WO2003052040A1 - Bloc hydrosoluble comprenant un detergent a lessive liquide en couches - Google Patents
Bloc hydrosoluble comprenant un detergent a lessive liquide en couches Download PDFInfo
- Publication number
- WO2003052040A1 WO2003052040A1 PCT/EP2002/012624 EP0212624W WO03052040A1 WO 2003052040 A1 WO2003052040 A1 WO 2003052040A1 EP 0212624 W EP0212624 W EP 0212624W WO 03052040 A1 WO03052040 A1 WO 03052040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- package
- composition
- component
- weight
- Prior art date
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 48
- 239000007788 liquid Substances 0.000 title claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 138
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000004094 surface-active agent Substances 0.000 claims abstract description 53
- 239000005486 organic electrolyte Substances 0.000 claims abstract description 19
- 239000003792 electrolyte Substances 0.000 claims description 29
- 239000002736 nonionic surfactant Substances 0.000 claims description 15
- 125000000129 anionic group Chemical group 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 12
- 239000003752 hydrotrope Substances 0.000 claims description 9
- 239000003945 anionic surfactant Substances 0.000 claims description 8
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 claims description 8
- 239000002775 capsule Substances 0.000 claims description 5
- 239000000839 emulsion Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 52
- 239000004615 ingredient Substances 0.000 description 26
- -1 methyl hydroxy propyl Chemical group 0.000 description 25
- 125000000217 alkyl group Chemical group 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 17
- 150000008052 alkyl sulfonates Chemical class 0.000 description 13
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 12
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 11
- 150000002191 fatty alcohols Chemical class 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 239000000975 dye Substances 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000003093 cationic surfactant Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 8
- 150000004996 alkyl benzenes Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000008051 alkyl sulfates Chemical class 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical class [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- WSAWCZQGMIRDJL-UHFFFAOYSA-N 3-carboxy-3,5-dihydroxy-5-oxopentanoate;2-hydroxyethylazanium Chemical compound NCCO.OC(=O)CC(O)(C(O)=O)CC(O)=O WSAWCZQGMIRDJL-UHFFFAOYSA-N 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 239000012683 anionic precursor Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 3
- 229930182470 glycoside Natural products 0.000 description 3
- 150000002338 glycosides Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 150000002892 organic cations Chemical class 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000005185 salting out Methods 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 230000003381 solubilizing effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002888 zwitterionic surfactant Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920002257 Plurafac® Polymers 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- IWMMSZLFZZPTJY-UHFFFAOYSA-M sodium;3-(dodecylamino)propane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCNCCCS([O-])(=O)=O IWMMSZLFZZPTJY-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- XTHLNJJMYLLKPD-UHFFFAOYSA-N 2-aminoethanol;carbonic acid Chemical compound NCCO.OC(O)=O XTHLNJJMYLLKPD-UHFFFAOYSA-N 0.000 description 1
- JCAYXDKNUSEQRT-UHFFFAOYSA-N 2-aminoethoxyboronic acid Chemical compound NCCOB(O)O JCAYXDKNUSEQRT-UHFFFAOYSA-N 0.000 description 1
- JBVOQKNLGSOPNZ-UHFFFAOYSA-N 2-propan-2-ylbenzenesulfonic acid Chemical compound CC(C)C1=CC=CC=C1S(O)(=O)=O JBVOQKNLGSOPNZ-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GDALETGZDYOOGB-UHFFFAOYSA-N Acridone Natural products C1=C(O)C=C2N(C)C3=CC=CC=C3C(=O)C2=C1O GDALETGZDYOOGB-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- OVCOMZNRVVSZBS-UHFFFAOYSA-L C(=O)(O)CN(CCCS(=O)(=O)[O-])CCCCCCCCCCCC.[Na+].[Na+].C(=O)(O)CN(CCCCCCCCCCCC)CCCS(=O)(=O)[O-] Chemical compound C(=O)(O)CN(CCCS(=O)(=O)[O-])CCCCCCCCCCCC.[Na+].[Na+].C(=O)(O)CN(CCCCCCCCCCCC)CCCS(=O)(=O)[O-] OVCOMZNRVVSZBS-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical class O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical class CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940114081 cinnamate Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940075933 dithionate Drugs 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- KIWBPDUYBMNFTB-UHFFFAOYSA-M ethyl sulfate Chemical compound CCOS([O-])(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-M 0.000 description 1
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- NFMHSPWHNQRFNR-UHFFFAOYSA-N hyponitrous acid Chemical compound ON=NO NFMHSPWHNQRFNR-UHFFFAOYSA-N 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- GSWAOPJLTADLTN-UHFFFAOYSA-N oxidanimine Chemical class [O-][NH3+] GSWAOPJLTADLTN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical class OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- HSJXWMZKBLUOLQ-UHFFFAOYSA-M potassium;2-dodecylbenzenesulfonate Chemical compound [K+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HSJXWMZKBLUOLQ-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- ACSMPKOCARMFDD-UHFFFAOYSA-M sodium;2-(dimethylamino)octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCC(N(C)C)C([O-])=O ACSMPKOCARMFDD-UHFFFAOYSA-M 0.000 description 1
- AOVQVJXCILXRRU-UHFFFAOYSA-M sodium;2-(dodecylamino)ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCNCCOS([O-])(=O)=O AOVQVJXCILXRRU-UHFFFAOYSA-M 0.000 description 1
- HWCHICTXVOMIIF-UHFFFAOYSA-M sodium;3-(dodecylamino)propanoate Chemical compound [Na+].CCCCCCCCCCCCNCCC([O-])=O HWCHICTXVOMIIF-UHFFFAOYSA-M 0.000 description 1
- 229940075554 sorbate Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940086735 succinate Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical compound OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Chemical class 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0017—Multi-phase liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
- C11D17/043—Liquid or thixotropic (gel) compositions
Definitions
- a water-soluble single-use package comprising a layered liquid detergent in the water-soluble body portion and a process of its preparation.
