+

WO2003052355A1 - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
WO2003052355A1
WO2003052355A1 PCT/JP2001/010958 JP0110958W WO03052355A1 WO 2003052355 A1 WO2003052355 A1 WO 2003052355A1 JP 0110958 W JP0110958 W JP 0110958W WO 03052355 A1 WO03052355 A1 WO 03052355A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistors
sensor
temperature
heating
flow
Prior art date
Application number
PCT/JP2001/010958
Other languages
French (fr)
Japanese (ja)
Inventor
Tsukasa Matsuura
Naoki Yutani
Kazuhiko Tsutsumi
Yuji Ariyoshi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2001/010958 priority Critical patent/WO2003052355A1/en
Priority to JP2003553200A priority patent/JPWO2003052355A1/en
Publication of WO2003052355A1 publication Critical patent/WO2003052355A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters

Definitions

  • the present invention relates to a flow sensor for measuring a gas flow, and more particularly to a flow sensor for an automobile.
  • thermal type flow sensor that can directly detect the mass air flow has become mainstream.
  • a thermal type flow sensor that controls two sets of heat generating resistors and a temperature sensor so that the temperatures thereof are equal to each other is disclosed in Japanese Patent Laid-Open Publication No. H11-326600. It is proposed in Japanese Patent Publication No.
  • FIG. 9 is a diagram showing the configuration and operation principle of the flow sensor.
  • R1 to R6 are resistors
  • 100 is a flow tube through which the measurement fluid flows
  • resistors R1 to R4 are arranged in the flow tube 20 through which the measurement fluid flows, and are exposed to the flow.
  • R 1 and R 4 are heating resistors
  • R 2 and R 3 are temperature sensors
  • heating resistor R 1 and temperature sensor R 2 temperature sensor R 3 and heating resistor R 4 is configured as a pair.
  • Ql and Q2 are switches
  • 102 is a comparator
  • 104 is an inverter.
  • control is performed such that the temperature of the resistors Rl and R2 and the temperature of the resistors R3 and R4 are always equal by the repetition of such switch switching operation, that is, the oscillation of the circuit.
  • the output from the circuit ie, the sensor output, is a digital output from the comparator 102 as indicated by “info out”.
  • the sensor output is high during the time t].
  • switch Q1 is on and conducting to resistor R1
  • switch Q2 is on and resistor R4
  • the sensor output is low during the time t2 when power is supplied to the switch.
  • the switching of this circuit occurs spontaneously, and its period t1 + t2 is determined by the thermal time constants of resistors Rl, R2 and resistors R3, R4.
  • FIG. 11 is a graph showing the flow rate and the temperature distribution on the sensor. The method of measuring the flow rate will be described below with reference to this figure.
  • the horizontal axis is position
  • the vertical axis is temperature (all are arbitrary units).
  • FIG. 12 shows an example of the structure of a conventional flow sensor.
  • 105 is silicon 106 is a groove formed by etching silicon
  • 107 is a bridge supporting resistors R1 to R4.
  • the bridge is made of a thin film and has resistors Rl and R2 and resistors R3 and R4.
  • the thermal type flow sensor proposed in Japanese Patent Application Laid-Open No. H11-132603 is configured as described above, and the measured flow rate information is digitized by a comparator and output. These outputs are then input to a signal processing circuit, where they are processed as useful data.
  • the output signal of an automotive flow sensor is input to an engine control unit (ECU) and processed along with data from other sensors, such as air pressure and temperature, to determine the optimal fuel injection quantity.
  • ECU engine control unit
  • signal processing circuits such as engine-control units sample the signal from the flow sensor at a certain frequency to make the processed data meaningful.
  • the higher the response system the higher the sampling frequency. Therefore, it is meaningless if the digitizing frequency of the sensor signal, that is, the sensor output frequency, is lower than this sampling frequency, and it is necessary that the frequency be at least the same or higher.
  • the present invention has been made in view of the above-mentioned problems of the related art, and it is possible to appropriately set the output frequency of the flow sensor.
  • the output frequency is set to be equal to or higher than the sampling frequency.
  • the purpose is to provide a reliable flow sensor that can be applied to highly responsive systems such as automobiles. Disclosure of the invention
  • the present invention provides a silicon substrate, a support film of an insulating thin film formed on the surface of the silicon substrate, and a support film formed on the support film and supported by the support film. It has two sets of heating resistors and a temperature sensor, and the temperature of the heating resistor and the temperature sensor on the upstream side and the temperature of the heating resistor and the temperature sensor on the downstream side in the flow direction of the measurement fluid. So that the upstream and downstream heating resistors are alternately heated so that the flow rate of the measurement fluid is measured based on the ratio of the heating time of the upstream and downstream heating resistors.
  • f (H z) is the switching frequency for alternately heating the upstream and downstream heating resistors
  • d ( ⁇ m) is the distance between each pair of heating resistors and the temperature sensor
  • k 1 is the constant.
  • k 1 1900 000, 0 ⁇ k 2 ⁇ 200.
  • the structure for achieving the output frequency required for the flow sensor that is, the switching frequency f, can be determined by the distance d between the heating resistor and the temperature sensor. It can be applied to a flow sensor for
  • the distance d between the heating resistor and the temperature sensor of each set is preferably 1 m or more and 30 ⁇ m or less.
  • the sampling frequency of the automotive engine control unit is around 800 Hz
  • the switching frequency for heating the heating resistors alternately that is, the output frequency is desirably higher.
  • the output frequency is set to 80 OHz or more, which is desirable when the flow sensor of the present method is applied to a flow sensor for an automobile.
  • FIGS. 1A and 1B show a flow sensor according to a first embodiment of the present invention, wherein FIG. 1A is a plan view thereof, and FIG. 1B is a cross-sectional view taken along line Ib-Ib in FIG. is there.
  • FIG. 2 is a process chart for explaining a method of manufacturing the flow sensor of FIG.
  • FIG. 3 is a control circuit diagram of the flow sensor of FIG.
  • FIG. 4 is an output waveform diagram of the flow sensor of FIG.
  • FIG. 5 is a graph showing the relationship between the distance between the heating resistor and the temperature sensor and the output frequency in the flow sensor of FIG.
  • Figure 6 shows the output frequency, heating resistor, and temperature sensor of the flow sensor in Figure 1. It is a graph which shows the relationship with distance.
  • FIG. 7A and 7B show a flow sensor according to a second embodiment of the present invention, wherein FIG. 7A is a plan view thereof, and FIG. 7B is a cross-sectional view taken along line VEb-VHb in FIG.
  • FIG. 8 shows a flow sensor according to a third embodiment of the present invention, (a) is a plan view thereof, and (b) is a cross-sectional view taken along line Mb-Mb in (a).
  • FIG. 9 is a control circuit diagram of a conventional flow sensor.
  • FIG. 10 is an output waveform diagram of the conventional flow sensor of FIG.
  • FIG. 11 is a graph showing the temperature distribution on the surface of the conventional flow sensor of FIG.
  • FIG. 12 is a longitudinal sectional view of the conventional flow sensor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a flow sensor S1 according to the first embodiment of the present invention.
  • the flow sensor S 1 includes an upstream temperature sensor 1, an upstream heating resistor 2, a downstream heating resistor 3, and a downstream heating resistor arranged in order from the upstream side to the downstream side of the flow.
  • a side temperature sensor 4 is provided, and all of these resistors 1 to 4 are supported on a supporting film 6 which is made of a silicon nitride film and is a diaphragm-like insulating thin film.
  • Each of the resistors 1 to 4 is formed of a platinum thin film having a line width of 5 / im and a thickness of 2 m, and a line interval of 5 / m.
  • the minimum distance between the upstream-side temperature sensor 1 and the upstream-side heating resistor 2 and the minimum distance between the downstream-side heating resistor 3 and the upstream-side temperature sensor 4 are d and the deviation is d.
  • the dimensions of the diaphragm indicated by broken lines in (a) are 0.75 mm or 1.5 mm in width a, 2 mm in height b, and 3 ⁇ in thickness t. Further, as shown in FIG. 1B, the support film 6 is supported on the silicon substrate 5 via the thermal oxidation film 9. Reference numeral 8 denotes a bonding pad for wire bonding. Next, a manufacturing process of the flow rate sensor S1 according to the present invention will be described with reference to FIG.
  • a thermal oxide film 9 with a thickness of 0.5 m is formed on both sides.
  • a silicon wafer 5 having a plane orientation (100) and a thickness of 380 / m is prepared.
  • a silicon nitride film 11 having a thickness of about 2 / im was formed on one of the thermal oxide films 9 by sputtering.
  • a platinum film 7 having a thickness of about 0.2 / zm is further formed on the silicon nitride film 11 by sputtering.
  • the platinum film 7 was patterned using photolithography, and the temperature sensors 1, 4, the heating resistors 2, 3, and the wiring portion were formed.
  • Form 10 (the wiring 10 is not shown in FIG. 2 (d)).
  • a silicon nitride film having a thickness of about 1 im is formed as a protective film by sputtering, and then, although not shown, a pad portion for wire bonding is formed by dry etching. Open.
  • the thermal oxide film 9 on the back surface is patterned and the silicon substrate 5 is anisotropically etched from the back surface using this as a mask.
  • TM AH tetra'methylammonium'hydroxide
  • FIG. 3 is a view showing the operation principle of the flow sensor S1 according to the present invention.
  • the flow sensor S1 includes a plurality of (in this case, six) resistors R1 to R6, and among the resistors R1 to R6, the resistors R1 to R4. Is arranged in a flow tube 20 through which the measurement fluid flows, and is exposed to the flow of the measurement fluid.
  • resistor R 1 is the upstream temperature sensor 1
  • resistor R 2 is the upstream heating resistor 2
  • resistor R 3 is the downstream heating resistor 3
  • resistor R 4 is the downstream temperature sensor 4. It is.
  • the resistors R5 and R6 are resistors forming a bridge circuit together with the resistors R1 and R4.
  • the resistors R2 and R3 are turned on / off by switches Q1 and Q2, respectively, which are composed of transistors.
  • the bridge circuit is connected to the comparator 22. Have been.
  • the output of the comparator 22 is directly input to the switch Q1 and is also input to the switch Q2 via the inverter 24, and is also output to, for example, an engine control unit (ECU) or an output monitor. .
  • ECU engine control unit
  • control is performed so that the temperature of the resistors Rl and R2 and the temperature of the resistors R3 and R4 are always equal by the repetition of such a switch switching operation, that is, the oscillation of the circuit.
  • the output from the circuit ie, the sensor output, is a digital output from the comparator 22.
  • the sensor output is high during time t1 when switch Q1 is on and resistor R2 is energized, while switch Q2 is on and resistor R3
  • the sensor output is low during the time t2 during which power is supplied to the sensor.
  • the temperature of the resistors R1, R2 and the temperatures of the resistors R3, R4 are controlled to be always equal.
  • the resistors R l and R 2 on the upstream side take more heat than the resistors R 3 and R 4 on the downstream side.
  • the relationship between the time t1 when the resistor R1 is energized and the time t2 when the resistor R4 on the downstream side is energized is t1> t2, and the duty ratio of the sensor output changes.
  • the duty ratio and the flow rate have a one-to-one relationship, the force, the flow rate, and the like can be measured.
  • the switching frequency for heating the heating resistors alternately that is, the output frequency f
  • the output frequency f is linear with the reciprocal 1 / d of the distance between the heating resistors and the temperature sensor.
  • Fig. 5 is a graph showing the relationship between the reciprocal 1 / d of the distance between the heating resistor and the temperature sensor and the frequency f of the flow sensor output.
  • the four points are on a straight line, and it can be seen that the smaller the d (the larger the lZd), the higher the output frequency f of the flow sensor.
  • the prototype sensor was actually operated, and power consumption and heat loss were measured.
  • the power consumption at a flow rate of 8 m / s (30 g / s in flow rate) was 61 mW.
  • the air temperature was 23 ° C
  • the temperature of the heating resistor was 143 ° C.
  • the amount of heat Q that escapes from the heating resistor through the diaphragm to the silicon substrate that is, the value of heat loss
  • the value of heat loss can be calculated as follows. In this method, switching is performed, so it is only necessary to consider the heat loss from either the upstream heating resistor or the downstream heating resistor.
  • the length L of the upstream heating resistor 2 is 1 mm
  • the thickness t of the support film 6 is 3 ⁇ m
  • the distance L ′ (m) from the upstream heating resistor 2 to the left silicon substrate 5 is the width of the diaphragm a.
  • the thermal conductivity k of the silicon nitride film 11 is 2.79 W / mK
  • the temperature Th of the upstream heating resistor 2 is 143 ° C
  • the temperature T s of the silicon substrate 5 is 23 ° C
  • the cross-sectional area A is
  • the heat loss under the above operating conditions must be less than 10%, and above that, the normal operation of the flow sensor may not be performed.
  • the heat loss of a sensor with a diaphragm width a of 1.5 mm is 1.6 mW, and the power consumption is equivalent to 2.6% of 61 mW, so there is no problem in characteristics.
  • the lower limit of the diaphragm width is 0.75 mm
  • the value of k 2 is in the range 0 ⁇ k 2 200. That is, the flow rate sensor shown in the present embodiment has a relation between the distance d between the heating resistor and the temperature sensor and the output frequency f.
  • the output signal from the flow sensor is input to an external engine-control unit (ECU) and processed together with data from other sensors, such as air pressure and temperature, to optimize Used to determine the fuel injection amount. Since the sampling frequency of the engine control unit for automobiles is mainly around 80 OHz, the output frequency must be 800 Hz or more.
  • Figure 5 shows the relationship between the output frequency f and the distance d between the heating resistor and the temperature sensor.
  • d 25; um when there is almost no heat loss (the curve shown by the broken line in the figure), and usually less than that. Need to be designed with d.
  • the sampling frequency of the control unit is currently around 800 Hz, but there are also low-frequency ones.
  • a heating resistor and a temperature sensor are used as a flow sensor applied to automobiles.
  • the distance should be d ⁇ 30 im, preferably d ⁇ 25 im. Since the minimum gap between the heating resistor and the temperature sensor is manufactured using photolithography, the lower limit of d is 1 // m. Therefore, the distance d between the heating resistor and the temperature sensor is 1 111 to 30 / im, preferably 1 x rn to 25 / im.
  • platinum is used as the heating resistor, but the material is nickel, nickel-iron, nickel-aluminum, tungsten, iron-palladium, nickel silicide, molybdenum silicide, titanium silicide, low-resistance
  • a metal, alloy, silicide, silicon, or the like such as silicon or polysilicon may be used, and has the same effect as the above embodiment.
  • a platinum resistor was used as the temperature sensor, but the material may be the above-mentioned metal, alloy, silicide, silicon, or the like, or a thermistor-thermocouple. This has the same effect as the above embodiment.
  • the silicon nitride film is used as the support base material.
  • the material may be any material as long as the portion in contact with the heating resistor and the temperature sensor is an insulator, and may be a material other than the silicon nitride film.
  • the temperature control circuit is shown in FIG. 3 in the present embodiment, a control method that alternately heats the heating resistors so that the temperature of the upstream heating resistor and the temperature of the downstream heating resistor become the same is used.
  • other circuit configurations may be used, and the same effects as in the above embodiment can be obtained.
  • FIG. 7 shows a flow sensor S2 according to the second embodiment of the present invention.
  • the support film 6 is formed not in a diaphragm shape but in a bridge shape.
  • the bridge can be formed by forming an opening in the support film 6 by dry etching and performing anisotropic etching of the silicon substrate 5 from both the support film side and the back surface.
  • the heat loss from the heat generating resistor to the silicon substrate 5 can be reduced, and the same effect as in Embodiment 1 can be obtained by increasing the size of the diaphragm.
  • FIG. 8 shows a flow sensor S3 according to the third embodiment of the present invention.
  • the components denoted by the same reference numerals as those in FIG. 1 are the same or equivalent components.
  • the support film 6 is formed not in a diaphragm shape but in a bridge shape, and the support film 6 is supported on the cavities 12 of the silicon substrate 5 as shown in FIG. 1 (b). .
  • the cavities 12 can be formed by forming an opening in the support film 6 by dry etching and performing anisotropic etching of the silicon substrate 5 from the support film side. According to this embodiment, can heat loss reduction from the heating resistor to the silicon ⁇ substrate 5, there same effect force s and to increase the size of the diaphragm in the first embodiment.
  • the output frequency of the flow sensor according to the present invention can be appropriately set to be equal to or higher than the sampling frequency, the flow sensor is suitable for use as a flow sensor for an automobile requiring high-speed response.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A flow sensor is constructed to satisfy the relation f = k1/d - k2 where k1 = 19,000, 0 ≤ k2 ≤ 200, f (Hz) is the switching frequency at which heating resistors are alternately heated, d (µm) is the distance between the heating resistor and a temperature sensor, and k1 and k2 are constants. The distance between the heating resistor and the temperature sensor is 1µm or more and 30µm or less. As a result, the output frequency can be set the sampling frequency or higher of an engine control unit for an automobile, and the flow sensor can be applied to automobile.

Description

明 細 書 流量センサ 技術分野  Description Flow sensor Technical field
本発明は、 気体の流量を測定する流量センサであって、 特に自動車用の流量セ ンサに関するものである。 背景技術  The present invention relates to a flow sensor for measuring a gas flow, and more particularly to a flow sensor for an automobile. Background art
流量センサのなかでも、 特に車載用の流量センサは、 近年、 排気ガス規制の一 層の強化から、 高い検出精度、 高速応答性、 広いダイナミックレンジのものが望 まれている。 この要求に答える方式として、 質量空気量を直接検知できる熱式の 流量センサが主流になってきている。 このような熱式流量センサの一つの方式と して、 2組の発熱抵抗体と温度センサの温度が等しくなるように制御する熱式流 量センサが特開平 1 1— 3 2 6 0 0 3号公報などに提案されている。  Among the flow sensors, especially for in-vehicle flow sensors, those with high detection accuracy, high-speed responsiveness, and a wide dynamic range have been demanded in recent years due to the stricter exhaust gas regulations. As a method to respond to this demand, a thermal type flow sensor that can directly detect the mass air flow has become mainstream. As one type of such a thermal type flow sensor, a thermal type flow sensor that controls two sets of heat generating resistors and a temperature sensor so that the temperatures thereof are equal to each other is disclosed in Japanese Patent Laid-Open Publication No. H11-326600. It is proposed in Japanese Patent Publication No.
図 9〜図 1 2を用いて、 特開平 1 1— 3 2 6 0 0 3号公報に示された従来の熱 式流量センサを説明する。  A conventional thermal flow sensor disclosed in Japanese Patent Application Laid-Open No. H11-326003 will be described with reference to FIGS.
図 9は流量センサの構成と動作原理を示す図である。 図において、 R 1〜R 6 は抵抗器で、 1 0 0は計測流体が流れる流管で、 抵抗器 R 1〜R 4は計測流体が 流れる流管 2 0内に配置され、 流れに曝されている。 抵抗器 R 1〜R 6のうち R 1, R 4は発熱抵抗体で、 R 2 , R 3は温度センサで、 発熱抵抗体 R 1と温度セ ンサ R 2、 温度センサ R 3と発熱抵抗体 R 4がそれぞれ対になって構成されてい る。 なお、 Q l, Q 2はスィッチで、 1 0 2はコンパレータで、 1 0 4はインバ ータである。  FIG. 9 is a diagram showing the configuration and operation principle of the flow sensor. In the figure, R1 to R6 are resistors, 100 is a flow tube through which the measurement fluid flows, and resistors R1 to R4 are arranged in the flow tube 20 through which the measurement fluid flows, and are exposed to the flow. ing. Of the resistors R 1 to R 6, R 1 and R 4 are heating resistors, R 2 and R 3 are temperature sensors, heating resistor R 1 and temperature sensor R 2, temperature sensor R 3 and heating resistor R 4 is configured as a pair. Here, Ql and Q2 are switches, 102 is a comparator, and 104 is an inverter.
上記構成の流量センサの動作を以下説明する。  The operation of the flow sensor having the above configuration will be described below.
抵抗器 R l , R 2の温度が抵抗器 R 3, R 4の温度より高い場合、 コンパレー タ 1 0 2の一入力電圧が +側より高くなるため、 コンパレータ 1 0 2の出力は一 となり、 スィッチ Q 1はオフ、 スィッチ Q 2はオンになる。 その結果、 抵抗器 R 1 , R 2の温度は放熱により次第に低くなる。 一方、 抵抗器 R 4には電流が流れ るため、 抵抗器 R3, R 4の温度は次第に高くなる。 When the temperature of the resistors Rl and R2 is higher than the temperature of the resistors R3 and R4, one input voltage of the comparator 102 becomes higher than the + side, so that the output of the comparator 102 becomes one, Switch Q1 is off and switch Q2 is on. As a result, the temperatures of the resistors R 1 and R 2 gradually decrease due to heat radiation. On the other hand, current flows through resistor R4. Therefore, the temperature of the resistors R3 and R4 gradually increases.
ある時間経過後、 抵抗器 R 3 , R 4の温度が抵抗器 R 1 , R 2の温度より高く なると、 コンパレータ 102の出力は反転し、 スィッチ Q1はオン、 スィッチ Q 2はオフとなる。  After a certain time, when the temperature of the resistors R 3 and R 4 becomes higher than the temperature of the resistors R 1 and R 2, the output of the comparator 102 is inverted, and the switch Q1 is turned on and the switch Q2 is turned off.
以下、 このようなスィッチの切り替え動作の繰り返し、 すなわち回路の発振に より、 抵抗器 R l, R2の温度と抵抗器 R3, R4の温度が常に等しくなるよう に制御が行われる。 回路からの出力、 すなわちセンサ出力は 「info out」 で示す ようにコンパレータ 102からのデジタル出力になる。  Hereinafter, control is performed such that the temperature of the resistors Rl and R2 and the temperature of the resistors R3 and R4 are always equal by the repetition of such switch switching operation, that is, the oscillation of the circuit. The output from the circuit, ie, the sensor output, is a digital output from the comparator 102 as indicated by “info out”.
例えば、 図 10に示されるように、 スィッチ Q1がオンとなり抵抗器 R 1に通 電されている時間 t ].の間はセンサ出力は highであり、 一方、 スィッチ Q2が オンとなり抵抗器 R 4に通電されている時間 t 2の間はセンサ出力は low であ る。 この回路のスイッチングは自発的に行われ、 その周期 t 1+ t 2は、 抵抗器 R l, R 2及び抵抗器 R 3, R 4の熱時定数により決まる。  For example, as shown in Figure 10, the sensor output is high during the time t]. When switch Q1 is on and conducting to resistor R1, while switch Q2 is on and resistor R4 The sensor output is low during the time t2 when power is supplied to the switch. The switching of this circuit occurs spontaneously, and its period t1 + t2 is determined by the thermal time constants of resistors Rl, R2 and resistors R3, R4.
図 1 1は流量とセンサ上の温度分布を示すグラフであり、 この図を用いて流量 の測定方法を以下説明する。 図中、 横軸が位置、 縦軸が温度である (いずれも任 意単位) 。  FIG. 11 is a graph showing the flow rate and the temperature distribution on the sensor. The method of measuring the flow rate will be described below with reference to this figure. In the figure, the horizontal axis is position, and the vertical axis is temperature (all are arbitrary units).
流量 =0の時は、 図 9で示した抵抗器 R ]., R 2と抵抗器 R 3, R 4の中間位 置 (位置 =0) を対称に温度分布が形成され、 抵抗器 R l, R 2と抵抗器 R 3, R 4の存在する付近 (位置 =0. 0002付近) の温度が一番高い。 また、 流量 =0の時のセンサ出力は、 t 1 = t 2となり、 デューティー比 50 % ( t 1 / When the flow rate is = 0, a temperature distribution is formed symmetrically between the resistors R]., R2 and the resistors R3, R4 (position = 0) shown in Fig. 9, and the resistor Rl , R 2 and resistors R 3, R 4 have the highest temperature in the vicinity (position = near 0.0002). When the flow rate = 0, the sensor output is t1 = t2, and the duty ratio is 50% (t1 /
(t 1+t 2) X 100= 50) のパルス出力となる。 流量が増加すると、 上流 側の温度は急激に低下する力 下流側には上流側の抵抗器 R 1で暖められた気体 が流れ込むため、 上流側ほど急激な温度の低下は見られない。 前述のように、 抵 抗器 R l, R 2と抵抗器 R 3, R 4の温度が等しくなるように制御されるため、 上流側の抵抗器 R 1に通電されている時間 t 1、 と下流側の抵抗器 R 4に通電さ れている時間 t 2の関係は、 t l > t 2となり、 センサ出力のデューティー比が 変化する。 このデューティー比と流量が一対一の関係を持つことから、 流量を計 測することができる。 (t 1 + t 2) X 100 = 50) pulse output. When the flow rate increases, the temperature on the upstream side drops sharply. The gas heated by the resistor R1 on the upstream side flows into the downstream side, so that the temperature does not decrease as steeply as on the upstream side. As described above, since the temperatures of the resistors R l and R 2 and the resistors R 3 and R 4 are controlled to be equal, the time t 1 during which the current flows to the upstream resistor R 1, and The relationship of the time t2 when the resistor R4 on the downstream side is energized is tl> t2, and the duty ratio of the sensor output changes. Since the duty ratio and the flow rate have a one-to-one relationship, the flow rate can be measured.
図 1 2は従来の流量センサの構造の一例を示している。 図中、 105はシリコ ンで形成された基板、 1 0 6はシリコンをエッチングによって形成した溝、 1 0 7は抵抗器 R 1〜 R 4を支持するブリツジである。 ブリッジは薄膜で形成されて おり、 抵抗器 R l, R 2、 抵抗器 R 3, R 4をそれぞれ搭載している。 FIG. 12 shows an example of the structure of a conventional flow sensor. In the figure, 105 is silicon 106 is a groove formed by etching silicon, and 107 is a bridge supporting resistors R1 to R4. The bridge is made of a thin film and has resistors Rl and R2 and resistors R3 and R4.
特開平 1 1一 3 2 6 0 0 3号公報に提案されている熱式流量センサは上記のよ うに構成されており、 測定された流量情報はコンパレータでデジタイズされ出力 される。 これらの出力は、 その後、 信号処理回路に入力され、 そこで有用なデー タとして処理される。  The thermal type flow sensor proposed in Japanese Patent Application Laid-Open No. H11-132603 is configured as described above, and the measured flow rate information is digitized by a comparator and output. These outputs are then input to a signal processing circuit, where they are processed as useful data.
例えば、 自動車用の流量センサの出力信号は、 エンジン ' コントロール ·ュニ ット (E C U) に入力され、 気圧や気温など他のセンサからのデータと伴に処理 され、 最適な燃料噴射量を決定するために用いられる。 このようにエンジン - コ ントロール ·ュニットのような信号処理回路は、 処理データを意味のあるものと するため、 ある一定の周波数で流量センサからの信号をサンプリングする。 特に 応答性の高いシステムほどサンプリング周波数が高い傾向にある。 したがって、 センサ信号のデジタイズ周波数、 すなわちセンサ出力周波数はこのサンプリング 周波数より低いと意味がなく、 少なくとも同じかそれ以上の周波数であることが 必要である。  For example, the output signal of an automotive flow sensor is input to an engine control unit (ECU) and processed along with data from other sensors, such as air pressure and temperature, to determine the optimal fuel injection quantity. Used to Thus, signal processing circuits such as engine-control units sample the signal from the flow sensor at a certain frequency to make the processed data meaningful. In particular, the higher the response system, the higher the sampling frequency. Therefore, it is meaningless if the digitizing frequency of the sensor signal, that is, the sensor output frequency, is lower than this sampling frequency, and it is necessary that the frequency be at least the same or higher.
し力 しな力 Sら、 特開平 1 1— 3 2 6 0 0 3号公報に提案されているような従来 の熱式流量センサでは、 センサ出力の周波数の設計方法に関しては何ら言及して おらず、 周波数は成り行きまかせであった。 したがって、 特に自動車用の流量セ ンサなど高速応答性が要求される流量センサとしては、 そのまま適用することは できないという問題があった。  In a conventional thermal flow sensor as proposed in Japanese Patent Application Laid-Open No. H11-32603, there is no mention of a method of designing the frequency of the sensor output. Instead, the frequency was random. Therefore, there has been a problem that it cannot be used as it is as a flow sensor that requires high-speed response, such as a flow sensor for an automobile.
本発明は、 従来技術の有するこのような問題点に鑑みてなされたものであり、 流量センサの出力周波数を適宜設定可能で、 特にサンプリング周波数と同じか、 あるいはそれよりも高く設定することにより、 自動車等の応答性の高いシステム にも適用可能な信頼性のある流量センサを提供することを目的としている。 発明の開示  The present invention has been made in view of the above-mentioned problems of the related art, and it is possible to appropriately set the output frequency of the flow sensor. In particular, by setting the output frequency to be equal to or higher than the sampling frequency, The purpose is to provide a reliable flow sensor that can be applied to highly responsive systems such as automobiles. Disclosure of the invention
上記目的を達成するため、 本発明は、 シリコン基板と、 該シリコン基板の表面 に形成された絶縁性薄膜の支持膜と、 該支持膜上に形成され該支持膜によって支 持された 2組の発熱抵抗体及び温度センサとを備え、 計測流体の流れの方向に見 て上流側の発熱抵抗体及び温度センサの温度と、 下流側の発熱抵抗体及び温度セ ンサの温度が同じになるように、 上流側及び下流側の発熱抵抗体を交互に加熱し、 上流側及び下流側発熱抵抗体の加熱時間の比に基づいて計測流体の流量を計測す る方式の流量センサであって、 上流側及び下流側発熱抵抗体を交互に加熱する切 り替え周波数を f (H z ) 、 各組の発熱抵抗体及び温度センサの距離を d ( μ m) 、 定数を k 1、 k 2とすると、 関係式 f = k l / d - k 2 , k 1 = 1 9 0 0 0、 0≤k 2≤ 2 0 0 , を満たすことを特徴とする。 In order to achieve the above object, the present invention provides a silicon substrate, a support film of an insulating thin film formed on the surface of the silicon substrate, and a support film formed on the support film and supported by the support film. It has two sets of heating resistors and a temperature sensor, and the temperature of the heating resistor and the temperature sensor on the upstream side and the temperature of the heating resistor and the temperature sensor on the downstream side in the flow direction of the measurement fluid. So that the upstream and downstream heating resistors are alternately heated so that the flow rate of the measurement fluid is measured based on the ratio of the heating time of the upstream and downstream heating resistors. Where f (H z) is the switching frequency for alternately heating the upstream and downstream heating resistors, d (μm) is the distance between each pair of heating resistors and the temperature sensor, and k 1 is the constant. , K 2, the relational expression f = kl / d−k 2, k 1 = 1900 000, 0≤k 2 ≤200.
このような構成とすれば、 流量センサに要求される出力周波数、 すなわち切り 替え周波数 f を実現するための構造を発熱抵抗体と温度センサの距離 dによって 決定できるため、 本方式の流量センサを自動車用の流量センサに適用することが できる。  With such a configuration, the structure for achieving the output frequency required for the flow sensor, that is, the switching frequency f, can be determined by the distance d between the heating resistor and the temperature sensor. It can be applied to a flow sensor for
また、 各組の発熱抵抗体及び温度センサの距離 dは 1 m以上で、 3 0 μ m以 下であるのがよい。  The distance d between the heating resistor and the temperature sensor of each set is preferably 1 m or more and 30 μm or less.
自動車用エンジン■コントロール ·ュニットのサンプリング周波数は 8 0 0 H z近辺が主流であるため、 発熱抵抗体を交互に加熱するための切り替え周波数、 すなわち出力の周波数はそれ以上であることが望ましい。 上記のような構成とす れば、 出力の周波数は、 8 0 O H z以上に設定されるため、 本方式の流量センサ を自動車用の流量センサに適用する場合に望ましい。 図面の簡単な説明  Since the sampling frequency of the automotive engine control unit is around 800 Hz, the switching frequency for heating the heating resistors alternately, that is, the output frequency is desirably higher. With the above configuration, the output frequency is set to 80 OHz or more, which is desirable when the flow sensor of the present method is applied to a flow sensor for an automobile. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1にかかる流量センサを示しており、 (a ) はそ の平面図で、 (b ) は (a ) における線 I b - I bに沿った断面図である。  FIGS. 1A and 1B show a flow sensor according to a first embodiment of the present invention, wherein FIG. 1A is a plan view thereof, and FIG. 1B is a cross-sectional view taken along line Ib-Ib in FIG. is there.
図 2は、 図 1の流量センサの製造方法を説明するための工程図である。  FIG. 2 is a process chart for explaining a method of manufacturing the flow sensor of FIG.
図 3は、 図 1の流量センサの制御回路図である。  FIG. 3 is a control circuit diagram of the flow sensor of FIG.
図 4は、 図 1の流量センサの出力波形図である。  FIG. 4 is an output waveform diagram of the flow sensor of FIG.
図 5は、 図 1の流量センサにおいて、 発熱抵抗体と温度センサ間距離と出力の 周波数の関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the distance between the heating resistor and the temperature sensor and the output frequency in the flow sensor of FIG.
図 6は、 図 1の流量センサにおいて、 出力の周波数と発熱抵抗体と温度センサ 間距離との関係を示すグラフである。 Figure 6 shows the output frequency, heating resistor, and temperature sensor of the flow sensor in Figure 1. It is a graph which shows the relationship with distance.
図 7は、 本発明の実施の形態 2にかかる流量センサを示しており、 (a) はそ の平面図で、 (b) は (a) における線 VEb— VHbに沿った断面図である。  7A and 7B show a flow sensor according to a second embodiment of the present invention, wherein FIG. 7A is a plan view thereof, and FIG. 7B is a cross-sectional view taken along line VEb-VHb in FIG.
図 8は、 本発明の実施の形態 3にかかる流量センサを示しており、 (a) はそ の平面図で、 (b) は (a) における線 Mb— Mbに沿った断面図である。  FIG. 8 shows a flow sensor according to a third embodiment of the present invention, (a) is a plan view thereof, and (b) is a cross-sectional view taken along line Mb-Mb in (a).
図 9は、 従来の流量センサの制御回路図である。  FIG. 9 is a control circuit diagram of a conventional flow sensor.
図 1 0は、 図 9の従来の流量センサの出力波形図である。  FIG. 10 is an output waveform diagram of the conventional flow sensor of FIG.
図 1 1は、 図 9の従来の流量センサの表面の温度分布を示すグラフである。 図 1 2は、 図 9の従来の流量センサの縦断面図である。 発明を実施するための最良の形態  FIG. 11 is a graph showing the temperature distribution on the surface of the conventional flow sensor of FIG. FIG. 12 is a longitudinal sectional view of the conventional flow sensor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態 1. Embodiment 1.
図 1は、 本発明の実施の形態 1にかかる流量センサ S 1を示している。  FIG. 1 shows a flow sensor S1 according to the first embodiment of the present invention.
図 1に示されるように、 流量センサ S 1は、 流れの上流側から下流側に向かつ て順に配置された上流側温度センサ 1、 上流側発熱抵抗体 2、 下流側発熱抵抗体 3、 下流側温度センサ 4を備えており、 これらの抵抗体 1〜4はいずれも、 シリ コン窒化膜からなりダイャフラム状の絶縁性薄膜である支持膜 6上に支持されて いる。 抵抗体 1〜4の各々は、 線幅 5 /im、 厚み 2 mの白金薄膜により形 成されており、 線間隔は 5 / mである。 上流側温度センサ 1と上流側発熱抵抗体 2の最小間隔、 及び、 下流側発熱抵抗体 3と上流側温度センサ 4の最小間隔はレ、 ずれも dである。  As shown in FIG. 1, the flow sensor S 1 includes an upstream temperature sensor 1, an upstream heating resistor 2, a downstream heating resistor 3, and a downstream heating resistor arranged in order from the upstream side to the downstream side of the flow. A side temperature sensor 4 is provided, and all of these resistors 1 to 4 are supported on a supporting film 6 which is made of a silicon nitride film and is a diaphragm-like insulating thin film. Each of the resistors 1 to 4 is formed of a platinum thin film having a line width of 5 / im and a thickness of 2 m, and a line interval of 5 / m. The minimum distance between the upstream-side temperature sensor 1 and the upstream-side heating resistor 2 and the minimum distance between the downstream-side heating resistor 3 and the upstream-side temperature sensor 4 are d and the deviation is d.
図]. (a) において破線で示されるダイヤフラムの寸法は、 横幅 aが 0. 75 mmあるいは 1. 5 mmで、 縦幅 bが 2mmで、 厚み tは 3 μπιである。 また、 図 1 (b) に示されるように、 支持膜 6は、 熱酸ィ匕膜 9を介してシリコン基板 5 上に支持されている。 なお、 8はワイヤボンド用のボンディングパッドである。 次に、 図 2を参照して本発明にかかる流量センサ S 1の製造プロセスを説明す る。  Figure]. The dimensions of the diaphragm indicated by broken lines in (a) are 0.75 mm or 1.5 mm in width a, 2 mm in height b, and 3 μπι in thickness t. Further, as shown in FIG. 1B, the support film 6 is supported on the silicon substrate 5 via the thermal oxidation film 9. Reference numeral 8 denotes a bonding pad for wire bonding. Next, a manufacturing process of the flow rate sensor S1 according to the present invention will be described with reference to FIG.
まず、 図 2 (a) に示されるように、 両面に厚さ 0. 5 mの熱酸化膜 9が形 成された面方位 (100) の厚み 380 / mのシリコンウェハ 5を準備する。 次 に、 図 2 (b) に示されるように、 一方の熱酸化膜 9の上に厚さ約 2 /imのシリ コン窒化膜 1 1をスパッタリングで形成した後、 図 2 (c) に示されるように、 シリコン窒化膜 1 1の上にさらに厚さ約 0. 2 /zmの白金膜 7をスパッタリング で形成する。 その後、 フォ トリソグラフィーを用いて、 図 1 (a) 及び図 2 (d) に示されるように、 白金膜 7をパターユングし、 温度センサ 1, 4、 発熱 抵抗体 2, 3、 及び配線部分 10を形成する (図 2 (d) には配線 10は図示せ ず) 。 次に、 図 2 (e) に示されるように、 保護膜として、 厚さ約 1 imのシリ コン窒化膜をスパッタリングで形成した後、 図示していないが、 ドライエツチン グによりワイヤボンディング用のパッド部を開口する。 さらに、 図 2 ( f ) に示 されるように、 裏面の熱酸化膜 9をパターユングし、 これをマスクとしてシリコ ン基板 5を裏面から異方性エッチングする。 エッチング液としては、 例えば TM AH (テトラ ' メチル ·アンモニゥム ' ヒ ドロォキシド) などのアルカリエッチ ング溶液が用いられる。 最後に、 図 2 (g) に示されるように、 支持膜 6の裏面 とシリコン基板 5の裏面にある熱酸ィヒ膜 9をウエットエッチングで除去して、 一 連のプロセスは完了する。 First, as shown in Fig. 2 (a), a thermal oxide film 9 with a thickness of 0.5 m is formed on both sides. A silicon wafer 5 having a plane orientation (100) and a thickness of 380 / m is prepared. Next, as shown in FIG. 2 (b), a silicon nitride film 11 having a thickness of about 2 / im was formed on one of the thermal oxide films 9 by sputtering. Then, a platinum film 7 having a thickness of about 0.2 / zm is further formed on the silicon nitride film 11 by sputtering. Then, as shown in FIGS. 1 (a) and 2 (d), the platinum film 7 was patterned using photolithography, and the temperature sensors 1, 4, the heating resistors 2, 3, and the wiring portion were formed. Form 10 (the wiring 10 is not shown in FIG. 2 (d)). Next, as shown in FIG. 2 (e), a silicon nitride film having a thickness of about 1 im is formed as a protective film by sputtering, and then, although not shown, a pad portion for wire bonding is formed by dry etching. Open. Further, as shown in FIG. 2 (f), the thermal oxide film 9 on the back surface is patterned and the silicon substrate 5 is anisotropically etched from the back surface using this as a mask. As the etchant, for example, an alkaline etching solution such as TM AH (tetra'methylammonium'hydroxide) is used. Finally, as shown in FIG. 2 (g), the thermal oxide film 9 on the back surface of the support film 6 and the back surface of the silicon substrate 5 is removed by wet etching to complete a series of processes.
本実施の形態では、 発熱抵抗体 2, 3と温度センサ 1, 4の距離 dを、 10 m、 14 μ m, 25 μπι 50/xmと変え、 さらにダイヤフラムの幅 aを 0. 7 5mmと 1. 5mmと変えたものを作製し、 切り替え周波数との相関を確認した。 図 3は、 本発明にかかる流量センサ S 1の動作原理を示す図である。  In this embodiment, the distance d between the heating resistors 2 and 3 and the temperature sensors 1 and 4 is changed to 10 m, 14 μm, 25 μπι 50 / xm, and the width a of the diaphragm is 0.75 mm to 1 We fabricated a sample with a diameter of 5 mm and confirmed the correlation with the switching frequency. FIG. 3 is a view showing the operation principle of the flow sensor S1 according to the present invention.
図 3に示されるように、 流量センサ S 1は複数 (この場合は六つ) の抵抗器 R 1〜R 6を備えており、 抵抗器 R 1〜R 6のうち抵抗器 R 1〜R 4は、 計測流体 が流れる流管 20内に配置され、 測定流体の流れに曝されている。 また、 抵抗器 R 1は上流側温度センサ 1で、 抵抗器 R 2は上流側発熱抵抗体 2で、 抵抗器 R 3 は下流側発熱抵抗体 3で、 抵抗器 R 4は下流側温度センサ 4である。 さらに、 抵 抗器 R 5, R6は抵抗器 R 1 , R 4とともにプリッジ回路を構成する抵抗器であ る。  As shown in FIG. 3, the flow sensor S1 includes a plurality of (in this case, six) resistors R1 to R6, and among the resistors R1 to R6, the resistors R1 to R4. Is arranged in a flow tube 20 through which the measurement fluid flows, and is exposed to the flow of the measurement fluid. Also, resistor R 1 is the upstream temperature sensor 1, resistor R 2 is the upstream heating resistor 2, resistor R 3 is the downstream heating resistor 3, and resistor R 4 is the downstream temperature sensor 4. It is. Further, the resistors R5 and R6 are resistors forming a bridge circuit together with the resistors R1 and R4.
また、 抵抗器 R2, R3は、 トランジスタで構成されるスィッチ Q 1 , Q2に よりそれぞれ ON/OFF制御され、 プリッジ回路はコンパレータ 22に接続さ れている。 コンパレータ 22の出力は、 スィッチ Q1に直接入力されるとともに、 インバータ 24を介してスィッチ Q 2に入力されており、 さらに、 例えばェンジ ン . コントロール .ュニッ ト (ECU) や出力モニタにも出力される。 The resistors R2 and R3 are turned on / off by switches Q1 and Q2, respectively, which are composed of transistors. The bridge circuit is connected to the comparator 22. Have been. The output of the comparator 22 is directly input to the switch Q1 and is also input to the switch Q2 via the inverter 24, and is also output to, for example, an engine control unit (ECU) or an output monitor. .
上記構成の流量センサ S 1の動作を以下説明する。  The operation of the flow sensor S1 having the above configuration will be described below.
抵抗器 R l, R 2の温度が抵抗器 R 3, R 4の温度より高い場合、 コンパレー タ 22の一入力電圧が +側より高くなるため、 コンパレータ 22の出力は一とな り、 スィッチ Q 1はオフ、 スィッチ Q 2はオンになる。 その結果、 抵抗器 R l, R 2の温度は放熱により次第に低くなる。 一方、 抵抗器 R 4には電流が流れるた め、 抵抗器 R3, R 4の温度は次第に高くなる。  When the temperature of the resistors R l and R 2 is higher than the temperature of the resistors R 3 and R 4, one input voltage of the comparator 22 becomes higher than the + side, so that the output of the comparator 22 becomes 1 and the switch Q 1 is off, switch Q 2 is on. As a result, the temperatures of the resistors R 1 and R 2 gradually decrease due to heat radiation. On the other hand, since current flows through resistor R4, the temperature of resistors R3 and R4 gradually increases.
ある時間経過後、 抵抗器 R 3, R 4の温度が抵抗器 R 1 , R 2の温度より高く なると、 コンパレータ 22の出力は反転し、 スィッチ Q 1はオン、 スィッチ Q 2 はオフとなる。  After a certain time, when the temperature of the resistors R3 and R4 becomes higher than the temperature of the resistors R1 and R2, the output of the comparator 22 is inverted, and the switch Q1 is turned on and the switch Q2 is turned off.
以下、 このようなスィッチの切り替え動作の繰り返し、 すなわち回路の発振に より、 抵抗器 R l, R2の温度と抵抗器 R3, R4の温度が常に等しくなるよう に制御が行われる。 回路からの出力、 すなわちセンサ出力はコンパレータ 22か らのデジタル出力になる。  Hereinafter, control is performed so that the temperature of the resistors Rl and R2 and the temperature of the resistors R3 and R4 are always equal by the repetition of such a switch switching operation, that is, the oscillation of the circuit. The output from the circuit, ie, the sensor output, is a digital output from the comparator 22.
例えば、 図 4に示されるように、 スィッチ Q 1がオンとなり抵抗器 R 2に通電 されている時間 t 1の間はセンサ出力は highであり、 一方、 スィッチ Q2がォ ンとなり抵抗器 R 3に通電されている時間 t 2の間はセンサ出力は lowである。 この回路のスイッチングは自発的に行われ、 その周期 T=t 1+ t 2は抵抗器 R 1, R 2及び抵抗器 R 3 , R 4の熱時定数 τにより決まる。 なお、 発熱抵抗体を 交互に加熱する切り替え周波数 f は周期 Τの逆数 f = 1ノ Τ である。  For example, as shown in Figure 4, the sensor output is high during time t1 when switch Q1 is on and resistor R2 is energized, while switch Q2 is on and resistor R3 The sensor output is low during the time t2 during which power is supplied to the sensor. The switching of this circuit is performed spontaneously, and its period T = t1 + t2 is determined by the thermal time constant τ of the resistors R1, R2 and the resistors R3, R4. The switching frequency f for alternately heating the heating resistors is the reciprocal of the period Τ, f = 1 ノ.
流量センサ S 1では、 このような回路を構成しているため、 抵抗器 R l, R 2 と抵抗器 R 3, R 4の温度が常に等しくなるように制御される。 計測するための 流れが図示の矢印方向に生じると、 上流側の抵抗器 R l, R 2の方が下流側の抵 抗器 R 3, R 4よりも多く熱を奪われるため、 上流側の抵抗器 R 1に通電されて いる時間 t 1と下流側の抵抗器 R 4に通電されている時間 t 2の関係は、 t 1 > t 2となり、 センサ出力のデューティー比が変化する。 このデューティー比と流 量が一対一の関係を持つこと力、ら、 流量を計測することができる。 さて、 発熱抵抗体を交互に加熱する切り替え周波数、 すなわち出力の周波数 f は、 発熱抵抗体と温度センサの距離の逆数 1/dと線形関係にあることが実験で 明らかになった。 In the flow rate sensor S1, since such a circuit is configured, the temperature of the resistors R1, R2 and the temperatures of the resistors R3, R4 are controlled to be always equal. When the flow for measurement occurs in the direction of the arrow shown in the figure, the resistors R l and R 2 on the upstream side take more heat than the resistors R 3 and R 4 on the downstream side. The relationship between the time t1 when the resistor R1 is energized and the time t2 when the resistor R4 on the downstream side is energized is t1> t2, and the duty ratio of the sensor output changes. When the duty ratio and the flow rate have a one-to-one relationship, the force, the flow rate, and the like can be measured. Experiments have shown that the switching frequency for heating the heating resistors alternately, that is, the output frequency f, is linear with the reciprocal 1 / d of the distance between the heating resistors and the temperature sensor.
図 5は、 発熱抵抗体と温度センサの距離の逆数 1/dと流量センサ出力の周波 数 f の関係を示したグラフである。 4点は直線上に乗っており、 dが小さいほど (lZdが大きいほど) 、 流量センサの出力周波数 f が高くなることがわかる。 直線は、 f = 1 900 O/d— k 2の関係を持ち、 k 2はダイヤフラム幅 aが 0. 75 mmのとき 200で、 aカ^ 1. 5 mmのとき 1 00である。 k 2は発熱抵抗 体からダイヤフラムを通してシリコン基板に逃げる熱量、 すなわち熱損失が大き いほど大きな値を取る。 したがって、 タイヤフラムが大きレ、ほど k 2の値は小さ く、 熱損失の無い理想的な場合は k 2 = 0となり、 図 5の破線で示した f = 1 9 00 O/dの直線となる。  Fig. 5 is a graph showing the relationship between the reciprocal 1 / d of the distance between the heating resistor and the temperature sensor and the frequency f of the flow sensor output. The four points are on a straight line, and it can be seen that the smaller the d (the larger the lZd), the higher the output frequency f of the flow sensor. The straight line has a relationship of f = 1900 O / d—k2, where k2 is 200 when the diaphragm width a is 0.75 mm and 100 when the diaphragm width a is 1.5 mm. k 2 takes a larger value as the amount of heat escaping from the heating resistor to the silicon substrate through the diaphragm, that is, as the heat loss increases. Therefore, the larger the tire flam, the smaller the value of k2, and in an ideal case without heat loss, k2 = 0, and the straight line of f = 1900 O / d shown by the broken line in Fig. 5 Become.
試作したセンサを実際に動作させて、 消費電力と熱損失を測定した。 流速 8m / s (流量で 30 g/s) における消費電力は、 6 1mWであった。 このときの 空気温度は 23 °C、 発熱抵抗体の温度は 143 °Cであつた。  The prototype sensor was actually operated, and power consumption and heat loss were measured. The power consumption at a flow rate of 8 m / s (30 g / s in flow rate) was 61 mW. At this time, the air temperature was 23 ° C, and the temperature of the heating resistor was 143 ° C.
このとき、 発熱抵抗体からダイヤフラムを通してシリコン基板に逃げる熱量 Q、 すなわち熱損失の値は、 以下のように計算できる。 本方式では、 スイッチングを 行っているため、 上流側発熱抵抗体あるレ、は下流側発熱抵抗体のレ、ずれか一方か らの熱損失を考えるだけで良い。  At this time, the amount of heat Q that escapes from the heating resistor through the diaphragm to the silicon substrate, that is, the value of heat loss, can be calculated as follows. In this method, switching is performed, so it is only necessary to consider the heat loss from either the upstream heating resistor or the downstream heating resistor.
例えば、 上流側発熱抵抗体 2から逃げる熱は、 大半が図 1 (a) において左側 のシリコン基板に逃げると考えられる。 上流側発熱抵抗体 2の長さ Lは 1 mm、 支持膜 6の厚み tは 3 μ m、 上流側発熱抵抗体 2から左側のシリコン基板 5まで の距離 L' (m) はダイヤフラムの幅 aが 0. 75mmの時は 250 /imである。 シリコン窒化膜 1 1の熱伝導率 kは 2. 79 W/mK, 上流側発熱抵抗体 2の温 度 Thが 143°C、 シリコン基板 5の温度 T sが 23°Cとすると、 熱流路の断面 積 Aは、  For example, it is considered that most of the heat escaping from the upstream heating resistor 2 escapes to the silicon substrate on the left side in FIG. 1 (a). The length L of the upstream heating resistor 2 is 1 mm, the thickness t of the support film 6 is 3 μm, and the distance L ′ (m) from the upstream heating resistor 2 to the left silicon substrate 5 is the width of the diaphragm a. When is 0.75mm, it is 250 / im. Assuming that the thermal conductivity k of the silicon nitride film 11 is 2.79 W / mK, the temperature Th of the upstream heating resistor 2 is 143 ° C, and the temperature T s of the silicon substrate 5 is 23 ° C, The cross-sectional area A is
A = L' X t = 1 X 10— 3X 3 X 10_6= 3 X 1 0— 9 (m2) A = L 'X t = 1 X 10- 3 X 3 X 10 _6 = 3 X 1 0- 9 (m 2)
従って、 上流側発熱抵抗体から熱流路を通じて左側のシリコン基板 5まで逃げ る損失熱量 Qは、 Q = A- k - (T h-T s ) ズ L' =4. 0 (mW) Therefore, the heat loss Q escaping from the upstream heating resistor to the left silicon substrate 5 through the heat flow path is Q = A- k-(T hT s) size L '= 4.0 (mW)
である。 このィ直は、 流速 8m/s (流量で S O g/s) における消費電力は 6 1 mWの 6. 5%に当る。 It is. This means that the power consumption at a flow rate of 8 m / s (SOg / s in flow rate) is 6.5% of 61 mW.
実用上、 上記の動作条件における熱損失は 1 0%以下であることが必要であり、 それ以上では流量センサとして正常な動作が行われない可能性がある。 今回実験 した流量センサの熱損失は 6. 5%で、 あと 3. 5%の余裕があるが、 構造と使 用状況のマージンを考えるとほぼ上限と考えてよい。 したがって、 ダイヤフラム の幅 aは最低でも 0. 75mmは必要であると言える。 ダイヤフラムの左端が上 流側温度センサ 1まで、 かつダイヤフラムの右端が下流側温度センサ 4まで接近 したものは、 a =0. 59mm< 0. 75mmとなるため、 もちろん適用できな レ、。  In practice, the heat loss under the above operating conditions must be less than 10%, and above that, the normal operation of the flow sensor may not be performed. The heat loss of the flow sensor tested this time is 6.5%, and there is a margin of 3.5%, but it can be considered to be almost the upper limit considering the margin of the structure and usage. Therefore, it can be said that the width a of the diaphragm must be at least 0.75 mm. If the left end of the diaphragm approaches the upstream temperature sensor 1 and the right end of the diaphragm approaches the downstream temperature sensor 4, a = 0.59mm <0.75mm, which is of course not applicable.
ちなみに、 ダイヤフラムの幅 aが 1. 5 mmのセンサの熱損失は、 1. 6 mW であり、 消費電力は 6 1 mWの 2. 6 %に相当し、 特性上問題ない。  Incidentally, the heat loss of a sensor with a diaphragm width a of 1.5 mm is 1.6 mW, and the power consumption is equivalent to 2.6% of 61 mW, so there is no problem in characteristics.
上記の結果から、 ダイヤフラムの幅の下限は 0. 75 mmで、 そのときの出力 の周波数 f と発熱抵抗体と温度センサの距離 dの関係式は、 ί = 1 900 O/d — 200で、 k 2の値は 0≤k 2 200の範囲である。 すなわち本実施の形態 で示した流量センサは、 発熱抵抗体と温度センサの距離 dと出力周波数 f の関係 力 図 5に示すように、 ί = 1 9000/dと f = 1 900 OZd— 200の直 線の問に入るように構成されたものである。  From the above results, the lower limit of the diaphragm width is 0.75 mm, and the relational expression between the output frequency f and the distance d between the heating resistor and the temperature sensor at that time is ί = 1900 O / d — 200, The value of k 2 is in the range 0≤k 2 200. That is, the flow rate sensor shown in the present embodiment has a relation between the distance d between the heating resistor and the temperature sensor and the output frequency f. As shown in FIG. 5, 力 = 19000 / d and f = 1900 OZd-200 It is designed to enter a straight line question.
さて、 図 3に示したように、 流量センサからの出力信号は、 外部のエンジン - コントロール 'ユニット (ECU) に入力され、 気圧や気温など他のセンサから のデータと伴に処理され、 最適な燃料噴射量を決定するために用いられる。 自動 車用のエンジン · コントロール ·ュニットのサンプリング周波数は 80 OH z近 傍が主流であるため、 出力の周波数も 800 Hz以上である必要がある。  Now, as shown in Fig. 3, the output signal from the flow sensor is input to an external engine-control unit (ECU) and processed together with data from other sensors, such as air pressure and temperature, to optimize Used to determine the fuel injection amount. Since the sampling frequency of the engine control unit for automobiles is mainly around 80 OHz, the output frequency must be 800 Hz or more.
図 5は、 出力の周波数 f と発熱抵抗体と温度センサの距離 dの関係を示してい る。  Figure 5 shows the relationship between the output frequency f and the distance d between the heating resistor and the temperature sensor.
図 5から分かるように、 出力の周波数 f を 800Hz以上とするためには、 熱 損失がほとんど無い場合 (図中の破線で示した曲線) で d = 25 ;umであり、 通 常はそれ以下の dで設計する必要がある。 上述したように、 自動車用のェンジ ン .コントロール.ュニットのサンプリング周波数は現在 8 0 0 H z近傍が主流 であるが、 低い周波数のものも存在するので、 自動車用に適用する流量センサと しては、 発熱抵抗体と温度センサの距離は、 d ^ 3 0 i m、 望ましくは d≤ 2 5 i mにする必要がある。 また、 発熱抵抗体と温度センサ間の最小ギャップは、 フ オトリソグラフィーを用いて製作するので、 dの下限は 1 // mである。 したがつ て、 発熱抵抗体と温度センサ間の距離 dは 1 111〜3 0 /i m、 望ましくは 1 x rn 〜2 5 /i mである。 As can be seen from Fig. 5, when the output frequency f is 800 Hz or more, d = 25; um when there is almost no heat loss (the curve shown by the broken line in the figure), and usually less than that. Need to be designed with d. As mentioned above, Currently, the sampling frequency of the control unit is currently around 800 Hz, but there are also low-frequency ones.Therefore, as a flow sensor applied to automobiles, a heating resistor and a temperature sensor are used. The distance should be d ^ 30 im, preferably d≤25 im. Since the minimum gap between the heating resistor and the temperature sensor is manufactured using photolithography, the lower limit of d is 1 // m. Therefore, the distance d between the heating resistor and the temperature sensor is 1 111 to 30 / im, preferably 1 x rn to 25 / im.
なお、 絶縁膜 6の膜厚 tによって流量センサの出力周波数はほとんど変化せず、 距離 wだけの関数である。 なぜならば、 発熱抵抗体と温度センサ間の熱抵抗 Rは 絶縁膜 6の膜厚 tの逆数 1 / tに比例するが、 発熱抵抗体と温度センサ間の熱容 量 Cは膜厚 tに比例するため、 熱時定数 τ = R Cは膜厚に無関係となるためであ る。  Note that the output frequency of the flow sensor hardly changes depending on the thickness t of the insulating film 6, and is a function of only the distance w. This is because the thermal resistance R between the heating resistor and the temperature sensor is proportional to the reciprocal 1 / t of the thickness t of the insulating film 6, but the thermal capacitance C between the heating resistor and the temperature sensor is proportional to the thickness t Therefore, the thermal time constant τ = RC is independent of the film thickness.
なお、 本実施の形態では、 発熱抵抗体として、 白金を用いたが、 材料はニッケ ル、 ニッケル一鉄、 ニッケル一アルミ、 タングステン、 鉄一パラジウム、 ニッケ ルシリサイド、 モリブデンシリサイド、 チタンシリサイド、 低抵抗シリコン、 ポ リシリコンなどの、 金属、 合金、 シリサイド、 シリコンなどであってもよく、 上 記実施例と同様の効果がある。 また、 本実施例では、 温度センサとして、 白金の 抵抗体を用いたが、 材料は上記に挙げた金属、 合金、 シリサイド、 シリコンなど であってもよく、 また、 サーミスタゃ熱伝対であってもよく、 上記実施の形態と 同様の効果がある。  In this embodiment, platinum is used as the heating resistor, but the material is nickel, nickel-iron, nickel-aluminum, tungsten, iron-palladium, nickel silicide, molybdenum silicide, titanium silicide, low-resistance A metal, alloy, silicide, silicon, or the like such as silicon or polysilicon may be used, and has the same effect as the above embodiment. Further, in this embodiment, a platinum resistor was used as the temperature sensor, but the material may be the above-mentioned metal, alloy, silicide, silicon, or the like, or a thermistor-thermocouple. This has the same effect as the above embodiment.
また、 本実施の形態では、 支持基体材料としてシリコン窒化膜を用いたが、 材 料は発熱抵抗体と温度センサと接触する部分が絶縁体であれば良く、 シリコン窒 化膜以外の材料でも良い。 さらに、 本実施の形態では温度制御回路を図 3に示し たが、 上流側発熱抵抗体と下流側発熱抵抗体の温度が同じになるように発熱抵抗 体を交互に加熱する制御方式であれば、 他の回路構成であってもよく、 上記実施 の形態と同様の効果がある。 実施の形態 2 .  Further, in this embodiment, the silicon nitride film is used as the support base material. However, the material may be any material as long as the portion in contact with the heating resistor and the temperature sensor is an insulator, and may be a material other than the silicon nitride film. . Furthermore, although the temperature control circuit is shown in FIG. 3 in the present embodiment, a control method that alternately heats the heating resistors so that the temperature of the upstream heating resistor and the temperature of the downstream heating resistor become the same is used. However, other circuit configurations may be used, and the same effects as in the above embodiment can be obtained. Embodiment 2
図 7は、 本発明の実施の形態 2にかかる流量センサ S 2を示している。 図 7に おいて、 図 1と同一の符号を付したものは、 同一またはこれに相当するものであ る。 本実施の形態では、 支持膜 6がダイヤフラム状ではなくブリッジ状に形成さ れている。 ブリッジの形成は支持膜 6にドライエッチングで開口を施し、 支持膜 側と裏面の両方からシリコン基板 5の異方性ェッチングを行うことにより実施で きる。 本実施の形態により、 発熱抵抗体からシリコン基板 5への熱損失が低減で き、 実施の形態 1でダイヤフラムの大きさを大きくするのと同様な効果がある。 実施の形態 3 . FIG. 7 shows a flow sensor S2 according to the second embodiment of the present invention. Figure 7 In this case, the components with the same reference numerals as those in FIG. 1 are the same or equivalent. In this embodiment, the support film 6 is formed not in a diaphragm shape but in a bridge shape. The bridge can be formed by forming an opening in the support film 6 by dry etching and performing anisotropic etching of the silicon substrate 5 from both the support film side and the back surface. According to the present embodiment, the heat loss from the heat generating resistor to the silicon substrate 5 can be reduced, and the same effect as in Embodiment 1 can be obtained by increasing the size of the diaphragm. Embodiment 3.
図 8は、 本発明の実施の形態 3にかかる流量センサ S 3を示している。 図 8に おいて、 図 1と同一の符号を付したものは、 同一またはこれに相当するものであ る。 本実施の形態では、 支持膜 6がダイヤフラム状ではなくブリッジ状に形成さ れており、 支持膜 6は、 図 1 ( b ) に示すようにシリコン基板 5のキヤビティ 1 2上に支持されている。 キヤビティ 1 2の形成は、 支持膜 6にドライエッチング で開口を施し、 支持膜側からシリコン基板 5の異方性ェッチングを行うことによ り実施できる。 本実施の形態により、 発熱抵抗体からシリコ^基板 5への熱損失 が低減でき、 実施の形態 1でダイヤフラムの大きさを大きくするのと同様な効果 力 sある。 産業上の利用の可能性 FIG. 8 shows a flow sensor S3 according to the third embodiment of the present invention. In FIG. 8, the components denoted by the same reference numerals as those in FIG. 1 are the same or equivalent components. In this embodiment, the support film 6 is formed not in a diaphragm shape but in a bridge shape, and the support film 6 is supported on the cavities 12 of the silicon substrate 5 as shown in FIG. 1 (b). . The cavities 12 can be formed by forming an opening in the support film 6 by dry etching and performing anisotropic etching of the silicon substrate 5 from the support film side. According to this embodiment, can heat loss reduction from the heating resistor to the silicon ^ substrate 5, there same effect force s and to increase the size of the diaphragm in the first embodiment. Industrial applicability
以上説明したように、 本発明にかかる流量センサは、 その出力周波数をサンプ リング周波数以上に適宜設定できるので、 高速応答性が要求される自動車用の流 量センサとして使用するのに適している。  As described above, since the output frequency of the flow sensor according to the present invention can be appropriately set to be equal to or higher than the sampling frequency, the flow sensor is suitable for use as a flow sensor for an automobile requiring high-speed response.

Claims

請 求 の 範 囲 The scope of the claims
1. シリコン基板と、 該シリコン基板の表面に形成された絶縁性薄膜の支持膜と、 該支持膜上に形成され該支持膜によつて支持された 2組の発熱抵抗体及び温度セ ンサとを備え、 計測流体の流れの方向に見て上流側の発熱抵抗体及び温度センサ の温度と、 下流側の発熱抵抗体及び温度センサの温度が同じになるように、 上流 側及び下流側の発熱抵抗体を交互に加熱し、 上流側及び下流側発熱抵抗体の加熱 時間の比に基づいて計測流体の流量を計測する方式の流量センサであって、 上流側及び下流側発熱抵抗体を交互に加熱する切り替え周波数を f (H z) 、 各組の発熱抵抗体及び温度センサの距離を d (β τη) 、 定数を k l、 k 2とする と、 関係式 f = k l/d— k 2、 k l = 1 9 000、 0≤ k 2≤ 200, を満た すことを特徴とする流量センサ。 1. a silicon substrate, a supporting film of an insulating thin film formed on the surface of the silicon substrate, and two sets of heating resistors and a temperature sensor formed on the supporting film and supported by the supporting film. So that the temperature of the heating element and the temperature sensor on the upstream side in the direction of the flow of the measurement fluid are the same as the temperature of the heating element and the temperature sensor on the downstream side. This is a flow rate sensor that heats the resistors alternately and measures the flow rate of the measurement fluid based on the ratio of the heating time of the upstream and downstream heating resistors. Assuming that the switching frequency for heating is f (H z), the distance between each set of heating resistor and the temperature sensor is d (β τη), and the constants are kl and k2, the relational expression f = kl / d—k2, A flow sensor characterized by satisfying kl = 19 000, 0 ≤ k 2 ≤ 200.
2. 各組の発熱抵抗体及び温度センサの距離 d力 1 /2 m以上で、 3 0 μ m以下で あることを特徴とする請求項 1に記載の流量センサ。  2. The flow sensor according to claim 1, wherein the distance d between the heat generating resistor and the temperature sensor of each set is not less than 1/2 m and not more than 30 μm.
PCT/JP2001/010958 2001-12-14 2001-12-14 Flow sensor WO2003052355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/010958 WO2003052355A1 (en) 2001-12-14 2001-12-14 Flow sensor
JP2003553200A JPWO2003052355A1 (en) 2001-12-14 2001-12-14 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010958 WO2003052355A1 (en) 2001-12-14 2001-12-14 Flow sensor

Publications (1)

Publication Number Publication Date
WO2003052355A1 true WO2003052355A1 (en) 2003-06-26

Family

ID=11738034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010958 WO2003052355A1 (en) 2001-12-14 2001-12-14 Flow sensor

Country Status (2)

Country Link
JP (1) JPWO2003052355A1 (en)
WO (1) WO2003052355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133897A (en) * 2008-12-08 2010-06-17 Hitachi Automotive Systems Ltd Thermal fluid flow sensor and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943900A1 (en) * 1998-03-20 1999-09-22 Berkin B.V. Medium flow meter
JPH11344369A (en) * 1998-06-03 1999-12-14 Mitsubishi Electric Corp Flow-rate detecting element and flow-rate sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943900A1 (en) * 1998-03-20 1999-09-22 Berkin B.V. Medium flow meter
JPH11344369A (en) * 1998-06-03 1999-12-14 Mitsubishi Electric Corp Flow-rate detecting element and flow-rate sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133897A (en) * 2008-12-08 2010-06-17 Hitachi Automotive Systems Ltd Thermal fluid flow sensor and method of manufacturing the same
US8429964B2 (en) 2008-12-08 2013-04-30 Hitachi Automotive Systems, Ltd. Thermal fluid flow sensor having stacked insulating films above and below heater and temperature-measuring resistive elements

Also Published As

Publication number Publication date
JPWO2003052355A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR960015067B1 (en) Silicon base mass airflow sensor and assembly method
JP4881554B2 (en) Flow sensor
JP3718198B2 (en) Flow sensor
US5108193A (en) Thermal flow sensor
CN103052866B (en) Thermal flow rate sensor
EP2233896B1 (en) Thermal-type flowmeter
US9188470B2 (en) Thermal flow meter
WO2004106863A1 (en) Thermal flow sensor
Prasad et al. Development of micro-hotplate and its reliability for gas sensing applications
US7426857B2 (en) Flow detector element of thermosensible flow sensor
JPS62282270A (en) Flow sensor
JP3655838B2 (en) Thermal flow sensor
US7185539B2 (en) Flow sensor
WO2003052355A1 (en) Flow sensor
US6860153B2 (en) Gas pressure sensor based on short-distance heat conduction and method for fabricating same
JP3601993B2 (en) Thermal sensor and method of manufacturing the same
JP2006258675A (en) Flow sensor
JP3267513B2 (en) Flow velocity detector
JP2001021401A (en) Thermal air flow meter
JP3808208B2 (en) Solid stem for flow sensor
JP2000081347A (en) Thermal air flow element and thermal air flow meter
JP2005274515A (en) Sensor and measuring method thereby
JPH109922A (en) Thermosensitive micro bridge sensor
JP2003014519A (en) Sensor and its manufacturing method
JPH10260069A (en) Manufacture of flow rate detecting element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003553200

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载