WO2003059994A1 - Molded polyester - Google Patents
Molded polyester Download PDFInfo
- Publication number
- WO2003059994A1 WO2003059994A1 PCT/JP2002/009097 JP0209097W WO03059994A1 WO 2003059994 A1 WO2003059994 A1 WO 2003059994A1 JP 0209097 W JP0209097 W JP 0209097W WO 03059994 A1 WO03059994 A1 WO 03059994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural unit
- polyester
- block copolymer
- molded article
- molecular weight
- Prior art date
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 76
- 229920001400 block copolymer Polymers 0.000 claims abstract description 60
- 150000001875 compounds Chemical class 0.000 claims abstract description 45
- 125000000524 functional group Chemical group 0.000 claims abstract description 15
- 238000002834 transmittance Methods 0.000 claims abstract description 13
- 230000006835 compression Effects 0.000 claims abstract description 10
- 238000007906 compression Methods 0.000 claims abstract description 10
- -1 polydimethylsiloxane Polymers 0.000 claims description 37
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 34
- 229920003232 aliphatic polyester Polymers 0.000 claims description 21
- 150000002148 esters Chemical class 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 12
- 229920000098 polyolefin Polymers 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 6
- 238000005809 transesterification reaction Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 230000009477 glass transition Effects 0.000 claims description 5
- 150000002736 metal compounds Chemical class 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- 239000013638 trimer Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 239000013013 elastic material Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 25
- 238000000465 moulding Methods 0.000 abstract description 12
- 229920001971 elastomer Polymers 0.000 abstract description 9
- 239000000806 elastomer Substances 0.000 abstract description 7
- 229920000642 polymer Polymers 0.000 description 101
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 68
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 57
- 238000006243 chemical reaction Methods 0.000 description 37
- 229910052757 nitrogen Inorganic materials 0.000 description 35
- 239000003054 catalyst Substances 0.000 description 27
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 238000006068 polycondensation reaction Methods 0.000 description 21
- 239000004793 Polystyrene Substances 0.000 description 19
- 238000009826 distribution Methods 0.000 description 19
- 229920002223 polystyrene Polymers 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 10
- 238000001746 injection moulding Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- RDFQSFOGKVZWKF-UHFFFAOYSA-N 3-hydroxy-2,2-dimethylpropanoic acid Chemical group OCC(C)(C)C(O)=O RDFQSFOGKVZWKF-UHFFFAOYSA-N 0.000 description 8
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 150000002009 diols Chemical class 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 229920002725 thermoplastic elastomer Polymers 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical class C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- KJRFTNVYOAGTHK-UHFFFAOYSA-N methyl 3-hydroxy-2,2-dimethylpropanoate Chemical compound COC(=O)C(C)(C)CO KJRFTNVYOAGTHK-UHFFFAOYSA-N 0.000 description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 4
- ULKFLOVGORAZDI-UHFFFAOYSA-N 3,3-dimethyloxetan-2-one Chemical compound CC1(C)COC1=O ULKFLOVGORAZDI-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- 229940071125 manganese acetate Drugs 0.000 description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- FLIACVVOZYBSBS-UHFFFAOYSA-N Methyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC FLIACVVOZYBSBS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical group CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229940009827 aluminum acetate Drugs 0.000 description 2
- 229940118662 aluminum carbonate Drugs 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 150000007860 aryl ester derivatives Chemical class 0.000 description 2
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 2
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000003484 crystal nucleating agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000011656 manganese carbonate Substances 0.000 description 2
- 235000006748 manganese carbonate Nutrition 0.000 description 2
- 229940093474 manganese carbonate Drugs 0.000 description 2
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 2
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- WRKCIHRWQZQBOL-UHFFFAOYSA-N octyl dihydrogen phosphate Chemical compound CCCCCCCCOP(O)(O)=O WRKCIHRWQZQBOL-UHFFFAOYSA-N 0.000 description 2
- 125000005429 oxyalkyl group Chemical group 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920006124 polyolefin elastomer Polymers 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 239000011667 zinc carbonate Substances 0.000 description 2
- 235000004416 zinc carbonate Nutrition 0.000 description 2
- 229910000010 zinc carbonate Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UUIPAJHTKDSSOK-UHFFFAOYSA-N (2-nonylphenyl) dihydrogen phosphate Chemical compound CCCCCCCCCC1=CC=CC=C1OP(O)(O)=O UUIPAJHTKDSSOK-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical group O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- HYZQBNDRDQEWAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;manganese(3+) Chemical class [Mn+3].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O HYZQBNDRDQEWAN-LNTINUHCSA-N 0.000 description 1
- VBSTXRUAXCTZBQ-UHFFFAOYSA-N 1-hexyl-4-phenylpiperazine Chemical group C1CN(CCCCCC)CCN1C1=CC=CC=C1 VBSTXRUAXCTZBQ-UHFFFAOYSA-N 0.000 description 1
- CGCZGDRBDQWMGE-UHFFFAOYSA-N 1h-pyrazole-5-sulfinic acid Chemical compound OS(=O)C1=CC=NN1 CGCZGDRBDQWMGE-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical group CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical compound CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- JANFCFFNYNICBG-UHFFFAOYSA-N 4-n-naphthalen-1-ylbenzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1NC1=CC=CC2=CC=CC=C12 JANFCFFNYNICBG-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical group CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- GCIOEHFAGSHJFR-UHFFFAOYSA-N C.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O Chemical compound C.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O.C=C(C(=O)O)CC1(CC(=CC(=C1)C(C)(C)C)C(C)(C)C)O GCIOEHFAGSHJFR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- 241001411320 Eriogonum inflatum Species 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical group OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 241000282821 Hippopotamus Species 0.000 description 1
- 235000003332 Ilex aquifolium Nutrition 0.000 description 1
- 241000209027 Ilex aquifolium Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940063656 aluminum chloride Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- QEZIKGQWAWNWIR-UHFFFAOYSA-N antimony(3+) antimony(5+) oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[Sb+3].[Sb+5] QEZIKGQWAWNWIR-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- FJTUUPVRIANHEX-UHFFFAOYSA-N butan-1-ol;phosphoric acid Chemical compound CCCCO.OP(O)(O)=O FJTUUPVRIANHEX-UHFFFAOYSA-N 0.000 description 1
- BKYMKPAXGVBFTC-UHFFFAOYSA-N butan-1-olate;tetrabutylazanium Chemical compound CCCC[O-].CCCC[N+](CCCC)(CCCC)CCCC BKYMKPAXGVBFTC-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- BNMJSBUIDQYHIN-UHFFFAOYSA-N butyl dihydrogen phosphate Chemical compound CCCCOP(O)(O)=O BNMJSBUIDQYHIN-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229940114081 cinnamate Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical class [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- RLMGYIOTPQVQJR-UHFFFAOYSA-N cyclohexane-1,3-diol Chemical compound OC1CCCC(O)C1 RLMGYIOTPQVQJR-UHFFFAOYSA-N 0.000 description 1
- VKONPUDBRVKQLM-UHFFFAOYSA-N cyclohexane-1,4-diol Chemical compound OC1CCC(O)CC1 VKONPUDBRVKQLM-UHFFFAOYSA-N 0.000 description 1
- DYMNTSVTPJBLQV-UHFFFAOYSA-N decane-1,10-diol;nonane-1,9-diol Chemical compound OCCCCCCCCCO.OCCCCCCCCCCO DYMNTSVTPJBLQV-UHFFFAOYSA-N 0.000 description 1
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- TVACALAUIQMRDF-UHFFFAOYSA-N dodecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCOP(O)(O)=O TVACALAUIQMRDF-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- QPPQHRDVPBTVEV-UHFFFAOYSA-N isopropyl dihydrogen phosphate Chemical compound CC(C)OP(O)(O)=O QPPQHRDVPBTVEV-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical group CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 235000010933 magnesium salts of fatty acid Nutrition 0.000 description 1
- 239000001778 magnesium salts of fatty acids Substances 0.000 description 1
- AKTIAGQCYPCKFX-FDGPNNRMSA-L magnesium;(z)-4-oxopent-2-en-2-olate Chemical class [Mg+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AKTIAGQCYPCKFX-FDGPNNRMSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- FDNCPIRKQFHDBX-UHFFFAOYSA-N methyl undec-2-enoate Chemical compound CCCCCCCCC=CC(=O)OC FDNCPIRKQFHDBX-UHFFFAOYSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-M phloretate Chemical compound OC1=CC=C(CCC([O-])=O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-M 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- 150000003438 strontium compounds Chemical class 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
Definitions
- the present invention relates to a polyester molded article such as a sheet, a film, miscellaneous goods, home appliances, and automobile parts obtained by extrusion molding, injection molding, blow molding, calendar molding, and the like.
- Thermoplastic elastomers have excellent productivity as a substitute material for soft vinyl chloride resin, and are being widely used in automotive parts, office equipment, home appliances parts, medical parts, sheets, films, miscellaneous goods, etc., and materials expected in the future It is.
- Examples thereof include gen-based, hydrogen-added gen-based (hydrogen-added derivatives of Bier aromatic compound-conjugated gen compound block copolymer), polyolefin-based, polyester-based, and polyamide-based.
- these molding materials have drawbacks in terms of scratch resistance, flexibility, processability, economy, and recyclability.
- the olefin-based elastomer is relatively inexpensive and has excellent weather resistance and heat resistance, but has problems in flexibility and scratch resistance
- the gen-based elastomer has problems in weather resistance
- the polyamide-based elastomer has problems such as high cost. is there.
- Some proposals have also been made for hydrogenated jen systems.
- Japanese Patent Application Laid-Open Nos. 50-14742, 52-65551, and 58-24664 each disclose hydrogenated block copolymers. Discloses a composition in which a rubber softener and an olefin resin are blended. However, these compositions were also inferior in scratch resistance, like the olefin-based elastomer.
- polyesters are known as thermoplastic elastomers with excellent environmental resistance and mechanical strength.
- block copolymers containing polybutylene terephthalate (PBT) and polytetramethylene ether glycol (PTMG) as their main components have an excellent balance of performance, and are used in automobiles and home appliances. Used in the field.
- PBT polybutylene terephthalate
- PTMG polytetramethylene ether glycol
- Such a block copolymer is disclosed, for example, in JP-B-49-13 As disclosed in, for example, US Pat. No. 1,558,878, it is manufactured by an industrially advantageous melt polymerization method.
- thermoplastic elastomer generally has low transparency and is often opaque. Even if a block copolymer having relatively high transparency is used, it is very difficult to maintain the transparency for a long time and to maintain the heat resistance and chemical resistance as well as the transparency. I got it.
- Japanese Patent Application Laid-Open No. 10-237167 discloses a molded article comprising a block copolymer using polyethylene terephthalate / polyethylene naphthalate as a hard segment.
- a block copolymer is molded under quenching conditions, a transparent molded article can be obtained, but there is a problem that the crystallization of the polyester gradually progresses and whitens over time.
- Japanese Patent Application Laid-Open No. 10-182954 discloses a composition in which a metal salt is blended with a block copolymer. However, such a composition gradually absorbs moisture, so Under an environment other than a dry atmosphere, whitening occurs over time.
- Japanese Patent Publication No. 47-37040 discloses a block copolymer comprising a lactone and a polyester.
- the block copolymer is prepared by dissolving the block copolymer in an inert solvent. It was obtained by on-polymerization, and a functional group other than an ester group was inserted between the lactone and the polyether. As a result, the resulting polyester copolymer had poor heat resistance and the like.
- the terminal of the polyether serves as an initiator, the content of the polyether cannot be increased due to the relationship with the molecular weight of the produced polymer, so that flexibility cannot be imparted.
- the total light transmittance required for parts that require visibility is generally 75% or more. If the total light transmittance of a thermoplastic elastomer molded article is higher than this value, although it is industrially useful, such as soft-brushed hippopotamus, switches, panels, and color tape with good visibility, it has excellent transparency.
- existing polyesters have low heat resistance of less than 100 ° C, while existing polyesters have excellent heat resistance and chemical resistance.They are opaque, and thermoplastic elastomers with a good balance of transparency, heat resistance and chemical resistance are required. Was desired. Disclosure of the invention
- An object of the present invention is to industrially provide a polyester molded article having excellent heat resistance and chemical resistance while maintaining transparency for a long time.
- the polyester molded article of the present invention comprises a structural unit (A) having a unit having at least one ester bond in the repeating unit as a main component, and a functional group capable of forming an ester having a number average molecular weight in the range of 600 to 100,000.
- a block copolymer comprising a structural unit (B) derived from a compound having a group at both ends, and having a compression set of 5 to 65% measured according to JIS-K-1262. It is characterized by being in the range, being an elastic body, and having a total light transmittance of 75% or more measured according to JIS-K-7361-1.
- the structural unit (A) has a unit represented by the following formula (1) as a main component, has a glass transition temperature (Tg) of 0 or less, and has a number average molecular weight in the range of 600 to 100000, and can form an ester.
- Tg glass transition temperature
- the content of the structural unit (A) is preferably 10 to 70% by mass.
- each of X and Y represents hydrogen, an alkyl group, or a phenyl group.
- N is 5 to 5000.
- Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, One of phenylene groups is shown.
- X and Y in the formula (1) are a methyl group and Z is a methylene group.
- the structural unit (C) composed of a polyfunctional component is added to the structural unit (A) in an amount of 0.0. It may be constituted by containing 5 to 2 mol%.
- the method for producing the aliphatic polyester block copolymer of the polyester molded article of the present invention comprises: a structural unit (A) having a unit represented by the following formula (1) as a main component; and a glass transition temperature (Tg) of o: And a structural unit (B) derived from a compound having a number-average molecular weight in the range of 600 to 100000 and having a functional group capable of forming an ester at both terminals, and comprising the structural unit (A)
- X and Y each represent a hydrogen, an alkyl group, or a phenyl group.
- N is 5 to 5000.
- Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, One of phenylene groups is shown.
- X and Y in the above formula (1) are a methyl group and Z is a methylene group.
- the aliphatic block copolymer may be configured to contain the structural unit (C) composed of a polyfunctional component in an amount of 0.05 to 2 mol% with respect to the structural unit (A).
- the polyester molded article of the present invention is characterized in that the MFR measured according to ASTM D1238 is 3 to 300 g / 10 min.
- the haze measured according to JIS-K-7136 is 50 or less, and the yellowness index described in JIS-K-7105 is 30 or less.
- the aliphatic polyester block copolymer of the polyester molded article of the present invention is as follows:
- the cyclic polyester represented by the above formula (2) is contained in the aliphatic polyester in a content of 0.0005.05% by mass.
- each of X and Y represents hydrogen, an alkyl group, or a phenyl group.
- M is an integer of 2 or more.
- Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Shows any of the len groups.
- the aliphatic polyester block copolymer preferably contains a cyclic trimer represented by the following formula (3) in an amount of 0.001 to 0.05% by mass in the aliphatic polyester.
- the structural unit (B) of the polyester molded article of the present invention is a unit derived from polyolefin, polyoxyalkylenedarilicol, polydimethylsiloxane, or polyester.
- the polyester molded article of the present invention comprises a block copolymer containing the structural unit (A) and the structural unit (B), and the structural unit (A) is an ester bond in the repeating unit.
- the main component is a unit having at least one
- the constitutional unit (A) of the block copolymer in the present invention preferably contains, as a main component, a unit represented by the following formula (1).
- X and Y each represent any of hydrogen, an alkyl group and a phenyl group.
- X and Y may be the same or different, but are preferably the same substituent because the block copolymer has excellent heat resistance.
- n is 5 to 500. When n is less than 5, the heat resistance of the block copolymer becomes insufficient. On the other hand, when it exceeds 50,000, the fluidity of the block copolymer decreases and moldability deteriorates. It is preferable that n is 5 to 500, because both the heat resistance and the fluidity of the block copolymer are excellent, and it is more preferably 10 to 200,000.
- Z represents a direct bond, an alkylene group having 1 to 6 carbon atoms, or a phenylene group.
- Z may be a mere direct bond, but when Z is an alkylene group or a phenylene group having 1 to 6 carbon atoms, the reaction is easy when forming a block copolymer. Therefore, it is preferable. Further, the alkylene group having 1 to 6 carbon atoms may have a branched structure. Further, when the carbon number exceeds 6, the heat resistance tends to be poor.
- polyester molded article of the present invention since such a component is contained as the structural unit (A), it is particularly excellent in heat resistance, excellent in transparency for a long time, and excellent in flexibility. Become.
- the unit of the above formula (1) which is a main constituent of the structural unit (A) include a hydroxypivalic acid unit in which X and Y are methyl groups, Z is a methylene group, X is hydrogen, and Y is A hydroxyisobutyric acid unit in which Z is a methylene group, a glycolic acid unit in which X and Y are hydrogen and Z is a direct bond, a propanoic acid unit in which X and Y are hydrogen and Z is a methylene group, X and Y are hydrogen and Z is a dimethylene butyrate unit; X and Y are hydrogen and Z is a trimethylene group valerate unit; X and Y are hydrogen, ⁇ ⁇ is a tetramethylene group, cabronic acid unit, X is hydrogen, ⁇ is a methyl group, ⁇ is a direct bond, lactic acid unit X is hydrogen, ⁇ is a phenyl group, and ⁇ is a direct bond Is
- the method for producing polypivalolactone is preferably one obtained by polymerizing hydroxypivalic acid or its ester or pivalolactone. More preferably, a polymer of hydroxypivalic acid or an ester thereof is preferably used as a main component of the structural unit (II) in that a starting material produced industrially can be used.
- the unit represented by the formula (1) may be composed of one type of compound or a plurality of compounds as long as the melting point of the block copolymer is not significantly reduced.
- they may be composed solely of hydroxypivalic acid or an ester thereof, or may be combined with another compound capable of forming a unit of the formula (1).
- the structural unit (II) contains the unit represented by the above formula (1) as a main component, but may contain other copolymer components as long as the melting point of the block copolymer is not significantly reduced.
- the molecular weight of the target block copolymer can be increased.
- copolymerization components include dicarboxylic acids, diols, hydroxycarboxylic acids and their esterified products.
- dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, daltaric acid, adipic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 5-sulfo Sodium isophthalate and their lower alkyl esters, aryl esters, ester carbonates and acid halides are preferably used.
- diols examples include ethylene diol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanedyl, 1,6-hexane.
- hydroxycarboxylic acid hydroxybenzoic acid and their lower alkyl esters, aryl esters, carbonates, and acid halides are preferably used. These copolymer components may be used alone or in combination of two or more.
- copolymer components When these copolymer components are used, they are usually used in an amount of 20% by mass or less in the component (A).
- the structural unit (B) constituting the block copolymer in the present invention is derived from a compound having a functional group capable of forming an ester at both terminals.
- the functional group capable of forming an ester include a hydroxyl group, a propyloxyl group, a methyl carboxylate group, an ethyl carboxylate group, a propyl carboxylate group, and an acetyloxy group.
- the main chain skeleton is composed of polyolefin, polyoxyalkylene glycol, polydimethylsiloxane, polyester, polycarbonate, polybutadiene, hydrogenated polybutadiene, or the like, and the both ends are functional groups capable of forming the above ester. And those consisting of Further, these compounds may be composed of one kind or a plurality of compounds.
- the compound having a main chain skeleton made of polyolefin is not limited as long as it has a functional group capable of forming an ester at both ends of a linear or branched polyolefin.
- the number average molecular weight of the compound having a main chain skeleton of polyolefin is 600 to 1
- the preferred molecular weight is in the range of 150 to 100,000, more preferably in the range of 2000 to 100,000, and most preferably in the range of 2000 to 100,000. It is in the range of 0.
- the structural unit (B) is composed of such polyolefin-derived units.
- the water resistance and weather resistance of the ester molded body are improved and the specific gravity can be reduced.
- it can be preferably used for sheet, film, miscellaneous goods, home appliances, and automobile parts that come into contact with light or water.
- Examples of the compound having a main chain skeleton of polyolefin include a hydroxyl group-containing polyolefin such as Polytail (trademark) (manufactured by Mitsubishi Chemical Corporation).
- Compounds having a main chain skeleton of polyoxyalkylene glycol include polytetramethylene glycol, 3-methyltetrahydrofuran copolymerized polytetramethylene glycol, polyethylene glycol, polypropylene glycol, and polypyrene. Things.
- the number average molecular weight of the compound having a main chain skeleton composed of polyoxyalkylene glycol is preferably from 600 to 100,000. If the number average molecular weight is less than 600, heat resistance becomes insufficient, and if it exceeds 100000, fluidity becomes insufficient.
- the preferred range of the molecular weight is 1500 to 1000, more preferably 2000 to
- the structural unit (B) is composed of such a unit derived from polyoxyalkylene glycol, polyoxyalkylene glycol is inexpensive, so that the production cost of the polyester molded article is reduced, which is industrially advantageous. is there.
- it can be preferably used for applications requiring a particularly low price among sheets, films, miscellaneous goods, home appliances, electric and electronic parts, and automobile parts.
- Examples of the compound having a main chain skeleton of polydimethylsiloxane include a compound represented by the following formula (4).
- C and D are a hydroxyl group, carboxylic acid group, methyl carboxylate group or the like capable of forming an ester. These may be the same or different groups.
- 1 is not limited, but is preferably from 8 to 500, more preferably from 8 to 200, and still more preferably from 10 to 80. If 1 is less than 8, polyester In some cases, the heat resistance and flexibility of the molded article may be insufficient. On the other hand, if 1 exceeds 500, the compatibility with the component represented by the formula (1) may decrease. When 1 is in the range of 8 to 500, the heat resistance and flexibility of the polyester molded article are excellent, and the compatibility between the structural unit (A) and the structural unit (B) is particularly good.
- a and B in the formula (4) are an alkyl group or an oxyalkyl group, preferably an alkyl group having 4 or more carbon atoms or an oxyalkyl group. Among them, an alkyl group having 4 or more carbon atoms is preferable because the polyester molded article has excellent weather resistance.
- the structural unit (B) is composed of such a unit derived from polydimethylsiloxane, the low-temperature properties of the polyester molded article are particularly excellent.
- it is preferably used for sheets, films, miscellaneous goods, home electric appliances, and automobile parts in which cold resistance is particularly required.
- Examples of the compound having a main chain skeleton of polyester include a compound obtained by ring-opening polymerization of a lactone such as polycaprolactone and valerolactone, and a condensate of a dicarboxylic acid and a diol.
- a lactone such as polycaprolactone and valerolactone
- a condensate of a dicarboxylic acid and a diol examples of the compound having a main chain skeleton of polyester.
- the dicarboxylic acid and the diol the same compounds as those exemplified as the copolymerization component contained in the structural unit (A) can be used.
- the number average molecular weight of the compound having a main chain skeleton of polyester is preferably 600 to 100,000. When the number average molecular weight is less than 600, heat resistance becomes insufficient, and when it exceeds 100,000, fluidity becomes insufficient.
- the preferred molecular weight range is from 1500 to: L00000, more preferably from 2,000 to 100,000, most preferably from 2,000 to 10,000.
- the polyester molded article has particularly excellent weather resistance and heat resistance, and can be manufactured at low cost.
- the polyester molded article can be preferably used for seats, films, miscellaneous goods, home appliances, and automobile parts, particularly those used outdoors or in high-temperature parts.