- Detergent compositions are provided in many forms, of which granular' and liquid compositions are the most prevalent. More recently, unit dose forms of detergent have been proposed in the form of compressed tablets of detergent powder or water-soluble packages, which are consumed during a single cleaning application. The unit dose forms are preferred by some consumers, in that the dose is pre-measured and, consequently, the unit dose form is faster, easier and less messy to use. Water-soluble packages filled with liquid detergent composition are desired especially by consumers who are used to liquid detergents.
- Water-soluble unit dose packages containing liquids are known. See, for instance, Kennedy (US Patent 4,973,416), Dickler et al. (US Patent 6,037,319), Haq (US Patent 4,416,791) and Richardson (US Patent 4,115,292).
- the packages may contain various amounts, including relatively high, amounts of water. See for instance WO 94/14941, EP 518 689, WO 97/27743, and JP 06/340,899.
- EP 116422, EP 175485, GB 1247189, WO 99/47635, and Ginn disclose dual layer liquid cleaning compositions in a bottle or a water insoluble package.
- the layers are achieved by employing an electrolyte, which when added to an aqueous surfactant solution, forces the separation of the surfactant from the aqueous phase.
- electrolyte which when added to an aqueous surfactant solution, forces the separation of the surfactant from the aqueous phase.
- the phenomenon of separating an organic component from an aqueous layer, by the addition of a salt (electrolyte) is known as "salting out.”
- the salt increases the ionic character of water and drives the organic, less polar, component away.
- the present invention includes a layered liquid detergent composition in a water-soluble single use package, the composition comprising at least two layers, with a surfactant and an organic electrolyte distributed within the layers.
- the preferred inventive compositions include water, yet the water-soluble package remains intact on storage.
- Water-soluble body as used herein means soluble in cold water, i.e. soluble at 5°C and above.
- Liquid as used herein means that a continuous phase or predominant part of the composition is liquid and that a composition is flowable at 20°C.
- Organic cation as used herein means a non-metal, positively charged ionic entity.
- Organic electrolyte as used herein means an electrolyte containing an organic cation.
- Transparent as used herein includes both transparent and translucent and means that an ingredient, or a mixture, or a phase, or a composition, or a package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, most preferably more than 40%, optimally more than 50% in the visible part of the spectrum (approx. 410-800 nm).
- absorbency may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: ⁇ j ⁇ (f hsorbmcy x 100%.
- % transmittance equals: ⁇ j ⁇ (f hsorbmcy x 100%.
- composition or "liquid detergent composition” as used herein means the final detergent composition (i.e., the detergent composition itself, but not the water-soluble body), including at least two layers.
- the at least two layers comprise between them a surfactant and an organic electrolyte.
- the package is preferably made of a clear, sealable, cold water soluble film such as polyvinyl alcohol. Thickness could range from 25 to 100 ⁇ m, more preferably from 35 to 80 ⁇ m, most preferably from 45 to 55 ⁇ m. Other materials from which the package can be made include but are not limited to methyl hydroxy propyl cellulose and polyethylene oxide. Polyvinyl alcohol is preferred due to its ready availability and low cost.
- One supplier of polyvinyl alcohol film is Monosol Inc. European suppliers of suitable films include but are not limited to Monosol supplied by Monosol Inc. or PT supplied by Aicello or K-series supplied by Kurary or Hydrafilm supplied by Rainier Specialty polymers ltd, or QSA series by Polymer Films, Inc.
- the water-soluble film of the base wall is the same material as that used to make the body wall. Both thermoforming and cold forming (e.g., with water) are possible.
- the essential ingredients of the inventive laundry compositions are surfactant and organic electrolyte.
- compositions of the invention contain one or more surface active agents (surfactants) selected from the group consisting of anionic, nonionic, cationic, ampholytic and zwitterionic surfactants or mixtures thereof.
- surfactants selected from the group consisting of anionic, nonionic, cationic, ampholytic and zwitterionic surfactants or mixtures thereof.
- the preferred surfactant detergents for use in the present invention are mixtures of anionic and nonionic surfactants although it is to be understood that any surfactant may be used alone or in combination with any other surfactant or surfactants.
- the surfactant should comprise at least 5%, e.g., 5% to 80%, preferably at least 10% to 80%, more preferably 15% to 40%; even more preferably 15% to 35% of the composition.
- Nonionic synthetic organic detergents which can be used with the invention, alone or in combination with other surfactants, are described below. Nonionic surfactants are typically included.
- Nonionics surfactants are nonionic surfactants whch are pourable liquids, gels or pastes at 25°C.
- Nonionic detergent surfactants normally have molecular weights of from about 300 to about 11,000. Mixtures of different nonionic detergent surfactants may also be used, provided the mixture is a liquid gel or paste at 25 °C.
- the composition may comprise one or more nonionic surfactants which are solid at 25 °C. These dissolved and/or dispersed in either or both liquid layers.
- nonionic detergents are characterized by the presence of an organic hydrophobic group and an organic hydrophilic group and are typically produced by the condensation of an organic aliphatic or alkyl aromatic hydrophobic compound with ethylene oxide (hydrophilic in nature).
- suitable nonionic surfactants are those disclosed in U.S. Pat. Nos. 4,316,812 and 3,630,929 and applicants' published European specification EP-A- 225,654.
- the nonionic detergents are polyalkoxylated lipophiles wherein the desired hydrophile-lipophile balance is obtained from addition of a hydrophilic polyalkoxy group to a lipophilic moiety.
- a preferred class of nonionic detergent is the alkoxylated alkanols wherein the alkanol is of 9 to 18 carbon atoms and wherein the number of moles of alkylene oxide (of 2 or 3 carbon atoms) is from 3 to 12. Of such materials it is preferred to employ those wherein the alkanol is a fatty alcohol of 9 to 11 or 12 to 15 carbon atoms and which contain from 5 to 8 or 5 to 9 alkoxy groups per mole.
- Exemplary of such compounds are those wherein the alkanol is of 12 to 15 carbon atoms and which contain about 7 ethylene oxide groups per mole, e.g. Neodol® 25-7 and Neodol® 23®- 6.5, which products are made by Shell Chemical Company, Inc.
- the former is a condensation product of a mixture of higher fatty alcohols averaging about 12 to 15 carbon atoms, with about 7 moles of ethylene oxide and the latter is a corresponding mixture wherein the carbon atoms content of the higher fatty alcohol is 12 to 13 and the number of ethylene oxide groups present averages about 6.5.
- the higher alcohols are primary alkanols.
- Nonionics are represented by the commercially well- known class of nonionics sold under the trademark Plurafac®.
- the Plurafacs® are the reaction products of a higher linear alcohol and a mixture of ethylene and propylene oxides, containing a mixed chain of ethylene oxide and propylene oxide, terminated by a hydroxyl group. Examples include C 13 - C 15 fatty alcohol condensed with 6 moles ethylene oxide and 3 moles propylene oxide, C 13 - C 15 fatty alcohol condensed with 7 moles propylene oxide and 4 moles ethylene oxide, C 13 - C 15 fatty alcohol condensed with 5 moles propylene oxide and 10 moles ethylene oxide, or mixtures of any of the above.
- Nonionic surfactants include the C 12 -C 15 primary fatty alcohols with relatively narrow contents of ethylene oxide in the range of from about 7 to 9 moles, and the C 9 to C ⁇ fatty alcohols ethoxylated with about 5-6 moles ethylene oxide.
- Another class of nonionic surfactants which can be used in accordance with this invention are glycoside surfactants.
- Glycoside surfactants suitable for use in accordance with the present invention include those of the formula:
- R is a monovalent organic radical containing from about 6 to about 30
- R' is a divalent hydrocarbon radical containing from about 2 to 4 carbons atoms
- 0 is an oxygen atom
- y is a number which can have an average value of from 0 to about 12 but which is most preferably zero
- Z is a moiety derived from a reducing saccharide containing 5 or 6 carbon atoms
- x is a number having an average value of from 1 to about 10 (preferably from about 1.5 to about 10).
- a particularly preferred group of glycoside surfactants for use in the practice of this invention includes those of the formula above in which R is a monovalent organic radical (linear or branched) containing from about 6 to about 1 8(especially from about 8 to about 18) carbon atoms; y is zero; z is glucose or a moiety derived therefrom; x is a number having an average value of from 1 to about 4 (preferably from about 1 to 4).
- Nonionic surfactants particularly useful for this application include, but are not limited to: alcohol ethoxylates (e.g. Neodol® 25-9 from Shell Chemical Co.), alkyl phenol ethoxylates (e.g. Tergitol® NP-9 from Union Carbide Corp.), alkylpolyglucosides (e.g. Glucapon® 600CS from Henkel Corp.), polyoxyethylenated polyoxypropylene glycols
- sorbitol esters e.g. Emsorb® 2515 from Henkel Corp.
- polyoxyethylenated sorbitol esters e.g. Emsorb® 6900 from Henkel Corp.
- alkanolamides e.g. Alkamide® DC212/SE from Rhone-Poulenc Co.
- N- alkypyrrolidones e.g. Surfadone® LP-100 from ISP Technologies Inc.
- Mixtures of two or more of the nonionic surfactants can be used.
- Anionic Surfactant Anionic surface active agents which may be used in the present invention are those surface active compounds which contain a long chain hydrocarbon hydrophobic group in their molecular structure and a hydrophilic group, i.e.; water solubilizing group such as sulfonate, sulfate or carboxylate group.
- the anionic surface active agents include the alkali metal (e.g. sodium and potassium) water soluble higher alkyl benzene sulfonates, alkyl sulfonates, alkyl sulfates and the alkyl polyether sulfates. They may also include fatty acid or fatty acid soaps.
- the preferred anionic surface active agents are the alkali metal, ammonium or alkanolamide salts of higher alkyl benzene sulfonates and alkali metal, ammonium or alkanolamide salts of higher alkyl sulfonates.
- Preferred higher alkyl sulfonates are those in which the alkyl groups contain 8 to 26 carbon atoms, preferably 12 to 22 carbon atoms and more preferably 14 to 18 carbon atoms.
- the alkyl group in the alkyl benzene sulfonate preferably contains 8 to 16 carbon atoms and more preferably 10 to 15 carbon atoms.
- a particularly preferred alkyl benzene sulfonate is the sodium or potassium dodecyl benzene sulfonate, e.g. sodium linear dodecyl benzene sulfonate.
- the primary and secondary alkyl sulfonates can be made by reacting long chain alpha-olefins with sulfites or bisulfites, e.g. sodium bisulfite.
- the alkyl sulfonates can also be made by reacting long chain normal paraffin hydrocarbons with sulfur dioxide and oxygen as described in U.S. Pat. Nos. 2,503,280, 2,507,088, 3,372, 188 and 3,260,741 to obtain normal or secondary higher alkyl sulfonates suitable for use as surfactant detergents.
- the alkyl substituent is preferably linear, i.e. normal alkyl, however, branched chain alkyl sulfonates can be employed, although they are not as good with respect to biodegradability.
- the alkane, i.e. alkyl, substituent may be terminally sulfonated or may be joined, for example, to the carbon atom of the chain, i.e. may be a secondary sulfonate. It is understood in the art that the substituent may be joined to any carbon on the alkyl chain.
- the higher alkyl sulfonates can be used as the alkali metal salts, such as sodium and potassium.
- the preferred salts are the sodium salts.
- the preferred alkyl sulfonates are the C 10 to C 18 primary normal alkyl sodium and potassium sulfonates, with the C 10 to C 15 primary normal alkyl sulfonate salt being more preferred.
- normal alkyl and branched chain alkyl sulfates e.g., primary alkyl sulfates
- anionic component e.g., sodium sulfate
- the higher alkyl polyether sulfates used in accordance with the present invention can be normal or branched chain alkyl and contain lower alkoxy groups which can contain two or three carbon atoms.
- the normal higher alkyl polyether sulfates are preferred in that they have a higher degree of biodegradability than the branched chain alkyl and the lower poly alkoxy groups are preferably ethoxy groups.
- R' is C 8 to C 20 alkyl, preferably Cio to C ⁇ 8 and more preferably C 12 to C ⁇ 5 ; p is 2 to 8, preferably 2 to 6, and more preferably 2 to 4;and M is an alkali metal, such as sodium and potassium, or an ammonium cation.
- the sodium and potassium salts are preferred.
- a preferred higher alkyl poly ethoxylated sulfate is the sodium salt of a triethoxy C 1 to C 15 alcohol sulfate having the formula:
- alkyl ethoxy sulfates examples include C 12-15 normal or primary alkyl triethoxy sulfate, sodium salt; n-decyl diethoxy sulfate, sodium salt; C 12 primary alkyl diethoxy sulfate, ammonium salt; C 12 primary alkyl triethoxy sulfate, sodium salt: C 15 primary alkyl tetraethoxy sulfate, sodium salt, mixed C ⁇ 4-15 normal primary alkyl mixed tri- and tetraethoxy sulfate, sodium salt; stearyl pentaethoxy sulfate, sodium salt; and mixed C 10- ⁇ 8 normal primary alkyl triethoxy sulfate, potassium salt.
- the normal alkyl ethoxy sulfates are readily biodegradable and are preferred.
- the alkyl poly- lower alkoxy sulfates can be used in mixtures with each other and/or in mixtures with the above discussed higher alkyl benzene, alkyl sulfonates, or alkyl sulfates.
- the alkali metal higher alkyl poly ethoxy sulfate can be used with the alkylbenzene sulfonate and/or with an alkyl sulfonate or sulfonate, in an amount of 0 to 70%, preferably 10 to 50% and more preferably 10 to 20% by weight of entire composition.
- Anionic surfactants particularly useful for this application include, but are not limited to: linear alkyl benzene sulfonates (e.g. Vista® C-500 from Vista Chemical Co.), alkyl sulfates (e.g. Polystep® B-5 from Stepan Co.), polyoxyethylenated alkyl sulfates (e.g. Standapol® ES- 3 from Stepan Co.), alpha olefin sulfonates (e.g. Witconate® AOS from Witco Corp.), alpha sulfo methyl esters (e.g. Alpha-Step® MC-48 from Stepan Co.), alkyl ether sulfates and isethionates (e.g. Jordapon® CI from PPG Industries Inc.).
- linear alkyl benzene sulfonates e.g. Vista® C-500 from Vista Chemical Co.
- alkyl sulfates e.g.
- Anionic surfactants may be added pre-neutralized or, preferably, may be formed in situ, by neutralizing a precursor acid (fatty acid in the case of soaps). Further, the anionic precursor or fatty acid should be over-neutralised (i.e. there should be an excess of the alkaline material used to form the counter-ion). Further still, it is preferable to use the organic counter-ion used for the organic electrolyte. Preferably, monoethanolamine salt of the anionic precursor acid is employed.
- cationic surfactants are known in the art, and almost any cationic surfactant having at least one long chain alkyl group of about 10 to 24 carbon atoms is suitable in the present invention. Such compounds are described in "Cationic Surfactants", Jungermann, 1970, incorporated by reference.
- compositions of the invention may use cationic surfactants alone or in combination with any of the other surfactants known in the art.
- compositions may contain no cationic surfactants at all.
- Ampholytic synthetic detergents can be broadly described as derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical may be a straight chain or a branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one contains an anionic water- solubilizing group, e.g. carboxylate, sulfonate, sulfate.
- an anionic water- solubilizing group e.g. carboxylate, sulfonate, sulfate.
- Examples of compounds falling within this definition are sodium 3(dodecylamino)propionate, sodium 3-(dodecylamino)propane-l- sulfonate, sodium 2-(dodecylamino)ethyl sulfate, sodium 2-(dimethylamino)octadecanoate, disodium 3-(N- carboxymethyldodecylamino)propane 1 -sulfonate, disodium octadecyl- imminodiacetate, sodium l-carboxymethyl-2-undecylimidazole, and sodium N, N-bis(2- hydroxyethyl)-2-sulfato-3-dodecoxypropylamine.
- Zwitterionic surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds.
- the cationic atom in the quaternary compound can be part of a heterocyclic ring. In all of these compounds there is at least one aliphatic group, straight chain or branched, containing from about 3 to 18 carbon atoms and at least one aliphatic substituent containing an anionic water solubilizing group, e. g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
- zwitterionic surfactants which may be used are set forth in U.S. Pat. No. 4,062,647, hereby incorporated by reference.
- the surfactant in the laundry compositions of the invention is anionic and/or nonionic, especially linear alkylbenzene sulfonate, alkyl ether sulfate, alcohol ethoxylates and mixtures thereof.
- mixtures of anionic and nonionc surfactants are especially preferred, for optimum greasy stain and particulate soil removal.
- the most effective mixtures employ anionic to nonionic ratio of from 10: 1 to 1:10, preferably from 5:1 to 1:5, most preferably from 3:1 to 1:3.
- nonionic surfactants are employed, in the absence of, or lower levels of, anionic surfactants, alone or in combination with cationic surfactants and/or antifoams.
- Electrolyte The electrolyte employed in the present invention contains an organic (i.e. non-metal) cation. Suitable cations include but are not limited to ammonium, ammonium hydroxide, amines, more preferably alkanolamines (e.g., monoethanolamine, diethanolamine, triethanolamine, isopropylamine) . It has been found, as part of the present invention, that the use of an electrolyte containing an organic cation results in formulations which may contain more water, yet by virtue of much reduced water activity level, without damaging the water-soluble package, resulting in more cost-effective product. Higher amounts of water are also advantageous to accommodate hydrophilic functional ingredients.
- organic electrolyte resulted in improved transparency of the compositions, compared to the same compositions containing an inorganic electrolyte (i.e., inorganic cation).
- organic electrolytes decrease the potential for surfactant crystallizing out during storage.
- Suitable anions include but are not limited to sulphate, nitrate, fluoride, chloride, bromide, iodide, acetate, tartrate, ammonium tartrate, benzenesulphonate, benzoate, bicarbonate, carbonate, bisulphate, bisulphite, sulphate, sulphite, borate, borotartrate, bromate, butyrate, chlorate, camphorate, chlorite, cinnamate, citrate, disilicate, dithionate, ethylsulphate, ferricyanide, ferrocyanide, fluorosilicate, formate, glycerophosphate, hydrogenphosphate, hydroxostannate, hypochlorite, hyponitrite, hypophosphite, iodate, isobutyrate, lactate, laurate, metaborate, metasilicate, methionate, methylsulphate, nitrite, oleate, orthophosphate, orthopho
- Electrolyte may be pre- formed or formed in situ.
- organic electrolytes suitable for use in the present invention meet both of the following criteria:
- Preferred electrolytes are selected from the group consisting of monoethanolamine, triethanolamine, and ammonium oxide salts of citrate, carbonate, bicarbonate, borate and sulfate.
- Monoethanolamme salt is the most effective.
- Monoethanolamine citrate, monoethanolamine carbonate and monoethanolamine borate are the most preferred, due to their ability to also function as builders and/or buffering agents in the detergent composition.
- Monoethanolamine citrate is optimum, due to its optimum ability to salt out a surfactant and/or reduce the water activity.
- the liquid detergent composition of the invention generally includes from 1 to 50%, more preferably from 5 to 40%, most preferably from 5 to 35%, and optimally from 10 to 30% of the organic electrolyte, in order to attain a stable layered composition, at optimum cost.
- concentration of electrolyte to create a two-layered composition depends on the surfactant concentration, the water amount and the identity of the electrolyte.
- the concentration needed may be predicted by calculating the ionic strength of the electrolyte at a particular concentration. It has been found as part of the present invention that the preferred electrolytes and preferred concentrations are those that have a calculated ionic strength of at least 4.2, preferably at least 4.4, more preferably at least 5.
- Ionic strength represents interactions of ions with water molecules and other ions in the solution. Ionic strength may be calculated as follows:
- the liquid laundry detergent according to the invention comprises at least two layers. Both layers are preferably isotropic (a single phase when viewed macroscopically), after standing still for at least 24 hours at 20°C. "Isotropic" is used herein to describe each layer of the inventive composition, since the composition overall contains at least two layers and thus could not be isotropic overall. Both layers are preferably transparent/translucent. Preferably, at least one layer is colored. Generally, the layers are attained when the sufficient amount of the electrolyte is added to the surfactant. The amount differs in each specific case, depending on the identity and the amount of the surfactant(s), water and electrolyte(s). The discussion of ionic strength in the immediately preceding paragraph is relevant here, since the electrolyte should be present in a sufficient concentration to force surfactant salting out, thus creating layers.
- organic electrolytes are or could be liquid. Furthermore, they can be liquid, in the presence of extra organic neutralizing agent (as is the case with monoethanolamine citrate in the presence of extra monoethanolamine). Since the surfactant may also be liquid, it is possible to prepare a layered liquid composition in the absence of water. Such is not a case with inorganic electrolytes, which are solid salts.
- compositions comprise two layers, with the top layer containing majority, preferably all, of the surfactant, and the bottom layer containing the majority, preferably all, of the electrolyte.
- compositions of the resultant layers do not necessarily correspond with the compositions of the respective layers prior to their being combined into a single composition. This is because of reaction between ingredients, in particular the acidic ingredients and the basic ingredients (e.g., monoethanolamine) and also, because of possible migration of material between the two layers, or emulsif ⁇ cation of some of the layers within each other. Consequently, it is to be understood that the composition of the components as herein described pertains to the compositions prior to their being combined into a single composition. By virtue of employing a surfactant and an organic electrolyte in the amounts as herein described (and optional ingredients, including those described below), the composition separates into at least two layers, wherein the composition of the layers may differ from the composition of the initial components.
- a surfactant and an organic electrolyte in the amounts as herein described (and optional ingredients, including those described below)
- the ranges of the surfactant, electrolyte, and water content within the respective components or layers are as follows (% by weight of the relevant component):
- the volume ratio of the two components in the final composition is generally in the range of from 10:90 to 90:10, more preferably from 20:80 to 80:20, most preferably from 70:30 to 30:70, and optimally from 40:60 to 60:40, in order to provide the most pleasing appearance and optimum cleaning benefits.
- the resulting layers have the volume ratios in the same ranges as described above (but the layer ratio may not be the same as the component ratio). More than two layers may be present.
- the additional layer may be a capsule, dispersion or emulsion layer, as described below under Optional Ingredients.
- a surfactant component may include both highly polar and highly non-polar ingredients, which might separate into more than one organic-rich layer.
- the preferred laundry composition may include one or more well-known laundry ingredients, such as builders (from 0.1 to 20%), anti- redeposition agents, fluorescent dyes, perfumes, soil-release polymers, colorant, enzymes, buffering agents, antifoam agents, UV-absorber, etc. Electrolytes may serve as builders in the composition, yet additional builders maybe present.
- Water A particularly preferred optional ingredient is water.
- the liquid detergent compositions of the invention may (but do not have to) contain significant amounts of water. Relatively high water amount is beneficial, in order to incorporate hydrophilic ingredients into the composition.
- the layered composition is attained which may contain high amounts of water, yet the water present in the composition does not dissolve the water-soluble package enveloping the composition.
- the liquid detergent composition of the invention generally includes from 0 to 70% of total (free and bound) water, more preferably from 5 to 50%, most preferably from 10 to 50%, and optimally from 25 to 40%, in order to obtain clarity and ease of the dispersion of the composition during use (% by weight of the composition). Yet, by virtue of employing the electrolyte as taught herein the water activity of the inventive compositions is generally low: typically less than 0.94, preferably less than 0.93, more preferably less than 0.9, optimally less than 0.8. in order to obtain compositions which contain optimum amounts of water, yet may be stored safely in a water-soluble package.
- Water activity is the ratio of the vapor pressure of a solution to that of pure water. It is related to the inverse of the relative humidity of the atmosphere above the sample at equilibrium. Apparatus: Aqualab CX-2 Water Activity meter; Sample containers; Transfer pipets
- Salt standards should be prepared in deionized water every six months, or as needed. They are stored at room temperature, and are used to calibrate the water activity machine with each use.
- the Aqualab measures the inverse of the relative humidity of a solution, by evaluating the condensation that forms on a mirror within the machine. Samples containing high levels of propylene glycol are not usually run with the Aqualab because PPG coats the mirror.
- Hydrotrope Another particularly preferred optional ingredient is a hydrotrope, which prevents liquid crystal formation.
- the hydrotrope is typically included in the surfactant layer. The addition of the hydrotrope thus aids the clarity/transparency of the composition.
- Suitable hydrotropes include but are not limited to propylene glycol, ethanol, salts of benzene sulphonate, toluene sulphonate, xylene sulphonate or cumene sulphonate.
- Suitable salts include but are not limited to sodium, potassium, ammonium, monoethanolamine, triethanolamine.
- the hydrotrope is selected from the group consisting of propylene glycol, xylene sulfonate, ethanol, and urea to provide optimum performance.
- the amount of the hydrotrope is generally in the range of from 0 to 30%, preferably from 0.5 to 20%, most preferably from 1 to 15%.
- Dye Another particularly preferred ingredient is a dye, in order to create a composition with visually appealing colored layer or layers.
- a dye is an organic molecule and so will partition into the organic (surfactant) layer. It is possible, although less usual that a dye may partition into the electrolyte layer.
- Suitable dyes include but are not limited to:
- Xanthene Of these, the Azo and Pyrene families of dyes are suitable for inclusion into an electrolyte layer (i.e. these dyes will likely partition into the electrolyte layer — but may do so along with the surfactant layer).
- One of the preferred embodiments is to include both a dye that will partition into a surfactant layer and a dye that will partition into an electrolyte layer, in order to provide a 2-colored composition.
- the inventive compositions generally include from 0.0001 to 1%, more preferably from 0.0005 to 0.1%, most preferably from 0.0001 to 0.1% of the dye, in order to provide a pleasing appearance (% by weight of the composition).
- the liquid compositions may include encapsulated ingredients, preferably in the form of transparent or colored capsules or an emulsion, or a dispersion. These capsules, emulsion, or dispersion, may be distributed in one or more layers of the inventive compositions, or may be present as an additional layer.
- Preferred ingredients to be encapsulated are enzymes, bleaches, colorants, perfumes, and mixtures thereof to minimize the damage to these ingredients from water or surfactant, or alkaline ingredients, and/or to enhance the appearance of the product.
- Preferred inventive compositions comprise from 0.5 to 20%, more preferably from 0.1 to 10%, most preferably from 0.3 to 6%, and optimally from 0.5 to 5%, in order to attain optimum performance and/or appearance (% by weight of the composition).
- the pH of the inventive compositions is generally in the range of from 2.5 to 12.5, preferably in the range of from 4 to 10, most preferably from 6 to 9, in order to attain optimum laundry cleaning.
- the composition of the components employed for making the inventive layered composition is as follows: Ingredients of component 1 (% by weight of the component):
- the detergent composition is a transparent/translucent composition packaged in the transparent/translucent body.
- the packages of the invention may be prepared from polyvinyl alcohol film, or other suitable material, which is filled, then sealed, preferably heat-sealed or water-sealed.
- the packages may be filled in any suitable way.
- the liquid detergent composition is pre-mixed (both components) and filled in the same manner as a single phase composition would be.
- the composition may also be filled component by component.
- the package may take many shapes as viewed in a plan view, such as rectangular, square, triangle, round, etc.
- the package is in a polyhedral shape (e.g., tetrahedron or a pyramid).
- the package is mixed with water (e.g., inside a laundry machine), in order to dissolve the body and to release the contents of the package.
- water e.g., inside a laundry machine
- composition as in Table 1, within the scope of the invention was prepared by mixing the ingredients in the order listed for each component.
- the product was a stable-two-layered liquid. 25 grams of each component were added into a polyvinyl alcohol pouch made of 75.6 microns thickness of polyvinyl alcohol film ex. Monosol and sealed. The pouch was stable for at least 3 weeks, with no visible impact on the film. Two transparent layers were visible in the pouch and separated easily after shaking.
- the composition contained no water.
- the product was a stable two-layered, clear liquid.
- the product separated into layers easily, even after shaking.
- 25 grams of each component were added into a polyvinyl alcohol pouch made of 75.6 microns thickness of polyvinyl alcohol film ex. Monosol and sealed.
- the pouch was stable for at least 3 weeks, with no visible impact on the film. Two transparent layers were visible in the pouch and separated easily after shaking.
- Example 3 The two components each of Examples 3 and 4 were respectively dosed at 25ml per each package sealed by VFFS (vertical form film system), the package being formed of MONOSOL T film.
- VFFS vertical form film system
- compositions of Examples 3 and 4 showed superior clarity, separation between the layers and storage stability over several weeks at room temperature, as evidenced by lack of precipitation.
- the packages were filled and sealed by HFFS (horizontal form film system) with no difference in performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
- Wrappers (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60204914T DE60204914T2 (de) | 2001-12-14 | 2002-11-12 | Wasserlösliche verpackung enthaltend ein mehrphasiges flüssiges waschmittel |
EP02792755A EP1453941B1 (fr) | 2001-12-14 | 2002-11-12 | Bloc hydrosoluble comprenant un detergent a lessive liquide en couches |
AU2002358498A AU2002358498A1 (en) | 2001-12-14 | 2002-11-12 | Water-soluble package with layered liquid laundry detergent |
AT02792755T ATE298784T1 (de) | 2001-12-14 | 2002-11-12 | Wasserlösliche verpackung enthaltend ein mehrphasiges flüssiges waschmittel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2046201A | 2001-12-14 | 2001-12-14 | |
US10/020,462 | 2001-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003052040A1 true WO2003052040A1 (fr) | 2003-06-26 |
Family
ID=21798744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/012624 WO2003052040A1 (fr) | 2001-12-14 | 2002-11-12 | Bloc hydrosoluble comprenant un detergent a lessive liquide en couches |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1453941B1 (fr) |
AT (1) | ATE298784T1 (fr) |
AU (1) | AU2002358498A1 (fr) |
DE (1) | DE60204914T2 (fr) |
ES (1) | ES2244828T3 (fr) |
WO (1) | WO2003052040A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006130647A1 (fr) * | 2005-06-01 | 2006-12-07 | The Procter & Gamble Company | Sachet hydrosoluble contenant un liquide |
EP1854869A1 (fr) * | 2006-05-09 | 2007-11-14 | The Procter and Gamble Company | Sachet contenant du liquide, soluble dans l'eau |
US8455417B2 (en) | 2004-07-02 | 2013-06-04 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
US9006169B2 (en) | 2005-06-03 | 2015-04-14 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
EP3134501A4 (fr) * | 2014-04-22 | 2018-01-17 | Henkel IP & Holding GmbH | Compositions détergentes en doses unitaires |
EP2404988B1 (fr) | 2010-07-07 | 2018-01-24 | Dalli-Werke GmbH & Co. KG | Composition d'application locale en pré-traitement de taches sur du linge |
WO2018140565A1 (fr) | 2017-01-27 | 2018-08-02 | Henkel IP & Holding GmbH | Compositions de doses unitaires stables à teneur élevée en eau |
EP3363888A1 (fr) * | 2017-02-21 | 2018-08-22 | The Procter & Gamble Company | Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets défavorables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014152547A2 (fr) * | 2013-03-14 | 2014-09-25 | Novozymes A/S | Poche de détergent comportant un film enzymatique soluble dans l'eau |
CN109266467A (zh) * | 2018-08-20 | 2019-01-25 | 四川建元天地环保科技有限公司 | 有机电解液在产品表面去污的用途 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1247189A (en) * | 1967-12-28 | 1971-09-22 | Unilever Nv | Liquid compositions for the treatment of natural or synthetic fibres |
DE19951635A1 (de) * | 1999-10-26 | 2001-05-17 | Henkel Kgaa | Wäßriges mehrphasiges Reinigungsmittel |
-
2002
- 2002-11-12 WO PCT/EP2002/012624 patent/WO2003052040A1/fr not_active Application Discontinuation
- 2002-11-12 DE DE60204914T patent/DE60204914T2/de not_active Expired - Lifetime
- 2002-11-12 AT AT02792755T patent/ATE298784T1/de not_active IP Right Cessation
- 2002-11-12 AU AU2002358498A patent/AU2002358498A1/en not_active Abandoned
- 2002-11-12 EP EP02792755A patent/EP1453941B1/fr not_active Expired - Lifetime
- 2002-11-12 ES ES02792755T patent/ES2244828T3/es not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1247189A (en) * | 1967-12-28 | 1971-09-22 | Unilever Nv | Liquid compositions for the treatment of natural or synthetic fibres |
DE19951635A1 (de) * | 1999-10-26 | 2001-05-17 | Henkel Kgaa | Wäßriges mehrphasiges Reinigungsmittel |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10682383B2 (en) | 2004-07-02 | 2020-06-16 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
US8455417B2 (en) | 2004-07-02 | 2013-06-04 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
US10183051B2 (en) | 2004-07-02 | 2019-01-22 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
WO2006130647A1 (fr) * | 2005-06-01 | 2006-12-07 | The Procter & Gamble Company | Sachet hydrosoluble contenant un liquide |
US9585866B2 (en) | 2005-06-03 | 2017-03-07 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
US9006169B2 (en) | 2005-06-03 | 2015-04-14 | The Procter & Gamble Company | Personal care compositions with improved hyposensitivity |
EP1854869A1 (fr) * | 2006-05-09 | 2007-11-14 | The Procter and Gamble Company | Sachet contenant du liquide, soluble dans l'eau |
EP2404988B1 (fr) | 2010-07-07 | 2018-01-24 | Dalli-Werke GmbH & Co. KG | Composition d'application locale en pré-traitement de taches sur du linge |
EP3134501A4 (fr) * | 2014-04-22 | 2018-01-17 | Henkel IP & Holding GmbH | Compositions détergentes en doses unitaires |
US10047328B2 (en) | 2014-04-22 | 2018-08-14 | Hekel IP & Holding GmbH | Unit dose detergent compositions |
AU2015249760B2 (en) * | 2014-04-22 | 2018-08-30 | Henkel IP & Holding GmbH | Unit dose detergent compositions |
WO2018140565A1 (fr) | 2017-01-27 | 2018-08-02 | Henkel IP & Holding GmbH | Compositions de doses unitaires stables à teneur élevée en eau |
US10696926B2 (en) | 2017-01-27 | 2020-06-30 | Henkel IP & Holding GmbH | Stable unit dose compositions with high water content and structured surfactants |
EP3574078A4 (fr) * | 2017-01-27 | 2020-08-19 | Henkel IP & Holding GmbH | Compositions de doses unitaires stables à teneur élevée en eau |
US10760034B2 (en) | 2017-01-27 | 2020-09-01 | Henkel IP & Holding GmbH | Stable unit dose compositions with high water content |
EP3363888A1 (fr) * | 2017-02-21 | 2018-08-22 | The Procter & Gamble Company | Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets défavorables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau |
Also Published As
Publication number | Publication date |
---|---|
DE60204914D1 (de) | 2005-08-04 |
DE60204914T2 (de) | 2006-04-27 |
EP1453941A1 (fr) | 2004-09-08 |
ES2244828T3 (es) | 2005-12-16 |
EP1453941B1 (fr) | 2005-06-29 |
ATE298784T1 (de) | 2005-07-15 |
AU2002358498A1 (en) | 2003-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6521581B1 (en) | Water-soluble package with multiple distinctly colored layers of liquid laundry detergent | |
EP1367118B1 (fr) | Détergent lessiviel liquide à couche d'émulsion | |
US6037319A (en) | Water-soluble packets containing liquid cleaning concentrates | |
AU624282B2 (en) | Laundry detergent package and product | |
US6972278B2 (en) | Laundry detergent gel with suspended particles | |
EP3101104B1 (fr) | Composition de detergent liquide compacte pour blanchisserie | |
EP1319707B1 (fr) | Poche contenant une composition pour le lavage du linge | |
EP3101102B2 (fr) | Composition de detergent liquide compacte pour blanchisserie | |
EP1453941B1 (fr) | Bloc hydrosoluble comprenant un detergent a lessive liquide en couches | |
EP2812263A1 (fr) | Paquet de détergent | |
EP1539914B1 (fr) | Detergent a lessive liquide ou en gel | |
EP1539915A1 (fr) | Composition de detergent a lessive et/ou d'agent de pretraitement sous forme de gel | |
EP1539916B1 (fr) | Gel detergent a lessive et/ou agent de pre-traitement qui, une fois distribuees, s'accumulent | |
EP1453945A1 (fr) | Emballage soluble dans l'eau avec un detergent a lessive liquide en couches | |
US20030139316A1 (en) | Layered liquid laundry detergent with colored bottom layer | |
WO2022081503A1 (fr) | Composition de détergent textile | |
EP1453944B1 (fr) | Sac polyedre hydrosoluble contenant un detergent lessiviel liquide en couches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002792755 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002792755 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002792755 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |