in battery performance can be prevented.
  • a paste of carbon powder containing PTFE resin particles is applied to the catalyst layer side of the diffusion layer 8a to improve water repellency.
  • the electrolyte layer 10 is made of a material having no electron conductivity and capable of transporting protons.
  • polyperfluorosulfonic acid resin membranes specifically, “Naphion” (trade name) manufactured by DuPont, “Flemion” (trade name) manufactured by Asahi Glass Co., Ltd., "Aciplex” (Asahi Kasei Kogyo Co., Ltd.)
  • the electrolyte layer 10 is constituted by a product name or the like. In addition, it can be constituted by a sulfonated polyether sulfonic acid resin film, a sulfonated polyimide resin film, a sulfated polypolybenzimidazole film, or the like.
  • the negative electrode 9 has a function of generating protons from the liquid fuel, that is, a function of oxidizing the liquid fuel.
  • a diffusion layer 9 a made of a porous carbon material, a carbon powder supporting a catalyst, and a proton It is formed by laminating a catalyst layer 9b containing a conductive substance and a fluororesin binder.
  • the carbon powder supporting the catalyst the proton conductive substance, and the binder
  • the mass ratio of the carbon powder to the catalyst is preferably 5 parts by mass to 400 parts by mass with respect to 100 parts by mass of the carbon powder. Within this range, sufficient catalytic activity is obtained, and the particle size of the catalyst does not become too large and the catalytic activity does not decrease.
  • the content of the proton conductive substance is preferably 2 parts by mass to 200 parts by mass with respect to 100 parts by mass of the catalyst-supporting carbon powder. Within this range, sufficient proton conductivity is obtained, and the electrical resistance does not increase and the battery performance does not decrease.
  • the wettability between the negative electrode and the liquid fuel is improved by using a binder that does not have ion conductivity and does not contain fluorine (a non-fluorine-based binder) instead of or in combination with the fluororesin binder.
  • the electrode characteristics are improved.
  • thermoplastics are preferred. This is because the fabrication of the electrodes becomes easier.
  • thermoplastic binder include polyethylene, polypropylene, nylon, polyester, ionomer, butyl rubber, ethylene / vinyl acetate copolymer, ethylene / ethyl acrylate copolymer, and ethylene / acrylic acid copolymer. It is preferable to include at least one selected from the group consisting of coalescence.
  • thermosetting resin can also be used as a non-fluorinated binder having no ion conductivity.
  • a thermosetting resin can also be used as a non-fluorinated binder having no ion conductivity.
  • epoxy resin xylene resin, diaryl phthalate resin, unsaturated polyester resin, phenol resin, and the like.
  • the particle size of the non-fluorine-based binder having no ion conductivity is preferably from 0.01 m to 100 zzm. Within this range, sufficient binding properties can be obtained, and the binder itself does not become bulky and can be uniformly dispersed in the catalyst.
  • the content of the pinda is preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the catalyst-supporting carbon powder. Within this range If this is the case, sufficient binding properties can be obtained, the electrical resistance does not increase, and the battery performance does not decrease.
  • a carbon powder carrying the catalyst, a proton conductive substance, a binder, water and an organic solvent are uniformly dispersed to form a slurry.
  • the solid content of this slurry is preferably from 1 to 70 parts by mass based on 100 parts by mass of the slurry. If the amount is less than 1 part by mass, sufficient viscosity cannot be obtained, resulting in poor workability. If the amount exceeds 70 parts by mass, the viscosity becomes too high and the workability deteriorates.
  • Dispersion of these materials can be performed using, for example, a pole mill, a homogenizer, an ultrasonic disperser, or the like, but is not limited thereto.
  • the organic solvent for example, methanol, ethanol, propanol, butanol, and the like can be used.
  • the slurry obtained above is applied to a diffusion layer made of a porous carbon material and dried.
  • the binder is melted and bound to form an electrode.
  • the temperature of the hot press varies depending on the type of binder, but is preferably set to a temperature equal to or higher than the glass transition point of the binder to be used and equal to or lower than a temperature higher than the glass transition point by 20 ° C.
  • the pressure of the press is preferably from 3 MPa to 5 OMPa. If it is less than 3 MPa, the electrode is not formed sufficiently, and if it exceeds 50 MPa, the pores in the electrode are crushed and the battery performance is reduced.
  • the electrolyte layer 10 is sandwiched between the positive electrode 8 and the negative electrode 9 and pressed with a hot press to produce a fuel cell unit cell.
  • the temperature of the hot press is preferably set to 100 ° C. to 180 ° C.
  • the pressure of the press is preferably 3 MPa to 5 OMPa. If it is less than 10 or less than 3 MPa, the formation of the electrode is not sufficient, and if it exceeds 180 ° C or 50 MPa, the pores in the electrode are crushed and the battery performance is reduced.
  • a fuel tank 3 for storing a liquid fuel 4 is provided adjacent to the negative electrode 9 on the side opposite to the electrolyte layer 10.
  • the combustion tank 3 supplies the liquid fuel 4 to a plurality of fuel cell unit cells. That is, a plurality of fuel cell unit cells share the same fuel tank.
  • liquid fuel 4 examples include methanol aqueous solution, ethanol aqueous solution, dimethyl ether, sodium borohydride aqueous solution, potassium borohydride aqueous solution, lithium borohydride aqueous solution, and the like.
  • the fuel tank 3 is made of, for example, a plastic such as PTFE, rigid polyvinyl chloride, polypropylene, or polyethylene, or a corrosion-resistant metal such as stainless steel. However, when the fuel tank 3 is made of metal, it is necessary to introduce an insulator so that the respective negative electrodes arranged on substantially the same plane are not electrically short-circuited.
  • a fuel supply hole 3 a is provided in a portion of the fuel tank 3 that contacts the negative electrode 9, and the liquid fuel 4 is supplied to the negative electrode 9 from this portion. Further, as a liquid fuel impregnated portion for impregnating and holding the liquid fuel 4 and supplying the liquid fuel 4 to the negative electrode 9, a fuel sucking material 5 is provided inside the fuel tank 3 including a portion in contact with the negative electrode 9. . As a result, even if the liquid fuel 4 is consumed, the contact between the liquid fuel 4 and the negative electrode 9 is maintained, so that the liquid fuel 4 can be completely used. As the fuel wicking material 5, glass fiber can be used, but other materials may be used as long as the dimensions do not change much due to fuel impregnation and are chemically stable.
  • a cover plate 2 is provided on a side of the positive electrode 8 opposite to the electrolyte layer 10, and an air hole 1 is provided on a portion of the power bar plate 2 which is in contact with the positive electrode 8. This allows oxygen in the atmosphere to come into contact with the positive electrode 8 through the air hole 1.
  • a gas-liquid separation hole 6 b having a structure penetrating the cover plate 2 and the fuel tank 3 is provided.
  • a removable gas-liquid separation membrane 6a is provided on the opposite side of the gas-liquid separation hole 6b from the fuel tank 3.
  • the gas-liquid separation membrane 6 a is made of a PTFE sheet having pores, and can release carbon dioxide and the like generated by the discharge reaction from the fuel tank 3 without causing the liquid fuel 4 to leak.
  • the gas-liquid separation hole 6 b also serves as a filling port when replenishing the liquid fuel 4.
  • the gas-liquid separation hole 6b, the cover plate 2, and the air hole 1 can be made of, for example, the same material as the fuel tank 3.
  • the gas-liquid separation membrane 6 a is made of an oil-repellent porous fluororesin membrane, or a porous fluororesin membrane and another gas-permeable material.
  • the lipophilic liquid fuel can be prevented from permeating through the gas-liquid separation hole by using a lipophilic liquid fuel, and a highly concentrated lipophilic liquid fuel is used. In this case, the liquid fuel 4 can be prevented from leaking from the fuel tank 3 to the outside.
  • fluororesin membrane examples include PTFE, PFA, FEP, EZTFE, PVDF, PCTFE, chlorotrifluoroethylene-ethylene copolymer (E / CTFE), perfluorocyclic polymer, and polyvielfluo. Ride (PVF).
  • Examples of a method for producing the porous fluororesin film subjected to the above oil repellent treatment include, for example, a coating film made of a polymer having a fluoroalkyl group having two or more fluorine atoms on the surface of the porous fluororesin film. Can be listed.
  • the fluoroalkyl group is preferably one having 4 or more carbon atoms, and most preferably a perfluoroalkyl group in which all of the hydrogen atoms have been substituted with fluorine.
  • An organic solvent capable of dissolving or dispersing such a polymer having a fluoroalkyl group for example, A fluorine-based solvent such as fluorobenzene, perfluorotributylamine, or perfluorohexane is used to prepare a coating solution of the above polymer, which is applied to a porous fluororesin film as an oil-repellent agent.
  • a coating film made of the polymer having a fluoroalkyl group is formed on the surface of the porous fluororesin film by a method such as immersing the porous fluororesin film in the oil repellent agent.
  • an oil repellent agent for example, a water repellent / oil repellent agent "UNIDINE” (trade name) manufactured by Daikin Co., Ltd. can be used. Also, after the treatment for forming the coating film, the oil repellency can be improved by heat-treating the porous fluororesin film at a temperature of about 50 ° C. (about 200 ° C.).
  • a laminated composite of the porous fluororesin membrane and another gas-permeable material such as a woven fabric, a nonwoven fabric, a net, and a felt Can also be used.
  • an oil-repellent treatment may be performed on the gas-permeable material laminated with the porous fluororesin film, instead of the oil-repellent treatment on the porous fluororesin film.
  • the oil repellent treatment may be performed on the side of the porous fluororesin film, or both may be subjected to the oil repellent treatment.
  • a filter manufactured by Nitto Denko Corporation “NTF2131APS06” ( Brand name), "NTF 2 1 3 3 A—SO 6" (brand name), etc. can be used.
  • the oil-repellent porous fluororesin membrane used in the liquid fuel cell of the present embodiment leaks to all liquid-soluble solutions such as methanol, ethanol, dimethyl ether, etc. There is a liquid prevention effect.
  • the electrical connection of each fuel cell unit cell is made as follows. From the point of contact with the positive electrode 8, contact the negative electrode 9 of the adjacent fuel cell unit cell.
  • a current collector 7 is provided over the portion where the fuel cell unit is located, and the positive electrode 8 is electrically connected to the negative electrode 9 of the adjacent fuel cell unit cell.
  • the current collector 7 has a role of electrically connecting adjacent fuel cell unit cells in series, and all the fuel cell unit cells arranged on substantially the same plane are electrically connected in series by the current collector 7. Is done. This makes it possible to increase the output of the battery while reducing the size of the battery.
  • a noble metal such as platinum or gold
  • a corrosion-resistant metal such as stainless steel, or carbon can be used.
  • the fuel cell unit cells arranged on the substantially same plane may be not only a single layer but also a stacked type in which a plurality of cells are stacked.
  • FIG. 2 shows a sectional view of a liquid fuel cell according to Embodiment 2 of the present invention.
  • This embodiment has the same structure as the first embodiment except that the upper and lower parts of the fuel tank 3 are formed substantially symmetrically.
  • FIG. 3 shows a sectional view of a liquid fuel cell according to Embodiment 3 of the present invention.
  • the fuel tank 3 and the external fuel tank 13 are connected by a fuel supply path 14 including a fuel sucking material 5 therein.
  • the fuel tank 13 is filled with the liquid fuel 4 like the fuel tank 3 and has a function of continuously supplying the liquid fuel 4 through the fuel supply path 14.
  • the fuel tank 13 can be made of, for example, the same material as the fuel tank 3.
  • the fuel supply path 14 is made of, for example, the same material as the fuel tank 3 or a flexible rubber such as natural rubber.
  • the fuel tank 13 is provided with a fuel filling port 12 and has a function of adding and filling liquid fuel.
  • 11 is a gas-liquid separation hole.
  • Other configurations of the present embodiment are substantially the same as those of the first embodiment.
  • FIG. 4 shows a sectional view of a liquid fuel cell according to Embodiment 4 of the present invention.
  • This embodiment has the same structure as that of the third embodiment except that the upper and lower portions of the fuel tank 3 are formed substantially symmetrically.
  • FIG. 5 shows a sectional view of a liquid fuel cell according to Embodiment 5 of the present invention.
  • each of the electrolyte layers of the fuel cell unit cell in Embodiment 1 constitutes an integrated electrolyte layer 10 which is continuous with each other, and is substantially the same as the embodiment except for the structure of the electrolyte layer 10. It has the same structure as 1.
  • the distance between the fuel cell unit cells is determined by the distance between the positive electrode 8 and the negative electrode 9 (thickness of the electrolyte layer 10) in order to prevent current leakage (liquid short circuit) between the electrodes of adjacent unit cells. It is preferably from 10 to 500 times, more preferably from 10 to 100 times.
  • the gap between the fuel cell unit cells is covered with the electrolyte layer 10, it is not necessary to provide a sealing portion for preventing the leakage of the liquid fuel 4 for each unit cell, and compared to the embodiments 1 to 4.
  • a simple structure can prevent fuel leakage.
  • FIG. 6 shows a sectional view of a liquid fuel cell according to Embodiment 6 of the present invention.
  • 7 is a plan view of the continuous electrolyte / insulator layer used in the present embodiment
  • FIG. 8 is a cross-sectional view taken along the line AA ′ of FIG.
  • each of the electrolyte layers 10a of the fuel cell unit cell is independent of each other via an insulator layer 10b, and is integrated with the insulator layer 10b. 0 '.
  • the electrolyte layer of the fifth embodiment the same structure as that of the fifth embodiment except that the portion of the electrolyte layer existing between the unit cells is replaced with an insulator layer to form an integrated electrolyte / insulator continuous layer 10 ′. It is.
  • Examples of the material of the insulator layer 10b include polyethylene, polypropylene, polyvinyl chloride, acrylic resin, polystyrene, and polyvinyl alcohol. 0301595
  • Polytetrafluoroethylene Polyvinylpyrrolidone, Polyethylene Dalicol, Polypropylene, Nylon, Silicone, Epoxy, Polydimethylsiloxane, Cellulose, Polyethylene terephthalate, Polyurethane, Polyglycolic acid, Polybutylene terephthalate, Polysulfone, Poly Examples include ether sulfone, polyphenylene sulfide, polyamideimide, polyetherimide, polyetheretherketone, and polyimide.
  • the electrolyte layer 10a of each fuel cell unit cell is separated by the insulator layer 10b, no liquid short-circuit occurs even when the interval between the fuel cell unit cells is narrowed.
  • the size of the battery can be further reduced than in the fifth embodiment.
  • liquid fuel cell of the present invention will be specifically described based on examples.
  • the present invention is not limited to the following examples.
  • a liquid fuel cell having the same structure as in FIG. 1 was manufactured as follows.
  • the positive electrode was manufactured as follows. First, 50 parts by mass of “Ketzian Plak EC” (trade name) manufactured by Lionaxo Co., and 50 parts by mass of platinum fine particles having an average particle diameter of 3 nm were 10 parts by mass. 75 parts by mass of proton conductive material "Nafion” (trade name, solid content concentration: 5% by mass) manufactured by Electrochem and PTF Emulsion manufactured by Daikin as a fluororesin binder.
  • a solution “D 1” (trade name, emulsion concentration: 60% by mass) was prepared by 10 parts by mass and water by 5 parts by mass.
  • the negative electrode was manufactured as follows. First, 50 parts by mass of the above “Ketjen Black EC” and 50 parts by mass of platinum-ruthenium alloy fine particles (alloy mass ratio 1: 1) having an average particle diameter of 3 nm were 10 parts by mass.
  • 75 parts by mass of the above “naphion”, 5 parts by mass of a polyethylene powder having an average molecular weight of 1500 and an average particle diameter of 1 m as a non-fluorinated binder, and 10 parts by mass of water were prepared. These were uniformly mixed and dispersed with a homogenizer, applied to a ponpon cloth as a diffusion layer so that the platinum amount was 8 mg / cm 2 , and dried. Next, heat pressing was performed at 120 ° C. and 10 MPa for 2 minutes to mold the electrode to obtain a negative electrode.
  • the electrolyte layer is made of DuPont's "Nafion 117" (trade name).
  • the electrolyte layer is sandwiched between the positive electrode and the negative electrode, and hot-pressed at 120 ° C and 10 MPa for 3 minutes. Then, a fuel cell unit cell was manufactured.
  • the electrode area was set to 10 cm 2 for both the positive electrode and the negative electrode.
  • the cover and the fuel tank were made of stainless steel (SUS316) coated with a phenolic resin paint “Mycus A” (trade name) manufactured by Nippon Paint Co., Ltd. as an insulating coating.
  • the positive electrode current collector consisted of a 10-thick gold sheet, and was bonded to the positive electrode using epoxy resin.
  • As a liquid fuel a 5% by mass aqueous methanol solution was used.
  • the negative electrode current collector was made of the same material as the positive electrode current collector.
  • the gas-liquid separation membrane was composed of a PTF E membrane with pores.
  • non-fluorine binder for the negative electrode 5 parts by mass of ethylene / ethyl acrylate copolymer powder having an average particle diameter of 1 was used instead of 5 parts by mass of the above-mentioned polyethylene powder, and the heating temperature during pressing was 160 ° C.
  • a liquid fuel cell was fabricated in the same manner as in Example 1, except that
  • a liquid fuel cell was manufactured in the same manner as in Example 1 except that the temperature was changed to 160 ° C.
  • an insulating sheet made of polyethersulfone with a thickness of 50 zm is prepared, and a through hole is made so that the electrolyte layer can be arranged at the part where the positive and negative electrodes are laminated.
  • the above-mentioned “Naphion” solution from Electrochem was poured into the through-hole, and then dried and solidified to form an electrolyte / insulator continuous film.
  • the cathode 8 has a diffusion layer 8 a made of carbon paper having a porosity of 78% and a thickness of 280 // m, and platinum particles having a particle diameter of 2 nm to 5 nm. Supported on carbon particles having a particle diameter of 30 nm and a thickness of 50 / m Of the catalyst layer 8b.
  • the positive electrode 8 was produced as follows. First, after mixing and stirring the commercially available carbon carrying platinum and ion-exchanged water, the viscosity was adjusted to obtain a catalyst ink. This ink was applied onto the carbon paper, dried, and then joined by hot pressing to the portion of the electrolyte layer formed on the insulator sheet.
  • the negative electrode 9 was prepared in the same manner as the positive electrode 8 except that platinum-ruthenium alloy particles (alloy mass ratio 1: 1) having a particle diameter of 5 nm to 10 nm were used instead of the carbon carrying platinum. Produced.
  • a liquid fuel cell as shown in FIG. 6 was produced in the same manner as in Example 1 except that the fuel cell unit cell thus produced and a 3% by mass aqueous methanol solution were used as the liquid fuel. ⁇
  • a liquid fuel cell was manufactured in the same manner as in Example 4 except that the structure shown in FIG. 9 was used.
  • Example 4 As shown in FIG. 1, in the same manner as in Example 4, except that the fuel cell unit cells were formed separately from each other without disposing an insulating layer between the electrolyte layers of the plurality of fuel cell unit cells. A liquid fuel cell was manufactured.
  • the present invention can provide a liquid fuel cell that is small and can generate power stably.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

液体燃料電池
技術分野
本発明は、 液体燃料電池に関する。 明
背景技術
近年、 パソコン、 携帯電話などのコードレス機器の普及に伴い、 その 電源である二次電池はますます小型化、 高容量化が要望されている。 現 在、 エネルギー密度が高く、 小型軽量化が図れる二次電池としてリチウ ムイオン二次電池が実用化されており、 ポータブル電源として需要が増 大している。 しかし、 使用されるコードレス機器の種類によっては、 こ のリチウムイオン二次電池では未だ十分な連続使用時間を保証する程度 までには至っていない。
このような状況の中で、 上記要望に応え得る電池の一例として、 空気 電池、 燃料電池などが考えられる。 空気電池は、 空気中の酸素を正極の 活物質として利用する電池であり、 電池内容積の大半を負極の充填に費 やすことが可能であることから、 エネルギー密度を増加させるためには 好適な電池であると考えられる。 しかし、 この空気電池には、 電解液と して使用するアル力リ溶液が空気中の二酸化炭素と反応して劣化してし まうために自己放電が大きいという問題がある。
一方、 燃料電池は上記のような問題がなく、 中でも、 液体燃料を直接 電池の反応に利用する燃料電池、 例えば直接メタノール型燃料電池は、 小型化が可能であり、 将来のポータブル電源として有望視されている ( 例えば、 特開 2 0 0 0— 2 6 8 8 3 6号公報参照) 。 この直接メタノール型燃料電池の電極は、 正極および負極共にカーボ ン粉末上に貴金属粒子を高分散した触媒、 プロトン交換樹脂およびポリ テトラフルォロエチレン (PTFE) を含んでいる。 この PTFEをバ ィンダとして使用することで一定の強度を有する電極を形成できると共 に、 電極に撥水性を付与することができる (例えば、 コーデエツシュ ( Ko r d e s c h) 、 外 2名、 「ィ一シ一エス プロシ一ディングズ ( E C S P r o c e e d i n g s ) 」 、 (米国) 、 1 982年、 第 82 一 2巻、 第 26 5号、 p. 427 - 428参照) 。
ここで、 上記燃料電池は、 負極に燃料が供給されて反応し、 正極では 酸素が反応する。 したがって、 燃料および酸素の供給さえ行えば連続的 に使用することができる。 しかし、 従来の燃料電池では、 複数の燃料電 池単位セルを積層して構成されていたため、 電池全体が嵩高くなつてい た。 また、 酸素および燃料をそれぞれの正極、 負極へ流通させて供給し なければならず、 そのための補器が必要とされていた。 このため、 燃料 電池はリチウムイオン二次電池などの小型二次電池に比べてはるかに大 きなものとなっていた。
一方、 酸素および燃料を強制的に流通させる補器をなくして燃料電池 の小型化を図ることは可能であるが、 出力が低下するという問題が生じ 、 また、 放電反応で生成した二酸化炭素などのガスが燃料室に滞留し、 燃料の消費に伴って燃料が負極と接触しなくなるという問題が生じるこ とが考えられる。 '
上記放電生成物による問題を防ぐためには、 PTF E製の多孔膜を配 置した排気孔を燃料室に設け、 発生したガスを外部に排出することが考 えられるが、 燃料の組成によっては、 例えば高濃度のアルコール水溶液 を使用した場合などは、 上記多孔膜を燃料が透過して外部に漏れ出すと いう問題が生じてしまう。 さらに、 複数の燃料電池単位セルを配置し、 互いに電気的に接続して 燃料電池を構成する場合には、 各単位セルごとに燃料漏れを防止するた めの封止部が必要となり、 封止が不十分な場合には燃料漏れしやすくな るため、 信頼性を高めようとして封止部が複雑な構造となり、 ある程度 以上の小型化が困難になるという問題が生じやすくなる。
また、 電池全体の構造もさることながら、 各燃料電池単位セルの構成 も改善の余地があった。 例えば、.上記燃料電池の正極では、 気体である 酸素が反応するため、 この反応を阻害する水分を除去する必要から撥水 性が要求される。 一方、 負極では液体燃料であるメタノールなどが反応 するため、 逆に撥水性があると電極の濡れ性が悪くなり液体燃料の酸化 反応が進みにくくなる問題がある。 しかし、 従来の直接メタノール型燃 料電池では、 正極および負極は共にバインダとして P T F Eを含んでお り、 正極および負極のいずれにも撥水性が付与されていたため、 負極と しては必ずしも最適な構成とはなっていなかった。
発明の開示
本発明は、 酸素を還元する正極と、 液体燃料を酸化する負極と、 前記 正極および前記負極の間に配置された電解質層とを含む燃料電池単位セ ルを複数備えると共に、 液体燃料を貯蔵する液体燃料貯蔵部を備えた液 体燃料電池であって、
複数の前記燃料電池単位セルが、 略同一平面上に配置されている液体 燃料電池を提供する。 図面の簡単な説明
図 1は、 本発明の実施形態 1の液体燃料電池の断面図である。
図 2は、 本発明の実施形態 2の液体燃料電池の断面図である。
図 3は、 本発明の実施形態 3の液体燃料電池の断面図である。 図 4は、 本発明の実施形態 4の液体燃料電池の断面図である。
図 5は、 本発明の実施形態 5の液体燃料電池の断面図である。
図 6は、 本発明の実施形態 6の液体燃料電池の断面図である。
図 7は、 本発明の実施形態 6で用いる電解質 ·絶縁体連続膜の平面図 である。
図 8は、 図 7の A— A ' 部の断面図である。
図 9は、 本発明の実施例 5の液体燃料電池の断面図である。 発明の実施の形態
本発明は、 前述した従来の液体燃料電池が抱える問題点を解決するも のであり、 小型でかつ安定的に発電することのできる液体燃料電池を提 供する。
本発明の液体燃料電池は、 酸素を還元する正極と、 液体燃料を酸化す る負極と、 正極および負極の間に配置された電解質層とを含む燃料電池 単位セルを複数備えると共に、 液体燃料を貯蔵する液体燃料貯蔵部を備 えた液体燃料電池であって、 複数の燃料電池単位セルが、 略同一平面上 に配置されている。 各燃料電池単位セルをこのような配置とすることに より、 電池の厚さを薄くすることが可能となり、 さらに複数の燃料電池 単位セルが、 同一の液体燃料貯蔵部から液体燃料の供給を受けることが できるので、 電池を小型化することが可能となる。
また、 本発明の液体燃料電池は、 複数の燃料電池単位セルの各電解質 層が、 互いに連続した一体の電解寧層を構成していることが好ましい。 連続した一つの電解質層に対して複数の燃料電池単位セルを隣接して形 成することにより、 各燃料電池単位セル間の隙間が電解質層で覆われる ことになり、 従来各単位セルごとに必要とされた燃料漏れを防止するた めの封止部を省略ないしは簡略化することができ、 液体燃料の外部への 漏れ出しを防ぐのみならず、 電池の組み立ての簡易化、 電池のより一層 の小型化を実現することができる。
また、 本発明の液体燃料電池は、 複数の燃料電池単位セルの各電解質 層が、 絶縁体層を介して互いに独立しかっこの絶縁体層と共に一体化さ れた連続層を構成していることが好ましい。 これにより、 上記互いに連 続した一体の電解質層を用いた場合に得られる効果に加えて、 隣接する 燃料電池単位セルの電極間で放電反応が進行してしまうことを防ぐこと ができる。 即ち、 互いに連続した一体の電解質層を用いた場合は、 電池 の小型化のために隣接する単位セル間の間隔を非常に小さくすると、 同 一単位セルの正負極間での放電反応が進行するだけでなく、 隣接する単 位セルの正極と負極の間で放電反応が生じ、 電池の実容量が低下する現 象 (短絡) が発生する可能性が高くなるが、 絶縁体層により各単位セル の電解質層を互いに独立させることによりこれを防ぐことができる。 また、 本発明の液体燃料電池は、 液体燃料貯蔵部が、 気液分離膜を含 む気液分離孔を備えていることが好ましい。 これにより、 放電反応で生 成した二酸化炭素などが電池内に滞留することがなく、 二酸化炭素など をスムーズに電池内から放出させることができるため、 燃料供給のため の補器をなくし電池を小型化することができる。
また、 本発明の液体燃料電池は、 上記気液分離膜が、 撥油処理を施し た多孔質フッ素樹脂膜、 または、 多孔質フッ素樹脂膜と他の気体透過性 材料との積層複合体であって撥油処理を施したものであることが好まし い。 これらの材質の気液分離膜は、 メタノールやエタノールなどの親油 性の液体燃料が気液分離孔を透過することを防止することができるので 、 親油性の液体燃料の濃度が高い場合にも液体燃料の漏れを防ぐことが できる。
また、 本発明の液体燃料電池は、 負極が、 イオン伝導性を持たずかつ フッ素を含有しないバインダを含むことが好ましい。 これにより、 負極 と液体燃料との濡れ性が向上して電極特性が改善されるため、 燃料電池 単位セルの放電特性を向上させることが可能となる。 また、 バインダが イオン伝導性を持たないことにより、 液体燃料によるバインダの膨潤、 溶解が生じ難いため、 電極の安定性が向上して燃料電池の信頼性を向上 させることができる。
以下、 本発明の実施の形態を説明する。
(実施形態 1 )
図 1に本発明の実施形態 1の液体燃料電池の断面図を示す。 正極 8は 、 例えば、 多孔性の炭素材料からなる拡散層 8 aと、 触媒を担持した炭 素粉末、 プロトン伝導性物質およびフッ素樹脂バインダを含む触媒層 8 bとを積層して構成される。 正極 8は酸素を還元する機能を有しており 、 その触媒には、 例えば、 白金微粒子や、 鉄、 ニッケル、 コバルト、 錫 、 ルテニウムまたは金などと白金との合金微粒子などが用いられる。 ま た、 プロトン伝導性物質としては、 例えば、 ポリパーフルォロスルホン 酸樹脂、 スルホン化ポリエ一テルスルホン酸樹脂、 スルホン化ポリイミ ド樹脂などのスルホン酸基を有する樹脂を用いることができるが、 これ らに限定されるものではない。 このようなプロトン伝導性物質の含有量 は、 触媒担持炭素粉末 1 0 0質量部に対し、 2質量部〜 2 0 0質量部と することが好ましい。 この範囲内であれば、 十分なプロトン伝導性が得 られ、 また電気抵抗が大きくならず、 電池性能が低下しないからである フッ素樹脂バインダとしては、 例えば、 P T F E、 テトラフルォロェ チレンーパ一フルォロアルキルビニルエーテル共重合体 (P F A) 、 テ トラフルォロエチレン—へキサフルォロプロピレン共重合体 (F E P ) 、 テトラフルォロエチレン一エチレン共重合体 (E Z T F E ) 、 ポリビ 二リデンフルオライド (P V D F ) およびポリクロ口トリフルォロェチ レン (P C T F E ) などを用いることができる。 このバインダの量は、 触媒担持炭素粉末 1 0 0質量部に対し、 0 . 0 1質量部〜 1 0 0質量部 とすることが好ましい。 バインダは使用しなくてもよいが、 0 . 0 1質 量部以上含有されることにより十分な結着性が生じて触媒層の成形、 保 持が容易となる。 また、 1 0 0質量部以下であれば電気抵抗の上昇を抑 制できるので、 電池性能が低下するのを防ぐことができる。
また、 拡散層 8 aの触媒層側には撥水性の向上のため、 P T F E樹脂 粒子を含む炭素粉末のペーストが塗布されている場合もある。
電解質層 1 0は、 電子伝導性を持たず、 プロトンを輸送することが可 能な材料により構成される。 例えば、 ポリパーフルォロスルホン酸樹脂 膜、 具体的には、 デュポン社製の "ナフイオン" (商品名) 、 旭硝子社 製の "フレミオン" (商品名) 、 旭化成工業社製の "ァシプレックス" (商品名) などにより電解質層 1 0は構成されている。 その他では、 ス ルホン化ポリエーテルスルホン酸樹脂膜、 スルホン化ポリイミド樹脂膜 、 硫酸ド一プポリベンズィミダゾール膜などからも構成することができ る。
負極 9は、 液体燃料からプロトンを生成する機能、 即ち液体燃料を酸 化する機能を有しており、 例えば、 多孔性の炭素材料からなる拡散層 9 aと、 触媒を担持した炭素粉末、 プロトン伝導性物質およびフッ素樹脂 バインダを含む触媒層 9 bとを積層して構成される。
触媒を担持した炭素粉末、 プロトン伝導性物質およびバインダは、 上 記正極と同様のものを使用することができる。 炭素粉末と触媒の質量比 は、 炭素粉末 1 0 0質量部に対し、 触媒を 5質量部〜 4 0 0質量部とす ることが好ましい。 この範囲内であれば、 十分な触媒活性が得られ、 ま た触媒の粒子径が大きくなりすぎず、 触媒活性が低下しないからである プロトン伝導性物質の含有量は、 触媒担持炭素粉末 1 0 0質量部に対 し、 2質量部〜 2 0 0質量部とすることが好ましい。 この範囲内であれ ば、 十分なプロトン伝導性が得られ、 また電気抵抗が大きくならず、 電 池性能が低下しないからである。
上記フッ素樹脂バインダに代えて、 あるいはフッ素樹脂バインダと共 にイオン伝導性を持たずかつフッ素を含まないバインダ (非フッ素系バ インダ) を用いることにより、 負極と液体燃料との濡れ性が向上し、 電 極特性が良好となる。
イオン伝導性を持たない非フッ素系パインダとしては種々のものが使 用できるが、 熱可塑性であることが好ましい。 電極の製作が容易になる からである。 この熱可塑性のバインダとしては、 ポリエチレン、 ポリプ ロピレン、 ナイロン、 ポリエステル、 アイオノマ一、 ブチルゴム、 ェチ レン ·酢酸ビニル共重合体、 エチレン ·ェチルァクリレート共重合体お よびエチレン · アクリル酸共重合体からなる群から選択される少なくと も一つを含むことが好ましい。
ただし、 イオン伝導性を持たない非フッ素系バインダとして熱硬化性 樹脂も使用可能である。 例えば、 エポキシ樹脂、 キシレン樹脂、 ジァリ ルフタレ一ト樹脂、 不飽和ポリエステル樹脂、 フエノール樹脂などであ る。
ここで、 イオン伝導性を持たない非フッ素系バインダの粒子径は、 0 . 0 1 m〜 1 0 0 zz mであることが好ましい。 この範囲内であれば、 十分な結着性が得られ、 またバインダ自体が嵩高くならず、 触媒中に均 一に分散できるからである。
また、 パインダの含有量は、 触媒担持炭素粉末 1 0 0質量部に対し、 0 . 0 1質量部〜 1 0 0質量部とすることが好ましい。 この範囲内であ れば、 十分な結着性が得られ、 また電気抵抗が大きくならず、 電池性能 が低下しないからである。
次に、 以上の材料を用いた正極および負極の製造方法について説明す る。 先ず、 上記触媒を担持した炭素粉末、 プロトン伝導性物質、 バイン ダおよび水と有機溶剤とを均一に分散してスラリーとする。 このスラリ 一の固形分量は、 スラリーの全質量 1 0 0質量部に対して 1質量部〜 7 0質量部が好ましい。 1質量部未満では十分な粘性が得られないため作 業性が悪く、 7 0質量部を超えると粘性が高くなりすぎて作業性が悪く なるからである。 これらの材料の分散は、 例えばポールミル、 ホモジナ ィザ一、 超音波分散機などを用いて行うことができるが、 これらに限定 されない。 また、 上記有機溶剤としては、 例えば、 メタノール、 ェタノ ール、 プロパノール、 ブ夕ノールなどが使用できる。
その後、 上記で得られたスラリーを、 多孔性の炭素材料からなる拡散 層に塗布して乾燥する。 続いて熱プレスを行うことで、 バインダが溶融 ·結着し、 電極が形成される。 熱プレスの温度は、 バインダの種類によ つて異なるが、 使用するバインダのガラス転移点以上、 ガラス転移点を 2 0 °C上回る温度以下に設定することが好ましい。 プレスの圧力は 3 M P a〜5 O M P aが好ましい。 3 M P a未満では電極の成形が十分でな く、 5 0 M P aを超えると電極内のポアがつぶれてしまい、 電池性能が 低下するからである。
上記正極 8および負極 9で電解質層 1 0を挟持し、 熱プレスで圧着し て燃料電池単位セルを作製できる。 熱プレスの温度は、 1 0 0 °C〜1 8 0 Cに設定することが好ましい。 プレスの圧力は 3 M P a〜5 O M P a が好ましい。 1 0 未満または 3 M P a未満では電極の形成が十分で なく、 1 8 0 °Cまたは 5 0 M P aを超えると電極内のポアがつぶれてし まい、 電池性能が低下するからである。 組み立てられた複数の単位セル
9 は略同一平面上に配置され、 互いに電気的に接続されて液体燃料電池が 組み立てられる。
負極 9の電解質層 1 0と反対側には液体燃料 4を貯蔵する燃料タンク 3が隣接して設けられている。 燃焼タンク 3は、 複数の燃料電池単位セ ルに液体燃料 4を供給している。 即ち、 複数の燃料電池単位セルが、 同 一の燃料タンクを共用している。
液体燃料 4としては、 例えば、 メタノール水溶液、 エタノール水溶液 、 ジメチルエーテル、 水素化ホウ素ナトリウム水溶液、 水素化ホウ素力 リウム水溶液、 水素化ホウ素リチウム水溶液などが用いられる。
燃料タンク 3は、 例えば、 P T F E、 硬質ポリ塩化ビニル、 ポリプロ ピレン、 ポリエチレンなどのプラスチックや、 ステンレス鋼などの耐食 性金属から構成されている。 ただし、 燃料タンク 3を金属で構成する際 には、 略同一平面上に配置されているそれぞれの負極同士が電気的に短 絡しないように絶縁体を導入する必要がある。
燃料タンク 3の負極 9と接する部分には燃料供給孔 3 aが設けられて おり、 この部分から液体燃料 4が負極 9へと供給される。 また、 液体燃 料 4を含浸して保持しかつ負極 9に液体燃料 4を供給する液体燃料含浸 部として燃料吸い上げ材 5が、 負極 9と接する個所を含む燃料タンク 3 の内部に設けられている。 これにより、 液体燃料 4が消費されても、 液 体燃料 4と負極 9との接触が維持されるため、 液体燃料 4を最後まで使 い切ることができる。 燃料吸い上げ材 5としては、 ガラス繊維を用いる ことができるが、 燃料の含浸によって寸法が余り変化せず、 化学的にも 安定なものであれば他の材料を用いても良い。
正極 8の電解質層 1 0と反対側にはカバー板 2が設けられており、 力 バー板 2の正極 8と接する部分には空気孔 1が設けられている。 これに より、 空気孔 1を通して大気中の酸素が正極 8と接することができる。 カバー板 2の端部には、 カバ一板 2と燃料タンク 3を貫通する構造を持 つ気液分離孔 6 bが設けられている。 この気液分離孔 6 bの燃料タンク 3と反対側には脱着可能な気液分離膜 6 aが設けられている。 この気液 分離膜 6 aは細孔を持つ PTFE製シートからなり、 放電反応で生成し た二酸化炭素などを、 液体燃料 4を漏液させることなく燃料タンク 3か ら放出させることができる。 また、 気液分離膜 6 aを脱着可能とするこ とで、 この気液分離孔 6 bは液体燃料 4を補充する時の充填口ともなる 。 気液分離孔 6 b、 カバー板 2および空気孔 1は、 例えば、 燃料タンク 3と同様の材料から構成することができる。
ここで、 上記細孔を持つ PTFE製シートに代えて、 気液分離膜 6 a を、 撥油処理を施した多孔質フッ素樹脂膜、 または、 多孔質フッ素樹脂 膜と他の気体透過性材料との積層複合体であって撥油処理を施したもの で構成することにより、 親油性の液体燃料が気液分離孔を透過すること を防止することができ、 高濃度の親油性液体燃料を用いる場合にも、 燃 料タンク 3から外部に液体燃料 4が漏れるのを防ぐことができる。
上記多孔質フッ素樹脂膜に使用できるフッ素樹脂としては、 P T F E 、 P FA、 FEP、 EZTFE、 PVDF、 P CTFE、 クロロトリフ ルォロエチレン一エチレン共重合体 (E/CTF E) 、 パーフロロ環状 重合体、 ポリビエルフルオライド (PVF) などが挙げられる。
上記撥油処理を施した多孔質フッ素樹脂膜を作製する方法としては、 例えば、 多孔質フッ素樹脂膜の表面に、 2個以上のフッ素原子を持つフ ルォロアルキル基を有するポリマ一からなる被覆膜を形成する方法を挙 げることができる。 上記フルォロアルキル基としては、 炭素数が 4個以 上のものが好ましく、 水素原子の全てがフッ素置換されたパーフルォロ アルキル基が最も望ましい。 このようなフルォロアルキル基を有するポ リマーを溶解あるいは分散することのできる有機溶媒、 例えば、 パーフ ルォロベンゼン、 パーフルォロトリブチルァミン、 パーフルォ口へキサ ンなどのフッ素系溶媒を用いて、 上記ポリマーのコ一ティング液を作製 し、 これを撥油処理剤として多孔質フッ素樹脂膜に塗布、 あるいは多孔 質フッ素樹脂膜を上記撥油処理剤に浸漬するなどの方法により、 多孔質 フッ素樹脂膜の表面に上記フルォロアルキル基を有するポリマーからな る被覆膜を形成する。 このような撥油処理剤の市販品としては、 例えば 、 ダイキン社製の撥水 ·撥油加工剤 "ュニダイン" (商品名) などを用 いることができる。 また、 上記被覆膜を形成する処理の後に、 多孔質フ ッ素樹脂膜を 5 0 ° ( 〜 2 0 0 °C程度の温度で熱処理することにより、 撥 油性能を向上させることができる。
さらに、 上記多孔質フッ素樹脂膜を単独で用いることができることに 加えて、 多孔質フッ素樹脂膜と他の気体透過性材料、 例えば、 織布、 不 織布、 ネット、 フェルトなどとの積層複合体を用いることもできる。 こ のような積層複合体の場合は、 多孔質フッ素樹脂膜への撥油処理ではな く、 これと積層される気体透過性材料に撥油処理を行うものであっても よい。 もちろん、 多孔質フッ素樹脂膜の側に撥油処理を行うものでもよ く、 両者に撥油処理を行ってもよい。
上記のような撥油処理を施した少なくとも多孔質フッ素樹脂膜を有す る積層複合体の市販品としては、 例えば、 日東電工社製のフィルタ一 " NTF 2 1 3 1 A-P S 0 6" (商品名) 、 "NTF 2 1 3 3 A— S O 6" (商品名) などを使用することができる。
なお、 本実施形態の液体燃料電池に用いる撥油処理を施した多孔質フ ッ素樹脂膜は、 液体燃料がメタノール、 エタノール、 ジメチルエーテル などの他、 親油性の溶液であれば全てに対して漏液防止効果がある。 各燃料電池単位セルの電気的な接続は、 以下のようにしてなされてい る。 正極 8と接する箇所から、 隣接する燃料電池単位セルの負極 9と接 する箇所に渡って集電体 7が設置されており、 正極 8と隣接する燃料電 池単位セルの負極 9は電気的に接続されている。 集電体 7は隣接する燃 料電池単位セルを電気的に直列に接続する役割を持ち、 略同一平面上に 並べられた全ての燃料電池単位セルは集電体 7によって電気的に直列に 接続される。 これにより、 電池を小型化しつつ、 電池の出力を高めるこ とができる。 集電体 7は、 例えば、 白金、 金などの貴金属や、 ステンレ' ス鋼などの耐食性金属、 またはカーボンなどを用いることができる。
なお、 上記略同一平面上に並べられた燃料電池単位セルは、 単層のみ でなく複数個重ねた積層型とすることもできる。
(実施形態 2 )
図 2に本発明の実施形態 2の液体燃料電池の断面図を示す。 本実施形 態は、 燃料タンク 3の上部および下部を略対称に形成した以外は、 実施 形態 1と同様の構造である。
(実施形態 3 )
図 3に本発明の実施形態 3の液体燃料電池の断面図を示す。 本実施形 態では、 内部に燃料吸い上げ材 5を含む燃料供給路 1 4により、 燃料タ ンク 3と外部の燃料タンク 1 3とは接続されている。 燃料タンク 1 3に は燃料タンク 3と同様に液体燃料 4が充填されており、 燃料供給路 1 4 を通じて連続的に液体燃料 4を供給する機能を有している。 燃料タンク 1 3は、 例えば、 燃料タンク 3と同様の材料から構成することができる 。 燃料供給路 1 4は、 例えば、 燃料タンク 3と同様の材料や、 天然ゴム などの柔軟性のゴムなどから構成される。 燃料タンク 1 3には燃料充填 口 1 2が設けられており、 液体燃料を追加して充填する機能を持つ。 な お、 1 1は気液分離孔である。 本実施形態の他の構成は実施形態 1と略 同様である。
(実施形態 4 ) 図 4に本発明の実施形態 4の液体燃料電池の断面図を示す。 本実施形 態は、 燃料タンク 3の上部および下部を略対称に形成したこと以外は、 実施形態 3と同様の構造である。
(実施形態 5 )
図 5に本発明の実施形態 5の液体燃料電池の断面図を示す。 本実施形 態は、 実施形態 1における燃料電池単位セルの各電解質層が、 互いに連 続した一体の電解質層 1 0を構成しているもので、 電解質層 1 0の構造 以外は、 略実施形態 1と同様の構造である。 ここで、 各燃料電池単位セ ルの間隔は、 隣接した単位セルの電極間での電流リーク (液短絡) を防 止するため、 正極 8と負極 9の距離 (電解質層 1 0の厚さ) の 1 0倍〜 5 0 0倍が好ましく、 1 0倍〜 1 0 0倍とするのがより好ましい。
本実施形態では、 各燃料電池単位セル間の隙間が電解質層 1 0で覆わ れるため、 単位セルごとに液体燃料 4の漏れを防ぐ封止部を設ける必要 がなく、 実施形態 1〜4に比べて簡単な構造で燃料漏れを防止すること ができる。
(実施形態 6 )
図 6に本発明の実施形態 6の液体燃料電池の断面図を示す。 また、 図 7は本実施形態に用いる電解質 ·絶縁体連続層の平面図であり、 図 8は 図 7の A— A ' 部の断面図である。 本実施形態は、 燃料電池単位セルの 各電解質層 1 0 aが、 絶縁体層 1 0 bを介して互いに独立しかっこの絶 縁体層 1 0 bと共に一体化された電解質 ·絶縁体連続層 1 0 ' を構成し ているものである。 即ち、 実施形態 5の電解質層において、 単位セル間 に存在する電解質層の部分が絶縁体層に置き換えられ、 一体の電解質 · 絶縁体連続層 1 0 ' とした以外は実施形態 5と同様の構造である。
上記絶縁体層 1 0 bの材質としては、 ポリエチレン、 ポリプロピレン 、 ポリ塩化ビニル、 アクリル樹脂、 ポリスチレン、 ポリビニルアルコー 0301595
レ、 ポリ四フッ化工チレン、 ポリビニルピロリ ドン、 ポリエチレンダリ コール、 ポリ力一ポネート、 ナイロン、 シリコン、 エポキシ、 ポリジメ チルシロキサン、 セルロース、 ポリエチレンテレフタレート、 ポリウレ タン、 ポリグリコール酸、 ポリブチレンテレフタレート、 ポリスルホン 、 ポリエーテルスルホン、 ポリフエ二レンスルフイ ド、 ポリアミドイミ ド、 ポリエーテルイミド、 ポリエーテルエーテルケトン、 ポリイミドな どが挙げられる。
本実施形態では、 各燃料電池単位セルの電解質層 1 0 aが絶縁体層 1 0 bで分離されるため、 各燃料電池単位セルの間隔を狭くした場合でも 液短絡の発生がなく、 上記実施形態 5よりもさらに電池の小型化を図る ことができる。
次に、 本発明の液体燃料電池を実施例に基づき具体的に説明する。 た だし、 本発明は以下の実施例に限定されるものではない。
(実施例 1 )
以下のようにして、 図 1と同様の構造の液体燃料電池を作製した。 正極は以下のようにして作製した。 先ず、 ライオンァクゾ社製の "ケ ツチエンプラック EC" (商品名) を 5 0質量部、 平均粒子径 3 nmの 白金微粒子を 5 0質量部担持した白金担持力一ボンを 1 0質量部、 エレ クトロケム (E l e c t r o c h em) 社製のプロトン伝導性物質 "ナ フイオン (Na f i o n) " (商品名、 固形分濃度 5質量%) を 7 5質 量部、 フッ素樹脂バインダとしてダイキン社製の P TFEェマルジョン 溶液 " D 1 " (商品名、 ェマルジヨン濃度 6 0質量%) を 1 0質量部お よび水を 5質量部準備した。 これらをホモジナイザーで混合 ·分散し、 拡散層である力一ボンクロスに白金量が 8 m g/ c m2になるように塗 布して乾燥した。 次に、 1 2 0°C、 1 OMP aの条件で 2分間熱プレス を行ない電極として成型し、 正極を得た。 負極は以下のように作製した。 先ず、 上記 "ケッチェンブラック E C " を 5 0質量部、 平均粒子径 3 nmの白金ルテニウム合金微粒子 (合金 質量比 1 : 1 ) を 5 0質量部担持した白金担持力一ボンを 1 0質量部、 上記 "ナフイオン" を 7 5質量部、 非フッ素系バインダとして平均分子 量 1 50 0 0で平均粒子径 1 mのポリエチレン粉末を 5質量部および 水を 1 0質量部準備した。 これらをホモジナイザーで均一に混合 ·分散 し、 拡散層である力一ポンクロスに白金量が 8 m g/ cm2になるよう に塗布して乾燥した。 次に、 1 2 0°C、 1 0 MP aの条件で 2分間熱プ レスを行ない電極として成型し、 負極を得た。
電解質層は、 デュポン社製の "ナフイオン 1 1 7" (商品名) を用い 、 正極および負極でこの電解質層を挟持し、 1 2 0°C、 l OMP aの条 件で 3分間熱プレスを行ない、 燃料電池単位セルを作製した。 なお、 電 極面積は正極、 負極ともに 1 0 cm2とした。
カバ一板および燃料タンクは、 ステンレス (SUS 3 1 6) に絶縁性 の塗膜として日本ペイント社製のフエノール樹脂系塗料 "マイカス A" (商品名) を塗布したもので構成した。 正極集電体は厚さ 1 0 の金 製のシートからなり、 エポキシ樹脂を用いて正極と接着した。 液体燃料 としては、 5質量%のメタノール水溶液を用いた。 負極集電体は正極集 電体と同様の材質で構成した。 気液分離膜は細孔を持つ PTF E製の膜 から構成した。
(実施例 2)
負極の非フッ素系バインダとして上記ポリェチレン粉末 5質量部に代 えて、 平均粒子径 1 のエチレン ·ェチルァクリレート共重合体粉末 5質量部を用い、 プレス時の加熱温度を 1 6 0°Cとしたこと以外は、 実 施例 1と同様にして液体燃料電池を作製した。
(実施例 3) 01595
負極のバインダである上記ポリエチレン粉末 5質量部と水 1 0質量部 に代えて、 フッ素樹脂バインダである前記 PTFEェマルジヨン溶液 " D 1 " 1 0質量部と水 5質量部を用い、 プレス時の加熱温度を 1 6 0°C とした以外は、 実施例 1と同様にして液体燃料電池を作製した。
以上のように作製した実施例 1〜 3の液体燃料電池に対して、 室温 ( 20°C) 下で 5 00mAを印加したときの作動電圧を測定した。 その結 果を表 1に示す。
(表 1)
Figure imgf000019_0001
表 1から明らかなように、 実施例 1および実施例 2では、 実施例 3に 比べて作動電圧が高いことがわかる。 これは、 実施例 1および実施例 2 では、 負極に非フッ素系バインダを用いているため、 メタノール水溶液 に対する負極の濡れ性が大きくなり、 メタノールの酸化反応が進み、 負 極性能が向上したものと考えられる。
(実施例 4)
先ず、 図 7、 図 8に示すように、 厚さ 5 0 zmのポリエーテルスルホ ンからなる絶縁体シートを準備し、 正極、 負極を積層する部分に電解質 層を配置できるように貫通穴を開けた後、 その貫通穴にエレクトロケム 社製の前記 "ナフイオン" 溶液を流し込み、 その後乾燥して固化し、 電 解質 ·絶縁体連続膜を形成した。
次に、 図 6に示すように正極 8は、 多孔度 7 8 %、 厚さ 2 8 0 //mの カーボンぺーパ一からなる拡散層 8 aと、 粒子径 2 nm〜 5 nmの白金 粒子を粒子径 3 0 nmのカーボン粒子に担持して形成した厚さ 5 0 / m の触媒層 8 bから構成した。
ここで、 正極 8は、 以下のように作製した。 まず、 市販の上記白金を 担持したカーボンとイオン交換水とを混合 ·攪拌した後、 粘度を調整し て触媒用のィンクとした。 このィンクを上記カーボンぺーパ一上に塗布 し、 乾燥した後、 上記絶縁体シートに形成した電解質層の部分にホット プレスすることで接合した。
負極 9は、 上記白金を担持したカーボンの代わりに、 粒子径 5 n m〜 1 0 n mの白金一ルテニウム合金粒子 (合金質量比 1 : 1 ) を用いたこ と以外は上記正極 8と同様の方法で作製した。
このように作製した燃料電池単位セルと、 液体燃料として 3質量%の メタノール水溶液を用い、 これら以外は実施例 1と同様にして図 6に示 すような液体燃料電池を作製した。 ·
(実施例 5 )
図 9に示した構造を用いた以外は実施例 4と同様にして液体燃料電池 を作製した。
(実施例 6 )
図 1に示したように、 複数の燃料電池単位セルの各電解質層の間に絶 緣体層を配置せず、 燃料電池単位セルをそれぞれ分離して形成した以外 は実施例 4と同様にして液体燃料電池を作製した。
次に、 実施例 4〜 6の液体燃料電池を用いて各燃料電池単位セルの出 力を測定した。 出力の測定は、 1 0 0 mAの定電流で放電を行い、 放電 開始から 2 0分後の各単位セルの電圧を測定することにより出力を求め 、 各単位セルの出力の平均を求めた。 その結果を表 2に示す。
(表 2 )
実施例 4 実施例 5 実施例 6
出力 (mW) 1 5 0 1 6 3 1 2 1 表 2から明らかなように、 実施例 4および実施例 5の液体燃料電池の 出力は、 実施例 6の液体燃料電池の出力に比べて大きく、 小型化に適す る構造であることがわかる。
また、 実施例 5が実施例 4に比べて出力が高いのは、 実施例 5では外 部の燃料タンク内の液体燃料の液圧により、 負極近傍への液体燃料の移 動がスムーズになったためと考えられる。 産業上の利用の可能性
以上説明したように、 本発明は、 小型でかつ安定的に発電することの できる液体燃料電池を提供することができる。

Claims

請 求 の 範 囲
1 . 酸素を還元する正極と、 液体燃料を酸化する負極と、 前記正極お よび前記負極の間に配置された電解質層とを含む燃料電池単位セルを複 数備えると共に、 液体燃料を貯蔵する液体燃料貯蔵部を備えた液体燃料 電池であって、
複数の前記燃料電池単位セルが、 略同一平面上に配置されていること を特徴とする液体燃料電池。
2 . 複数の前記燃料電池単位セルが、 同一の前記液体燃料貯蔵部から 液体燃料の供給を受ける請求項 1に記載の液体燃料電池。
3 . 複数の前記燃料電池単位セルの各電解質層が、 互いに連続した一 体の電解質層を構成している請求項 1に記載の液体燃料電池。
4 . 複数の前記燃料電池単位セルの各電解質層が、 絶縁体層を介して 互いに独立しかつ前記絶縁体層と共に一体化された連続層を構成してい る請求項 1に記載の液体燃料電池。
5 . 複数の前記燃料電池単位セルが、 電気的に直列に接続されている 請求項 1に記載の液体燃料電池。
6 . 前記液体燃料貯蔵部が、 気液分離膜を含む気液分離孔を備えてい る請求項 1に記載の液体燃料電池。
7 . 前記気液分離膜が、 撥油処理を施した多孔質フッ素樹脂膜、 また は、 多孔質フッ素樹脂膜と他の気体透過性材料との積層複合体であつて 撥油処理を施したものである請求項 6に記載の液体燃料電池。
8 . 液体燃料を含浸して保持しかつ負極に液体燃料を供給する液体燃 料含浸部をさらに備えた請求項 1に記載の液体燃料電池。
9 . 前記負極が、 イオン伝導性を持たずかつフッ素を含有しないバイ ンダを含む請求項 1に記載の液体燃料電池。
1 0. 前記バインダが、 熱可塑性バインダである請求項 9に記載の液 体燃料電池。
1 1. 前記パインダが、 ポリエチレン、 ポリプロピレン、 ナイロン、 ポリエステル、 アイオノマ一、 ブチルゴム、 エチレン ·酢酸ビニル共重 合体、 エチレン ·ェチルァクリレート共重合体およびエチレン ·ァクリ ル酸共重合体からなる群から選択される少なくとも一つを含む請求項 9 に記載の液体燃料電池。
1 2. 前記バインダの粒子径が、 0. 0 1 xm〜 1 0 0 である請 求項 9に記載の液体燃料電池。
1 3. 前記液体燃料貯蔵部が、 達結部を介してさらに別の液体燃料貯 蔵部と接続している請求項 1に記載の液体燃料電池。
14. 前記連結部の内部に、 液体燃料含浸部を備えた請求項 1 3に記 載の液体燃料電池。
1 5. 複数の前記燃料電池単位セルが、 前記液体燃料貯蔵部を介して 対峙している請求項 1に記載の液体燃料電池。
1 6. 前記液体燃料貯蔵部を介して対峙している複数の前記燃料電池 単位セルが、 同一の前記液体燃料貯蔵部から液体燃料の供給を受ける請 求項 1 5に記載の液体燃料電池。
1 7. 前記液体燃料貯蔵部を介して対峙している複数の前記燃料電池 単位セルが、 電気的に直列に接続されている請求項 1 5に記載の液体燃 料電池。
1 8. 前記液体燃料貯蔵部が、 気液分離膜を含む気液分離孔を備えて いる請求項 1 5に記載の液体燃料電池。
1 9. 前記液体燃料貯蔵部が、 連結部を介してさらに別の液体燃料貯 蔵部と接続している請求項 1 5に記載の液体燃料電池。
2 0. 前記連結部の内部に、 液体燃料含浸部を備えた請求項 1 9に記 載の液体燃料電池。
PCT/JP2003/001595 2002-02-14 2003-02-14 Liquid fuel cell WO2003069709A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047010486A KR100623257B1 (ko) 2002-02-14 2003-02-14 액체 연료전지
AU2003211193A AU2003211193A1 (en) 2002-02-14 2003-02-14 Liquid fuel cell
CN038013398A CN1572036B (zh) 2002-02-14 2003-02-14 液体燃料电池
US10/490,528 US7998637B2 (en) 2002-02-14 2003-02-14 Liquid fuel cell with a planer electrolyte layer
DE10392147T DE10392147T5 (de) 2002-02-14 2003-02-14 Flüssigbrennstoff-Zelle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002037153 2002-02-14
JP2002-37153 2002-02-14
JP2002-176318 2002-06-17
JP2002176318 2002-06-17

Publications (1)

Publication Number Publication Date
WO2003069709A1 true WO2003069709A1 (en) 2003-08-21

Family

ID=27736497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001595 WO2003069709A1 (en) 2002-02-14 2003-02-14 Liquid fuel cell

Country Status (6)

Country Link
US (1) US7998637B2 (ja)
KR (1) KR100623257B1 (ja)
CN (1) CN1572036B (ja)
AU (1) AU2003211193A1 (ja)
DE (1) DE10392147T5 (ja)
WO (1) WO2003069709A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045970A1 (ja) * 2003-11-06 2005-05-19 Nec Corporation 燃料電池およびその製造方法
FR2869160A1 (fr) * 2004-04-16 2005-10-21 Antig Tech Co Ltd Pile a combustible ayant une structure gaz/liquide isolee
WO2006092914A1 (ja) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. 膜電極接合体およびその製造方法、ならびに直接メタノール形燃料電池
CN100361341C (zh) * 2004-12-10 2008-01-09 台达电子工业股份有限公司 堆叠型燃料电池组
WO2008026245A1 (fr) * 2006-08-29 2008-03-06 Fujitsu Limited Pile à combustible
US20120040257A1 (en) * 2004-03-10 2012-02-16 Hideaki Sasaki Fuel Container For Fuel Cell, Fuel Cell Using The Same, And Operation Method Of Fuel Cell
US8404399B2 (en) 2006-12-28 2013-03-26 Kabushiki Kaisha Toshiba Fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013173B4 (de) * 2004-03-17 2006-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oleophobe anorganische Membranen und Verfahren zu deren Herstellung
KR100709257B1 (ko) * 2005-08-30 2007-04-19 삼성에스디아이 주식회사 연료 공급장치 및 이를 포함하는 연료 전지 시스템
JP2007087655A (ja) * 2005-09-20 2007-04-05 Toshiba Corp 燃料電池
CN100442581C (zh) * 2006-09-12 2008-12-10 崔骥 液体阴极燃料电池
KR100853015B1 (ko) 2007-04-10 2008-08-19 삼성전기주식회사 연료전지 및 그 제조방법
KR100964294B1 (ko) * 2008-09-26 2010-06-16 한국과학기술연구원 평면 밴드 구조의 고체 산화물 연료전지
KR20100069494A (ko) * 2008-12-16 2010-06-24 삼성전자주식회사 연료전지용 프로톤 전도체, 이를 포함하는 연료전지용 전극및 이를 이용한 연료전지
US20110200914A1 (en) * 2010-02-16 2011-08-18 Chao-Yang Wang High power direct oxidation fuel cell
JP2013033691A (ja) 2011-08-03 2013-02-14 Sharp Corp 燃料電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376264A (ja) * 1986-09-18 1988-04-06 Hitachi Maxell Ltd 常温型酸性メタノ−ル燃料電池
JPH0541221A (ja) * 1991-06-04 1993-02-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜燃料電池
JPH08171925A (ja) * 1994-12-19 1996-07-02 Mitsubishi Electric Corp 固体高分子型燃料電池
JPH10510390A (ja) * 1994-12-09 1998-10-06 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Pem燃料電池
WO1999027599A1 (en) * 1997-11-20 1999-06-03 Avista Labs A proton exchange membrane fuel cell power system
WO2000024072A1 (en) * 1998-10-16 2000-04-27 Ballard Power Systems Inc. Ionomer impregnation of electrode substrates for improved fuel cell performance
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2001283892A (ja) * 2000-03-17 2001-10-12 Samsung Electronics Co Ltd 水素イオン交換膜固体高分子燃料電池及び直接メタノール燃料電池用単電極セルパック
JP2003100315A (ja) * 2001-09-25 2003-04-04 Hitachi Ltd 燃料電池発電装置とそれを用いた装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129769A (ja) 1982-01-29 1983-08-02 Hitachi Ltd 酸性電解液型メタノ−ル空気燃料電池用電極の構造
JPS6062064A (ja) 1983-09-14 1985-04-10 Hitachi Ltd 液体燃料電池
JP2580344B2 (ja) * 1989-10-25 1997-02-12 日本精工株式会社 磁性流体組成物とその製造方法及び磁性流体シ―ル装置
US5154866A (en) * 1991-04-04 1992-10-13 Daikin Industries, Ltd. Molding process for preparing porous polytetrafluoroethylene articles
GB9324101D0 (en) * 1993-11-23 1994-01-12 Johnson Matthey Plc Improved manufacture of electrodes
US5783324A (en) * 1994-10-06 1998-07-21 The United States Of America As Represented By The Secretary Of The Army Fuel cell including a single sheet of a polymer electrolyte membrane (PEM), the PEM being divided into regions of varying electrical and ionic conductivity
US5783325A (en) 1996-08-27 1998-07-21 The Research Foundation Of State Of New York Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends
US5759712A (en) * 1997-01-06 1998-06-02 Hockaday; Robert G. Surface replica fuel cell for micro fuel cell electrical power pack
DE19721952A1 (de) 1997-05-26 1998-12-03 Volker Rosenmayer Gasdiffusionselektrode mit thermoplastischem Binder
US6753108B1 (en) 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
AU2001250054A1 (en) * 2000-03-30 2001-10-15 Manhattan Scientifics, Inc. Diffusion fuel ampoules for fuel cells
US6852436B2 (en) * 2000-05-18 2005-02-08 Corning Incorporated High performance solid electrolyte fuel cells
JP2002343378A (ja) * 2001-05-18 2002-11-29 Hitachi Ltd 燃料電池,燃料電池発電装置及びそれを用いた機器
DE10136753A1 (de) 2001-07-27 2003-02-20 Siemens Ag Portable Direkt-Methanol-Brennstoffzelle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376264A (ja) * 1986-09-18 1988-04-06 Hitachi Maxell Ltd 常温型酸性メタノ−ル燃料電池
JPH0541221A (ja) * 1991-06-04 1993-02-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜燃料電池
JPH10510390A (ja) * 1994-12-09 1998-10-06 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Pem燃料電池
JPH08171925A (ja) * 1994-12-19 1996-07-02 Mitsubishi Electric Corp 固体高分子型燃料電池
WO1999027599A1 (en) * 1997-11-20 1999-06-03 Avista Labs A proton exchange membrane fuel cell power system
WO2000024072A1 (en) * 1998-10-16 2000-04-27 Ballard Power Systems Inc. Ionomer impregnation of electrode substrates for improved fuel cell performance
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2001283892A (ja) * 2000-03-17 2001-10-12 Samsung Electronics Co Ltd 水素イオン交換膜固体高分子燃料電池及び直接メタノール燃料電池用単電極セルパック
JP2003100315A (ja) * 2001-09-25 2003-04-04 Hitachi Ltd 燃料電池発電装置とそれを用いた装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045970A1 (ja) * 2003-11-06 2005-05-19 Nec Corporation 燃料電池およびその製造方法
JP4860264B2 (ja) * 2003-11-06 2012-01-25 日本電気株式会社 燃料電池およびその製造方法
US20120040257A1 (en) * 2004-03-10 2012-02-16 Hideaki Sasaki Fuel Container For Fuel Cell, Fuel Cell Using The Same, And Operation Method Of Fuel Cell
FR2869160A1 (fr) * 2004-04-16 2005-10-21 Antig Tech Co Ltd Pile a combustible ayant une structure gaz/liquide isolee
CN100361341C (zh) * 2004-12-10 2008-01-09 台达电子工业股份有限公司 堆叠型燃料电池组
WO2006092914A1 (ja) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. 膜電極接合体およびその製造方法、ならびに直接メタノール形燃料電池
EP1858097A1 (en) * 2005-02-28 2007-11-21 Toagosei Co., Ltd. Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell
JPWO2006092914A1 (ja) * 2005-02-28 2008-08-07 東亞合成株式会社 膜電極接合体およびその製造方法、ならびに直接メタノール形燃料電池
EP1858097A4 (en) * 2005-02-28 2009-03-18 Toagosei Co Ltd MEMBRANE ELECTRODE JOINT PRODUCT, METHOD FOR MANUFACTURING THE SAME, AND DIRECT METHANOL TYPE FUEL CELL
WO2008026245A1 (fr) * 2006-08-29 2008-03-06 Fujitsu Limited Pile à combustible
US8404399B2 (en) 2006-12-28 2013-03-26 Kabushiki Kaisha Toshiba Fuel cell

Also Published As

Publication number Publication date
KR100623257B1 (ko) 2006-09-13
KR20040074111A (ko) 2004-08-21
AU2003211193A1 (en) 2003-09-04
DE10392147T5 (de) 2004-09-02
US7998637B2 (en) 2011-08-16
CN1572036B (zh) 2010-04-28
CN1572036A (zh) 2005-01-26
US20050100773A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4094265B2 (ja) 燃料電池発電装置とそれを用いた装置
WO2003069709A1 (en) Liquid fuel cell
JP4137660B2 (ja) 液体燃料電池
WO2003105265A1 (ja) 液体燃料供給型燃料電池
JP2004171844A (ja) 液体燃料電池
JP4810082B2 (ja) 燃料電池
JP2003323902A (ja) 燃料電池発電装置及びこれを用いた携帯機器
JP3917001B2 (ja) 液体燃料電池
JP2007234359A (ja) 固体高分子型燃料電池用膜電極構造体
JP5071378B2 (ja) 燃料電池
JP2007134306A (ja) 直接酸化型燃料電池およびその膜電極接合体
JP2006049115A (ja) 燃料電池
JP3902609B2 (ja) 燃料電池発電装置とそれを用いた装置
JP2009043688A (ja) 燃料電池
JP2003331900A (ja) 燃料電池
JP5981205B2 (ja) 電解質膜・電極構造体
JP4018500B2 (ja) 燃料電池
JP4236156B2 (ja) 燃料電池
KR101112693B1 (ko) 연료전지용 막전극 접합체 및 이의 제조방법
WO2011052650A1 (ja) 燃料電池
JP4339748B2 (ja) 燃料電池発電装置とそれを用いた装置
JP2011096468A (ja) 燃料電池
JP2004342393A (ja) 燃料電池及びその製造方法
JP2006032163A (ja) 液体燃料電池用発電素子及びそれを用いた液体燃料電池
JP2004139902A (ja) 液体燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10490528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038013398

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047010486

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10392147

Country of ref document: DE

Date of ref document: 20040902

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10392147

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载