- Examples of the compound having a main chain skeleton composed of polypropionate include a polymer of cyclic polycarbonate, a condensate of glycol and phosgene, and a copolymer of forceprolactone. More specifically, polydimethyltrimethylene force, polymonomethyltrimethylene force, polytrimethylene carbonate, polyhexamone Tylene carbonate and the like. These compounds may be homopolymers or copolymers and may contain aromatics.
- the number average molecular weight of the compound whose main chain skeleton is made of polycarbonate is preferably from 600 to 100,000. When the number average molecular weight is less than 600, the heat resistance becomes insufficient, and when it exceeds 100000, the fluidity becomes insufficient.
- the preferred molecular weight is in the range of 1,500 to 100,000, more preferably in the range of 2000 to 100,000, and most preferably in the range of 2000 to 10,000.
- the heat resistance of the polyester molded article is particularly excellent.
- it can be preferably used for sheet, film, miscellaneous goods, home appliances, electric / electronic parts, and automobile parts, particularly those used in high-temperature parts.
- the glass transition temperature (Tg) is preferably 0 ° C or less. When the Tg is 0 ° C or less, it is preferable because the resilience and flexibility of the polyester molded article are excellent.
- the block copolymer in the present invention is constituted by including the structural unit (A) and the structural unit (B), and the mass ratio of the structural unit (A) is preferably in a range of 10 to 70% by mass. More preferably, it is 15 to 70% by mass, and still more preferably 20 to 50% by mass. If the structural unit (A) is less than 10% by mass, the heat resistance of the polyester molded product may be insufficient, while if it exceeds 70% by mass, the resilience and flexibility of the polyester molded product may be reduced. When the structural unit (A) is from 10 to 90% by mass, the heat resistance, rebound resilience, and flexibility of the polyester molded article are all excellent, which is preferable.
- the block copolymer in the present invention is constituted by containing the structural unit (A) and the structural unit (B), and further comprises the structural unit (C) composed of a polyfunctional component according to the above constitution. It is preferable to contain 0.05 to 2 mol% with respect to the unit (A). When such a structural unit (C) is contained, the polymerization time for producing the block copolymer of the polyester molded article can be shortened, and the balance between the fluidity and the tensile properties of the block copolymer is more excellent.
- polyfunctional component examples include polyhydric alcohols such as trimethylolpropane and pentaeristol, and polyhydric alcohols such as pyromellitic acid and anhydride, trimellitic acid and so on.
- polyhydric alcohols such as trimethylolpropane and pentaeristol
- polyhydric alcohols such as pyromellitic acid and anhydride, trimellitic acid and so on.
- examples thereof include compounds containing a trivalent or more polyvalent carboxylic acid such as an anhydride thereof, an anhydride thereof, dimethyl sodium sulfoisophthalate, and a compound containing a bifunctional or more functional epoxy group, oxazoline group, carbodiimide group and the like.
- the method for producing the block copolymer used in the polyester molded article of the present invention is not particularly limited, and examples thereof include a melt polycondensation method.
- the structural unit (A) is a methyl group and X and Y in the above formula (1) are methyl groups and Z is a methylene group
- hydroxypivalic acid or hydroxypivalic acid ester can be industrially easily obtained.
- the polymerization can be performed by a known polyester polymerization method, and may be continuous polymerization or batch polymerization.
- the raw materials constituting the block copolymer are all charged at once into a reactor in which nitrogen is introduced, and transesterification is performed at a temperature of about 160 to 240 ° C., and then 240 T, 0 Polycondensation may be performed under conditions such as 13 kPa or less, or a polymer that constitutes the structural unit (A) may be prepared in advance by polymerizing hydroxypivalic acid, hydroxypivalic acid ester, pivalolactone, etc. Thereafter, a method of polycondensing the polymer and the compound constituting the structural unit (B) with the compound constituting the structural unit (C) used as necessary may be used.
- the obtained polymer is discharged into water and pelletized to obtain a target block copolymer. Further, a polymer constituting the structural unit (A), a compound constituting the structural unit (B), and a compound constituting the structural unit (C) used as required are reacted in an extruder, and A method of manufacturing the target object may be used.
- the molecular weight of the target block copolymer can be increased by combining the amount of the hydroxyl group and the amount of the propyloxyl group in the charged composition.
- dicarboxylic acid, diol, or the like examples include the above-mentioned dicarboxylic acids and diols.
- the following metal compounds are added to the block copolymer of the polyester molded product in which the total mass of the metals is finally obtained in 0.1.
- the transesterification reaction or polycondensation can be carried out with high yield.
- These metal compounds need only be added at least in the step of transesterification. For example, they can be supplied at the stage of charging the raw materials, or can be supplied at the time of transesterification.
- Suitable metal compounds used include at least one selected from the group consisting of antimony, germanium, titanium, manganese, magnesium, calcium, strontium, barium, sodium, cobalt, aluminum, gallium, iron, tin, zinc, and boron.
- examples of such compounds include fatty acid salts such as acetates of these metals, carbonates of these elements, sulfates of these elements, nitrates of these elements, and halogens such as chlorides.
- the titanium compound is particularly preferably a tetraalkyl titanate such as tetrabutyl titanate or tetramethyl titanate, or a metal oxalate such as titanium oxalate.
- dibutyltin oxide dibutyltin dilaurate and the like are preferable.
- Examples of the aluminum compound include fatty acid aluminum salts such as aluminum acetate, aluminum carbonate, aluminum chloride, and acetyl acetonate salt of aluminum.
- Aluminum acetate or aluminum carbonate is particularly preferable.
- Examples of the barium compound include barium salts of fatty acids such as barium acetate, barium carbonate, barium chloride, and acetyl acetonate of barium. Barium acetate or barium carbonate is particularly preferable.
- cobalt compound examples include a cobalt salt of a fatty acid such as cobalt acetate, cobalt carbonate, cobalt chloride, and acetyl acetonate salt of cobalt, and particularly preferably cobalt acetate or cobalt carbonate.
- a cobalt salt of a fatty acid such as cobalt acetate, cobalt carbonate, cobalt chloride, and acetyl acetonate salt of cobalt, and particularly preferably cobalt acetate or cobalt carbonate.
- magnesium compound examples include magnesium salts of fatty acids such as magnesium acetate, magnesium carbonate, magnesium chloride, and acetyl acetonate salt of magnesium. Particularly preferred is magnesium acetate or magnesium carbonate.
- the manganese compound examples include manganese salts of fatty acids such as manganese acetate, manganese carbonate, manganese chloride, and acetyl acetonate salt of manganese. Particularly, manganese acetate or manganese carbonate is preferable.
- strontium compound examples include a strontium salt of a fatty acid such as strontium acetate, strontium carbonate, strontium chloride, and an acetyl acetonate salt of strontium.
- strontium acetate and strontium carbonate are particularly preferable.
- Examples of the zinc compound include zinc salts of fatty acids such as zinc acetate and the like, zinc carbonate, zinc chloride, and acetyl acetonate salt of zinc. Particularly preferred are zinc acetate and zinc carbonate.
- antimony compound examples include antimony dioxide and antimony acetate.
- germanium dioxide is used as a germanium compound
- calcium carbonate or calcium acetate is used as a calcium compound
- sodium methylate is used as a sodium compound
- gallium trichloride or gallium oxide is used as a gallium compound
- acetic acid is used as an iron compound.
- compounds of iron and boron include boron oxide.
- These metal compounds can be used alone or in combination of two or more.
- a stabilizer may be used if necessary.
- the stabilizer include phosphates such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, triphenyl phosphate, and tricresyl phosphate; triphenyl phosphate, tris dodecyl phosphate, and tris.
- Phosphite esters such as nonylphenyl phosphate; acid phosphate esters such as methyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, octyl phosphate and the like
- Phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, and polyphosphoric acid are used.
- the block copolymer of the present invention thus produced includes, for example, Known stabilizers such as heat stabilizers and light stabilizers may be added.
- Known stabilizers such as heat stabilizers and light stabilizers may be added.
- the heat stabilizer include phenol compounds such as 4,4-bis (2,6-di-tert-butylphenol) and amines such as N, N-bis (mononaphthyl) -p-phenylenediamine. And diazolyl thionate.
- the light stabilizer include, for example, substituted benzophenones and benzotriazole compounds.
- the melt viscosity of the block copolymer in the present invention is expressed by a melt flow rate (MFR) measured according to ASTM D 1238, and a preferable range of MFR is 3 to 3 OO gZl Omin. Is 5 to 250 gZl Omin., More preferably 10 to 250 gZl Omin. If the MFR is less than 3 gZl 0 min., The injection moldability is poor, and short shots tend to occur. If the MFR exceeds 300 g / 10 minutes, the molded product tends to have poor tensile properties.
- MFR melt flow rate
- the polyester molded article of the present invention is an elastic body, and has a compression set of 5 to 65% as measured according to JIS-K-6262. If the compression set is less than 5%, the moldability tends to be poor. On the other hand, if the compression set exceeds 65%, the rubber elasticity tends to be low, and the applications in which the molded article can be used tend to be limited. Furthermore, if it cannot be measured by the measurement method of JIS-K-1262, it is out of the definition of an elastic body and is not suitable for use as a thermoplastic elastomer. More preferably, the compression set is in the range of 25 to 60%, and still more preferably in the range of 30 to 55%.
- the polyester molded article of the present invention has a total light transmittance of 75% or more as measured according to JIS-K-7361-1. Although the total light transmittance depends on the surface condition of the measured object, it is obtained from a specimen that has not been subjected to surface processing or surface treatment, and the upper limit is 93% in theory.
- the total light transmittance is less than 75%, the transparency of the molded product is low, and the applications that can be used industrially are limited. A more preferable range of the total light transmittance is 80% or more. It is preferable that the haze of the polyester molded article of the present invention, measured according to JIS-K-7136, is 50 or less, since a molded article with good visibility can be obtained. More preferably, the haze value is 35 or less. In addition, JIS—K— It is preferable that the described yellowness index (hereinafter, YI) is 30 or less because the appearance of the molded article is maintained. More preferably, YI is 20 or less, further preferably 10 or less. In the aliphatic polyester block copolymer of the polyester molded article of the present invention, the content of the cyclic represented by the following formula (2) is preferably 0.05% by mass or less.
- each of X and Y represents hydrogen, an alkyl group, or a phenyl group.
- M is an integer of 2 or more.
- Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Represents one of the len groups.
- the cyclic body in the aliphatic polyester block copolymer exceeds 0.05% by mass, when the aliphatic polyester resin is molded, the cyclic body may bleed out over time.
- the preferred content of the cyclic is 0.03% by mass or less, more preferably 0.01% by mass or less.
- a crystal nucleating agent, an organic or inorganic reinforcing fiber, an organic or inorganic powder, and the like are added to the polyester molded article of the present invention. May be.
- the polyester molded article of the present invention can be formed into a container by, for example, injection molding, formed into a sheet or the like by extrusion, or formed into a container or the like by professional molding. It can be formed into a shape. After forming the molded product, annealing treatment is further performed to promote crystallization of the structural unit (A) and to stabilize it. May be enhanced.
- polyester molded article Since such a polyester molded article has excellent transparency, its transparency lasts for a long time, and is also excellent in flexibility and chemical resistance, it has been conventionally used for both soft vinyl chloride resin and styrene-butadiene-styrene block.
- Polymers and their hydrogenated products, aliphatic polyester copolymers, and polyolefins are preferably used for applications where elastomers and the like have been used, that is, for automobile parts such as sheets, films, sundries and the like.
- a resin is obtained by blending the block copolymer of the polyester molded product with a resin such as polyester, polypropylene resin, polyamide, polyolefin, polystyrene, polymethyl methacrylate, or polychlorinated biel as a modifier.
- a resin composition excellent in these properties can be produced.
- Extrusion molding Formed into a sheet shape with a thickness of 200 x m at 250 ° C by a film forming machine combining a 4 ⁇ ⁇ single screw extruder and a ⁇ -die.
- JISK 6301 using a sample obtained by stacking samples obtained by press molding or injection molding so that the overall thickness becomes 4 mm or more, measure the JISA type term and indicate the index of flexibility.
- a 2 mm thick sample obtained by press molding was cut into a strip of 3 Omm x 5 mm, and the end of the sample was fixed at 1 Omm, left in an oven at 120: for 1 hour, and did not sag more than 5 mm Is indicated by ⁇ in the table, and those hanging 5 mm or more are indicated by X in the table.
- a 200-m-thick sheet-like sample obtained by extrusion molding or a 3.2-mm-thick test piece obtained by injection molding was measured in accordance with ASTM D-638.
- the residual elongation after 200% tension was determined by elongating the sample at 23 ° C for 5 minutes while maintaining the sample at 200% tension for 5 minutes, and then releasing the sample for 30 minutes.
- the resulting aliphatic polyester was dissolved in black-mouthed form, and the carrier gas was changed to helium using gas chromatography-(Hewlett Packard HP6890, capillary column ( ⁇ 5, length 30 m, film thickness 0.25 m)). The amount was determined at 1.5 mmZm in. And at a temperature of 200 ° C. using methyl palmitate as an internal standard.
- Total light transmittance, haze The total light transmittance was measured using a haze meter at 23 ° C. on a 3 mm thick, 5 Omm ⁇ 5 Omm flat plate sample obtained by injection molding in accordance with JIS-K-7361.
- the haze value was measured using the same apparatus and the same test piece in accordance with JIS-K-7136.
- JIS-K-6262 a sample of 2 mm thickness obtained by press molding was punched out to a diameter of 13 mm to form three small laminated test pieces, which were compressed by 15% using a 5.3 mm spacer. This was held for 70 and 22 hours, and after 30 minutes, the thickness of the test piece was calculated from the measured value.
- the resin (A-1) was confirmed to have an ester exchange rate of 97% or more based on the melting point, viscosity, and the like determined by DSC.
- the calculated number average molecular weight at this time is 3290, and n in Equation 1 is 32.
- the pressure inside the system was reduced to 0.13 kPa or less over 1 hour at 240 ° C., and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1210 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 35000 and the molecular weight distribution was 1.8.
- the polymer was subjected to dynamic viscoelasticity measurement, and the Tg derived from the structural unit ( ⁇ ) determined from the peak of t a ⁇ ⁇ was 143 ° C.
- the content of the structural unit (A) was 32% by mass.
- the polymer thus obtained was dried at 0.3 kPa, 120 ° C for 5 hours, and then 200 m thick at 250 t using a 4 Omm single screw extruder and T-die. Into a sheet. In addition, press molding and injection molding were performed at 240 ° C, and test specimens having a predetermined thickness were prepared and evaluated. Tables 1 and 2 show the results.
- the pressure inside the system was reduced to 0.13 kPa or less at 240 ° C. over 30 minutes, and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1180 g of a polymer. This to the black mouth Holm Melted, the number average molecular weight measured by polystyrene standard was 28000, and molecular weight distribution was 2.2.
- the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes at 240 ° C.
- Polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1280 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 32,000, and the molecular weight distribution was 1.9.
- the polyester molded article of Comparative Example has insufficient transparency, and the polyester molded article of Comparative Example 2 in which the molecular weight of the structural unit ( ⁇ ) is less than 600 is flexible. In addition, residual elongation due to tension and compression set are large. On the other hand, the polyester molded articles of the present invention were all excellent in heat resistance, maintained high transparency, and also excellent in flexibility and chemical resistance.
- the pressure inside the system was reduced to 0.13 kPa or less over 1 hour at 240, and the polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 4500 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 35000 and the molecular weight distribution was 1.8.
- the structural unit (A) having a hydroxypivalic acid unit as a main component in the obtained polymer was calculated to have a molecular weight of 2600 from the melting point of the form-insoluble portion of the polymer by DSC measurement, and n was 26.
- the dynamic viscoelasticity of this polymer was measured, and the Tg derived from the structural unit (B) determined from the peak of tan ⁇ 5 was _40 ° C.
- the structural unit (B) is composed of a compound composed of polytetramethylene glycol (PTG4000 having a number average molecular weight of 4000) and dimethyl adipate, both ends of which are ester-forming functional groups.
- the molecular weight is 4100.
- the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes at 24 Ot: and the polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 85 g of a polymer. This was dissolved in black-mouthed form, and the number average molecular weight measured by polystyrene standard was 28000 and the molecular weight distribution was 2.2.
- the dynamic viscoelasticity of this polymer was measured, and the Tg derived from the structural unit ( ⁇ ) determined from the peak of ta ⁇ ⁇ was ⁇ 55 ° C.
- the structural unit (B) is composed of a compound composed of polytetramethylene glycol (PTG4000 having a number average molecular weight of 4,000) and dimethyl adipate, both ends of which are ester-forming functional groups, Its number average molecular weight is 8200.
- the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes with 24 O :, and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 93 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 30,000 and the molecular weight distribution was 1.9.
- (B) consists of a compound composed of polytetramethylene glycol (PTG 20000 having a number average molecular weight of 2000) and dimethyl adipate, both ends of which are ester-forming functional groups, and whose number average molecular weight is 2 is 100.
- Example 2 The polymer obtained in Example 1 was dried at 0.3 kPa and 120 ° C for 5 hours, and then dried at 250 ° C using a film forming machine combining a 40 mm ⁇ single screw extruder and a T-die. The test piece was formed into a sheet having a thickness of zm and evaluated. The results are shown in Table 4. [Comparative Example 3]
- Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
- the produced polymer was discharged into water under nitrogen pressure and pelletized to obtain 92 g of a polymer. This was dissolved in black hole form and the number average molecular weight measured by polystyrene standard was 32,000, and the molecular weight distribution was 1.7.
- Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
- Polyester Elastomer P-40B (Toyobo Co., Ltd.) is dried at 0.3 kPa and 120 ° C for 5 hours, and then 250 ° by a 4 ⁇ ⁇ single screw extruder and T-die. C was molded into a sheet 200 m thick to form a test piece, and this test piece was evaluated. The results are shown in Table 4. Table 3
- the polyester molded article of the comparative example is insufficient in any of flexibility, transparency, and heat resistance, whereas the polyester molded article copolymer of the present invention is heat resistant. Excellent in transparency, high transparency was maintained, and flexibility and chemical resistance were also good.
- Table 4 shows that the polyester elastomer, which had excellent heat resistance among the existing thermoplastic elastomers, maintained its strength and was excellent in residual elongation and transparency.
- the pressure inside the system was reduced to 0.13 kPa or less over 1 hour, and polycondensation was performed while maintaining the reduced pressure for 3 hours.
- the produced polymer was discharged into water under nitrogen pressure, pelletized, and dried at 100 ° C. and 0.1 kPa or less for 48 hours to obtain 1500 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured with a polystyrene standard was 51,000, and the molecular weight distribution was 3.0.
- Methyl hydroxypivalate 1 980 g (14.8 mol), PTG2000 (Hodogaya Chemical, number average molecular weight 2000) 1 125 g (0.563 mol), dimethyl adipate 67 g (0.385 mol), trimellit 22.9 g (0.119 mo 1) of acid anhydride, tetrakis [methylene (3,5-di-t-butyl) as stabilizer
- the pressure inside the system was reduced to 0.13 kPa or less at 240 ° C. over 1 hour, and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the polymer produced was discharged into water under nitrogen pressure, pelletized, dried at 120 kPa or less at 0.3 kPa or less for 5 hours.
- the polyester molded article of the comparative example has a high cyclic trimer content and causes bleeding, whereas the polyester molded article of the present invention maintains high transparency and is more flexible.
- the mechanical properties were also good.
- Methyl hydroxybivalate 69.3 g (0.525 mol 1), Polytel (trademark) HA (manufactured by Mitsubishi Chemical, number average molecular weight 2000) 50 g (0.025 mol 1), dimethyl adipate 4.4 g (0.025 mol), and titanium tetrabutoxide (0.1 lg (1 000 ppm per polymer)) as a catalyst was charged into a reactor introduced with nitrogen, and methanol was removed at 160 to 240 ° C for 3 hours. While proceeding the reaction. Then, the pressure inside the system was reduced to ImmHg or less over 1 hour at 240 ° C, and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 88 g of a polymer. Dissolve this in black mouth form, and police The number average molecular weight measured with a styrene standard was 30,000, and the molecular weight distribution was 1.8.
- the pressure inside the system was reduced to ImmHg or less at 240 ° C. over 30 minutes, and polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 92 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 32,000 and the molecular weight distribution was 1.7.
- the pressure inside the system was reduced to ImmHg or less over 30 minutes at 240, and the polycondensation was performed while maintaining the reduced pressure for 2 hours.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 91 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 32,000 and the molecular weight distribution was 1.7.
- the pressure in the system was reduced to ImmHg or less, and the mixture was stirred for 1 hour to perform polycondensation.
- the produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 91 g of a polymer. This was dissolved in a black hole form, and the number average molecular weight measured by a polystyrene standard was 28,000, and the molecular weight distribution was 2.0.
- the dynamic viscosity was measured for this polymer, and the Tg derived from the copolymer of adipic acid and 3-methyl-1,5-pentanedyl, which is the component ⁇ , determined from the peak of ta ⁇ ⁇ was one. 25 ° C.
- the polymer obtained was discharged into water under nitrogen pressure and pelletized to obtain 9725 g of a polymer. It was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standards was 38,000 and the molecular weight distribution was 1.7.
- the resulting polymer was discharged into water under nitrogen pressure and pelletized to obtain 97 g of a polymer. This was dissolved in black hole form and the number average molecular weight measured by polystyrene standard was 36,000, and the molecular weight distribution was 1.7.
- the polyester molded article of the present invention has excellent heat resistance, good transparency, and high transparency.
- hoses such as fire hoses and hydraulic hoses, gas pipe linings, traction rope jackets, corrugated tubes, pneumatic tubes, bicycle airless tubes, soccer pole tubes and other tubes, Bells for conveyor belts, V belts, timing belts, etc.
- Sheets such as sheets for civil engineering, waterproofing, building materials, etc., films such as laminated films for food packaging, flexible couplings, door latch strikers, rebound studs, emblems, ski shoes, golf poles, shoe inners, watch bands, hot springs Miscellaneous goods such as Tokara bottles, bottle stoppers, combs, brushes, buttons, toys, etc., electrical and electronic parts such as telephone line curl cords, optical fiber coatings, cable covers, cable jackets, cable liners, back-up rings, etc.
- Medical parts such as balloons and catheters, joint materials, sealing materials for electronic components, packing, dust seals, pumps, seals for diaphragms, membranes, accumulators, and other interior parts, pump parts, seatbell ratchet parts, AT Slide plate, constant velocity joint And pinion boots, suspension boots, McPherson strut covers, floats, gears, leaf spring bushings, pole joint retainers, joint bushings, airbag covers, steering rod covers, window glass anti-skid rolls, jumper bumpers , Side trim * Auto parts such as molds, grommets, tire inserts, etc., polymer blends, grips, cushions, stoppers, goggles, PC mice, sports equipment, vibration control materials, elastomers such as sound insulation materials, sound quality improvement materials, etc. It can be used for a wide range of applications such as resin modifiers and compatibilizers for one product, and is extremely useful as an industrial resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
A polyester molding retaining transparency over long and satisfactory in heat resistance and chemical resistance is industrially provided. The polyester molding comprises a block copolymer which is made up of a structural unit (A) comprising as a major component repeating units having at least one ester bond therein and a structural unit (B) derived from a compound having a number-average molecular weight of 600 to 100,000 and having an ester-forming functional group at each end, is an elastomer having a compression set as measured in accordance with JIS-K-6262 of 5 to 65%, and has a total light transmittance as measured in accordance with JIS-K-7361-1 of 75% or higher.
Description
明細書 ポリエステル成形体 技術分野 Description Polyester molded body Technical field
本発明は、 押出成形、 射出成形、 ブロー成形、 カレンダ一成形などによって得 られた、 シート、 フィルム、 雑貨、 家電、 自動車部品などのポリエステル成形体 に関する。 背景技術 The present invention relates to a polyester molded article such as a sheet, a film, miscellaneous goods, home appliances, and automobile parts obtained by extrusion molding, injection molding, blow molding, calendar molding, and the like. Background art
熱可塑性エラストマ一は軟質塩化ビエル樹脂代替材料として生産性に優れ、 自 動車部品、 事務機器、 家電部品、 医療部品、 シート、 フィルム、 雑貨用途等に幅 広く採用されつつあり、 今後期待される材料である。 例としては、 ジェン系、 水 素添加ジェン系 (ビエル芳香族化合物一共役ジェン化合物ブロック共重合体の水 素添加誘導体)、 ポリオレフイン系、 ポリエステル系、 ポリアミド系が知られてい る。 しかしながらこれらの成形材料は、 耐スクラッチ性、 柔軟性、 加工性、 経済 性、 リサイクル性の面でそれぞれ欠点を有しているのが現状である。 すなわち、 ォレフィン系エラストマ一は比較的安価で耐候性、耐熱性に優れるものの柔軟性、 耐スクラッチ性に問題があり、 ジェン系は耐候性に問題があり、 ポリアミド系は 高価である等の問題がある。 また、 水添ジェン系についてもいくつかの提案がな されている。 例えば特開昭 5 0— 1 4 7 4 2号、 特開昭 5 2— 6 5 5 5 1号、 特 開昭 5 8 - 2 0 6 6 4 4号各公報には水添ブロック共重合体にゴム用軟化剤およ びォレフイン系樹脂を配合した組成物が開示されている。 しかしこれらの組成物 もォレフイン系エラストマ一と同様、 耐スクラッチ性の劣るものであった。 これ に対し、 ポリエステル系は、 耐環境性や機械強度などに優れた熱可塑性エラスト マ一として知られている。 なかでも、 ポリブチレンテレフタレ一ト (P B T ) と ポリテトラメチレンェ一テルグリコール (P T M G) を主成分とするブロック共 重合体は、 その性能バランスが優れていることから、 自動車、 家電製品などの分 野に使用されている。 このようなブロック共重合体は、 例えば、 特公昭 4 9一 3
1 5 5 8号公報などに示されているように、 工業的に有利な溶融重合法により製 造されている。 Thermoplastic elastomers have excellent productivity as a substitute material for soft vinyl chloride resin, and are being widely used in automotive parts, office equipment, home appliances parts, medical parts, sheets, films, miscellaneous goods, etc., and materials expected in the future It is. Examples thereof include gen-based, hydrogen-added gen-based (hydrogen-added derivatives of Bier aromatic compound-conjugated gen compound block copolymer), polyolefin-based, polyester-based, and polyamide-based. However, at present, these molding materials have drawbacks in terms of scratch resistance, flexibility, processability, economy, and recyclability. In other words, the olefin-based elastomer is relatively inexpensive and has excellent weather resistance and heat resistance, but has problems in flexibility and scratch resistance, the gen-based elastomer has problems in weather resistance, and the polyamide-based elastomer has problems such as high cost. is there. Some proposals have also been made for hydrogenated jen systems. For example, Japanese Patent Application Laid-Open Nos. 50-14742, 52-65551, and 58-24664 each disclose hydrogenated block copolymers. Discloses a composition in which a rubber softener and an olefin resin are blended. However, these compositions were also inferior in scratch resistance, like the olefin-based elastomer. In contrast, polyesters are known as thermoplastic elastomers with excellent environmental resistance and mechanical strength. In particular, block copolymers containing polybutylene terephthalate (PBT) and polytetramethylene ether glycol (PTMG) as their main components have an excellent balance of performance, and are used in automobiles and home appliances. Used in the field. Such a block copolymer is disclosed, for example, in JP-B-49-13 As disclosed in, for example, US Pat. No. 1,558,878, it is manufactured by an industrially advantageous melt polymerization method.
しかしながら、 熱可塑性エラストマ一として知られているこのようなブロック 共重合体からなる成形体は、一般に透明性が低く不透明であることが多い。また、 比較的透明性が高いブロック共重合体を使用しても、 その透明性を長時間維持す ることや、 透明性とともに耐熱性ゃ耐薬品性も維持することは、 非常に困難であ つた。 However, a molded article made of such a block copolymer known as a thermoplastic elastomer generally has low transparency and is often opaque. Even if a block copolymer having relatively high transparency is used, it is very difficult to maintain the transparency for a long time and to maintain the heat resistance and chemical resistance as well as the transparency. I got it.
例えば、 特開平 1 0— 2 3 7 1 6 7号公報には、 硬質セグメントとしてポリェ チレンテレフ夕レートゃポリエチレンナフタレートを使用したブロック共重合体 からなる成形体が開示されている。 このようなブロック共重合体を急冷条件で成 形した場 には透明な成形体が得られるが、徐々にポリエステルの結晶化が進み、 経時的に白化していくという問題があつた。 For example, Japanese Patent Application Laid-Open No. 10-237167 discloses a molded article comprising a block copolymer using polyethylene terephthalate / polyethylene naphthalate as a hard segment. When such a block copolymer is molded under quenching conditions, a transparent molded article can be obtained, but there is a problem that the crystallization of the polyester gradually progresses and whitens over time.
また、 限りなく非晶質に近いポリエステルを使用することによって、 透明性が 比較的高いブロック共重合体が得られる。 しかし、 このようなブロック共重合体 は耐熱性ゃ耐薬品性が不十分であり、 回復弾性も不十分であった。 In addition, by using a polyester that is as amorphous as possible, a block copolymer having relatively high transparency can be obtained. However, such a block copolymer had insufficient heat resistance and chemical resistance, and also had insufficient recovery elasticity.
特開平 1 0— 1 8 2 9 5 4号公報には、 金属塩をブロック共重合体に配合した 組成物が開示されているが、 このような組成物は徐々に水分を吸収するため、 乾 燥雰囲気以外の環境下では経時的に白化してしまう。 Japanese Patent Application Laid-Open No. 10-182954 discloses a composition in which a metal salt is blended with a block copolymer. However, such a composition gradually absorbs moisture, so Under an environment other than a dry atmosphere, whitening occurs over time.
また、 特公昭 4 7— 3 7 4 0号公報には、 ラクトンとポリエ一テルからなるブ 口ック共重合体が提案されているが、 このプロック共重合体は不活性溶媒中でァ 二オン重合により得られており、 ラクトンとポリエーテルとの間にエステル基以 外の官能基が入ってしまう結果、 得られるポリエステル共重合体の耐熱性などが 劣るものであった。 また、 ポリエーテルの末端が開始剤となるため、 生成ポリマ 一の分子量との関係からポリエーテルの含有量を増やすことができず、 柔軟性を 付与できるものではなかった。 Japanese Patent Publication No. 47-37040 discloses a block copolymer comprising a lactone and a polyester. The block copolymer is prepared by dissolving the block copolymer in an inert solvent. It was obtained by on-polymerization, and a functional group other than an ester group was inserted between the lactone and the polyether. As a result, the resulting polyester copolymer had poor heat resistance and the like. In addition, since the terminal of the polyether serves as an initiator, the content of the polyether cannot be increased due to the relationship with the molecular weight of the produced polymer, so that flexibility cannot be imparted.
一方、 夕ツチパネルなど視認性の必要な部品類に必要とされる全光線透過率は 一般的に 7 5 %以上であり、 熱可塑性エラストマ一成形体において全光線透過率 がこの数値以上であれば、 視認性の良いソフト夕ツチのカバ一類、 スィッチ類、 パネル類、 カラーテープなど工業的に利用価値があるが、 透明性に優れる水添ジ
ェン系は耐熱性が 100°C未満と低く、 耐熱性、 耐薬品性に優れる既存のポリエ ステル系は不透明であり、 透明性、 耐熱性、 耐薬品性のバランスの良い熱可塑性 エラストマ一が望まれていた。 発明の開示 On the other hand, the total light transmittance required for parts that require visibility, such as sunset panels, is generally 75% or more. If the total light transmittance of a thermoplastic elastomer molded article is higher than this value, Although it is industrially useful, such as soft-brushed hippopotamus, switches, panels, and color tape with good visibility, it has excellent transparency. Existing polyesters have low heat resistance of less than 100 ° C, while existing polyesters have excellent heat resistance and chemical resistance.They are opaque, and thermoplastic elastomers with a good balance of transparency, heat resistance and chemical resistance are required. Was desired. Disclosure of the invention
本発明は、 長期間透明性を維持しつつ、 耐熱性、 耐薬品性も良好なポリエステ ル成形体を工業的に提供することを目的とする。 An object of the present invention is to industrially provide a polyester molded article having excellent heat resistance and chemical resistance while maintaining transparency for a long time.
本発明のポリエステル成形体は、 繰返し単位中にエステル結合を少なくとも 1 つ有する単位を主成分とする構成単位 (A) と、 数平均分子量が 600〜 1 00 000の範囲にありエステル形成可能な官能基を両末端に有する化合物に由来す る構成単位 (B) とを含有して構成されるブロック共重合体からなり、 J I S- K一 6262に準じ測定した圧縮永久歪が 5〜 65 %の範囲にあり弾性体であつ て、 かつ J I S— K— 736 1— 1に準じて測定した全光線透過率が 75 %以上 であることを特徴とする。 The polyester molded article of the present invention comprises a structural unit (A) having a unit having at least one ester bond in the repeating unit as a main component, and a functional group capable of forming an ester having a number average molecular weight in the range of 600 to 100,000. A block copolymer comprising a structural unit (B) derived from a compound having a group at both ends, and having a compression set of 5 to 65% measured according to JIS-K-1262. It is characterized by being in the range, being an elastic body, and having a total light transmittance of 75% or more measured according to JIS-K-7361-1.
また、 構成単位 (A) は、 下記式 (1) で示される単位を主成分とし、 ガラ ス転移温度 (Tg) が 0で以下で、 数平均分子量が 600〜 100000の範囲 にありエステル形成可能な官能基を両末端に有する化合物に由来する構成単位 The structural unit (A) has a unit represented by the following formula (1) as a main component, has a glass transition temperature (Tg) of 0 or less, and has a number average molecular weight in the range of 600 to 100000, and can form an ester. Units derived from compounds having various functional groups at both ends
(B) とを含有して構成される脂肪族ポリエステルブロック共重合体からなり、 前記構成単位 (A) の含有量が、 10〜70質量%であることが好ましい。 (B), and the content of the structural unit (A) is preferably 10 to 70% by mass.
(式 (1) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 nは 5~ 5000である。 また、 Zは直接結合、 炭素数 1〜6のアルキ レン基、 フエ二レン基のいずれかを示す。) (In the formula (1), each of X and Y represents hydrogen, an alkyl group, or a phenyl group. N is 5 to 5000. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, One of phenylene groups is shown.)
さらに、 前記式 (1) 中の Xおよび Yがメチル基であって、 Zがメチレン基 であることが好ましい。 Further, it is preferable that X and Y in the formula (1) are a methyl group and Z is a methylene group.
また、 多官能成分からなる構成単位 (C) を構成単位 (A) に対して 0. 0
5〜 2モル%含有して構成されていてもよい。 In addition, the structural unit (C) composed of a polyfunctional component is added to the structural unit (A) in an amount of 0.0. It may be constituted by containing 5 to 2 mol%.
本発明のポリエステル成形体の脂肪族ポリエステルブロック共重合体の製造 方法は、 下記式 (1) で示される単位を主成分とする構成単位 (A) と、 ガラス 転移温度 (Tg) が o :以下で、 数平均分子量が 600〜 1 00000の範囲に ありエステル形成可能な官能基を両末端に有する化合物に由来する構成単位(B) とを含有して構成され、 前記構成単位 (A) の含有量が、 10〜70質量%でぁ る脂肪族ポリエステルブロック共重合体の製造方法であって、 アンチモン、 ゲル マニウム、 チタン、 マンガン、 マグネシウム、 カルシウム、 ストロンチウム、 バ リウム、 ナトリウム、 コバルト、 アルミニウム、 ガリウム、 鉄、 スズ、 亜鉛、 ホ ゥ素からなる群より選ばれる少なくとも 1種の金属の化合物を、 該金属の合計質 量が生成した脂肪族ポリエステルブロック共重合体中 0. l〜1 000 p pmと なるように添加してエステル交換反応する工程を有することを特徴とする。 The method for producing the aliphatic polyester block copolymer of the polyester molded article of the present invention comprises: a structural unit (A) having a unit represented by the following formula (1) as a main component; and a glass transition temperature (Tg) of o: And a structural unit (B) derived from a compound having a number-average molecular weight in the range of 600 to 100000 and having a functional group capable of forming an ester at both terminals, and comprising the structural unit (A) A method for producing an aliphatic polyester block copolymer having an amount of 10 to 70% by mass, comprising: antimony, germanium, titanium, manganese, magnesium, calcium, strontium, barium, sodium, cobalt, aluminum, and gallium. A compound of at least one metal selected from the group consisting of iron, tin, zinc, and boron; Characterized in that it has added to the ester exchange reaction to process so that Le block copolymer 0. l~1 000 p pm.
(式 (1) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 nは 5〜5000である。 また、 Zは直接結合、 炭素数 1〜6のアルキ レン基、 フエ二レン基のいずれかを示す。) (In the formula (1), X and Y each represent a hydrogen, an alkyl group, or a phenyl group. N is 5 to 5000. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, One of phenylene groups is shown.)
前記式 (1) 中の Xおよび Yがメチル基であって、 Zがメチレン基であるこ とが好ましい。 It is preferable that X and Y in the above formula (1) are a methyl group and Z is a methylene group.
また、 前記脂肪族ブロック共重合体は、 多官能成分からなる構成単位 (C) を、 前記構成単位 (A) に対して 0. 05〜2モル%含有して構成されていても よい。 ' Further, the aliphatic block copolymer may be configured to contain the structural unit (C) composed of a polyfunctional component in an amount of 0.05 to 2 mol% with respect to the structural unit (A). '
本発明のポリエステル成形体は、 ASTM D 1 238に準じ測定した MF Rが 3〜300g/10min.であることを特徴とする。 The polyester molded article of the present invention is characterized in that the MFR measured according to ASTM D1238 is 3 to 300 g / 10 min.
また、 J I S— K— 7 1 36に準じ測定したヘイズが 50以下であり、 J I S-K- 7 1 05に記載の黄色度指数が 30以下であることを特徴とする。 In addition, the haze measured according to JIS-K-7136 is 50 or less, and the yellowness index described in JIS-K-7105 is 30 or less.
本発明のポリエステル成形体の脂肪族ポリエステルブ口ック共重合体は、 下
記式 (2 ) で示される環状体を脂肪族ポリエステル中に 0 . 0 0 0 . 0 5質 量%含有することを特徴とする。 The aliphatic polyester block copolymer of the polyester molded article of the present invention is as follows: The cyclic polyester represented by the above formula (2) is contained in the aliphatic polyester in a content of 0.0005.05% by mass.
(式 (2 ) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 mは 2以上の整数である。 Zは直接結合、炭素数 1〜6のアルキレン基、 フエ二レン基のいずれかを示す。) (In the formula (2), each of X and Y represents hydrogen, an alkyl group, or a phenyl group. M is an integer of 2 or more. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Shows any of the len groups.)
また、 前記脂肪族ポリエステルブロック共重合体は、 下記式 (3 ) で示され る環状 3量体を脂肪族ポリエステル中に 0 . 0 0 1〜 0 . 0 5質量%含有するこ とが好ましい。 The aliphatic polyester block copolymer preferably contains a cyclic trimer represented by the following formula (3) in an amount of 0.001 to 0.05% by mass in the aliphatic polyester.
本発明のポリエステル成形体の構成単位 (B ) が、 ポリオレフイン、 ポリオ キシアルキレンダリコール、 ポリジメチルシロキサン又はポリエステルに由来す る単位であることが好ましい。 発明を実施するための最良の形態 It is preferable that the structural unit (B) of the polyester molded article of the present invention is a unit derived from polyolefin, polyoxyalkylenedarilicol, polydimethylsiloxane, or polyester. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
本発明のポリエステル成形体は、 構成単位 (A) と構成単位 (B ) とを含有し て構成されるブロック共重合体からなるものであり、 構成単位 (A) は繰返し単 位中にエステル結合を少なくとも 1つ有する単位を主成分とする。 The polyester molded article of the present invention comprises a block copolymer containing the structural unit (A) and the structural unit (B), and the structural unit (A) is an ester bond in the repeating unit. The main component is a unit having at least one
エステル結合を繰返し単位中に含まない場合は、 耐熱性、 透明性が不十分、 ェ
業的に高コス卜のいずれかとなる傾向にある。 If no ester bond is contained in the repeating unit, heat resistance and transparency are insufficient, It tends to be one of the high costs industrially.
本発明におけるブロック共重合体の構成単位 (A) としては、 好ましくは下記 式 (1 ) で示される単位を主成分とする。 The constitutional unit (A) of the block copolymer in the present invention preferably contains, as a main component, a unit represented by the following formula (1).
上記式 (1 ) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいず れかを示す。 Xと Yは同じでも異なっていてもよいが、 ブロック共重合体の耐熱 性が優れることから同じ置換基であることが好ましい。 また、 式 (1 ) 中、 nは 5〜5 0 0 0である。 nが 5未満ではブロック共重合体の耐熱性が不十分となり、 一方 5 0 0 0を超えるとブロック共重合体の流動性が低下し、成形性が悪くなる。 nが 5〜5 0 0 0であるとブロック共重合体の耐熱性と流動性がともに優れるた め好ましく、 さらに好ましくは 1 0〜2 0 0 0である。 In the above formula (1), X and Y each represent any of hydrogen, an alkyl group and a phenyl group. X and Y may be the same or different, but are preferably the same substituent because the block copolymer has excellent heat resistance. Further, in the equation (1), n is 5 to 500. When n is less than 5, the heat resistance of the block copolymer becomes insufficient. On the other hand, when it exceeds 50,000, the fluidity of the block copolymer decreases and moldability deteriorates. It is preferable that n is 5 to 500, because both the heat resistance and the fluidity of the block copolymer are excellent, and it is more preferably 10 to 200,000.
また、 式 (1 ) 中、 Zは直接結合、 炭素数 1〜6のアルキレン基、 またはフエ 二レン基のいずれかを示す。 In the formula (1), Z represents a direct bond, an alkylene group having 1 to 6 carbon atoms, or a phenylene group.
Zは、 単なる直接結合を示すものであってもよいが、 Zが炭素数 1〜6のアル キレン基またはフエ二レン基であると、 ブロック共重合体をつくる際、 反応が容 易であるため好ましい。 また、 炭素数 1〜6のアルキレン基は分岐構造を含んで いても構わない。 さらに、 炭素数が 6を超えると耐熱性が劣る傾向がある。 Z may be a mere direct bond, but when Z is an alkylene group or a phenylene group having 1 to 6 carbon atoms, the reaction is easy when forming a block copolymer. Therefore, it is preferable. Further, the alkylene group having 1 to 6 carbon atoms may have a branched structure. Further, when the carbon number exceeds 6, the heat resistance tends to be poor.
本発明のポリエステル成形体においては、 構成単位 (A) としてこのようなも のを含有するので、 特に耐熱性に優れ、 優れた透明性が長時間持続するうえ、 柔 軟性にも優れたものとなる。 In the polyester molded article of the present invention, since such a component is contained as the structural unit (A), it is particularly excellent in heat resistance, excellent in transparency for a long time, and excellent in flexibility. Become.
構成単位 (A) の主な構成成分である上記式 (1 ) の単位の具体例としては、 Xおよび Yがメチル基で、 Zがメチレン基であるヒドロキシピバリン酸単位、 X が水素、 Yがメチル基で、 Zがメチレン基であるヒドロキシイソ酪酸単位、 Xお よび Yが水素で、 Zが直接結合であるグリコール酸単位、 Xおよび Yが水素で、 Zがメチレン基であるプロパン酸単位、 Xおよび Yが水素で、 Zがジメチレン基 である酪酸単位、 Xおよび Yが水素で、 Zがトリメチレン基である吉草酸単位、
Xおよび Yが水素で、 Ζがテトラメチレン基であるカブロン酸単位、 Xが水素、 Υがメチル基で、 Ζが直接結合である乳酸単位 Xが水素、 Υがフヱニル基で、 Ζ が直接結合であるマンデル酸単位、 Xが水素、 Υがフエニル基で、 Ζがメチレン 基であるトロパ酸単位、 Xおよび Υがフエニル基で、 Ζが直接結合であるべンジ ル酸単位などを挙げることができる。 ^れらの中でも合成の容易さからヒドロキ シピバリン酸単位が好ましい。 Specific examples of the unit of the above formula (1) which is a main constituent of the structural unit (A) include a hydroxypivalic acid unit in which X and Y are methyl groups, Z is a methylene group, X is hydrogen, and Y is A hydroxyisobutyric acid unit in which Z is a methylene group, a glycolic acid unit in which X and Y are hydrogen and Z is a direct bond, a propanoic acid unit in which X and Y are hydrogen and Z is a methylene group, X and Y are hydrogen and Z is a dimethylene butyrate unit; X and Y are hydrogen and Z is a trimethylene group valerate unit; X and Y are hydrogen, ブ ロ is a tetramethylene group, cabronic acid unit, X is hydrogen, Υ is a methyl group, Ζ is a direct bond, lactic acid unit X is hydrogen, Υ is a phenyl group, and Ζ is a direct bond Is a mandelic acid unit, X is hydrogen, Υ is a phenyl group, Ζ is a methylene group, a tropic acid unit, X and Υ are phenyl groups, and Ζ is a direct bond. it can. Of these, a hydroxypivalic acid unit is preferred because of ease of synthesis.
ポリピバロラクトンの製造方法としてはヒドロキシピバリン酸またはそのエス テルもしくはピバロラクトンを重合させて得られるものが好ましい。 さらに好ま しくは、 工業的に製造されている出発物を用いることができる点でヒドロキシピ バリン酸またはそのエステルの重合体を構成単位 (Α) の主成分とするのが好ま しい。 The method for producing polypivalolactone is preferably one obtained by polymerizing hydroxypivalic acid or its ester or pivalolactone. More preferably, a polymer of hydroxypivalic acid or an ester thereof is preferably used as a main component of the structural unit (II) in that a starting material produced industrially can be used.
また、 式 (1 ) で示される単位はブロック共重合体の融点を著しく低下させな い範囲で 1種類の化合物から構成されても、複数の化合物から構成されてもよい。 例えば、 ヒドロキシピバリン酸またはそのエステルのみから構成されても、 これ らと式 (1 ) の単位を形成可能なその他の化合物とを組み合わせてもよい。 Further, the unit represented by the formula (1) may be composed of one type of compound or a plurality of compounds as long as the melting point of the block copolymer is not significantly reduced. For example, they may be composed solely of hydroxypivalic acid or an ester thereof, or may be combined with another compound capable of forming a unit of the formula (1).
また、 構成単位 (Α) は上記式 (1 ) で示される単位を主成分とするが、 プロ ック共重合体の融点を著しく低下させない範囲でその他の共重合成分を含んでも よい。 例えば、 ブロック共重合体を製造する際に、 仕込み組成中におけるヒドロ キシル基量とカルボキシル基量とを合わせると、 目的のブロック共重合体の分子 量を大きくすることができる。 In addition, the structural unit (II) contains the unit represented by the above formula (1) as a main component, but may contain other copolymer components as long as the melting point of the block copolymer is not significantly reduced. For example, when producing a block copolymer, by combining the amount of hydroxyl group and the amount of carboxyl group in the charged composition, the molecular weight of the target block copolymer can be increased.
その他の共重合成分としては、 ジカルボン酸、 ジオール、 ヒドロキシカルボン 酸およびこれらのェステル化物などが挙げられる。 Other copolymerization components include dicarboxylic acids, diols, hydroxycarboxylic acids and their esterified products.
ジカルボン酸の例としては、 シユウ酸、 マロン酸、 コハク酸、 ダルタル酸、 ァ ジピン酸、 スベリン酸、 セバシン酸、 テレフタル酸、 イソフタル酸、 フタル酸、 ナフタレンジカルボン酸、 ビフエニルジカルボン酸、 5—スルホイソフタル酸ナ トリウムおよびこれらの低級アルキルエステル、 ァリールエステル、 炭酸エステ ル、 酸ハロゲン化物が好ましく用いられる。 ジオールの例としてはエチレンダリ コール、 プロピレングリコール、 トリメチレングリコール、 1, 4一ブタンジォ ール、 1, 3—ブタンジオール、 1 , 5—ペンタンジォ一ル、 1, 6—へキサン
ジオール、 1 , 7一ヘプ夕ンジオール、 1, 8—オクタンジオール、 1 , 9ーノ ナンジオール 1 , 1 0—デカンジオール、 ネオペンチルダリコ一ル、 3—メチル — 1 , 5 —ペンタンジオール、 シク口へキサン 1, 2—ジオール、 シクロへキサ ン 1, 3ージオール、 シクロへキサン 1, 4—ジオール、 シクロへキサン 1, 4 —ジメタノール、 ヒドロキノン、 4 , 4—ジフエノ一ルなどが挙げられる。 また、 ヒドロキシカルボン酸の例としては、 ヒドロキシ安息香酸及びこれらの低級アル キルエステル、 ァリールエステル、 炭酸エステル、 酸ハロゲン化物が好ましく用 いられる。 これら共重合成分は、 単独で使用されても、 二種以上が併用されても よい。 Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, daltaric acid, adipic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 5-sulfo Sodium isophthalate and their lower alkyl esters, aryl esters, ester carbonates and acid halides are preferably used. Examples of diols include ethylene diol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanedyl, 1,6-hexane. Diol, 1,71-heptandiol, 1,8-octanediol, 1,9-nonanediol 1,10-decanediol, neopentyldaricol, 3-methyl-1,5-pentanediol, Mouth hexane 1,2-diol, cyclohexane 1,3-diol, cyclohexane 1,4-diol, cyclohexane 1,4-dimethanol, hydroquinone, 4,4-diphenol . As examples of the hydroxycarboxylic acid, hydroxybenzoic acid and their lower alkyl esters, aryl esters, carbonates, and acid halides are preferably used. These copolymer components may be used alone or in combination of two or more.
これら共重合成分が使用される場合は、 通常、 構成成分 (A) 中 2 0質量%以 下の範囲で使用される。 When these copolymer components are used, they are usually used in an amount of 20% by mass or less in the component (A).
本発明におけるブロック共重合体を構成する構成単位 (B ) は、 エステル形 成可能な官能基を両末端に有する化合物に由来する。 エステル形成可能な官能基 とは、 具体的にはヒドロキシル基、 力ルポキシル基、 カルボン酸メチル基、 カル ボン酸ェチル基、 カルボン酸プロピル基、 ァセトキシ基などである。 The structural unit (B) constituting the block copolymer in the present invention is derived from a compound having a functional group capable of forming an ester at both terminals. Specific examples of the functional group capable of forming an ester include a hydroxyl group, a propyloxyl group, a methyl carboxylate group, an ethyl carboxylate group, a propyl carboxylate group, and an acetyloxy group.
このような化合物としては、 主鎖骨格がポリオレフイン、 ポリオキシアルキレ ングリコール、 ポリジメチルシロキサン、 ポリエステル、 ポリカーボネート、 ポ リブタジエン、 水添ポリブタジエンなどからなり、 両末端が上記のエステル形成 可能な官能基からなるものが挙げられる。 また、 これらの化合物のうち 1種類か ら構成されても、 複数の化合物から構成されてもよい。 As such a compound, the main chain skeleton is composed of polyolefin, polyoxyalkylene glycol, polydimethylsiloxane, polyester, polycarbonate, polybutadiene, hydrogenated polybutadiene, or the like, and the both ends are functional groups capable of forming the above ester. And those consisting of Further, these compounds may be composed of one kind or a plurality of compounds.
主鎖骨格がポリオレフィンからなる化合物としては、 直鎖または枝分かれした ポリオレフィンの両末端にエステル形成可能な官能基を持つ化合物であれば、 制 限はない。 The compound having a main chain skeleton made of polyolefin is not limited as long as it has a functional group capable of forming an ester at both ends of a linear or branched polyolefin.
主鎖骨格がポリオレフインからなる化合物の数平均分子量としては 6 0 0〜 1 The number average molecular weight of the compound having a main chain skeleton of polyolefin is 600 to 1
0 0 0 0 0が好ましい。 数平均分子量が 6 0 0未満では耐熱性が不十分となり、0 0 0 0 0 is preferred. When the number average molecular weight is less than 600, heat resistance becomes insufficient,
1 0 0 0 0 0を超えると流動性が不十分となる。 好ましい分子量の範囲としては 1 5 0 0〜 1 0 0 0 0 0であり、 さらに好ましくは 2 0 0 0〜 1 0 0 0 0 0の範 囲、 最も好ましくは 2 0 0 0〜 1 0 0 0 0の範囲である。 If it exceeds 100 000, the fluidity becomes insufficient. The preferred molecular weight is in the range of 150 to 100,000, more preferably in the range of 2000 to 100,000, and most preferably in the range of 2000 to 100,000. It is in the range of 0.
構成単位 (B ) を、 このようなポリオレフイン由来の単位で構成すると、 ポリ
エステル成形体の耐水性、 耐候性が向上するとともに、 その比重を小さくできる などの利点がある。 例えば、 シート、 フィルム、 雑貨、 家電、 自動車部品のうち 光や水に接触するような用途に好ましく使用できる。 If the structural unit (B) is composed of such polyolefin-derived units, There are advantages that the water resistance and weather resistance of the ester molded body are improved and the specific gravity can be reduced. For example, it can be preferably used for sheet, film, miscellaneous goods, home appliances, and automobile parts that come into contact with light or water.
また、 主鎖骨格がポリオレフインからなる化合物としては、 ポリテール (商標) (三菱化学製) などの水酸基含有ポリオレフィンが挙げられる。 Examples of the compound having a main chain skeleton of polyolefin include a hydroxyl group-containing polyolefin such as Polytail (trademark) (manufactured by Mitsubishi Chemical Corporation).
主鎖骨格がポリオキシアルキレングリコールからなる化合物としては、 ポリテ トラメチレングリコ一ル、 3—メチルテトラヒドロフラン共重合ポリテトラメチ レングリコ一ル、 ポリエチレングリコ一ル、 ポリプロピレングリコール、 ポリプ 口ピレンダリコールのエチレンォキシド付加物などが挙げられる。 Compounds having a main chain skeleton of polyoxyalkylene glycol include polytetramethylene glycol, 3-methyltetrahydrofuran copolymerized polytetramethylene glycol, polyethylene glycol, polypropylene glycol, and polypyrene. Things.
.主鎖骨格がポリオキシアルキレングリコ一ルからなる化合物の数平均分子量と しては 6 0 0〜 1 0 0 0 0 0が好ましい。 数平均分子量が 6 0 0未満では耐熱性 が不十分となり、 1 0 0 0 0 0を超えると流動性が不十分となる。 好ましい分子 量の範囲としては 1 5 0 0〜 1 0 0 0 0 0であり、 さらに好ましくは 2 0 0 0〜 The number average molecular weight of the compound having a main chain skeleton composed of polyoxyalkylene glycol is preferably from 600 to 100,000. If the number average molecular weight is less than 600, heat resistance becomes insufficient, and if it exceeds 100000, fluidity becomes insufficient. The preferred range of the molecular weight is 1500 to 1000, more preferably 2000 to
1 0 0 0 0 0の範囲、 最も好ましくは 2 0 0 0〜 1 0 0 0 0の範囲である。 また、 構成単位 (B ) を、 このようなポリオキシアルキレングリコ一ル由来の 単位で構成すると、 ポリオキシアルキレングリコールは安価であるので、 ポリエ ステル成形体の製造コストが低くなり工業的に有利である。 例えば、 シート、 フ イルム、 雑貨、 家電、 電気'電子部品、 自動車部品のうち特に安価が要求される用 途に好ましく使用できる。 It is in the range of 1000, most preferably in the range of 2000 to 10000. Further, when the structural unit (B) is composed of such a unit derived from polyoxyalkylene glycol, polyoxyalkylene glycol is inexpensive, so that the production cost of the polyester molded article is reduced, which is industrially advantageous. is there. For example, it can be preferably used for applications requiring a particularly low price among sheets, films, miscellaneous goods, home appliances, electric and electronic parts, and automobile parts.
主鎖骨格がポリジメチルシロキサンからなる化合物としては、 下記式 (4 ) に 示すような化合物が挙げられる。 Examples of the compound having a main chain skeleton of polydimethylsiloxane include a compound represented by the following formula (4).
((
式 (4 ) 中、 Cと Dはエステル形成可能な水酸基、 カルボン酸基、 カルボン酸 メチル基などである。 これらは同じ基でも異なる基でも良い。 In the formula (4), C and D are a hydroxyl group, carboxylic acid group, methyl carboxylate group or the like capable of forming an ester. These may be the same or different groups.
また、 1には制限はないが好ましくは 8〜5 0 0であり、 より好ましくは 8〜 2 0 0であり、 さらに好ましくは 1 0〜8 0である。 1が 8未満ではポリエステ
ル成形体の耐熱性や柔軟性が不十分となる場合があり、 一方、 1が 500を超え ると、 式 (1) で表される成分との相溶性が低下する場合がある。 1が 8〜50 0の範囲であると、 ポリエステル成形体の耐熱性と柔軟性が優れるとともに構成 単位 (A) と構成単位 (B) との相溶性も特に良好となる。 Further, 1 is not limited, but is preferably from 8 to 500, more preferably from 8 to 200, and still more preferably from 10 to 80. If 1 is less than 8, polyester In some cases, the heat resistance and flexibility of the molded article may be insufficient. On the other hand, if 1 exceeds 500, the compatibility with the component represented by the formula (1) may decrease. When 1 is in the range of 8 to 500, the heat resistance and flexibility of the polyester molded article are excellent, and the compatibility between the structural unit (A) and the structural unit (B) is particularly good.
また、 式 (4) 中の A、 Bは、 アルキル基もしくはォキシアルキル基であり、 好ましくは炭素数 4以上のアルキル基またはォキシアルキル基である。 これらの 中では、 ポリエステル成形体の耐候性が優れることから炭素数 4以上のアルキル 基が好ましい。 A and B in the formula (4) are an alkyl group or an oxyalkyl group, preferably an alkyl group having 4 or more carbon atoms or an oxyalkyl group. Among them, an alkyl group having 4 or more carbon atoms is preferable because the polyester molded article has excellent weather resistance.
構成単位(B)をこのようなポリジメチルシロキサン由来の単位で構成すると、 ポリエステル成形体の低温特性が特に優れる。例えば、 シ一卜、 フィルム、雑貨、 家電、 自動車部品のうち特に耐寒性が必要とされるような用途に好ましく使用で さる。 When the structural unit (B) is composed of such a unit derived from polydimethylsiloxane, the low-temperature properties of the polyester molded article are particularly excellent. For example, it is preferably used for sheets, films, miscellaneous goods, home electric appliances, and automobile parts in which cold resistance is particularly required.
主鎖骨格がポリエステルからなる化合物としては、 ポリ力プロラクトン、 バレ ロラクトンなどのラクトンが開環重合した化合物、 ジカルボン酸とジオールとの 縮合物などが挙げられる。 ジカルボン酸およびジオールとしては、 構成単位(A) に含まれる共重合成分として例示したものと同様の化合物を使用できる。 Examples of the compound having a main chain skeleton of polyester include a compound obtained by ring-opening polymerization of a lactone such as polycaprolactone and valerolactone, and a condensate of a dicarboxylic acid and a diol. As the dicarboxylic acid and the diol, the same compounds as those exemplified as the copolymerization component contained in the structural unit (A) can be used.
主鎖骨格がポリエステルからなる化合物の数平均分子量としては 600〜10 0000が好ましい。 数平均分子量が 600未満では耐熱性が不十分となり、 1 00000を超えると流動性が不十分となる。 好ましい分子量の範囲としては 1 500〜: L 00000であり、さらに好ましくは 2000〜 100000の範囲、 最も好ましくは 2000〜1 0000の範囲である。 The number average molecular weight of the compound having a main chain skeleton of polyester is preferably 600 to 100,000. When the number average molecular weight is less than 600, heat resistance becomes insufficient, and when it exceeds 100,000, fluidity becomes insufficient. The preferred molecular weight range is from 1500 to: L00000, more preferably from 2,000 to 100,000, most preferably from 2,000 to 10,000.
構成単位 (B) をポリエステル由来の単位で構成すると、 ポリエステル成形体 の耐候性、 耐熱性が特に優れ、 また安価に製造できる。 例えば、 シート、 フィル ム、 雑貨、 家電、 自動車部品のうち特に屋外で使われたり、 高温部で使われたり する用途に好ましく使用できる。 When the structural unit (B) is composed of a unit derived from polyester, the polyester molded article has particularly excellent weather resistance and heat resistance, and can be manufactured at low cost. For example, it can be preferably used for seats, films, miscellaneous goods, home appliances, and automobile parts, particularly those used outdoors or in high-temperature parts.
主鎖骨格がポリ力一ポネートからなる化合物としては、 環状ポリカーボネート の重合物、 グリコールとホスゲンとの縮合物の他、 力プロラクトンとの共重合物 も含まれる。 具体的には、 ポリジメチルトリメチレン力一ポネート、 ポリモノメ チルトリメチレン力一ポネート、 ポリトリメチレンカーボネート、 ポリへキサメ
チレンカーボネートなどが挙げられる。 これらの化合物は、 ホモポリマ一でもコ ポリマ一でもよく、 芳香族を含んでいてもよい。 Examples of the compound having a main chain skeleton composed of polypropionate include a polymer of cyclic polycarbonate, a condensate of glycol and phosgene, and a copolymer of forceprolactone. More specifically, polydimethyltrimethylene force, polymonomethyltrimethylene force, polytrimethylene carbonate, polyhexamone Tylene carbonate and the like. These compounds may be homopolymers or copolymers and may contain aromatics.
主鎖骨格がポリカーポネ一卜からなる化合物の数平均分子量としては 600〜 100000が好ましい。数平均分子量が 600未満では耐熱性が不十分となり、 100000を超えると流動性が不十分となる。 好ましい分子量の範囲としては 1 500〜 100000であり、 さらに好ましくは 2000〜 100000の範 囲、 最も好ましくは 2000〜10000の範囲である。 The number average molecular weight of the compound whose main chain skeleton is made of polycarbonate is preferably from 600 to 100,000. When the number average molecular weight is less than 600, the heat resistance becomes insufficient, and when it exceeds 100000, the fluidity becomes insufficient. The preferred molecular weight is in the range of 1,500 to 100,000, more preferably in the range of 2000 to 100,000, and most preferably in the range of 2000 to 10,000.
構成単位 (B) をポリ力一ポネート由来の単位で構成すると、 ポリエステル成 形体の耐熱性が特に優れる。 例えば、 シート、 フィルム、 雑貨、 家電、 電気'電子 部品、 自動車部品のうち特に高温部で使われる用途に好ましく使用できる。 When the structural unit (B) is composed of units derived from polyacrylonitrile, the heat resistance of the polyester molded article is particularly excellent. For example, it can be preferably used for sheet, film, miscellaneous goods, home appliances, electric / electronic parts, and automobile parts, particularly those used in high-temperature parts.
これらの化合物は、単独で使用されても、二種以上が併用されてもよい。また、 ガラス転移温度 (Tg) が 0°C以下であることが好ましい。 Tgが 0°C以下であ ると、 ポリエステル成形体の反発弹性、 柔軟性が優れるため好ましい。 These compounds may be used alone or in combination of two or more. Further, the glass transition temperature (Tg) is preferably 0 ° C or less. When the Tg is 0 ° C or less, it is preferable because the resilience and flexibility of the polyester molded article are excellent.
本発明におけるブロック共重合体は、 構成単位 (A) と構成単位 (B) とを含 有して構成され、 構成単位 (A) の質量割合は、 10〜70質量%の範囲が好ま しく、 より好ましくは 1 5〜70質量%であり、 さらに好ましくは 20〜 50質 量%である。 構成単位 (A) が 10質量%未満ではポリエステル成形体の耐熱性 が不十分となる場合があり、 一方 70質量%を超えると、 ポリエステル成形体の 反発弹性ゃ柔軟性が低下する場合がある。 構成単位 (A) が 1 0〜90質量%で あると、 ポリエステル成形体の耐熱性、 反発弹性、 柔軟性がともに優れるため好 ましい。 The block copolymer in the present invention is constituted by including the structural unit (A) and the structural unit (B), and the mass ratio of the structural unit (A) is preferably in a range of 10 to 70% by mass. More preferably, it is 15 to 70% by mass, and still more preferably 20 to 50% by mass. If the structural unit (A) is less than 10% by mass, the heat resistance of the polyester molded product may be insufficient, while if it exceeds 70% by mass, the resilience and flexibility of the polyester molded product may be reduced. When the structural unit (A) is from 10 to 90% by mass, the heat resistance, rebound resilience, and flexibility of the polyester molded article are all excellent, which is preferable.
また、 本発明におけるブロック共重合体は、 構成単位 (A) と構成単位 (B) とを含有して構成されるものであるが、 さらに多官能成分からなる構成単位(C) を、 前記構成単位 (A) に対して 0. 05〜2モル%含有することが好ましい。 このような構成単位 (C) を含有すると、 ポリエステル成形体のブロック共重合 体を製造する際の重合時間を短縮できるとともに、 ブロック共重合体の流動性と 引張特性とのバランスがより優れる。 Further, the block copolymer in the present invention is constituted by containing the structural unit (A) and the structural unit (B), and further comprises the structural unit (C) composed of a polyfunctional component according to the above constitution. It is preferable to contain 0.05 to 2 mol% with respect to the unit (A). When such a structural unit (C) is contained, the polymerization time for producing the block copolymer of the polyester molded article can be shortened, and the balance between the fluidity and the tensile properties of the block copolymer is more excellent.
多官能成分としては、 トリメチロールプロパン、 ペンタエリストールなどの 3 価以上の多価アルコールや、 ピロメリット酸とその無水物、 トリメリット酸とそ
の無水物などの 3価以上の多価カルボン酸やその無水物、 さらにはスルホイソフ タル酸ジメチルナトリウムのほか、 2官能以上のエポキシ基、 ォキサゾリン基、 カルポジイミド基などを含む化合物を例示できる。 Examples of the polyfunctional component include polyhydric alcohols such as trimethylolpropane and pentaeristol, and polyhydric alcohols such as pyromellitic acid and anhydride, trimellitic acid and so on. Examples thereof include compounds containing a trivalent or more polyvalent carboxylic acid such as an anhydride thereof, an anhydride thereof, dimethyl sodium sulfoisophthalate, and a compound containing a bifunctional or more functional epoxy group, oxazoline group, carbodiimide group and the like.
本発明のポリエステル成形体に使用されるブロック共重合体の製造方法には特 に制限はなく、 例えば溶融重縮合法が挙げられる。 例えば、 構成単位 (A) が上 記式( 1 )中における Xおよび Yがメチル基であって Zがメチレン基である場合、 ヒドロキシピバリン酸またはヒドロキシピバリン酸エステルが工業的に容易に入 手でき、 ァニオン重合ゃカチオン重合による場合のように反応時に有機溶媒を使 用する必要がなく、 .耐熱性にもより優れたブロック共重合体が得られる。 The method for producing the block copolymer used in the polyester molded article of the present invention is not particularly limited, and examples thereof include a melt polycondensation method. For example, when the structural unit (A) is a methyl group and X and Y in the above formula (1) are methyl groups and Z is a methylene group, hydroxypivalic acid or hydroxypivalic acid ester can be industrially easily obtained. There is no need to use an organic solvent during the reaction as in the case of anionic polymerization and cationic polymerization, and a block copolymer having more excellent heat resistance can be obtained.
また、 重合は公知のポリエステルの重合方法で行え、 連続重合であっても、 バ ツチ重合でもよい。 The polymerization can be performed by a known polyester polymerization method, and may be continuous polymerization or batch polymerization.
例えば、 ブロック共重合体を構成する原料を窒素を導入した反応釜にすべて一 括して仕込み、 1 6 0〜2 4 0 °C程度の温度でエステル交換を行い、 その後 2 4 0 T、 0 . 1 3 k P a以下などの条件下で重縮合を行う方法でもよいし、 ヒドロ キシピバリン酸、 ヒドロキシピバリン酸のエステル、 ピバロラクトンなどを重合 して構成単位 (A) を構成するポリマ一をあらかじめ製造し、 その後、 このポリ マーと構成単位(B )を構成する化合物と、必要に応じて使用される構成単位(C ) を構成する化合物とを重縮合する方法でもよい。 このような反応後、 得られたポ リマーを水中に吐出、 ペレタイズすることにより目的のブロック共重合体が得ら れる。 また、 構成単位 (A) を構成するポリマーと構成単位 (B ) を構成する化 合物と必要に応じて使用される構成単位 (C ) を構成する化合物とを押出機中で 反応させて、 目的物を製造する方法でもよい。 For example, the raw materials constituting the block copolymer are all charged at once into a reactor in which nitrogen is introduced, and transesterification is performed at a temperature of about 160 to 240 ° C., and then 240 T, 0 Polycondensation may be performed under conditions such as 13 kPa or less, or a polymer that constitutes the structural unit (A) may be prepared in advance by polymerizing hydroxypivalic acid, hydroxypivalic acid ester, pivalolactone, etc. Thereafter, a method of polycondensing the polymer and the compound constituting the structural unit (B) with the compound constituting the structural unit (C) used as necessary may be used. After such a reaction, the obtained polymer is discharged into water and pelletized to obtain a target block copolymer. Further, a polymer constituting the structural unit (A), a compound constituting the structural unit (B), and a compound constituting the structural unit (C) used as required are reacted in an extruder, and A method of manufacturing the target object may be used.
なお、 目的のブロック共重合体を製造する際、 仕込み組成中におけるヒドロキ シル基の量と力ルポキシル基の量とを合わせると、 目的のブロック共重合体の分 子量を大きくすることができる。 ヒドロキシル基の量と力ルポキシル基の量とを 合わせるためには、 ジカルボン酸、 ジォ一ルなどを使用する。 これらの具体例と しては、 前述のジカルボン酸、 ジオールなどを例示できる。 When the target block copolymer is produced, the molecular weight of the target block copolymer can be increased by combining the amount of the hydroxyl group and the amount of the propyloxyl group in the charged composition. In order to match the amount of hydroxyl groups with the amount of hydroxyl groups, use dicarboxylic acid, diol, or the like. Specific examples of these include the above-mentioned dicarboxylic acids and diols.
また、 これらの重合工程において、 特に以下に挙げる金属の化合物を、 該金属 の合計質量が最終的に得られるポリエステル成形体のプロック共重合体中 0 . 1
〜 1 0 0 0 p p mとなるように、 好ましくは 1〜 5 0 0 p p mとなるように添加 すると、 エステル交換反応や重縮合を収率よく行うことができる。 これらの金属 化合物は、 少なくともエステル交換反応の工程において添加されていればよく、 例えば、 原料投入の段階において供給することもできるし、 エステル交換反応時 に供給することもできる。 In these polymerization steps, in particular, the following metal compounds are added to the block copolymer of the polyester molded product in which the total mass of the metals is finally obtained in 0.1. When it is added so as to be 100 ppm, preferably 1 to 500 ppm, the transesterification reaction or polycondensation can be carried out with high yield. These metal compounds need only be added at least in the step of transesterification. For example, they can be supplied at the stage of charging the raw materials, or can be supplied at the time of transesterification.
使用される好適な金属の化合物としては、アンチモン、ゲルマニウム、チタン、 マンガン、 マグネシウム、 カルシウム、 ストロンチウム、 バリゥム、 ナトリゥム、 コバルト、 アルミニウム、 ガリウム、 鉄、 スズ、 亜鉛、 ホウ素からなる群より選 ばれる少なくとも 1種の金属の化合物が挙げられ、 具体的には、 これらの金属の 酢酸塩などの脂肪酸塩、 これらの元素の炭酸塩、 これらの元素の硫酸塩、 これら の元素の硝酸塩、 塩化物などのハロゲン化物、 これらの元素のァセチルァセトナ ート塩、 これらの元素の酸化物などが挙げられる。 Suitable metal compounds used include at least one selected from the group consisting of antimony, germanium, titanium, manganese, magnesium, calcium, strontium, barium, sodium, cobalt, aluminum, gallium, iron, tin, zinc, and boron. Examples of such compounds include fatty acid salts such as acetates of these metals, carbonates of these elements, sulfates of these elements, nitrates of these elements, and halogens such as chlorides. Compounds, acetyl acetonate salts of these elements, oxides of these elements, and the like.
これらの中で、 チタンの化合物としては、 特にテトラブチルチ夕ネート、 テト ラメチルチタネートなどのテトラアルキルチタネート、 シユウ酸チタン力リなど のシユウ酸金属などが好ましい。 Among them, the titanium compound is particularly preferably a tetraalkyl titanate such as tetrabutyl titanate or tetramethyl titanate, or a metal oxalate such as titanium oxalate.
スズの化合物としては、 ジブチルスズオキサイド、 ジブチルスズジラウリレ一 トなどが好ましい。 As the tin compound, dibutyltin oxide, dibutyltin dilaurate and the like are preferable.
アルミニウム化合物としては、酢酸アルミニウムなどの脂肪酸アルミニウム塩、 炭酸アルミニウム、 塩化アルミニウム、 アルミニウムのァセチルァセトナート塩 などが挙げられ、 特に酢酸アルミニウムまたは炭酸アルミニウムが好ましい。 バリウム化合物としては、 酢酸バリウムなどの脂肪酸バリウム塩、 炭酸バリゥ ム、 塩化バリウム、 バリウムのァセチルァセトナ一ト塩などが挙げられ、 特に酢 酸バリウムまたは炭酸バリウムが好ましい。 Examples of the aluminum compound include fatty acid aluminum salts such as aluminum acetate, aluminum carbonate, aluminum chloride, and acetyl acetonate salt of aluminum. Aluminum acetate or aluminum carbonate is particularly preferable. Examples of the barium compound include barium salts of fatty acids such as barium acetate, barium carbonate, barium chloride, and acetyl acetonate of barium. Barium acetate or barium carbonate is particularly preferable.
コバルト化合物としては、 酢酸コバルトなどの脂肪酸コバルト塩、 炭酸コバル ト、 塩化コバルト、 コバルトのァセチルァセトナ一ト塩などが挙げられ、 特に酢 酸コバルトまたは炭酸コバルトが好ましい。 Examples of the cobalt compound include a cobalt salt of a fatty acid such as cobalt acetate, cobalt carbonate, cobalt chloride, and acetyl acetonate salt of cobalt, and particularly preferably cobalt acetate or cobalt carbonate.
マグネシゥム化合物としては、酢酸マグネシゥムなどの脂肪酸マグネシゥム塩、 炭酸マグネシウム、 塩化マグネシウム、 マグネシウムのァセチルァセトナート塩 などが挙げられ、 特に酢酸マグネシウムまたは炭酸マグネシウムが好ましい。
マンガン化合物としては、 酢酸マンガンなどの脂肪酸マンガン塩、 炭酸マンガ ン、 塩化マンガン、 マンガンのァセチルァセトナート塩などが挙げられ、 特に酢 酸マンガンまたは炭酸マンガンが好ましい。 Examples of the magnesium compound include magnesium salts of fatty acids such as magnesium acetate, magnesium carbonate, magnesium chloride, and acetyl acetonate salt of magnesium. Particularly preferred is magnesium acetate or magnesium carbonate. Examples of the manganese compound include manganese salts of fatty acids such as manganese acetate, manganese carbonate, manganese chloride, and acetyl acetonate salt of manganese. Particularly, manganese acetate or manganese carbonate is preferable.
ストロンチウム化合物としては、 酢酸ストロンチウムなどの脂肪酸ストロンチ ゥム塩、 炭酸ストロンチウム、 塩化ストロンチウム、 ストロンチウムのァセチル ァセトナート塩などが挙げられ、 特に酢酸ストロンチウムまたは炭酸ストロンチ ゥムが好ましい。 Examples of the strontium compound include a strontium salt of a fatty acid such as strontium acetate, strontium carbonate, strontium chloride, and an acetyl acetonate salt of strontium. Strontium acetate and strontium carbonate are particularly preferable.
亜鉛化合物としては、 酢酸亜鉛などの脂肪酸亜鉛塩、 炭酸亜鉛、 塩化亜鉛、 亜 鉛のァセチルァセトナート塩などが挙げられ、 特に酢酸亜鉛または炭酸亜鉛が好 ましい。 Examples of the zinc compound include zinc salts of fatty acids such as zinc acetate and the like, zinc carbonate, zinc chloride, and acetyl acetonate salt of zinc. Particularly preferred are zinc acetate and zinc carbonate.
アンチモン化合物としては、 二酸化アンチモン、 酢酸アンチモンなどが挙げら れる。 Examples of the antimony compound include antimony dioxide and antimony acetate.
また、 ゲルマニウムの化合物としては二酸化ゲルマニウム、 カルシウムの化合 物としては炭酸カルシウムや酢酸カルシウム、 ナトリゥムの化合物としてはナト リウムメチラ一ト、 ガリウムの化合物としては三塩化ガリウムや酸化ガリゥム、 鉄の化合物としては酢酸鉄、 ホウ素の化合物としては酸化ホウ素、 等が挙げられ る。 Also, germanium dioxide is used as a germanium compound, calcium carbonate or calcium acetate is used as a calcium compound, sodium methylate is used as a sodium compound, gallium trichloride or gallium oxide is used as a gallium compound, and acetic acid is used as an iron compound. Examples of compounds of iron and boron include boron oxide.
これらの金属の化合物は、 1種単独でまたは 2種以上組み合わせて用いること ができる。 These metal compounds can be used alone or in combination of two or more.
また、 重縮合反応においては、 必要に応じて安定剤を使用してもよい。 安定剤 としては、 トリメチルホスフエ一ト、 トリエチルホスフェート、 トリ n-プチルホ スフェート、 トリオクチルホスフェート、 トリフエニルホスフェート、 トリクレ ジルホスフエ一トなどのリン酸エステル類; トリフエニルホスファイト、 トリス ドデシルホスフアイト、 トリスノニルフエニルホスフアイトなどの亜リン酸エス テル類; メチルアシッドホスフエ一ト、 イソプロピルアシッドホスフェート、 ブ チルアシッドホスフエ一ト、 ジブチルホスフェート、 モノブチルホスフェート、 ジォクチルホスフェートなどの酸性リン酸エステルおよびリン酸、 亜リン酸、 次 亜リン酸、 ポリリン酸などのリン化合物が用いられる。 In the polycondensation reaction, a stabilizer may be used if necessary. Examples of the stabilizer include phosphates such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, triphenyl phosphate, and tricresyl phosphate; triphenyl phosphate, tris dodecyl phosphate, and tris. Phosphite esters such as nonylphenyl phosphate; acid phosphate esters such as methyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, octyl phosphate and the like Phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, and polyphosphoric acid are used.
このようにして製造された本発明におけるプロック共重合体には、 例えば、 耐
熱安定剤、 耐光安定剤などの公知の安定剤を含有させても良い。 耐熱安定剤とし ては、 例えば 4, 4一ビス (2, 6—ジー t一ブチルフエノール) などのフエノ —ル化合物、 N, N—ビス ( 一ナフチル) 一 p—フエ二レンジァミンなどのァ ミン化合物、ジラウリルチオネートなどのィォゥ化合物などが挙げられる。また、 耐光安定剤としては、 例えば置換べンゾフエノン、 ベンゾトリアゾール化合物な どが挙げられる。 The block copolymer of the present invention thus produced includes, for example, Known stabilizers such as heat stabilizers and light stabilizers may be added. Examples of the heat stabilizer include phenol compounds such as 4,4-bis (2,6-di-tert-butylphenol) and amines such as N, N-bis (mononaphthyl) -p-phenylenediamine. And diazolyl thionate. Examples of the light stabilizer include, for example, substituted benzophenones and benzotriazole compounds.
本発明におけるブロック共重合体の溶融粘度は、 ASTM D 1238に準じ て測定されたメルトフローレート (MFR) にて表現されるが、 好ましい MFR の範囲は 3〜 3 O O gZl Om i n.、好ましくは 5〜250 gZl 0m i n.、 さらに好ましくは 1 0〜250 gZl Om i n. である。 MFRが 3gZl 0m i n. 未満では、 射出成形性に劣り、 ショートショットとなってしまう傾向にあ る。 また、 MFRが 300 g/10分を越えると、 成形体の引張特性等に劣る傾 向にある。 The melt viscosity of the block copolymer in the present invention is expressed by a melt flow rate (MFR) measured according to ASTM D 1238, and a preferable range of MFR is 3 to 3 OO gZl Omin. Is 5 to 250 gZl Omin., More preferably 10 to 250 gZl Omin. If the MFR is less than 3 gZl 0 min., The injection moldability is poor, and short shots tend to occur. If the MFR exceeds 300 g / 10 minutes, the molded product tends to have poor tensile properties.
本発明のポリエステル成形体は弾性体であり、 J I S— K— 6262に準じて 測定した圧縮永久歪は 5〜 65%の範囲である。 圧縮永久歪が 5 %未満の場合、 成形加工性が悪くなる傾向にある。 また、 圧縮永久歪が 65 %を超えるとゴム弾 性が低く、 成形体を使用できる用途が制限される傾向にある。 さらに、 J I S— K一 6262の測定法で測定不能である場合は、 弾性体の定義外であり、 熱可塑 性エラストマ一としての使用に適さない。 より好ましい圧縮永久歪の範囲は 25 〜 60 %であり、 さらに好ましくは 30〜 55 %の範囲である。 The polyester molded article of the present invention is an elastic body, and has a compression set of 5 to 65% as measured according to JIS-K-6262. If the compression set is less than 5%, the moldability tends to be poor. On the other hand, if the compression set exceeds 65%, the rubber elasticity tends to be low, and the applications in which the molded article can be used tend to be limited. Furthermore, if it cannot be measured by the measurement method of JIS-K-1262, it is out of the definition of an elastic body and is not suitable for use as a thermoplastic elastomer. More preferably, the compression set is in the range of 25 to 60%, and still more preferably in the range of 30 to 55%.
本発明のポリエステル成形体の J I S— K— 736 1— 1に準じて測定した全 光線透過率は 7 5 %以上である。 全光線透過率は測定物の表面状態により左右さ れるが、 表面加工、 表面処理を施さない試験片により求められ、 理論上は 93% が上限となる。 The polyester molded article of the present invention has a total light transmittance of 75% or more as measured according to JIS-K-7361-1. Although the total light transmittance depends on the surface condition of the measured object, it is obtained from a specimen that has not been subjected to surface processing or surface treatment, and the upper limit is 93% in theory.
全光線透過率が 75 %未満であると成形体の透明性が低く、 工業的に利用でき る用途が限定される。 より好ましい全光線透過率の範囲は 80 %以上である。 本発明のポリエステル成形体の J I S -K- 7 136に準じ測定したヘイズが 50以下であることは、 視認性の良い成形体を得ることができる点で好ましい。 より好ましくは、 ヘイズ値が 35以下である。 さらに、 J I S— K— 7 1 05に
記載の黄色度指数 (以下、 Y I ) が 3 0以下であることは、 成形体の外観を保持 し好ましい。より好ましくは Y Iが 2 0以下、さらに好ましくは 1 0以下である。 本発明のポリエステル成形体の脂肪族ポリエステルブロック共重合体において、 下記式 (2 ) で示される環状体の含有量は 0 . 0 5質量%以下であることが好ま しい。 If the total light transmittance is less than 75%, the transparency of the molded product is low, and the applications that can be used industrially are limited. A more preferable range of the total light transmittance is 80% or more. It is preferable that the haze of the polyester molded article of the present invention, measured according to JIS-K-7136, is 50 or less, since a molded article with good visibility can be obtained. More preferably, the haze value is 35 or less. In addition, JIS—K— It is preferable that the described yellowness index (hereinafter, YI) is 30 or less because the appearance of the molded article is maintained. More preferably, YI is 20 or less, further preferably 10 or less. In the aliphatic polyester block copolymer of the polyester molded article of the present invention, the content of the cyclic represented by the following formula (2) is preferably 0.05% by mass or less.
(式 (2 ) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 mは 2以上の整数である。 Zは直接結合、炭素数 1〜6のアルキレン基、 フエ二レン基のいずれかを示す。) " (In the formula (2), each of X and Y represents hydrogen, an alkyl group, or a phenyl group. M is an integer of 2 or more. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Represents one of the len groups.) "
脂肪族ポリエステルブロック共重合体中の環状体含有量が、 0 . 0 5質量%を 超えると脂肪族ポリエステル樹脂を成形した際、 環状体が経時的にブリードアゥ トする場合がある。 環状体の好ましい含有量は、 0 . 0 3質量%以下、 さらに好 ましくは 0 . 0 1質量%以下である。 When the content of the cyclic body in the aliphatic polyester block copolymer exceeds 0.05% by mass, when the aliphatic polyester resin is molded, the cyclic body may bleed out over time. The preferred content of the cyclic is 0.03% by mass or less, more preferably 0.01% by mass or less.
さらに本発明のポリエステル成形体には、 このブロック共重合体の耐熱性と柔 軟性のバランスをさらに高めるために、結晶核剤、有機または無機の補強用繊維、 有機または無機の粉体などを配合してもよい。 Further, in order to further enhance the balance between the heat resistance and the flexibility of the block copolymer, a crystal nucleating agent, an organic or inorganic reinforcing fiber, an organic or inorganic powder, and the like are added to the polyester molded article of the present invention. May be.
上記の安定剤、 結晶核剤、 補強用繊維、 粉体などを配合する際には、 これらを 均一に混合するために、 公知の種々の方法を用いることができる。 例えば、 ダブ ルコ一ンブレンダー、 リポンプレンダ一等で混合する方法、 また、 このような方 法で混合した樹脂を一軸押出機、 二軸押出機、 ベント式押出機等により溶融混練 し造粒する方法を採用することも可能である。 When compounding the above-mentioned stabilizer, crystal nucleating agent, reinforcing fiber, powder and the like, various known methods can be used to uniformly mix them. For example, a method of mixing with a double blender or a repump blender, or a method of melt-kneading and granulating the resin mixed by such a method using a single-screw extruder, a twin-screw extruder, a vented extruder, or the like. It is also possible to employ.
本発明のポリエステル成形体は、 例えば射出成形によって容器に成形され、 押 出成形によってシート等に成形され、 また、 プロ一成形によって容器等に成形さ れるなど、 通常の溶融成形により目的に応じた形状に成形できる。 また成形品と した後、 さらにァニール処理を行って構成単位 (A) の結晶化を促進させ熱安定
性を高めてもよい。 The polyester molded article of the present invention can be formed into a container by, for example, injection molding, formed into a sheet or the like by extrusion, or formed into a container or the like by professional molding. It can be formed into a shape. After forming the molded product, annealing treatment is further performed to promote crystallization of the structural unit (A) and to stabilize it. May be enhanced.
このようなポリエステル成形体は、 透明性に優れるとともに、 その透明性が長 時間持続し、 柔軟性、 耐薬品性にも優れるため、 従来、 軟質塩化ビニル樹脂、 ス チレン一ブタジエン一スチレン系ブロック共重合体およびその水添物、 脂肪族ポ リエステル共重合体、 ポリオレフィン: ςラストマ一などが用いられていた用途、 すなわちシート、 フィルム、 雑貨など、 自動車部品などに好ましく用いられる。 また、 このポリエステル成形体のブロック共重合体を、 ポリエステル、 ポリ力 ーポネート、 ポリアミド、 ポリオレフイン、 ポリスチレン、 ポリメタクリル酸メ チル、 ポリ塩化ビエルなどの樹脂に改質剤としてブレンドすることによって、 樹 脂の耐衝撃性、 耐薬品性、 摺動性などを改質し、 これらの性能に優れた樹脂組成 物を製造することもできる。 実施例 Since such a polyester molded article has excellent transparency, its transparency lasts for a long time, and is also excellent in flexibility and chemical resistance, it has been conventionally used for both soft vinyl chloride resin and styrene-butadiene-styrene block. Polymers and their hydrogenated products, aliphatic polyester copolymers, and polyolefins are preferably used for applications where elastomers and the like have been used, that is, for automobile parts such as sheets, films, sundries and the like. In addition, by blending the block copolymer of the polyester molded product with a resin such as polyester, polypropylene resin, polyamide, polyolefin, polystyrene, polymethyl methacrylate, or polychlorinated biel as a modifier, a resin is obtained. By modifying the impact resistance, chemical resistance, slidability, and the like, a resin composition excellent in these properties can be produced. Example
以下、 実施例を用いて本発明を具体的に説明するが、 本発明は実施例の内容に 限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the contents of the examples.
[試験例] [Test example]
プレス成形;得られたポリマーを 2 4 0ででプレス成形 Press molding; press molding the obtained polymer at 240
射出成形 ;得られたポリマーを 2 2 0でで射出成形 Injection molding; Injection molding of the obtained polymer at 220
押出成形 ; 4 Ο ιηηι φ単軸押出機と Τ—ダイを組合わせた製膜機により 2 5 0 °Cで 2 0 0 x m厚にシート状に成形 Extrusion molding: Formed into a sheet shape with a thickness of 200 x m at 250 ° C by a film forming machine combining a 4Οιηηι φ single screw extruder and a Τ-die.
このサンプルの柔軟性、透明性、耐熱性、 引張特性等を以下の方法で測定した。 The flexibility, transparency, heat resistance, tensile properties and the like of this sample were measured by the following methods.
( 1 ) 柔軟性 (表中、 ショァ A硬度で示す。) (1) Flexibility (in the table, indicated by Shore A hardness)
J I S K一 6 3 0 1に従い、 プレス成形あるいは射出成形で得られたサンプ ルを全体の厚さが 4 mm以上になるように重ねたサンプルを用いて、 J I S A 型項を測定して柔軟性の指標とした。 In accordance with JISK 6301, using a sample obtained by stacking samples obtained by press molding or injection molding so that the overall thickness becomes 4 mm or more, measure the JISA type term and indicate the index of flexibility. And
( 2 ) 透明性 (2) Transparency
プレス成形あるいは射出成形で得られたサンプルの外観を目視評価した。また、 長期的透明性の評価として、 ① 7 0 の温水中に 3日間漬けたサンプル、 ②室温 1ヶ月放置後のサンプルのいずれかで評価した。
(3) 耐熱性 The appearance of the sample obtained by press molding or injection molding was visually evaluated. The long-term transparency was evaluated by (1) a sample immersed in 70-minute warm water for 3 days, and (2) a sample left at room temperature for 1 month. (3) Heat resistance
プレス成形で得られた 2 mm厚のサンプルを 3 OmmX 5 mmの短冊状に切り だし、 サンプルの端 1 Ommを固定して 120 :のオーブン中に 1時間放置し 5 mm以上垂れ下がらなかったものを表中〇で示し、 5 mm以上垂れ下がったもの を表中 Xで示した。 A 2 mm thick sample obtained by press molding was cut into a strip of 3 Omm x 5 mm, and the end of the sample was fixed at 1 Omm, left in an oven at 120: for 1 hour, and did not sag more than 5 mm Is indicated by 〇 in the table, and those hanging 5 mm or more are indicated by X in the table.
(4) 引張特性 (4) Tensile properties
押出成形で得られた 200 m厚のシ一ト状サンプル、 あるいは射出成形で得 られた 3.2 mm厚の試験片を AS TM D— 638に準拠して測定した。また、 200 %引張後残存伸びは、 23°Cで上記サンプルを 200 %引張った状態で 5 分間保持した後、 開放して 30分後の伸び率を測定した。 A 200-m-thick sheet-like sample obtained by extrusion molding or a 3.2-mm-thick test piece obtained by injection molding was measured in accordance with ASTM D-638. In addition, the residual elongation after 200% tension was determined by elongating the sample at 23 ° C for 5 minutes while maintaining the sample at 200% tension for 5 minutes, and then releasing the sample for 30 minutes.
(5) 環状 3量体含有量 (5) Cyclic trimer content
得られた脂肪族ポリエステルをクロ口ホルムに溶解し、 ガスクロマトグラフィ ― (Hewlett Packard社製 HP6890,キヤピラリーカラム (ΗΡ·5、 長さ 30m、 膜厚 0.25 m)) を使用し、 キャリアガスをヘリウム 1. 5mmZm i n.、 温度 を 200°Cで、 パルミチン酸メチルを内部標準として定量した。 The resulting aliphatic polyester was dissolved in black-mouthed form, and the carrier gas was changed to helium using gas chromatography-(Hewlett Packard HP6890, capillary column (ΗΡ5, length 30 m, film thickness 0.25 m)). The amount was determined at 1.5 mmZm in. And at a temperature of 200 ° C. using methyl palmitate as an internal standard.
(6) 耐薬品性 (6) Chemical resistance
トルエンに 23°Cで 24時間浸漬した後のサンプルの引っ張り強度保持率が 9 The tensile strength retention of the sample after immersion in toluene at 23 ° C for 24 hours is 9
0 %以上維持できたものを表中〇で示し、 維持できないものを Xで示した。 ある いは、 プレス成形で得られた 2mm厚のサンプルを、 23°Cでアセトンラビング し、 目視評価した。 Those that could be maintained at 0% or more are indicated by 〇 in the table, and those that could not be maintained are indicated by X. Alternatively, a 2 mm thick sample obtained by press molding was subjected to acetone rubbing at 23 ° C. and visually evaluated.
(7) NMR (7) NMR
(i) サンプルをクロ口ホルムに溶かし、 遠心分離し、 クロ口ホルム不溶分を (i) Dissolve the sample in black-mouthed form, centrifuge, and remove
1 Rに供試した。 1 R was tested.
(ii) サンプルに重水素化クロ口ホルムを加え、 ろ過して NMRに供試した。 (ii) Deuterated chloroform was added to the sample, filtered, and subjected to NMR.
(iii) サンプルを 3N KOHZエタノールで耐圧容器中、 105°CX 12 h r s加水分解した。 塩酸で中和し、 生成した塩を分離するため、 吸引ろ過 (グラス フィル夕一) し、 ろ液を濃縮した。 ジェチルエーテル, 水を加え、 分液ロートで 抽出した。 エーテル相を濃縮, 真空乾燥して、 NMRに供試した。 (iii) The sample was hydrolyzed with 3N KOHZ ethanol in a pressure vessel at 105 ° C for 12 hrs. The mixture was neutralized with hydrochloric acid, and the resulting salt was separated by suction filtration (Glass Fill Yuichi) and the filtrate was concentrated. Getyl ether and water were added, and the mixture was extracted with a separating funnel. The ether phase was concentrated, dried in vacuo and subjected to NMR.
(8) 全光線透過率、 ヘイズ
全光線透過率は、 J I S— K— 736 1に準じ、射出成形で得られた 3 mm厚、 5 OmmX 5 Ommの平板サンプルを 23 °Cにおいてヘイズメータ一にて測定し た。 (8) Total light transmittance, haze The total light transmittance was measured using a haze meter at 23 ° C. on a 3 mm thick, 5 Omm × 5 Omm flat plate sample obtained by injection molding in accordance with JIS-K-7361.
同装置、 同試験片により、 J I S—K— 7 136に準じヘイズ値を測定した。 The haze value was measured using the same apparatus and the same test piece in accordance with JIS-K-7136.
(9) Y I (9) Y I
J I S— K— 7 1 05に準じ、 3mm厚、 50 mm X 50 mmの平板サンプル を 23 °Cにおいてカラ一メ一夕一にて測定した。 According to JIS—K—7105, a 3 mm-thick, 50 mm × 50 mm plate sample was measured at 23 ° C. all at once.
(1 0) MF R (1 0) MF R
ASTM D 1 238に準じ、メルトインデクサ一により 190°C、荷重 2 1. 2N (2. 1 6 k g) で測定した。 According to ASTM D 1238, it was measured at 190 ° C. under a load of 21.2N (2.16 kg) using a melt indexer.
(1 1) 圧縮永久歪 (1 1) Compression set
J I S -K- 6262に準じ、 プレス成形で得られた 2mm厚のサンプルを直 径 13mmに打ち抜き 3枚積層した小試験片を作成、 5. 3mmのスぺーサ一を 用い 1 5 %圧縮した。 これを 70 、 22時間保持したのち、 30分後に試験片 厚みを測定した数値により算出した。 According to JIS-K-6262, a sample of 2 mm thickness obtained by press molding was punched out to a diameter of 13 mm to form three small laminated test pieces, which were compressed by 15% using a 5.3 mm spacer. This was held for 70 and 22 hours, and after 30 minutes, the thickness of the test piece was calculated from the measured value.
[製造例 1] [Production Example 1]
ヒドロキシピバリン酸メチル 1 32 g (0. 1 mo 1 ) とチタンテトラブトキ サイド 0. 1 32 gを反応容器に入れ、 窒素雰囲気下 160 °Cから 200 °Cで 2 時間エステル交換を行った。 その後、 この反応系を 30分で 240°Cに昇温した 後、 2時間かけて系内を常圧から 0. 1 3 k P a以下に減圧し、 2時間かけて重 縮合反応を行った。 132 g (0.1 mol) of methyl hydroxypivalate and 0.132 g of titanium tetrabutoxide were placed in a reaction vessel, and transesterification was performed at 160 to 200 ° C for 2 hours under a nitrogen atmosphere. After raising the temperature of the reaction system to 240 ° C in 30 minutes, the pressure inside the system was reduced from normal pressure to 0.13 kPa or less over 2 hours, and the polycondensation reaction was performed for 2 hours. .
得られた樹脂の溶融粘度をレオメーターで測定したところ、 240°Cで 1 P a · sであった。 得られた樹脂を (A— 1) とする。 When the melt viscosity of the obtained resin was measured by a rheometer, it was 1 Pa · s at 240 ° C. Let the obtained resin be (A-1).
なお、 この樹脂 (A— 1) は、 DS Cから求めた融点、 粘度などからエステル 交換率が 97 %以上であることを確認した。 このときの計算上の数平均分子量は 3290、 式 1における nは 32である。 The resin (A-1) was confirmed to have an ester exchange rate of 97% or more based on the melting point, viscosity, and the like determined by DSC. The calculated number average molecular weight at this time is 3290, and n in Equation 1 is 32.
[実施例 1 ] [Example 1]
ヒドロキシピバリン酸メチルを 792 g (5. 9mo l )、 PTG4000 (保
土谷化学製、 数平均分子量 4000) を 900 g (0. 225 mo 1 )、 アジピン 酸ジメチルを 26. 7 g (0. 1 53mo l )、 トリメリット酸無水物を 9. 1 5 g (0. 048mo l )、 安定剤としてテトラキス [メチレン (3, 5—ジー t一 ブチル一4—ヒドロキシハイドロシンナメート)]メタンを 6 g、触媒としてチタ ンテトラブトキサイドを 1. 5 gとを窒素を導入した反応釜に仕込み、 1 60°C から 240°Cで 3時間メタノールを除去しながら反応を進めた。 792 g (5.9 mol) of methyl hydroxypivalate, PTG4000 (protected) 900 g (0.225 mo 1) of Tsuchiya Chemical, number average molecular weight 4000), 26.7 g (0.153 mol) of dimethyl adipate, and 9.15 g (0.15 g) of trimellitic anhydride 048 mol), tetrakis [methylene (3,5-di-tert-butyl-1-hydroxyhydrocinnamate)] methane (6 g) as a stabilizer, and titanium tetrabutoxide (1.5 g) as a catalyst were introduced with nitrogen. The reactor was charged and the reaction was carried out at 160 to 240 ° C for 3 hours while removing methanol.
次いで、 240°Cで 1時間かけて系内を 0. 13 kP a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズして 12 10 gのポリマ一を得た。 これをクロ口ホルムに 溶かし、 ポリスチレン標準で測定した数平均分子量は 35000、 分子量分布は 1. 8であった。 Next, the pressure inside the system was reduced to 0.13 kPa or less over 1 hour at 240 ° C., and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1210 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 35000 and the molecular weight distribution was 1.8.
なお、 このポリマ一を動的粘弾性測定し、 その t a η δのピークから求めら れる構成単位 (Β) に由来する Tgは一 43°Cであった。 また、 このポリマ一を NMRで分析したところ、 構成単位 (A) の含有量は 32質量%であった。 The polymer was subjected to dynamic viscoelasticity measurement, and the Tg derived from the structural unit (Β) determined from the peak of t a η δ was 143 ° C. When this polymer was analyzed by NMR, the content of the structural unit (A) was 32% by mass.
このようにして得たポリマ一を 0. 3 k P a, 120 °Cで 5時間乾燥したのち、 4 Omm 単軸押出機と T一ダイを組合わせた製膜機により 250 tで 200 m厚にシート状に成形した。 また、 240°Cでプレス成形、 および射出成形を行 い所定厚さの試験片を作成し、 評価した。 その結果を表 1、 表 2に示す。 The polymer thus obtained was dried at 0.3 kPa, 120 ° C for 5 hours, and then 200 m thick at 250 t using a 4 Omm single screw extruder and T-die. Into a sheet. In addition, press molding and injection molding were performed at 240 ° C, and test specimens having a predetermined thickness were prepared and evaluated. Tables 1 and 2 show the results.
[実施例 2 ] [Example 2]
製造例 1で得られた樹脂 (A— 1) を 444 g、 PTG4000 (保土谷化学 製、 数平均分子量 4000) を 1 050 g、 アジピン酸ジメチルを 36. 4 g、 トリメリット酸無水物を 6. 8.4 g、 安定剤としてテトラキス [メチレン (3, 5—ジー t—ブチルー 4ーヒドロキシハイドロシンナメート)] メタンを 6 g、触 媒としてチタンテトラブトキサイドを 1. 5 gとを窒素を導入した反応釜に仕込 み、 160°Cから 240 で 1時間メタノールを除去しながら反応を進めた。 次いで、 240°Cで 30分かけて系内を 0. 13 kP a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズして 1 180 gのポリマーを得た。 これをクロ口ホルムに
溶かし、 ポリスチレン標準で測定した数平均分子量は 28000、 分子量分布は 2. 2であった。 444 g of the resin (A-1) obtained in Production Example 1, 1050 g of PTG4000 (manufactured by Hodogaya Chemical Co., Ltd., number average molecular weight 4000), 36.4 g of dimethyl adipate, and 6 of trimellitic anhydride 8.4 g, tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane as a stabilizer, 6 g of methane, and 1.5 g of titanium tetrabutoxide as a catalyst were introduced with nitrogen. The reaction vessel was charged and the reaction proceeded at 160 ° C to 240 ° C for 1 hour while removing methanol. Next, the pressure inside the system was reduced to 0.13 kPa or less at 240 ° C. over 30 minutes, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1180 g of a polymer. This to the black mouth Holm Melted, the number average molecular weight measured by polystyrene standard was 28000, and molecular weight distribution was 2.2.
なお、 このポリマーを動的粘弾性測定し、 その t a η δのピークから求めら れる構成単位 (Β) に由来する T gは一 45°Cであった。 また、 このポリマ一を NMRで分析したところ、 構成単位 (A) の含有量は 23質量%であった。 このようにして得たポリマーを実施例 1と同様にして成形し評価した結果を表 1、 表 2に示す。 The dynamic viscoelasticity of this polymer was measured, and the T g derived from the structural unit (Β) determined from the peak of t a η δ was 1 45 ° C. When this polymer was analyzed by NMR, the content of the structural unit (A) was 23% by mass. The thus obtained polymer was molded and evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[比較例 1] [Comparative Example 1]
テレフタル酸ジメチルを 387. 1 g (1. 99m'o l )、 1, 4—テトラメチ レングリコ一ルを 269. 5 g (2. 99mo l)、 PTG4000 (保土谷化学 製ポリテトラメチレングリコール、 数平均分子量 4000) を 500 g、 安定剤 としてテトラキス [メチレン (3, 5—ジー t一プチルー 4—ヒドロキシハイド 口シンナメート)] メタンを 5 g、 触媒としてチタンテトラブトキサイド 0. 31 gを窒素を導入した反応釜に仕込み、 160°Cから 240 で 2時間メタノ一ル を除去しながら反応を進め、 880 gの反応性生物を得た。 クロ口ホル厶に溶か しポリスチレン標準で測定した数平均分子量は 39000、 分子量分布は 2. 0 であった。 387.1 g (1.99 m'ol) of dimethyl terephthalate, 269.5 g (2.99 mol) of 1,4-tetramethylenglycol, PTG4000 (polytetramethylene glycol manufactured by Hodogaya Chemical, number average molecular weight) Reaction with 500 g of 4000), 5 g of tetrakis [methylene (3,5-di-tert-butyl-4-cinnamate)] methane as stabilizer and 0.31 g of titanium tetrabutoxide as catalyst The mixture was charged in a kettle, and the reaction was carried out at 160 to 240 ° C. for 2 hours while removing methanol to obtain 880 g of a reactive product. The number average molecular weight was 39,000, and the molecular weight distribution was 2.0, as determined by dissolving it in a gel form and using polystyrene standards.
このようにして得たポリマーを実施例 1と同様にして成形し評価した結果を表 1、 表 2に示す。 The thus obtained polymer was molded and evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[比較例 2] [Comparative Example 2]
製造例 1で得られた樹脂 (A— 1) を 444 g、 ぺスポール HP— 1 000 (東亞合成製、 数平均分子量 538) を 1050 g、 アジピン酸ジメチルを 33 9. 8 g、 安定剤としてテトラキス [メチレン (3, 5—ジー t一ブチル _4一 ヒドロキシハイドロシンナメート)]メタンを 6 g、触媒としてチタンテトラブト キサイドを 1. 5 gとを窒素を導入した反応釜に仕込み、 160°(から 240 で 1時間メタノールを除去しながら反応を進めた。 444 g of resin (A-1) obtained in Production Example 1, 1050 g of ぺ Spore HP-1 000 (Toagosei Co., Ltd., number average molecular weight 538), 339.8 g of dimethyl adipate as a stabilizer Tetrakis [methylene (3,5-di-t-butyl_4-hydroxyhydrocinnamate)] methane (6 g) and titanium tetrabutoxide (1.5 g) as a catalyst were charged into a nitrogen-introduced reaction vessel, and 160 ° ( The reaction was proceeded while removing methanol for 1 hour at 240 to 240 ° C.
次いで、 240°Cで 30分かけて系内を 0. 13 kP a以下に減圧し、 さらに
2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズして 1 2 8 0 gのポリマ一を得た。 これをクロ口ホルムに 溶かし、 ポリスチレン標準で測定した数平均分子量は 3 2, 0 0 0、 分子量分布 は 1. 9であった。 Then, the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes at 240 ° C. Polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 1280 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 32,000, and the molecular weight distribution was 1.9.
なお、 このポリマーを動的粘弾性測定し、 その t a η δのピークから求めら れる構成単位 (Β) に由来する T gは一 1 1 °Cであった。 また、 このポリマーを NMRで分析したところ、 構成単位 (A) の含有量は 25質量%であった。 このようにして得たポリマーを実施例 1と同様にして成形し評価した結果を表 鹦 ¾ The dynamic viscoelasticity of this polymer was measured, and the T g derived from the structural unit (Β) determined from the peak of ta η δ was 11 ° C. When this polymer was analyzed by NMR, the content of the structural unit (A) was 25% by mass. The polymer obtained in this manner was molded and evaluated in the same manner as in Example 1, and the results were evaluated.
1、 表 2に示す。 1 and Table 2.
表 1 table 1
透明性 transparency
全光線 All rays
ショァ A MFR 70°C温水 耐薬 Shore A MFR 70 ° C hot water Chemical resistant
透過率 耐熱性 Transmittance heat resistance
硬度 (g/10min.) 3日後 品性 Hardness (g / 10min.) After 3 days
(%) (%)
外観 Appearance
80 80
230 透明 透明 88 〇 〇 例 1 230 Transparent Transparent 88 〇 例 Example 1
実施 87 Implementation 87
200 透明 透明 83 〇 〇 例 1 200 Transparent Transparent 83 〇 〇 Example 1
比較 Comparison
83 135 不透明 不透明 27 〇 〇 例 1 83 135 Opaque Opaque 27 〇 例 Example 1
比較 Comparison
90 190 半透明 半透明 60 〇 〇 例 2
表 2 90 190 Translucent Translucent 60 〇 〇 Example 2 Table 2
表 1、 表 2から明らかなように、 比較例のポリエステル成形体は透明性が不十 分であり、 さらに構成単位 (Β) の分子量が 600未満の比較例 2のポリエステ ル成形体は柔軟性も不足し、 引張による残留伸び、 圧縮永久歪も大きい。 これに 対し、 本発明のポリエステル成形体は、 いずれも耐熱性に優れ、 高い透明性が持 続し、 さらに柔軟性、 耐薬品性も良好であった。 As is clear from Tables 1 and 2, the polyester molded article of Comparative Example has insufficient transparency, and the polyester molded article of Comparative Example 2 in which the molecular weight of the structural unit (Β) is less than 600 is flexible. In addition, residual elongation due to tension and compression set are large. On the other hand, the polyester molded articles of the present invention were all excellent in heat resistance, maintained high transparency, and also excellent in flexibility and chemical resistance.
[実施例 3 ] [Example 3]
ヒドロキシピバリン酸メチル 2200 g ( 16. 4mo 1 )、 PTG4000 (保 土谷化学製、 数平均分子量 4000) 2500 g (0. 625mo l)、 アジピン 酸ジメチル 74 g (0. 425mo l )、 トリメリット酸無水物 25. 5 g (0. 133mo 1 ) 触媒としてチタンテトラブトキサイド 4. 0 gを窒素を導入した 反応釜に仕込み、 160°Cから 240°Cで 3時間メタノールを除去しながら反応 を進めた。 Methyl hydroxypivalate 2200 g (16.4 mol), PTG4000 (Hodogaya Chemical, number average molecular weight 4000) 2500 g (0.625 mol), dimethyl adipate 74 g (0.425 mol), trimellitic anhydride 25.5 g (0.133mo 1) 4.0 g of titanium tetrabutoxide as a catalyst was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 to 240 ° C for 3 hours while removing methanol. .
次いで、 240 で 1時間かけて系内を 0. 13 k P a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズして 4500 gのポリマ一を得た。 これをクロ口ホルムに 溶かし、 ポリスチレン標準で測定した数平均分子量は 35000、 分子量分布は 1. 8であった。 Next, the pressure inside the system was reduced to 0.13 kPa or less over 1 hour at 240, and the polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 4500 g of a polymer. This was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standard was 35000 and the molecular weight distribution was 1.8.
なお、 得られたポリマ一におけるヒドロキシピバリン酸単位を主成分とする 構成単位 (A) は、 クロ口ホルム不溶分の DSC測定による融点から分子量が 2 600と計算され、 nは 26であった。
なお、 このポリマーを動的粘弾性測定し、 その t a n <5のピークから求められ る構成単位(B)に由来する Tgは _40°Cであった。また、 ここで構成単位(B) は、 ポリテトラメチレングリコール (数平均分子量 4000の PTG4000) とアジピン酸ジメチルとから構成される、 両末端がエステル形成性官能基である 化合物からなり、 その数平均分子量は 4100である。 The structural unit (A) having a hydroxypivalic acid unit as a main component in the obtained polymer was calculated to have a molecular weight of 2600 from the melting point of the form-insoluble portion of the polymer by DSC measurement, and n was 26. The dynamic viscoelasticity of this polymer was measured, and the Tg derived from the structural unit (B) determined from the peak of tan <5 was _40 ° C. Here, the structural unit (B) is composed of a compound composed of polytetramethylene glycol (PTG4000 having a number average molecular weight of 4000) and dimethyl adipate, both ends of which are ester-forming functional groups. The molecular weight is 4100.
また、 このポリマーを NMRで分析したところ、 構成単位 (A) の含有量は 2 9質量%であった。 また、 得られたポリマー中における触媒として添加したチタ ンテトラブトキサイド中のチタンの割合 (計算値) を表 3に示す。 Further, when this polymer was analyzed by NMR, the content of the structural unit (A) was 29% by mass. Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
得られたポリマ一を実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[実施例 4 ] [Example 4]
製造例 1で得られた樹脂 (A— 1) を 5 1. 7 g、 PTG4000 (保土谷化 学製、 数平均分子量 4000) 50 g、 アジピン酸ジメチル 2. 92 g、 触媒と してチタンテトラブトキサイド 0. 05 gを窒素を導入した反応釜に仕込み、 1 60 から 240 で 1時間メタノールを除去しながら反応を進めた。 51.7 g of the resin (A-1) obtained in Production Example 1, 50 g of PTG4000 (manufactured by Hodogaya Chemical Co., Ltd., number average molecular weight 4000), 2.92 g of dimethyl adipate, and titanium tet as a catalyst 0.05 g of rabtoxide was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 to 240 for 1 hour while removing methanol.
次いで、 24 Ot:で 30分かけて系内を 0. 13 kP a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマ一を窒素加圧下で水中に吐出' し、 それをペレタイズして 85 gのポリマーを得た。 これをクロ口ホルムに溶か し、 ポリスチレン標準で測定した数平均分子量は 28000、 分子量分布は 2. 2であった。 Then, the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes at 24 Ot: and the polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 85 g of a polymer. This was dissolved in black-mouthed form, and the number average molecular weight measured by polystyrene standard was 28000 and the molecular weight distribution was 2.2.
なお、 このポリマーを動的粘弾性測定し、 その t a η δのピークから求めら れる構成単位 (Β) に由来する Tgは— 55°Cであった。 また、 ここで構成単位 (B) は、 ポリテトラメチレングリコ一ル (数平均分子量 4000の PTG40 00) とアジピン酸ジメチルとから構成される、 両末端がエステル形成性官能基 である化合物からなり、 その数平均分子量は 8200である。 The dynamic viscoelasticity of this polymer was measured, and the Tg derived from the structural unit (Β) determined from the peak of ta η δ was −55 ° C. Here, the structural unit (B) is composed of a compound composed of polytetramethylene glycol (PTG4000 having a number average molecular weight of 4,000) and dimethyl adipate, both ends of which are ester-forming functional groups, Its number average molecular weight is 8200.
また、 このポリマーを NMRで分析したところ、 構成単位 (A) の含有量は 27質量%であった。 また、 得られたポリマー中における触媒として添加したチ 夕ンテトラブトキサイド中のチタンの割合 (計算値) を表 3に示す。
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 Further, when this polymer was analyzed by NMR, the content of the structural unit (A) was 27% by mass. Table 3 shows the ratio (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer. The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[実施例 5] [Example 5]
製造例 1で得られた樹脂 (A— 1) を, 51. 7 g、 PTG 2000 (保土谷化 学製、 数平均分子量 2000) 50 g、 アジピン酸ジメチル 4. 4 g、 触媒とし て酢酸マンガン 0. 05 gを窒素を導入した反応釜に仕込み、 1 60°。から 24 0 で 1時間メタノールを除去しながら反応を進めた。 51.7 g of the resin (A-1) obtained in Production Example 1, 50 g of PTG 2000 (manufactured by Hodogaya Chemical, number average molecular weight 2000), 4.4 g of dimethyl adipate, and manganese acetate as a catalyst 0.05 g was charged into a reaction vessel into which nitrogen had been introduced, and heated at 160 °. The reaction was allowed to proceed while removing methanol for 1 hour at a temperature of from 240 ° C.
次いで、 24 O :で 30分かけて系内を 0. 1 3 k P a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマ一を窒素加圧下で水中に吐出 し、 それをペレタイズして 93 gのポリマーを得た。 これをクロ口ホルムに溶か し、 ポリスチレン標準で測定した数平均分子量は 30000、 分子量分布は 1. 9であった。 Next, the pressure inside the system was reduced to 0.13 kPa or less over 30 minutes with 24 O :, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 93 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 30,000 and the molecular weight distribution was 1.9.
なお、 このポリマ一を動的粘弹性測定し、 その t a n <5のピークから求めら れる構成単位 (B) に由来する Tgは一 40でであった。 また、 ここで構成単位 The dynamic viscosity of this polymer was measured, and the Tg derived from the structural unit (B) determined from the peak of t an <5 was 140. Also, here the structural unit
(B) は、 ポリテトラメチレングリコ一ル (数平均分子量 2000の PTG 20 00) とアジピン酸ジメチルとから構成される、 両末端がエステル形成性官能基 である化合物からなり、 その数平均分子量は 2 100である。 (B) consists of a compound composed of polytetramethylene glycol (PTG 20000 having a number average molecular weight of 2000) and dimethyl adipate, both ends of which are ester-forming functional groups, and whose number average molecular weight is 2 is 100.
また、 このポリマーを NMRで分析したところ、 構成単位 (A) の含有量は 38質量%であった。 また、 得られたポリマー中における触媒として添加したチ タンテトラブトキサイド中のチタンの割合 (計算値) を表 3に示す。 When this polymer was analyzed by NMR, the content of the structural unit (A) was 38% by mass. Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[実施例 6] [Example 6]
実施例 1で得たポリマ一を 0. 3 kP a, 120°Cで 5時間乾燥したのち、 4 0 mm φ単軸押出機と T—ダイを組合わせた製膜機により 250°Cで 200 zm 厚にシート状に成形して試験片とし、 この試験片について評価した。 その結果を 表 4に示す。
[比較例 3] The polymer obtained in Example 1 was dried at 0.3 kPa and 120 ° C for 5 hours, and then dried at 250 ° C using a film forming machine combining a 40 mm φ single screw extruder and a T-die. The test piece was formed into a sheet having a thickness of zm and evaluated. The results are shown in Table 4. [Comparative Example 3]
PTG4000 (保土谷化学製ポリテトラメチレングリコ一ル、 数平均分子 量 4000) を 75. 3 g、 アジピン酸を 4. 4 g、 触媒としてチタンテトラブ トキサイド 0. 05 gを窒素を導入した反応釜に仕込み、 1 60でから 240°〇 で 2時間メタノールを除去しながら反応を進め、 67.6 gの反応生成物を得た。 クロ口ホルムに溶かしポリスチレン標準で測定した数平均分子量は 8300、 分 子量分布は 1. 9であった。 75.3 g of PTG4000 (polytetramethylene glycol manufactured by Hodogaya Chemical, number average molecular weight 4000), 4.4 g of adipic acid, and 0.055 g of titanium tetrabutoxide as a catalyst were charged into a reactor introduced with nitrogen. The reaction was allowed to proceed while removing methanol at 240 ° C. for 2 hours at 160 ° C. to obtain 67.6 g of a reaction product. The number average molecular weight was 8,300 as measured by polystyrene standard after dissolving in black hole form, and the molecular weight distribution was 1.9.
これに当量のテトラプチルアンモニゥムブトキサイドと反応させ、 相当するァ ンモニゥム塩を合成しこれを 0. 0 1モル Z 1ベンゼン溶液とした。 This was reacted with an equivalent amount of tetrabutylammonium butoxide to synthesize a corresponding ammonium salt, which was used as a 0.01 mol Z 1 benzene solution.
窒素置換された反応釜に 1 76 gの無水ベンゼンを加える。 次いで上記ポリェ —テルエステルのベンゼン溶液を 12.6 gを加え攪拌下ベンゼンを環流させる。 ピバロラクトン 41. 0 gをこれに添加し、 6時間環流を続けた後生成した重合 体をろ別後、 0. 3 kP a, 120 で 5時間乾燥し、 40. 5 gの白色粒状物 を得た。 これをクロ口ホルムに溶かし、 ポリスチレン標準で測定した数平均分子 量は 39000、 分子量分布は 1. 6であった。 176 g of anhydrous benzene is added to the reactor purged with nitrogen. Then, 12.6 g of the above-mentioned polyester ester benzene solution was added, and benzene was refluxed under stirring. Pivalolactone (41.0 g) was added thereto, and the mixture was refluxed for 6 hours. The resulting polymer was separated by filtration, and dried at 0.3 kPa, 120 for 5 hours to obtain 40.5 g of white granules. Was. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 39,000 and the molecular weight distribution was 1.6.
また、 このポリマ一を NMRで分析したところ、 構成単位 (A) の含有量は 9 7. 5質量%であった。 また、 得られたポリマ一中における触媒として添加した チタンテトラブトキサイド中のチタンの割合 (計算値) を表 3に示す。 When this polymer was analyzed by NMR, the content of the structural unit (A) was 97.5% by mass. Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[比較例 4] [Comparative Example 4]
テレフ夕ル酸ジメチル 78. 2 g、 1, 6—へキサンジオール 71. 4 g、 触 媒としてチタンテトラブトキサイド 0.05 gを窒素を導入した反応釜に仕込み、 160°Cから 240°Cで 3時間メタノールを除去しながら反応を進めた。 メタノ —ルが 23. 3 g以上留出後(理論留出量の 90 %)、 240°Cで 30分掛けて系 内を 0. 13 k P a以下に減圧しさらに 2時間減圧を保ち重縮合を行う。 出来た ポリマーを窒素加圧下で水中に吐出しそれをペレタイズすることにより 93 の
ポリマーを得た。 クロ.口ホルムに溶かしポリスチレン標準で測定した数平均分子 量は 36, 000、 分子量分布は 1. 7であった。 78.2 g of dimethyl terephthalate, 71.4 g of 1,6-hexanediol, and 0.05 g of titanium tetrabutoxide as a catalyst were charged into a reaction vessel into which nitrogen had been introduced. The reaction proceeded while removing methanol for hours. After methanol has distilled over 23.3 g (90% of the theoretical distillation amount), the pressure in the system was reduced to 0.13 kPa or less at 240 ° C for 30 minutes, and the pressure was reduced for 2 hours. Perform condensation. The resulting polymer is discharged into water under nitrogen pressure and pelletized to obtain 93 A polymer was obtained. The number average molecular weight was 36,000, and the molecular weight distribution was 1.7, as determined by dissolving in black mouth form and measuring with polystyrene standards.
なお、 このポリマーを動的粘弾性測定し、 その t a η <5のピークから求められ る T gは 7°Cであった。 The dynamic viscoelasticity of this polymer was measured, and the T g determined from the peak of t a η <5 was 7 ° C.
また、 得られたポリマ一中における触媒として添加したチタンテトラブトキサ イド中のチタンの割合 (計算値) を表 3に示す。 Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[比較例 5] [Comparative Example 5]
製造例 1で得られた榭脂 (A— 1) を 5 1. 7 g、 ぺスポール HP— 100 0 (東亞合成製、 数平均分子量 538) 50 g、 アジピン酸ジメチル 16. 4 g、 触媒としてチタンテトラブトキサイド 0. 05 gを窒素を導入した反応釜に仕込 み、 1 60°Cから 240°Cで 1時間メタノールを除去しながら反応を進めた。 次いで、 240°Cで 30分かけて系内を 0. 13 kP a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズして 92 gのポリマ一を得た。 これをクロ口ホルムに溶か し、ポリスチレン標準で測定した数平均分子量は 32, 000、分子量分布は 1. 7であった。 51.7 g of the resin (A-1) obtained in Production Example 1, 50 g of Spore HP-1000 (manufactured by Toagosei Co., Ltd., number average molecular weight 538), 50 g, 16.4 g of dimethyl adipate, catalyst 0.05 g of titanium tetrabutoxide was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 to 240 ° C for 1 hour while removing methanol. Next, the pressure inside the system was reduced to 0.13 kPa or less at 240 ° C. over 30 minutes, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure and pelletized to obtain 92 g of a polymer. This was dissolved in black hole form and the number average molecular weight measured by polystyrene standard was 32,000, and the molecular weight distribution was 1.7.
また、 得られたポリマー中における触媒として添加したチタンテトラブトキサ イド中のチタンの割合 (計算値) を表 3に示す。 Table 3 shows the proportion (calculated value) of titanium in titanium tetrabutoxide added as a catalyst in the obtained polymer.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 3に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. The results are shown in Table 3.
[比較例 6] . [Comparative Example 6].
ポリエステルエラストマ一 P— 40 B (東洋紡績製) を 0. 3 kP a、 120 °C で 5時間乾燥したのち、 4 Οπιπιφ単軸押出機と T一ダイを組合わせた製膜機に より 250°Cで 200 m厚にシ一ト状に成形して試験片とし、 この試験片につ いて評価した。 その結果を表 4に示す。
表 3 Polyester Elastomer P-40B (Toyobo Co., Ltd.) is dried at 0.3 kPa and 120 ° C for 5 hours, and then 250 ° by a 4 製 πιπιφ single screw extruder and T-die. C was molded into a sheet 200 m thick to form a test piece, and this test piece was evaluated. The results are shown in Table 4. Table 3
*) 触媒金属量- [仕込み触媒化合物量) I (得られたポリマー量)] X [金属元 素/触媒化合物] χ 1 000000 ( p p m) *) Amount of catalyst metal-[Amount of catalyst compound charged] I (Amount of polymer obtained)] X [Metal element / Catalyst compound] χ 100 000 (ppm)
表 4 Table 4
表 3から明らかなように、 比較例のポリエステル成形体は、 柔軟性、 透明性、 耐熱性のいずれかが不十分であるのに対し、 本発明のポリエステル成形体共重合 体は、 いずれも耐熱性に優れ、 高い透明性が持続し、 さらに柔軟性、 耐薬品性も 良好であった。 As is clear from Table 3, the polyester molded article of the comparative example is insufficient in any of flexibility, transparency, and heat resistance, whereas the polyester molded article copolymer of the present invention is heat resistant. Excellent in transparency, high transparency was maintained, and flexibility and chemical resistance were also good.
表 4から既存熱可塑性エラストマ一の中で耐熱性に優れていたポリエステルエ ラストマーの強度を維持し、 残留伸び、 透明性に優れた物であることがわかる。 Table 4 shows that the polyester elastomer, which had excellent heat resistance among the existing thermoplastic elastomers, maintained its strength and was excellent in residual elongation and transparency.
[実施例 7] [Example 7]
ヒドロキシピバリン酸メチル 1980 g ( 14.8mo 1 )、 PTG 2000 (保
土谷化学製、 数平均分子量 2000) 1 125 g (0. 563mo l )、 アジピン 酸ジメチル 67 g (0. 385mo 1 ), トリメリット酸無水物 22. 9 g (0. 1 19mo 1 )、 安定剤としてテトラキス [メチレン (3, 5—ジー t—プチルー 4—ヒドロキシハイドロシンナメート)] メ,タンを 10. 9 g、触媒としてチタン テトラブトキサイド 1. 36 gを窒素を導入した反応釜に仕込み、 5 00m l/ m i n. の窒素気流中、 160°Cから 240°Cで 3時間メタノールを除去しなが ら反応を進めた。 Methyl hydroxypivalate 1980 g (14.8mo1), PTG 2000 (protected Tsuchiya Chemical, number average molecular weight 2000) 1 125 g (0.563 mol), dimethyl adipate 67 g (0.385 mol 1), trimellitic anhydride 22.9 g (0.119 mol 1), stabilizer 10.9 g of tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] me and tan, and 1.36 g of titanium tetrabutoxide as a catalyst were charged into a reactor introduced with nitrogen. The reaction proceeded while removing methanol for 3 hours at 160 ° C to 240 ° C in a nitrogen stream of 500 ml / min.
次いで、 1時間かけて系内を 0. 1 3 k P a以下に減圧したのち、 3時間減圧 を保ち重縮合を行った。 生成したポリマ一を窒素加圧下で水中に吐出し、 それを ペレタイズした後、 1 00°C、 0. 1 3 k P a以下で 48時間乾燥し、 1 500 gのポリマ一を得た。 これをクロ口ホルムに溶かし、 ポリスチレン標準で測定し た数平均分子量は 5 1 000、 分子量分布は 3. 0であった。 Next, the pressure inside the system was reduced to 0.13 kPa or less over 1 hour, and polycondensation was performed while maintaining the reduced pressure for 3 hours. The produced polymer was discharged into water under nitrogen pressure, pelletized, and dried at 100 ° C. and 0.1 kPa or less for 48 hours to obtain 1500 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured with a polystyrene standard was 51,000, and the molecular weight distribution was 3.0.
な,お、 このポリマ一を動的粘弾性測定し、 その t a η δのピークから求めら れる PTG2000に由来する Tgは— 40°Cであった。 得られたポリマーを実 施例 1と同様にして成形し評価した。 その結果を表 5に示す。 Note that the dynamic viscoelasticity of this polymer was measured, and the Tg derived from PTG2000 determined from the peak of t a η δ was −40 ° C. The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 5 shows the results.
[比較例 7] [Comparative Example 7]
ヒドロキシピバリン酸メチル 1 980 g (14. 8mo l)、 PTG2000 (保 土谷化学製、 数平均分子量 2000) 1 125 g (0. 563mo l)、 アジピン 酸ジメチル 67 g (0. 385mo l )、 トリメリット酸無水物 22. 9 g (0. 1 19 m o 1 )、 安定剤としてテトラキス [メチレン (3, 5—ジ— t一プチルー Methyl hydroxypivalate 1 980 g (14.8 mol), PTG2000 (Hodogaya Chemical, number average molecular weight 2000) 1 125 g (0.563 mol), dimethyl adipate 67 g (0.385 mol), trimellit 22.9 g (0.119 mo 1) of acid anhydride, tetrakis [methylene (3,5-di-t-butyl) as stabilizer
4—ヒドロキシハイドロシンナメート)] メタンを 10. 9 g、 触媒としてチタン テトラブトキサイド 1. 36 gを窒素を導入した反応釜に仕込み、 1 60 から 240°Cで 3時間メタノールを除去しながら反応を進めた。 4-Hydroxyhydrocinnamate)] 10.9 g of methane and 1.36 g of titanium tetrabutoxide as a catalyst are charged into a reaction vessel introduced with nitrogen and reacted at 160 to 240 ° C for 3 hours while removing methanol. Advanced.
次いで、 240°Cで 1時間かけて系内を 0. 1 3 kP a以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出 し、 それをペレタイズした後、 1 20 、 0. 3 k P a以下で 5時間乾燥し、 1 Then, the pressure inside the system was reduced to 0.13 kPa or less at 240 ° C. over 1 hour, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The polymer produced was discharged into water under nitrogen pressure, pelletized, dried at 120 kPa or less at 0.3 kPa or less for 5 hours.
500 gのポリマーを得た。 これをクロ口ホルムに溶かし、 ポリスチレン標準で 測定した数平均分子量は 50000、 分子量分布は 3. 2であった。
なお、 このポリマーを動的粘弾性測定し、 その t a η δのピークから求めら れる PTG 2000に由来する Tgは— 40°Cであった。 500 g of polymer were obtained. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 50,000 and the molecular weight distribution was 3.2. The dynamic viscoelasticity of this polymer was measured, and the Tg derived from PTG 2000 determined from the peak of ta η δ was −40 ° C.
得られたポリマ一を実施例 1と同様にして成形し評価した。 その結果を表 5に 示す。 表 5 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 5 shows the results. Table 5
表 5から明らかなように、 比較例のポリエステル成形体は、 環状 3量体含有量 が高くブリードが発生するのに対し、 本発明のポリエステル成形体は、 高い透明 性が持続し、 さらに柔軟性、 機械特性も良好であった。 As is clear from Table 5, the polyester molded article of the comparative example has a high cyclic trimer content and causes bleeding, whereas the polyester molded article of the present invention maintains high transparency and is more flexible. The mechanical properties were also good.
得られたポリマ一を実施例 1と同様にして成形し評価した。 その結果を表 6 に示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[実施例 8] [Example 8]
ヒドロキシビバリン酸メチル 69. 3 g (0. 525mo 1 )、 ポリテ一ル (商 標) HA (三菱化学製、 数平均分子量 2000) 50 g (0. 025mo 1 ), ァ ジピン酸ジメチル 4. 4 g (0. 025mo l)、 触媒としてチタンテトラブトキ サイド 0. l g (1 000 p pm対ポリマ一)を窒素を導入した反応釜に仕込み、 1 60°Cから 240°Cで 3時間メタノールを除去しながら反応を進めた。 次い で、 240°Cで 1時間かけて系内を ImmHg以下に減圧し、 さらに 2時間減圧 を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出し、 それを ペレタイズして 88 gのポリマーを得た。 これをクロ口ホルムに溶かし、 ポリス
チレン標準で測定した数平均分子量は 30, 000、 分子量分布は 1. 8であつ た。 Methyl hydroxybivalate 69.3 g (0.525 mol 1), Polytel (trademark) HA (manufactured by Mitsubishi Chemical, number average molecular weight 2000) 50 g (0.025 mol 1), dimethyl adipate 4.4 g (0.025 mol), and titanium tetrabutoxide (0.1 lg (1 000 ppm per polymer)) as a catalyst was charged into a reactor introduced with nitrogen, and methanol was removed at 160 to 240 ° C for 3 hours. While proceeding the reaction. Then, the pressure inside the system was reduced to ImmHg or less over 1 hour at 240 ° C, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 88 g of a polymer. Dissolve this in black mouth form, and police The number average molecular weight measured with a styrene standard was 30,000, and the molecular weight distribution was 1.8.
なお、 このポリマーを動的粘弹性測定し、 その t a η δのピークから求められ る構成成分 Βにあたるポリテール (商標) ΗΑに由来する Tgは一 30°Cであつ † The dynamic viscosity of this polymer was measured, and the Tg derived from Polytail (trademark), which is the component Β, determined from the peak of t a η δ was 130 ° C.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[実施例 9] [Example 9]
製造例 1で得られた樹脂 (A— 1) を 51. 7 g、 PTG4000 (保土谷化 学製ポリテトラメチレングリコール、 数平均分子量 4000) 50 g、 アジピン 酸ジメチル 1. 74 g、 触媒としてチタンテトラブトキサイド 0. 05 g (50 O p pm対ポリマー) を窒素を導入した反応釜に仕込み、 160^から 240°0 で 1時間メタノールを除去しながら反応を進めた。 51.7 g of the resin (A-1) obtained in Production Example 1, 50 g of PTG4000 (polytetramethylene glycol manufactured by Hodogaya Chemical, number average molecular weight 4000), 1.74 g of dimethyl adipate, and titanium as a catalyst 0.05 g of tetrabutoxide (50 Op pm vs. polymer) was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 ° to 240 ° 0 for 1 hour while removing methanol.
次いで、 240°Cで 30分かけて系内を ImmHg以下に減圧し、 さらに 2時 間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出し、 それをペレタイズして 92 gのポリマ一を得た。 これをクロ口ホルムに溶かし、 ポリスチレン標準で測定した数平均分子量は 32, 000、 分子量分布は 1. 7 であった。 Next, the pressure inside the system was reduced to ImmHg or less at 240 ° C. over 30 minutes, and polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and was pelletized to obtain 92 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 32,000 and the molecular weight distribution was 1.7.
+なお、 このポリマ一を動的粘弾性測定し、 その t a η δのピークから求められ る構成成分 Βにあたる P TG4000に由来する Tgは _40 であった。 得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。 + In addition, the dynamic viscoelasticity of this polymer was measured, and the Tg derived from P TG4000, which is the component 求 め obtained from the peak of t a η δ, was _40. The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[実施例 10] [Example 10]
製造例 1で得られた樹脂 (A— 1) を 51. 7 g、 両末端がゥンデセン酸メチ ルで変成されたポリジメチルシロキサン (数平均分子量 2200) 50 g、 アジ ピン酸ジメチル 4. 0 g、 触媒としてチタンテトラブトキサイド 0. 05 g (5 O O p pm対ポリマ一)を窒素を導入した反応釜に仕込み、 1 60°Cから 240 °C
で 1時間メタノールを除去しながら反応を進めた。 51.7 g of the resin (A-1) obtained in Production Example 1, 50 g of polydimethylsiloxane modified at both ends with methyl undecenoate (number average molecular weight 2200), 4.0 g of dimethyl adipate Then, 0.05 g of titanium tetrabutoxide (5 OO ppm vs. polymer) as a catalyst is charged into a reaction vessel into which nitrogen has been introduced, and then heated from 160 ° C to 240 ° C. The reaction proceeded while removing methanol for 1 hour.
次いで、 240 で 30分かけて系内を ImmHg以下に減圧し、 さらに 2時' 間減圧を保ち重縮合を行った。 生成したポリマーを窒素加圧下で水中に吐出し、 それをペレタイズして 9 1 gのポリマ一を得た。 これをクロ口ホルムに溶かし、 ポリスチレン標準で測定した数平均分子量は 32, 000、 分子量分布は 1. 7 であった。 Then, the pressure inside the system was reduced to ImmHg or less over 30 minutes at 240, and the polycondensation was performed while maintaining the reduced pressure for 2 hours. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 91 g of a polymer. This was dissolved in black hole form, and the number average molecular weight measured by polystyrene standard was 32,000 and the molecular weight distribution was 1.7.
なお、 このポリマーを動的粘弾性測定し、 その t a η δのピークから求められ る構成成分 Βにあたるポリジメチルシロキサンに由来する Tgは— 80°Cであつ た。 The dynamic viscoelasticity of this polymer was measured, and the Tg derived from polydimethylsiloxane, which is the component Β, determined from the peak of ta η δ was −80 ° C.
得られたポリマ一を実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[実施例 1 1 ] [Example 11]
アジピン酸ジメチル 38 g、 3ーメチルー 1 , 5—ペンタンジオール 36. 2 g、 触媒としてチタンテトラブトキサイド 0. 025 (500 p pm対ポリマー) を窒素を導入した反応釜に仕込み、 160°Cから 240 で 2時間メタノールを 除去しながら反応を進めた。 次いで、 240でで 30分かけて系内を ImmH g以下に減圧し、 さらに 2時間減圧を保ち重縮合を行った。 その後一旦減圧を解 き、 そこで (A— 1) を 50 g添加し 30分撹拌した後、 系内を ImmHg以下 に減圧し、 1時間撹拌し、 重縮合を行った。 生成したポリマ一を窒素加圧下で水 中に吐出し、 それをペレタイズして 91 gのポリマ一を得た。 これをクロ口ホル ムに溶かし、 ポリスチレン標準で測定した数平均分子量は 28, 000、 分子量 分布は 2. 0であった。 38 g of dimethyl adipate, 36.2 g of 3-methyl-1,5-pentanediol, and 0.025 of titanium tetrabutoxide (500 ppm vs. polymer) as a catalyst are charged into a nitrogen-introduced reaction vessel and heated from 160 ° C to 240 ° C. The reaction proceeded while removing methanol for 2 hours. Then, the pressure in the system was reduced to ImmHg or less over 30 minutes at 240, and the polycondensation was performed while maintaining the reduced pressure for 2 hours. Thereafter, the pressure was released, and then (A-1) (50 g) was added and stirred for 30 minutes. Then, the pressure in the system was reduced to ImmHg or less, and the mixture was stirred for 1 hour to perform polycondensation. The produced polymer was discharged into water under nitrogen pressure, and pelletized to obtain 91 g of a polymer. This was dissolved in a black hole form, and the number average molecular weight measured by a polystyrene standard was 28,000, and the molecular weight distribution was 2.0.
なお、 このポリマーを動的粘弹性測定し、 その t a η δのピークから求められ る構成成分 Βにあたるアジピン酸と 3—メチル— 1, 5—ペンタンジォ一ルの共 重合体に由来する Tgは一 25°Cであった。 The dynamic viscosity was measured for this polymer, and the Tg derived from the copolymer of adipic acid and 3-methyl-1,5-pentanedyl, which is the component Β, determined from the peak of ta η δ was one. 25 ° C.
得られたポリマ一を実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。
[比較例 8] The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results. [Comparative Example 8]
テレフタル酸ジメチル 3400 g、 1, 4一ブタンジオール 2270 g、 P TG 2000 (保土谷化学製ポリテトラメチレングリコール、 数平均分子量 40 00) 6000 g、 触媒としてチタンテトラブトキサイド 5 g (500 p pm対 ポリマー) を窒素を導入した反応釜に仕込み、 160 から 240°Cで 2時間メ タノ一ルを除去しながら反応を進めた。 次いで、 24 で 30分かけて系内を ImmHg以下に減圧しさらに 2時間減圧を保ち重縮合を行った。 得られたポリ マ一を窒素加圧下で水中に吐出しそれをペレタイズすることにより 9725 gの ポリマ一を得た。 これをクロ口ホルムに溶かしポリスチレン標準で測定した数平 均分子量は 38, 000、 分子量分布は 1. 7であった。 3400 g of dimethyl terephthalate, 2270 g of 1,4-butanediol, 6000 g of PTG 2000 (polytetramethylene glycol manufactured by Hodogaya Chemical Co., Ltd., number average molecular weight 4000), 6000 g of titanium tetrabutoxide as a catalyst (500 gpm The polymer was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 to 240 ° C for 2 hours while removing methanol. Then, the pressure inside the system was reduced to ImmHg or less over 30 minutes at 24, and the polycondensation was performed while maintaining the reduced pressure for 2 hours. The polymer obtained was discharged into water under nitrogen pressure and pelletized to obtain 9725 g of a polymer. It was dissolved in black-mouthed form and the number average molecular weight measured by polystyrene standards was 38,000 and the molecular weight distribution was 1.7.
得られたポリマーを実施例 1と同様にして成形し評価した。結果を表 6に示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[比較例 9] [Comparative Example 9]
テレフ夕ル酸ジメチル 17 g、 イソフタル酸ジメチル 17 g、 1, 4一ブタン ジォ一ル 22. 7 g、 PTG 2000 (保土谷化学製ポリテトラメチレングリコ —ル、数平均分子量 2000) 60 g、触媒としてチタンテトラブトキサイド 0. 05 g ( 500 p pm対ポリマ一) を窒素を導入した反応釜に仕込み、 1 60 から 240°Cで 3時間メタノ一ルを除去しながら反応を進めた。次いで、 240 で 30分掛けて系内を 1 mmH g以下に減圧しさらに 2時間減圧を保ち重縮合を 行う。 出来たポリマ一を窒素加圧下で水中に吐出しそれをペレタイズすることに より 97 gのポリマーを得た。 これをクロ口ホルムに溶かしポリスチレン標準で 測定した数平均分子量は 36, 000、 分子量分布は 1. 7であった。 17 g of dimethyl terephthalate, 17 g of dimethyl isophthalate, 22.7 g of 1,4-butanediol, 60 g of PTG 2000 (polytetramethylene glycol manufactured by Hodogaya Chemical, number average molecular weight 2000), As a catalyst, 0.05 g of titanium tetrabutoxide (500 ppm vs. polymer) was charged into a reaction vessel into which nitrogen had been introduced, and the reaction was carried out at 160 to 240 ° C. for 3 hours while removing methanol. Next, the pressure inside the system is reduced to 1 mmHg or less over 30 minutes at 240, and the polycondensation is performed while maintaining the reduced pressure for 2 hours. The resulting polymer was discharged into water under nitrogen pressure and pelletized to obtain 97 g of a polymer. This was dissolved in black hole form and the number average molecular weight measured by polystyrene standard was 36,000, and the molecular weight distribution was 1.7.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results.
[比較例 10] [Comparative Example 10]
比較例 8で得られたポリマー 1900 gに 100 gのハイミラン (商標) 1 707 (三井 ·デュポンポリケミカル社製アイオノマー樹脂) をドライブレンド し、 小型 2軸押出機で 24 Ot:にて押出し得られたサンプルをペレタイズし 10
0 0 gのポリマ一を得た。 100 g of Himilan (trademark) 1707 (Ionomer resin manufactured by DuPont-Mitsui Polychemicals) was dry-blended with 1900 g of the polymer obtained in Comparative Example 8, and extruded at 24 Ot: using a small twin-screw extruder. Pelletized sample 00 g of the polymer was obtained.
得られたポリマーを実施例 1と同様にして成形し評価した。 その結果を表 6に 示す。 表 6 The obtained polymer was molded and evaluated in the same manner as in Example 1. Table 6 shows the results. Table 6
表 6から明らかなように、 実施例で得られたポリエステル成形体は、 いずれも 耐熱性に優れ、 高い透明性が持続し、 さらに柔軟性、 耐薬品性も良好であった。 産業上の利用分野 As is clear from Table 6, all of the polyester molded articles obtained in the examples were excellent in heat resistance, maintained high transparency, and had good flexibility and chemical resistance. Industrial applications
本発明のポリエステル成形体は、 耐熱性に優れるとともに、 透明性も良好であ り、 さらに高い透明性が持続する。 また、 柔軟性、 耐薬品性も良好であるため、 消防ホース、 油圧用ホース等のホース、 ガス管内張り、 牽引ロープジャケット、 コルゲートチューブ、 空圧チューブ、 自転車エアレスチューブ、 サッカーポール チューブ等のチューブ、 コンベアベルト、 Vベルト、 タイミングベルト等のベル
ト、 土木 ·防水 ·建材用シート等のシート、 食品包装用ラミネートフィルム等の フィルム、 フレキシブルカップリング、 ドアラッチストライカ、 リバウンドスト ツバ一、 エンブレム、 スキー靴、 ゴルフポール、 靴インナ一、 時計バンド、 ホッ トカラ一、 瓶栓、 櫛 ·ブラシ、 ポタン、 玩具等の雑貨、 電話線カールコード、 光 ファイバ一被覆、 ケーブルカバー、 ケ ブルジャケット、 ケ一ブルライナ一、 バ ックアップリング等の電気 ·電子部品、 医療用バルーン、 カテーテル等の医療用 部品、 目地材、 電子部品封止材、 パッキン、 ダストシール、 ポンプ、 ダイヤフラ ム 'メンブレン、 アキュ一ムレ一夕一内装等のシール ·ポンプ部品、 シートベル トラチェット部品、 A Tスライドプレート、 等速ジョイントブ一ッ、 ラックアン ドピニオンブーツ、 サスペンションブーツ、 マクファーソンストラットカバー、 . フロート、 ギア、 リーフスプリングブッシュ、 ポールジョイントリテ一ナ一、 ジ ョイントブッシュ、 エアバッグカバ一、 ステアリングロッドカバ一、 窓ガラス振 れ止めロール、 ジャゥンスパンパ一、 サイドトリム *モ一ル、 グロメット、 タイ ャインサート等の自動車部品、 ポリマ一ブレンド、 グリップ、 クッション 'スト ッパ一、 ゴーグル、 パソコン用マウス、 スポーツ用品、 制震遮音材、 音質向上材 などのエラストマ一製品の樹脂改質剤 ·相溶化剤などの幅広い用途に使用でき、 工業用樹脂として極めて有用である。
The polyester molded article of the present invention has excellent heat resistance, good transparency, and high transparency. In addition, because of its excellent flexibility and chemical resistance, hoses such as fire hoses and hydraulic hoses, gas pipe linings, traction rope jackets, corrugated tubes, pneumatic tubes, bicycle airless tubes, soccer pole tubes and other tubes, Bells for conveyor belts, V belts, timing belts, etc. Sheets such as sheets for civil engineering, waterproofing, building materials, etc., films such as laminated films for food packaging, flexible couplings, door latch strikers, rebound studs, emblems, ski shoes, golf poles, shoe inners, watch bands, hot springs Miscellaneous goods such as Tokara bottles, bottle stoppers, combs, brushes, buttons, toys, etc., electrical and electronic parts such as telephone line curl cords, optical fiber coatings, cable covers, cable jackets, cable liners, back-up rings, etc. Medical parts such as balloons and catheters, joint materials, sealing materials for electronic components, packing, dust seals, pumps, seals for diaphragms, membranes, accumulators, and other interior parts, pump parts, seatbell ratchet parts, AT Slide plate, constant velocity joint And pinion boots, suspension boots, McPherson strut covers, floats, gears, leaf spring bushings, pole joint retainers, joint bushings, airbag covers, steering rod covers, window glass anti-skid rolls, jumper bumpers , Side trim * Auto parts such as molds, grommets, tire inserts, etc., polymer blends, grips, cushions, stoppers, goggles, PC mice, sports equipment, vibration control materials, elastomers such as sound insulation materials, sound quality improvement materials, etc. It can be used for a wide range of applications such as resin modifiers and compatibilizers for one product, and is extremely useful as an industrial resin.
Claims
1. 繰返し単位中にエステル結合を少なくとも 1つ有する単位を主成分とする 構成単位 (A) と、 数平均分子量が 600〜 100000の範囲にありエステル 形成可能な官能基を両末端に有する化合物に由来する構成単位 (B) とを含有し て構成されるブロック共重合体からなり、 J I S— K— 6262に準じ測定した 圧縮永久歪が 5〜 65 %の範囲にあり弾性体であって、 かつ J I S -K- 7361. Structural unit (A) whose main component is a unit having at least one ester bond in the repeating unit, and a compound having a number average molecular weight in the range of 600 to 100000 and having a functional group capable of forming an ester at both ends. It is an elastic material having a compression set of 5 to 65% measured in accordance with JIS-K-6262 in the range of 5 to 65%. JIS -K- 736
1 - 1に準じて測定した全光線透過率が 75 %以上であることを特徴とするポリ エステル成形体。 A molded polyester product having a total light transmittance of at least 75% as measured according to 1-1.
2. 下記式 (1) で示される単位を主成分とする構成単位 (A) と、 ガラス転 移温度 (Tg) が 0°C以下で、 数平均分子量が 600〜1 00000の範囲にあ りエステル形成可能な官能基を両末端に有する化合物に由来する構成単位 (B) とを含有して構成される脂肪族ポリエステルブ口ック共重合体からなり、 前記構 成単位 (A) の含有量が、 1 0〜70質量%でぁり、 J I S— K— 6262に準 じ測定した圧縮永久歪が 5〜 65 %の範囲にあり弾性体であって、 かつ J I S— K- 736 1 - 1に準じて測定した全光線透過率が 75 %以上であることを特徴 とするポリエステル成形体。 2. Structural unit (A) whose main component is the unit represented by the following formula (1), glass transition temperature (Tg) is 0 ° C or less, and number average molecular weight is in the range of 600 to 100000. An aliphatic polyester block copolymer comprising a structural unit (B) derived from a compound having a functional group capable of forming an ester at both terminals, and the structural unit (A) The amount is 10 to 70% by mass, the compression set measured according to JIS-K-6262 is in the range of 5 to 65%, the material is elastic, and JIS-K-736 1-1 A polyester molded article having a total light transmittance of 75% or more as measured according to (1).
(式 (1) 中、 Xおよび Υはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 ηは 5〜5000である。 また、 Ζは直接結合、 炭素数 1〜6のアルキ レン基、 フエ二レン基のいずれかを示す。) (In the formula (1), X and Υ each represent one of hydrogen, an alkyl group, and a phenyl group. Η is 5 to 5000. ま た is a direct bond, an alkylene group having 1 to 6 carbon atoms, One of phenylene groups is shown.)
3. 前記式 (1) 中の Xおよび Υがメチル基であって、 Ζがメチレン基である ことを特徴とする請求項 2に記載のポリエステル成形体。
3. The polyester molded article according to claim 2, wherein in the formula (1), X and Υ are methyl groups, and Ζ is a methylene group.
4. 多官能成分からなる構成単位 (C) を構成単位 (A) に対して 0. 05〜 2モル%含有して構成されることを特徴とする請求項 1に記載のポリエステル成 形体。 4. The polyester molded article according to claim 1, comprising a structural unit (C) comprising a polyfunctional component in an amount of 0.05 to 2 mol% based on the structural unit (A).
5. 下記式 (1) で示される単位を ¾成分とする構成単位 (A) と、 ガラス転 移温度 (Tg) が 0°C以下で、 数平均分子量が 600〜 100000の範囲にあ りエステル形成可能な官能基を両末端に有する化合物に由来する構成単位 (B) とを含有して構成され、 前記構成単位 (A) の含有量が、 10〜70質量%でぁ る脂肪族ポリエステルブロック共重合体の製造方法であって、 アンチモン、 ゲル マニウム、 チタン、 マンガン、 マグネシウム、 カルシウム、 ストロンチウム、 バ リウム、 ナトリウム、 コバルト、 アルミニウム、 ガリウム、 鉄、 スズ、 亜鉛、 ホ ゥ素からなる群より選ばれる少なくとも 1種の金属の化合物を、 該金属の合計質 量が生成した脂肪族ポリエステルブロック共重合体中 0. 1〜1000 p pmと なるように添加してエステル交換反応する工程を有することを特徴とする脂肪族 ポリエステルブロック共重合体の製造方法。 5. Structural unit (A) whose unit is the unit represented by the following formula (1) as a component (A) and ester with a glass transition temperature (Tg) of 0 ° C or less and a number average molecular weight in the range of 600 to 100000 An aliphatic polyester block comprising a structural unit (B) derived from a compound having a functional group that can be formed at both ends, and the content of the structural unit (A) is 10 to 70% by mass. A method for producing a copolymer, selected from the group consisting of antimony, germanium, titanium, manganese, magnesium, calcium, strontium, barium, sodium, cobalt, aluminum, gallium, iron, tin, zinc, and boron. At least one metal compound is added so that the total mass of the metal is 0.1 to 1000 ppm in the formed aliphatic polyester block copolymer, and transesterification is performed. Method for manufacturing an aliphatic polyester block copolymer characterized by having a degree.
(式 (1) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 nは 5〜5000である。 また、 Zは直接結合、 炭素数 1〜6のアルキ レン基、 フヱニレン基のいずれかを示す。) (In the formula (1), X and Y each represent a hydrogen, an alkyl group, or a phenyl group. N is 5 to 5000. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Shows any of phenylene groups.)
6. 前記式 ( 1) 中の Xおよび Yがメチル基であって、 Zがメチレン基である ことを特徴とする請求項 5に記載の脂肪族ポリエステルプロック共重合体の製造 方法。 6. The method for producing an aliphatic polyester block copolymer according to claim 5, wherein X and Y in the formula (1) are methyl groups, and Z is a methylene group.
7. 前記脂肪族ブロック共重合体は、 多官能成分からなる構成単位 (C) を、 前記構成単位 (A) に対して 0. 05〜2モル%含有して構成されていることを
特徴とする請求項 5または請求項 6に記載の脂肪族ポリエステルブロック共重合 体の製造方法。 7. The aliphatic block copolymer is configured to contain a structural unit (C) composed of a polyfunctional component in an amount of 0.05 to 2 mol% with respect to the structural unit (A). 7. The method for producing an aliphatic polyester block copolymer according to claim 5, wherein
8. ブロック共重合体の AS TM D 1 238に準じ測定した MFRが 3〜3 00g/10min.であることを特徴とする請求項 1に記載のポリエステル成形体。8. The polyester molded article according to claim 1, wherein the MFR of the block copolymer measured according to ASTM D1238 is 3 to 300 g / 10min.
9. J I S—K— 7 1 36に準じ測定したヘイズが 50以下であり、 J I S— K- 7 1 0 5に記載の黄色度指数が 30以下であることを特徴とする請求項 1か ら 4に記載のポリエステル成形体。 9. The haze measured according to JIS-K-7136 is 50 or less, and the yellowness index described in JIS-K-7105 is 30 or less, wherein the yellowness index is 30 or less. The polyester molded article according to 1.
10. 前記脂肪族ポリエステルブロック共重合体は、 下記式 (2) で示される 環状体を脂肪族ポリエステル中に 0. 05質量%以下含有することを特徴とする 請求項 2または 4に記載のポリエステル成形体。 10. The polyester according to claim 2 or 4, wherein the aliphatic polyester block copolymer contains 0.05% by mass or less of a cyclic body represented by the following formula (2) in the aliphatic polyester. Molded body.
(式 (2) 中、 Xおよび Yはそれぞれ水素、 アルキル基、 フエニル基のいずれか を示す。 mは 2以上の整数である。 Zは直接結合、炭素数 1〜 6のアルキレン基、 フエ二レン基のいずれかを示す。) (In the formula (2), X and Y each represent any of hydrogen, an alkyl group, and a phenyl group. M is an integer of 2 or more. Z is a direct bond, an alkylene group having 1 to 6 carbon atoms, Shows any of the len groups.)
1 1. 前記脂肪族ポリエステルブロック共重合体は、 下記式 (3) で示される 環状 3量体を脂肪族ポリエステル中に 0. 05質量%以下含有することを特徴と する請求項 3または 4に記載のポリエステル成形体。
1. The aliphatic polyester block copolymer according to claim 3, wherein a cyclic trimer represented by the following formula (3) is contained in the aliphatic polyester in an amount of 0.05% by mass or less. The polyester molded article according to the above.
1 2. 構成単位 (B) が、 ポリオレフインに由来する単位であることを特徴と する請求項 1ないし請求項 4に記載のポリエステル成形体。 12. The polyester molded article according to claim 1, wherein the structural unit (B) is a unit derived from polyolefin.
1 3. 構成単位 (B) が、 ポリオキシアルキレングリコールに由来する単位で あることを特徴とする請求項 1ないし請求項 4に記載のポリエステル成形体。 13. The polyester molded article according to claim 1, wherein the structural unit (B) is a unit derived from polyoxyalkylene glycol.
14. 構成単位 (B) が、 ポリジメチルシロキサンに由来する単位であること を特徴とする請求項 1ないし請求項 4に記載のポリエステル成形体。 14. The polyester molded article according to claim 1, wherein the structural unit (B) is a unit derived from polydimethylsiloxane.
1 5. 構成単位 (B) が、 ポリエステルに由来する単位であることを特徴とす る請求項 1ないし請求項 4に記載のポリエステル成形体。
1 5. The polyester molded article according to any one of claims 1 to 4, wherein the structural unit (B) is a unit derived from polyester.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-3684 | 2002-01-10 | ||
JP2002003684 | 2002-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003059994A1 true WO2003059994A1 (en) | 2003-07-24 |
Family
ID=19190904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/009097 WO2003059994A1 (en) | 2002-01-10 | 2002-09-06 | Molded polyester |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003059994A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8287685B2 (en) | 2006-12-06 | 2012-10-16 | Dow Corning Corporation | Airbag and process for its assembly |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51106194A (en) * | 1975-03-14 | 1976-09-20 | Teijin Ltd | HORIESUTERUDANSEITAINO SEIZOHO |
EP0108912A2 (en) * | 1982-11-12 | 1984-05-23 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol)block copolymers and method of manufacturing the same |
US4699967A (en) * | 1985-01-30 | 1987-10-13 | Bayer Aktiengesellschaft | Polysiloxane block copolymers |
EP0712880A2 (en) * | 1994-11-17 | 1996-05-22 | Mitsui Toatsu Chemicals, Incorporated | Preparation process of degradable block copolyesters |
EP0778306A2 (en) * | 1995-12-05 | 1997-06-11 | Mitsui Toatsu Chemicals, Incorporated | Degradable aliphatic-aromatic block polyester carbonates and their preparation |
EP0893463A1 (en) * | 1996-12-30 | 1999-01-27 | Daicel Chemical Industries, Ltd. | Polyester elastomers, processes for preparing the same, and compositions of the same |
JPH11323107A (en) * | 1998-05-15 | 1999-11-26 | Kuraray Co Ltd | Polyester polymer composition |
JP2000212407A (en) * | 1999-01-27 | 2000-08-02 | Sekisui Chem Co Ltd | Ester-based elastomer |
JP2002069192A (en) * | 2000-08-31 | 2002-03-08 | Shimadzu Corp | Method of producing cross-linked flexible lactic acid polymer and composition thereof |
JP2002265611A (en) * | 2001-03-07 | 2002-09-18 | Mitsubishi Rayon Co Ltd | Polyester block copolymer |
JP2002292665A (en) * | 2001-03-29 | 2002-10-09 | Dainippon Ink & Chem Inc | Method for producing lactic acid-based polymer sheet |
-
2002
- 2002-09-06 WO PCT/JP2002/009097 patent/WO2003059994A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51106194A (en) * | 1975-03-14 | 1976-09-20 | Teijin Ltd | HORIESUTERUDANSEITAINO SEIZOHO |
EP0108912A2 (en) * | 1982-11-12 | 1984-05-23 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol)block copolymers and method of manufacturing the same |
US4699967A (en) * | 1985-01-30 | 1987-10-13 | Bayer Aktiengesellschaft | Polysiloxane block copolymers |
EP0712880A2 (en) * | 1994-11-17 | 1996-05-22 | Mitsui Toatsu Chemicals, Incorporated | Preparation process of degradable block copolyesters |
EP0778306A2 (en) * | 1995-12-05 | 1997-06-11 | Mitsui Toatsu Chemicals, Incorporated | Degradable aliphatic-aromatic block polyester carbonates and their preparation |
EP0893463A1 (en) * | 1996-12-30 | 1999-01-27 | Daicel Chemical Industries, Ltd. | Polyester elastomers, processes for preparing the same, and compositions of the same |
JPH11323107A (en) * | 1998-05-15 | 1999-11-26 | Kuraray Co Ltd | Polyester polymer composition |
JP2000212407A (en) * | 1999-01-27 | 2000-08-02 | Sekisui Chem Co Ltd | Ester-based elastomer |
JP2002069192A (en) * | 2000-08-31 | 2002-03-08 | Shimadzu Corp | Method of producing cross-linked flexible lactic acid polymer and composition thereof |
JP2002265611A (en) * | 2001-03-07 | 2002-09-18 | Mitsubishi Rayon Co Ltd | Polyester block copolymer |
JP2002292665A (en) * | 2001-03-29 | 2002-10-09 | Dainippon Ink & Chem Inc | Method for producing lactic acid-based polymer sheet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8287685B2 (en) | 2006-12-06 | 2012-10-16 | Dow Corning Corporation | Airbag and process for its assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mandal et al. | PET chemistry | |
JP5847938B2 (en) | Process for producing biodegradable aliphatic / aromatic copolymer polyesters | |
EP2480589B1 (en) | Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof | |
JP5818185B2 (en) | Process for producing poly (butylene terephthalate-co-adipate) copolymer | |
KR20130044867A (en) | Blend of polyester and polycarbonate | |
JP2014524958A (en) | Color stabilization method for poly (butylene-co-adipate terephthalate) | |
JPH0377826B2 (en) | ||
KR101784221B1 (en) | Biodegradable resin composition and biodegradable film prepared from the same | |
WO1998029470A1 (en) | Polyester elastomers, processes for preparing the same, and compositions of the same | |
CN106574103B (en) | Composition including the polymer based on polylactide | |
WO2014163401A1 (en) | Polylactic acid resin composition | |
KR101690082B1 (en) | Biodegradable resin composition and biodegradable film prepared therefrom | |
TW201326301A (en) | Blend of polylactic acid resin and copolyester resin and articles using the same | |
WO2015076560A1 (en) | Polylactic acid/acrylonitrile-butadiene-styrene copolymer alloy resin composition | |
TW201326300A (en) | Blend of polylactic acid resin and copolyester resin and articles using the same | |
WO2003059994A1 (en) | Molded polyester | |
JP2004099656A (en) | Polyester molding | |
JP2004149608A (en) | Composition | |
JPS62292833A (en) | Polyester polycarbonate elastomer | |
JP2002265611A (en) | Polyester block copolymer | |
JP2003268087A (en) | Polyester block copolymer, method for producing the same, molded article, and composition with thermoplastic resin | |
CN118406220B (en) | High heat-resistant polyester elastomer and preparation method thereof | |
JP2004099655A (en) | polyester | |
JPH093213A (en) | Polyester film | |
JPH06184290A (en) | Production of polyester copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |