+

WO2003050565A1 - Device for measuring position, orientation and trajectory of a solid object - Google Patents

Device for measuring position, orientation and trajectory of a solid object Download PDF

Info

Publication number
WO2003050565A1
WO2003050565A1 PCT/FR2002/004221 FR0204221W WO03050565A1 WO 2003050565 A1 WO2003050565 A1 WO 2003050565A1 FR 0204221 W FR0204221 W FR 0204221W WO 03050565 A1 WO03050565 A1 WO 03050565A1
Authority
WO
WIPO (PCT)
Prior art keywords
speckle
pencil
optical
orientation
trajectory
Prior art date
Application number
PCT/FR2002/004221
Other languages
French (fr)
Inventor
Jean-Claude Lehureau
Renaud Binet
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2003050565A1 publication Critical patent/WO2003050565A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data

Definitions

  • the present invention relates to a device for measuring the position, orientation and trajectory of a solid object.
  • Position measurement systems play a key role in a large number of industrial applications (metrology, industrial control, robotics, etc.). Their precision, their dynamics, their robustness, their cost, their conditions of use, are all determining factors. The cost of such a system depends on the precision and the dynamic desired.
  • Accelerometers The accuracy of acceleration measurement being 1 ⁇ g, it appears problems of drift with the time of measurement (approximately 1 cm / minute) which can be troublesome.
  • the subject of the invention is a device for measuring the position, orientation and trajectory of a mobile object, a device which is of low cost price and makes it possible to make measurements with great dynamics and high precision.
  • the measuring device comprises at least two devices for generating optical random fields illuminating the entire area in which the moving object can move, at least one device for measuring the local field secured to the moving object, connected to a digital correlator device to which is connected a device for memorizing the characteristics of said random fields, the correlator device being connected to a device for determining the coordinates of said measurement devices.
  • Figure 1 is a diagram explaining how to produce a field of scab and showing characteristics of these scab; • Figure 2 is a block diagram of a simplified embodiment of the device of the invention.
  • Figure 3 is a simplified diagram of a measuring device according to the invention using an "optical pencil”.
  • the object of the invention is a process making it possible first of all to reference the absolute position and orientation of a mobile object.
  • the invention provides for moving this object in at least two random light fields.
  • these fields are of the “speckle” type (scab fields). These fields are referenced and saved beforehand, in electronic form. Indeed, it is easy today, thanks to the low cost of digital storage, to record the data relating to a light field on a Qace surface of approximately 1 m 2 with an accuracy of 100 ⁇ m (which corresponds to 10 8-bit samples, i.e. 100 M bytes of data). The measurable dynamics of the positioning of the mobile object is then directly linked to the storage capacity used.
  • a relative positioning of the moving object carried out between the acquisitions of its successive absolute positions significantly increases the measurement accuracy.
  • Positioning relative to the reference speckle field provides poorer accuracy than relative positioning, but corrects the drifts of the relative measurements.
  • the object to be positioned is equipped with 1, 2 or 3 light detectors (for example CCD detectors) allowing respectively to position in space one, two or three points of this object.
  • FIG. 1 We have schematically represented in FIG. 1 the various parameters of a “speckle” field.
  • This field is created by an illumination beam in coherent lighting 1 of a diffusing surface 2 (for example a frosted glass).
  • a diffusing surface 2 for example a frosted glass.
  • This surface is assumed to be circular, of diameter d.
  • the axis of the beam 1 is substantially perpendicular to the surface 2, and passes through its center.
  • a grain of medium speckle 3, assumed to be elliptical in shape, is formed at the distance L from the diffusing surface 2.
  • the characteristic dimensions of this grain 3 are statistically well known according to the laws of diffraction in free space; ⁇ being the wavelength of beam 1, these grain dimensions are ⁇ L 2 / d 2 along the major axis of the ellipse (aligned with beam 1) and 2 ⁇ LJd for the minor axis.
  • An example of a speckle figure is shown in 4 (as can be observed downstream of the surface 2 on a screen), the characteristics of the speckle fields are known for example from “Topics in Applied Physics, Vol 9, Laser Speckle and Related Phenomena "by JC Dainty, from publisher Springer Verlag.
  • the reference field is created by separately illuminating two temporally stable diffusers (such as surface 2), each by a coherent light source such as a laser.
  • the speckle field thus created constitutes a reference for positioning in space due to the statistical heterogeneity of the shapes and dimensions of its grains. It is therefore possible to determine the positioning of a moving object in this field if we have previously mapped the two components of this reference field.
  • the mapping of these two components is established once and for all at the desired resolution (by drawing the coordinates of the contours of the speckle grains) and is stored digitally on an appropriate computer medium (CD-R or hard disk, for example).
  • the speckle field can thus be known in a given volume, but the measurement of the complex field of the speckle in one plane is sufficient, the values of the field in the other planes being determined by digital propagation of the speckle.
  • a speckle field is characterized by the size and characteristic orientation of its three-dimensional autocorrelation function, in other words by the "size" of a speckle grain. This size is given by the law of diffraction in space, as specified with reference to Figure 1.
  • the mapping of an orthogonal plane to the diffusing surface (2) allows referencing in this plane with better precision than the transverse dimension of a speckle grain.
  • two or three arrays of photodetectors for example CCD or CMOS arrays
  • These matrices are arranged from. so as to constantly receive the speckles field and are sufficiently distant from each other to obtain good measurement accuracy.
  • the maximum of the 2D intercorrelation function of the field detected by each of these matrices from a referenced speckle field gives the position of the object in an XOY plane parallel to the diffusing surface, which therefore provides two parameters of position of this object.
  • This intercorrelation is calculated in a manner known per se, by a digital computer. This measurement process is illustrated in FIG. 2.
  • a laser source 5 orthogonally illuminates a circular diffusing surface 6 at its center.
  • a matrix 7 of CCD type photodetectors is fixed on the object in question (not shown) and the latter is manipulated so that the sensitive surface of the matrix is always substantially parallel to the diffusing surface 6 and turned towards the latter.
  • a digital correlator 8 receives the information from the matrix 7 on the one hand, and from a memory 9 in which the data relating to the speckle field thus created are stored (grain topology and corresponding coordinates). When the correlator 8 determines an intercorrelation peak between the information it receives from the matrix and data from the memory 9, it transmits the coordinates of a characteristic point of the matrix (for example its center) such that it was previously registered for the same speckles configuration.
  • Two speckle fields are produced by placing two sources of coherent light illuminating two diffusers whose optical axes are convergent and form an angle between them whose minimum value is fixed by the desired measurement precision in the direction of the distance from the two sources. .
  • this angle is preferably between 40 and 60 °, while a value of 20 ° would result in an imprecision three times greater in the direction of the distance than in the other two directions.
  • each detector matrix provides four measurement parameters for a given position of these matrices. One can then easily determine with redundancy the position in space of each of these matrices, in a fixed reference with respect to the diffusing surfaces.
  • the amplitude of this peak must be approximately seven times greater than the amplitude (in rms value) of the intercorrelation noise, ie a signal / noise ratio of 17 dB in power.
  • this ratio is linked to the number of independent modes in the field intercepted by a matrix, that is to say to the number N s of speckles grains thus intercepted.
  • the signal / noise ratio is substantially equal to in amplitude, if we neglect the random measurement noise. It is therefore necessary that the array of detectors intercepts at least 50 speckle grains so that the position measurement can be made without ambiguity.
  • the position of the intercorrelation peak is interpolated in order to determine its value most precisely. It is commonly accepted that the positioning accuracy of this peak is equal to 1/100 th of a pixel if the signal / noise ratio is good (17 dB as specified above).
  • the amplitude and the shape of the intercorrelation peak depend on the orientation of the detector array.
  • a rotation of an angle ⁇ of this matrix with respect to its ideal angular position (parallel to the diffusing surface) induces an affine distortion of the measurement compared to the referenced field.
  • This distortion in turn induces a peak distortion of the same amount. Fortunately, this distortion is only a function of cos ⁇ , which means that if ⁇ is less than 30 °, the distortion is negligible.
  • the intercorrelation peak is also sensitive to the distance between the matrix and the diffusing surface.
  • the tolerance on the position of the matrix on the Z axis is a function of the longitudinal size of the speckle grains. For example, for a speckle field created by a laser source at the wavelength of 633 nm, with grains of transverse dimension of approximately 100 ⁇ m, the longitudinal dimension is approximately 60 mm. The influence of this parameter is therefore not very significant on the characteristics of the peak.
  • other speckle formation plans can be calculated from the data of a measured complex field, which makes it possible to choose a plane appropriate to the position of the matrices in space.
  • the uncertainty on the position of the object carrying the detector arrays depends on the observation base, i.e. on the angle formed by the normals at the two diffusing surfaces, and on the orientation of the detector arrays in relation to this observation base.
  • the orientation of the two diffusing surfaces need not be known precisely if a calibration is carried out before the measurement, which is made possible by said redundancies of the measurements.
  • a rigorous mathematical analysis shows that by moving a sensor on a random trajectory, it is possible to exactly position the diffusers with respect to each other, to the nearest homothetic factor. In the application to a “pencil”, described below with reference to FIG. 3, the precise knowledge of the distance separating two sensors from this “pencil” makes it possible to remove this uncertainty linked to the factor of homothety.
  • FIG. 3 shows a diagram of an application of the device of the invention, for measuring the trajectory of an optical "pencil".
  • An optical "pencil” 11 is equipped with a tip 11 A of optical telemetry producing a beam 12 focused at a point F.
  • This pencil 11 is manipulated so as to make point F follow the outline of the part 13 (or any part of this room whose topography we want to raise).
  • Two dies of CCD detectors 14,15 which are illuminated by two fields of speckles produced by two generators 16,17 are fixed on the pencil 11. These generators 16, 17 are produced in the manner described above. Their axes (normal to their diffusing surfaces) 16 A, 17 A respectively, converge at a point P and form an angle A of about 20 ° between them.
  • the relative arrangement of the generators 16,17 and of the pencil 11 is such that when this pencil moves, the detectors 14,15 are always as close as possible to point P.
  • the pencil trajectory that is to say its relative displacement, is obtained from its successive coordinates (calculated by a calculation device such as the device 10 in FIG. 2) which are processed by appropriate software. This gives information on the part 13 analyzed, for example its outline, which can be displayed on a screen.
  • the acquisition of the successive coordinates of the pencil is done over approximately 10 cm.
  • the position and orientation of the pencil must be known with an accuracy between 1 and 10 ⁇ m over the entire length of its trajectory.
  • the distance between the pencil and the object 13 must be kept fixed to the nearest 15 mm (so that the point of convergence F of its detection beam is well focused on the surface to be explored).
  • the laser source of the speckle generator had a power of 30 mW at the wavelength of 650 nm.
  • the diffusing surfaces were in frosted glass, lit by transmission. It should be noted here that the angular diffusion function of these diffusers is not isotropic. The scattering is angularly concentrated around the zero order of the lighting laser beam, so that approximately 90% of the light energy is concentrated in the speckle field analyzed.
  • the diffuser and the laser are rigidly linked.
  • the angle A between the two diffusing surfaces was 20 °, in order to avoid excessive distortion of the correlation peaks.
  • the distance between the diffusers and the pencil was about 1m.
  • the average dimension of speckle grains at the pencil level was 100 ⁇ m transversely and 60 mm longitudinally, that is to say an illumination of the diffuser on a surface of approximately 6 mm 2 .
  • the analysis area of the speckles field was 0.25 m 2 .
  • Each of the pencil detectors had the following characteristics: square matrix of 256 X 256 pixels, pixel size: 10 ⁇ m, quantum efficiency: 0.8, sampling of the video signal on 8 bits, electronic shutter with integration time of 0, 1 ms (to allow movements of the pencil up to 1 m / s), video rate of 1 kHz, reading noise of 1000 photoelectrons.
  • An interference filter suppressed the surrounding white light.
  • the constraints imposed on the handling of the pencil to perform optimal measurements were as follows: initially, the pencil was oriented in such a way that the detectors were facing the diffusing surfaces (to avoid distortions as much as possible), and during the measurement, the surfaces of the detectors should not rotate by an angle of more than 30 ° relative to their initial orientation.
  • the preliminary measurement of the reference field is carried out at once by electronic holography in the laboratory, using a high-performance camera and precise means of translation to ensure the movements of this camera. One can thus raise the complex field of speckle, and thus obtain by a computation of beam propagation the knowledge in volume of the speckle.
  • the complex field is stored in the form of complex 64 ⁇ 64 pixel images, in 16 bits, the pixel dimension being 50 ⁇ m. Sampling then takes place without loss of information.
  • the memory size of the recording medium required is 50 Mbytes per broadcaster, or 100 Mbytes for two broadcasters.
  • the signal-to-noise ratio of the cross-correlation peak, without distortion is therefore 28 dB , which ensures unambiguous peak detection.
  • the signal-to-noise ratio of the correlation peak is more than 60 dB, which ensures that the position of the peak can be obtained at 1% of its width, that is to within 1 ⁇ m.
  • the relative position measurements between each video frame do not need to be corrected as a function of the rotation of the pencil, since this rotation can be considered negligible in the space of 1 ms.
  • Calculation time 10 ms by software. This time could be reduced by an order of magnitude by calculating this cross-correlation using dedicated FFT processors.
  • the trajectory is calculated by rough registration (50 ⁇ m) of the positions on the reference fields, then by refinement with the relative position data.
  • Calculation time per increment is less than 100 ms

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention concerns a measuring device comprising two speckle generators (16, 17) generating fields measured by two CCD matrices (14, 15) fixed on the mobile object (11), Said device combines high measuring precision and high dynamics.

Description

DISPOSITIF DE MESURE DE POSITION, D'ORIENTATION ET DE TRAJECTOIRE D'UN OBJET SOLIDE DEVICE FOR MEASURING THE POSITION, ORIENTATION AND TRAJECTORY OF A SOLID OBJECT
La présente invention se rapporte à un dispositif de mesure de position, d'orientation et de trajectoire d'un objet solide.The present invention relates to a device for measuring the position, orientation and trajectory of a solid object.
Les systèmes de mesure de position jouent un rôle primordial dans un grand nombre d'applications industrielles (métrologie, contrôle industriel, robotique, etc). Leur précision, leur dynamique, leur robustesse, leur coût, leurs conditions d'utilisation, sont autant d'éléments déterminants. Le coût d'un tel système dépend de la précision et de la dynamique voulue.Position measurement systems play a key role in a large number of industrial applications (metrology, industrial control, robotics, etc.). Their precision, their dynamics, their robustness, their cost, their conditions of use, are all determining factors. The cost of such a system depends on the precision and the dynamic desired.
Les systèmes de mesure de position traditionnels sont très variés. Les deux grandes classes sont les systèmes :Traditional position measurement systems are very diverse. The two main classes are systems:
MécaniquesMechanicals
* Palpeurs et règles : C'est la solution la plus classique. Elle est potentiellement très précise mais coûteuse pour des grandes dynamiques, et d'emploi malaisé.* Probes and rules: This is the most classic solution. It is potentially very precise but costly for large dynamics, and difficult to use.
* Accéléromètres : La précision de mesure d'accélération étant de 1 μg, il apparaît des problèmes de dérive avec le temps de mesure (environ 1 cm/minute) qui peuvent être gênantes.* Accelerometers: The accuracy of acceleration measurement being 1 μg, it appears problems of drift with the time of measurement (approximately 1 cm / minute) which can be troublesome.
Optiquesoptical
* Triangulation stéréoscopique avec plusieurs caméras : La précision de mesure est liée à l'ouverture des caméras. Cette solution est donc coûteuse en matériels optiques de bonne qualité.* Stereoscopic triangulation with several cameras: The measurement accuracy is linked to the aperture of the cameras. This solution is therefore expensive in good quality optical equipment.
* Télémétrie laser : Imprécis pour les distances considérées (d'environ 1 mètre). Roues codeuses optiques : Utilisées largement en robotique, c'est une solution précise, fiable, mais coûteuse. * Interférométrie : Tous ces procédés sont très précis mais sont adaptés à des mesures de déplacements de l'ordre de la longueur d'onde. Les problèmes d'ambiguïté des déroulements de franges ne sont toujours pas résolus. Projection d'un réseau lumineux (franges ou mires) sur l'objet : Solution potentiellement précise mais un problème d'ambiguïté subsiste pour un déplacement supérieur au pas des franges. Avec un déplacement de 10cm par seconde et un pas de 100μm, la cadence d'acquisition permettant de compter les franges doit être supérieure à 200 kHz, ce qui nécessite l'utilisation d'une caméra ultra-rapide et donc coûteuse.* Laser telemetry: Unclear for the distances considered (approximately 1 meter). Optical encoder wheels: Used widely in robotics, it is a precise, reliable, but expensive solution. * Interferometry: All these processes are very precise but are suitable for displacement measurements of the order of the wavelength. The ambiguity problems of the fringing sequences are still not resolved. Projection of a light network (fringes or patterns) on the object: Potentially precise solution but a problem of ambiguity remains for a displacement greater than the pitch of the fringes. With a displacement of 10cm per second and a step of 100μm, the acquisition rate for counting the fringes must be greater than 200 kHz, which requires the use of an ultra-fast and therefore expensive camera.
De tous ces systèmes, aucun ne permet d'allier précision, grande dynamique, et faible coût.Of all these systems, none allows to combine precision, great dynamics, and low cost.
L'invention a pour objet un dispositif de mesure de position, d'orientation et de trajectoire d'un objet mobile, dispositif qui soit de bas prix de revient et permette de faire des mesures avec une grande dynamique et une haute précision.The subject of the invention is a device for measuring the position, orientation and trajectory of a mobile object, a device which is of low cost price and makes it possible to make measurements with great dynamics and high precision.
Le dispositif de mesure conforme à l'invention comporte au moins deux dispositifs de génération de champs aléatoires optiques illuminant toute la zone dans laquelle peut se déplacer l'objet mobile, au moins un dispositif de mesure de champ local solidaire de l'objet mobile, relié à un dispositif corrélateur numérique auquel est relié un dispositif de mémorisation des caractéristiques desdits champs aléatoires, le dispositif corrélateur étant relié à un dispositif de détermination des coordonnées desdits dispositifs de mesure.The measuring device according to the invention comprises at least two devices for generating optical random fields illuminating the entire area in which the moving object can move, at least one device for measuring the local field secured to the moving object, connected to a digital correlator device to which is connected a device for memorizing the characteristics of said random fields, the correlator device being connected to a device for determining the coordinates of said measurement devices.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which:
• la figure 1 est un schéma expliquant la façon de produire un champ de tavelures et montrant des caractéristiques de ces tavelures ; • la figure 2 est un bloc-diagramme d'un exemple de réalisation simplifié du dispositif de l'invention ; et• Figure 1 is a diagram explaining how to produce a field of scab and showing characteristics of these scab; • Figure 2 is a block diagram of a simplified embodiment of the device of the invention; and
• la figure 3 est un schéma simplifié d'un dispositif de mesure conforme à l'invention utilisant un « crayon optique ».• Figure 3 is a simplified diagram of a measuring device according to the invention using an "optical pencil".
L'objet de l'invention est un processus permettant d'abord de référencer la position et l'orientation absolues d'un objet mobile. A cet effet, l'invention prévoit de faire déplacer cet objet dans au moins deux champs aléatoires de lumière. De préférence, ces champs sont de type « speckle » (champs de tavelures). Ces champs sont référencés et enregistrés au préalable, sous forme électronique. En effet, il est facile aujourd'hui, grâce au bas coût du stockage numérique, d'enregistrer les données relatives à un champ lumineux sur une surf Qace d'environ 1 m2 avec une précision de 100 μm (ce qui correspond à 10 échantillons de 8 bits, soit 100 M Octets de données). La dynamique mesurable du positionnement de l'objet mobile est alors directement liée à la capacité de stockage utilisée. De plus, grâce aux propriétés de granularité des speckles, un positionnement relatif de l'objet mobile effectué entre les acquisitions de ses positions absolues successives accroît significativement la précision de mesure. Le positionnement par rapport au champ de speckle de référence fournit une moins bonne précision que le positionnement relatif, mais corrige les dérives des mesures relatives. L'objet à positionner est équipé de 1 , 2 ou 3 détecteurs lumineux (par exemple des détecteurs CCD) permettant respectivement de positionner dans l'espace un, deux ou trois points de cet objet.The object of the invention is a process making it possible first of all to reference the absolute position and orientation of a mobile object. To this end, the invention provides for moving this object in at least two random light fields. Preferably, these fields are of the “speckle” type (scab fields). These fields are referenced and saved beforehand, in electronic form. Indeed, it is easy today, thanks to the low cost of digital storage, to record the data relating to a light field on a Qace surface of approximately 1 m 2 with an accuracy of 100 μm (which corresponds to 10 8-bit samples, i.e. 100 M bytes of data). The measurable dynamics of the positioning of the mobile object is then directly linked to the storage capacity used. In addition, thanks to the granularity properties of the speckles, a relative positioning of the moving object carried out between the acquisitions of its successive absolute positions significantly increases the measurement accuracy. Positioning relative to the reference speckle field provides poorer accuracy than relative positioning, but corrects the drifts of the relative measurements. The object to be positioned is equipped with 1, 2 or 3 light detectors (for example CCD detectors) allowing respectively to position in space one, two or three points of this object.
On a schématiquement représenté en figure 1 les différents paramètres d'un champ de « speckle ». Ce champ est créé par un faisceau d'illumination en éclairage cohérent 1 d'une surface diffusante 2 (par exemple un verre dépoli). Cette surface est supposée circulaire, de diamètre d. L'axe du faisceau 1 est sensiblement perpendiculaire à la surface 2, et passe par son centre. Un grain de speckle moyen 3, supposé de forme elliptique, se trouve formé à la distance L de la surface diffusante 2. Les dimensions caractéristiques de ce grain 3 sont statistiquement bien connues d'après les lois de la diffraction dans l'espace libre; λ étant la longueur d'onde du faisceau 1 , ces dimensions du grain sont λL2/d2 selon le grand axe de l'ellipse (aligné avec le faisceau 1 ) et 2λLJd pour le petit axe. On a représenté en 4 un exemple de figure de speckle (tel que pouvant être observé en aval de la surface 2 sur un écran), les caractéristiques des champs de speckles sont connues par exemple d'après « Topics in Applied Physics, Vol 9, Laser Speckle and Related Phenomena » de J.C. Dainty, chez l'éditeur Springer Verlag. Le champ de référence est créé en illuminant séparément deux diffuseurs (tels que la surface 2) temporellement stables, chacun par une source de lumière cohérente telle qu'un laser.We have schematically represented in FIG. 1 the various parameters of a “speckle” field. This field is created by an illumination beam in coherent lighting 1 of a diffusing surface 2 (for example a frosted glass). This surface is assumed to be circular, of diameter d. The axis of the beam 1 is substantially perpendicular to the surface 2, and passes through its center. A grain of medium speckle 3, assumed to be elliptical in shape, is formed at the distance L from the diffusing surface 2. The characteristic dimensions of this grain 3 are statistically well known according to the laws of diffraction in free space; λ being the wavelength of beam 1, these grain dimensions are λL 2 / d 2 along the major axis of the ellipse (aligned with beam 1) and 2λLJd for the minor axis. An example of a speckle figure is shown in 4 (as can be observed downstream of the surface 2 on a screen), the characteristics of the speckle fields are known for example from “Topics in Applied Physics, Vol 9, Laser Speckle and Related Phenomena "by JC Dainty, from publisher Springer Verlag. The reference field is created by separately illuminating two temporally stable diffusers (such as surface 2), each by a coherent light source such as a laser.
On obtient alors un champ de référence à deux composantes. L'objet mobile en question peut être illuminé en réflexion ou en transmission (cette dernière possibilité est préférable pour des questions de stabilité des caractéristiques optiques). Le champ de speckle ainsi créé constitue une référence de positionnement dans l'espace du fait de l'hétérogénéité statistique des formes et dimensions de ses grains. Il est donc possible de déterminer le positionnement d'un objet mobile dans ce champ si l'on a préalablement cartographie les deux composantes de ce champ de référence. La cartographie de ces deux composantes est établie une fois pour toutes à la résolution désirée (en relevant les coordonnées des contours des grains de speckle) et est stockée numériquement sur un support informatique approprié (CD-R ou disque dur, par exemple). Le champ de speckle peut ainsi être connu dans un volume donné, mais la mesure du champ complexe du speckle dans un plan suffit, les valeurs du champ dans les autres plans étant déterminées par propagation numérique du speckle.We then obtain a reference field with two components. The mobile object in question can be illuminated in reflection or in transmission (the latter possibility is preferable for questions of stability of the optical characteristics). The speckle field thus created constitutes a reference for positioning in space due to the statistical heterogeneity of the shapes and dimensions of its grains. It is therefore possible to determine the positioning of a moving object in this field if we have previously mapped the two components of this reference field. The mapping of these two components is established once and for all at the desired resolution (by drawing the coordinates of the contours of the speckle grains) and is stored digitally on an appropriate computer medium (CD-R or hard disk, for example). The speckle field can thus be known in a given volume, but the measurement of the complex field of the speckle in one plane is sufficient, the values of the field in the other planes being determined by digital propagation of the speckle.
Un champ de speckle est caractérisé par la taille et l'orientation caractéristique de sa fonction d'autocorrélation en trois dimensions, autrement dit par la « taille » d'un grain de speckle. Cette taille est donnée par la loi de la diffraction dans l'espace, comme précisé en référence à la figure 1. La cartographie d'un plan orthogonal à la surface diffusante (2) permet un référencement dans ce plan avec une précision meilleure que la dimension transverse d'un grain de speckle.A speckle field is characterized by the size and characteristic orientation of its three-dimensional autocorrelation function, in other words by the "size" of a speckle grain. This size is given by the law of diffraction in space, as specified with reference to Figure 1. The mapping of an orthogonal plane to the diffusing surface (2) allows referencing in this plane with better precision than the transverse dimension of a speckle grain.
Pour effectuer la mesure de la position et de l'orientation d'un objet, on fixe sur celui-ci deux ou trois matrices de photodétecteurs (par exemple des matrices CCD ou CMOS). Ces matrices sont disposées de. façon à recevoir constamment le champ de speckles et sont suffisamment éloignées les unes des autres pour obtenir une bonne précision de mesure. Le maximum de la fonction d'intercorrélation 2D du champ détecté par chacune de ces matrices à partir d'un champ de speckle référencé donne la position de l'objet dans un plan XOY parallèle à la surface diffusante, ce qui fournit donc deux paramètres de position de cet objet. Cette intercorrélation est calculée de façon connue en soi, par un calculateur numérique. On a illustré en figure 2 ce processus de mesure. Une source laser 5 illumine orthogonalement une surface circulaire diffusante 6 en son centre. Une matrice 7 de photodétecteurs de type CCD est fixée sur l'objet en question (non représenté) et ce dernier est manipulé de façon que la surface sensible de la matrice soit toujours sensiblement parallèle à la surface diffusante 6 et tournée vers cette dernière. Un corrélateur numérique 8 reçoit les informations de la matrice 7 d'une part, et d'une mémoire 9 dans laquelle sont mémorisées les données relatives au champ de speckle ainsi créé (topologie des grains et coordonnées correspondantes). Lorsque le corrélateur 8 détermine un pic d'intercorrélation entre les informations qu'il reçoit de la matrice et des données de la mémoire 9, il transmet les coordonnées d'un point caractéristique de la matrice (par exemple son centre) tel qu'il a été préalablement enregistré pour la même configuration de speckles. On produit deux champs de speckle en plaçant deux sources de lumière cohérente éclairant deux diffuseurs dont les axes optiques sont convergents et font entre eux un angle dont la valeur minimum est fixée par la précision de mesure désirée dans la direction de Péloignement par rapport aux deux sources. Ainsi, pour une précision sensiblement identique dans toutes les directions, cet angle est, de préférence, compris entre 40 et 60°, alors qu'une valeur de 20° se traduirait par une imprécision trois fois plus grande dans la direction de l'éloignement que dans les deux autres directions. On dispose sur l'objet plusieurs matrices de détecteurs, chaque matrice de détecteurs fournit quatre paramètres de mesure pour une position donnée de ces matrices. On peut alors facilement déterminer avec redondance la position dans l'espace de chacune de ces matrices, dans un repère fixe par rapport aux surfaces diffusantes. Les temps de calcul des calculateurs courants (type PC) actuels ne permettent pas encore d'effectuer des mesures en temps réel (en particulier même pour un déplacement relativement lent de quelques cm. s), la mesure se fait a posteriori. Pour faciliter le traitement logiciel des données fournies par les détecteurs, on oriente ceux-ci de préférence dans la même direction, ce qui permet d'avoir le même angle de rotation pour ces détecteurs.To measure the position and orientation of an object, two or three arrays of photodetectors (for example CCD or CMOS arrays) are fixed on it. These matrices are arranged from. so as to constantly receive the speckles field and are sufficiently distant from each other to obtain good measurement accuracy. The maximum of the 2D intercorrelation function of the field detected by each of these matrices from a referenced speckle field gives the position of the object in an XOY plane parallel to the diffusing surface, which therefore provides two parameters of position of this object. This intercorrelation is calculated in a manner known per se, by a digital computer. This measurement process is illustrated in FIG. 2. A laser source 5 orthogonally illuminates a circular diffusing surface 6 at its center. A matrix 7 of CCD type photodetectors is fixed on the object in question (not shown) and the latter is manipulated so that the sensitive surface of the matrix is always substantially parallel to the diffusing surface 6 and turned towards the latter. A digital correlator 8 receives the information from the matrix 7 on the one hand, and from a memory 9 in which the data relating to the speckle field thus created are stored (grain topology and corresponding coordinates). When the correlator 8 determines an intercorrelation peak between the information it receives from the matrix and data from the memory 9, it transmits the coordinates of a characteristic point of the matrix (for example its center) such that it was previously registered for the same speckles configuration. Two speckle fields are produced by placing two sources of coherent light illuminating two diffusers whose optical axes are convergent and form an angle between them whose minimum value is fixed by the desired measurement precision in the direction of the distance from the two sources. . Thus, for a substantially identical accuracy in all directions, this angle is preferably between 40 and 60 °, while a value of 20 ° would result in an imprecision three times greater in the direction of the distance than in the other two directions. There are several detector arrays on the object, each detector matrix provides four measurement parameters for a given position of these matrices. One can then easily determine with redundancy the position in space of each of these matrices, in a fixed reference with respect to the diffusing surfaces. The calculation times of current computers (PC type) today do not yet allow measurements to be made in real time (in particular even for a relatively slow movement of a few cm. S), the measurement is made a posteriori. To facilitate the software processing of the data supplied by the detectors, they are preferably oriented in the same direction, which makes it possible to have the same angle of rotation for these detectors.
Pour que la détermination du pic d'intercorrélation soit sans ambiguïté, il faut que l'amplitude de ce pic soit environ sept fois plus importante que l'amplitude (en valeur efficace) du bruit d'intercorrélation, soit un rapport signal/bruit de 17 dB en puissance. Or, ce rapport est lié au nombre de modes indépendants dans le champ intercepté par une matrice, c'est-à-dire au nombre Ns de grains de speckles ainsi interceptés. Le rapport signal/bruit est sensiblement égal à
Figure imgf000008_0001
en amplitude, si l'on néglige le bruit aléatoire de mesure. Il faut donc que la matrice de détecteurs intercepte au minimum 50 grains de speckle pour que la mesure de position puisse se faire sans ambiguïté. La position du pic d'intercorrélation est interpolée, afin de déterminer le plus précisément sa valeur. Il est communément admis que la précision de positionnement de ce pic est égale à 1/100e de pixel si le rapport signal/bruit est bon (17 dB comme précisé ci-dessus).
In order for the determination of the intercorrelation peak to be unambiguous, the amplitude of this peak must be approximately seven times greater than the amplitude (in rms value) of the intercorrelation noise, ie a signal / noise ratio of 17 dB in power. However, this ratio is linked to the number of independent modes in the field intercepted by a matrix, that is to say to the number N s of speckles grains thus intercepted. The signal / noise ratio is substantially equal to
Figure imgf000008_0001
in amplitude, if we neglect the random measurement noise. It is therefore necessary that the array of detectors intercepts at least 50 speckle grains so that the position measurement can be made without ambiguity. The position of the intercorrelation peak is interpolated in order to determine its value most precisely. It is commonly accepted that the positioning accuracy of this peak is equal to 1/100 th of a pixel if the signal / noise ratio is good (17 dB as specified above).
L'amplitude et la forme du pic d'intercorrélation dépendent de l'orientation de la matrice de détecteurs. Une rotation d'un angle θ de cette matrice par rapport à sa position angulaire idéale (parallèle à la surface diffusante) induit une distorsion affine de la mesure par rapport au champ référencé. Cette distorsion induit à son tour une distorsion du pic de la même quantité. Heureusement, cette distorsion n'est fonction que de cos θ, ce qui fait que si θ est inférieur à 30°, la distorsion est négligeable.The amplitude and the shape of the intercorrelation peak depend on the orientation of the detector array. A rotation of an angle θ of this matrix with respect to its ideal angular position (parallel to the diffusing surface) induces an affine distortion of the measurement compared to the referenced field. This distortion in turn induces a peak distortion of the same amount. Fortunately, this distortion is only a function of cos θ, which means that if θ is less than 30 °, the distortion is negligible.
Le pic d'intercorrélation est sensible également à la distance entre la matrice et la surface diffusante. La tolérance sur la position de la matrice sur l'axe Z (voir figure 2) est fonction de la taille longitudinale des grains de speckle. Par exemple, pour un champ de speckle créé par une source laser à la longueur d'onde de 633 nm, avec des grains de dimension transversale de 100 μm environ, la dimension longitudinale est d'environ 60 mm. L'influence de ce paramètre n'est donc pas très importante sur les caractéristiques du pic. De plus, on peut calculer d'autres plans de formation de speckles à partir des données d'un champ complexe mesuré, ce qui permet de choisir un plan approprié à la position des matrices dans l'espace.The intercorrelation peak is also sensitive to the distance between the matrix and the diffusing surface. The tolerance on the position of the matrix on the Z axis (see Figure 2) is a function of the longitudinal size of the speckle grains. For example, for a speckle field created by a laser source at the wavelength of 633 nm, with grains of transverse dimension of approximately 100 μm, the longitudinal dimension is approximately 60 mm. The influence of this parameter is therefore not very significant on the characteristics of the peak. In addition, other speckle formation plans can be calculated from the data of a measured complex field, which makes it possible to choose a plane appropriate to the position of the matrices in space.
En conclusion, l'incertitude sur la position de l'objet portant les matrices de détecteurs dépend de la base d'observation, c'est-à-dire de l'angle formé par les normales aux deux surfaces diffusantes, et de l'orientation des matrices de détecteurs par rapport à cette base d'observation. Selon un aspect avantageux de l'invention, il est prévu de fournir à l'utilisateur plusieurs bases possibles d'orientation et de distance aux diffuseurs, afin d'adapter le système à la précision de mesure souhaitée. L'orientation des deux surfaces diffusantes n'a pas besoin d'être connue précisément si on effectue une calibration avant la mesure, ce qui est rendu possible grâce auxdites redondances des mesures. Une analyse mathématique rigoureuse montre qu'en déplaçant un capteur sur une trajectoire aléatoire, il est possible de positionner exactement les diffuseurs l'un par rapport à l'autre, à un facteur d'homothétie près. Dans l'application à un « crayon », décrite ci-dessous en référence à la figure 3, la connaissance précise de la distance séparant deux capteurs de ce « crayon » permet de lever cette incertitude liée au facteur d'homothétie.In conclusion, the uncertainty on the position of the object carrying the detector arrays depends on the observation base, i.e. on the angle formed by the normals at the two diffusing surfaces, and on the orientation of the detector arrays in relation to this observation base. According to an advantageous aspect of the invention, provision is made to provide the user with several possible bases for orientation and distance to the diffusers, in order to adapt the system to the desired measurement precision. The orientation of the two diffusing surfaces need not be known precisely if a calibration is carried out before the measurement, which is made possible by said redundancies of the measurements. A rigorous mathematical analysis shows that by moving a sensor on a random trajectory, it is possible to exactly position the diffusers with respect to each other, to the nearest homothetic factor. In the application to a “pencil”, described below with reference to FIG. 3, the precise knowledge of the distance separating two sensors from this “pencil” makes it possible to remove this uncertainty linked to the factor of homothety.
Dans le cas de la mesure d'une trajectoire de l'objet en question, si la mesure de position et d'orientation de cet objet à l'aide d'un champ de speckle de référence offre une précision limitée par plusieurs paramètres (l'orientation absolue des détecteurs, leur distance par rapport aux plans de référence et d'autres facteurs évoqués ci-dessus), il est possible de déterminer complémentairement la position relative d'un détecteur lié à l'objet en question, d'une acquisition de mesure à la suivante, s'il existe un recouvrement entre les images interceptées par ce détecteur pour ces acquisitions successives. Dans ce cas, la précision de mesure est bien meilleure, car il peut y avoir moins de disparités entre les mesures relatives qu'entre des mesures absolues non liées entre elles. Une telle mesure complémentaire peut servir à affiner la mesure absolue faite à partir du champ de référence.In the case of the measurement of a trajectory of the object in question, if the measurement of position and orientation of this object using a reference speckle field offers a precision limited by several parameters (l absolute orientation of the detectors, their distance from the reference planes and other factors mentioned above), it is possible to additionally determine the relative position of a detector linked to the object in question, of an acquisition measurement to the next, if there is an overlap between the images intercepted by this detector for these successive acquisitions. In this case, the measurement accuracy is much better, as there may be fewer disparities between the relative measurements than between absolute measurements that are not linked to each other. Such a complementary measurement can be used to refine the absolute measurement made from the reference field.
On a représenté en figure 3 un schéma d'une application du dispositif de l'invention, pour la mesure de la trajectoire d'un "crayon" optique. Un "crayon" optique 11 est équipé d'une pointe 11 A de télémétrie optique produisant un faisceau 12 focalisé en un point F. Ce crayon 11 est manipulé de façon à faire suivre au point F le contour de la pièce 13 (ou toute partie de cette pièce dont on veut relever la topographie).FIG. 3 shows a diagram of an application of the device of the invention, for measuring the trajectory of an optical "pencil". An optical "pencil" 11 is equipped with a tip 11 A of optical telemetry producing a beam 12 focused at a point F. This pencil 11 is manipulated so as to make point F follow the outline of the part 13 (or any part of this room whose topography we want to raise).
On fixe sur le crayon 11 deux matrices de détecteurs CCD 14,15 qui sont illuminées par deux champs de speckles produits par deux générateurs 16,17. Ces générateurs 16,17 sont réalisés de la façon décrite ci-dessus. Leurs axes (normales à leurs surfaces diffusantes) 16 A, 17 A respectivement, convergent en un point P et font entre eux un angle A d'environ 20°. La disposition relative des générateurs 16,17 et du crayon 11 est telle que lorsque ce crayon se déplace, les détecteurs 14,15 sont toujours le plus proches possible du point P. La trajectoire du crayon, c'est-à-dire son déplacement relatif, est obtenue à partir de ses coordonnées successives (calculées par un dispositif de calcul tel que le dispositif 10 de la figure 2) qui sont traitées par un logiciel approprié. On obtient ainsi les informations sur la pièce 13 analysée, par exemple son contour, qui peuvent être affichées sur un écran.Two dies of CCD detectors 14,15 which are illuminated by two fields of speckles produced by two generators 16,17 are fixed on the pencil 11. These generators 16, 17 are produced in the manner described above. Their axes (normal to their diffusing surfaces) 16 A, 17 A respectively, converge at a point P and form an angle A of about 20 ° between them. The relative arrangement of the generators 16,17 and of the pencil 11 is such that when this pencil moves, the detectors 14,15 are always as close as possible to point P. The pencil trajectory, that is to say its relative displacement, is obtained from its successive coordinates (calculated by a calculation device such as the device 10 in FIG. 2) which are processed by appropriate software. This gives information on the part 13 analyzed, for example its outline, which can be displayed on a screen.
Selon un exemple d'application, l'acquisition des coordonnées successives du crayon se fait sur environ 10 cm. La position et l'orientation du crayon doivent être connues avec une précision comprise entre 1 et 10 μm sur toute la longueur de sa trajectoire. La distance entre le crayon et l'objet 13 doit être maintenue fixe à 15 mm près (afin que le point de convergence F de son faisceau de détection soit bien focalisé sur la surface à explorer).According to an application example, the acquisition of the successive coordinates of the pencil is done over approximately 10 cm. The position and orientation of the pencil must be known with an accuracy between 1 and 10 μm over the entire length of its trajectory. The distance between the pencil and the object 13 must be kept fixed to the nearest 15 mm (so that the point of convergence F of its detection beam is well focused on the surface to be explored).
Dans un exemple de réalisation du dispositif de mesure de l'invention, la source laser du générateur de speckle avait une puissance de 30 mW à la longueur d'onde de 650 nm. Les surfaces diffusantes étaient en verre dépoli, éclairé par transmission. Il faut remarquer ici que la fonction angulaire de diffusion de ces diffuseurs n'est pas isotrope. La diffusion est concentrée angulairement autour de l'ordre zéro du faisceau laser d'éclairage, de manière que 90% environ de l'énergie lumineuse soient concentrés dans le champ de speckle analysé. Le diffuseur et le laser sont liés rigidement. L'angle A entre les deux surfaces diffusantes était de 20°, afin d'éviter une trop grande distorsion des pics de corrélation. La distance entre les diffuseurs et le crayon était d'environ 1m. La dimension moyenne des grains de speckle au niveau du crayon était de 100 μm transversalement et de 60 mm longitudinalement, soit un éclairage du diffuseur sur une surface d'environ 6 mm2. La surface d'analyse du champ de speckles était de 0,25 m2. Chacun des détecteurs du crayon avait les caractéristiques suivantes : matrice carrée de 256 X 256 pixels, taille des pixels : 10 μm, rendement quantique : 0,8, échantillonnage du signal vidéo sur 8 bits, obturateur électronique à temps d'intégration de 0,1 ms (pour autoriser des mouvements du crayon allant jusqu'à 1 m/s), cadence vidéo de 1 kHz, bruit de lecture de 1000 photo-électrons. Un filtre interférentiel supprimait la lumière blanche environnante. Les contraintes imposées au maniement du crayon pour effectuer des mesures optimales étaient les suivantes : initialement, le crayon était orienté de telle façon que les détecteurs soient face aux surfaces diffusantes (pour éviter au maximum les distorsions), et au cours de la mesure, les surfaces des détecteurs ne devaient pas tourner d'un angle de plus de 30° par rapport à leur orientation initiale. La mesure préalable du champ de référence est effectuée en une seule fois par holographie électronique en laboratoire, à l'aide d'une caméra performante et de moyens de translation précis pour assurer les déplacements de cette caméra. On peut ainsi relever le champ complexe de speckle, et donc obtenir par un calcul de propagation de faisceau la connaissance en volume du speckle. Ainsi, par exemple, pour une surface de mesure de 0,25 m2 et une dimension de grains de speckle de 100 μm, le champ complexe est stocké sous forme d'images 64X64 pixels complexes, en 16 bits, la dimension des pixels étant de 50 μm. L'échantillonnage a alors lieu sans perte d'informations. La taille mémoire du support d'enregistrement nécessaire est de 50 Moctets par diffuseur, soit 100 Moctets pour deux diffuseurs.In an exemplary embodiment of the measuring device of the invention, the laser source of the speckle generator had a power of 30 mW at the wavelength of 650 nm. The diffusing surfaces were in frosted glass, lit by transmission. It should be noted here that the angular diffusion function of these diffusers is not isotropic. The scattering is angularly concentrated around the zero order of the lighting laser beam, so that approximately 90% of the light energy is concentrated in the speckle field analyzed. The diffuser and the laser are rigidly linked. The angle A between the two diffusing surfaces was 20 °, in order to avoid excessive distortion of the correlation peaks. The distance between the diffusers and the pencil was about 1m. The average dimension of speckle grains at the pencil level was 100 μm transversely and 60 mm longitudinally, that is to say an illumination of the diffuser on a surface of approximately 6 mm 2 . The analysis area of the speckles field was 0.25 m 2 . Each of the pencil detectors had the following characteristics: square matrix of 256 X 256 pixels, pixel size: 10 μm, quantum efficiency: 0.8, sampling of the video signal on 8 bits, electronic shutter with integration time of 0, 1 ms (to allow movements of the pencil up to 1 m / s), video rate of 1 kHz, reading noise of 1000 photoelectrons. An interference filter suppressed the surrounding white light. The constraints imposed on the handling of the pencil to perform optimal measurements were as follows: initially, the pencil was oriented in such a way that the detectors were facing the diffusing surfaces (to avoid distortions as much as possible), and during the measurement, the surfaces of the detectors should not rotate by an angle of more than 30 ° relative to their initial orientation. The preliminary measurement of the reference field is carried out at once by electronic holography in the laboratory, using a high-performance camera and precise means of translation to ensure the movements of this camera. One can thus raise the complex field of speckle, and thus obtain by a computation of beam propagation the knowledge in volume of the speckle. Thus, for example, for a measurement surface of 0.25 m 2 and a speckle grain size of 100 μm, the complex field is stored in the form of complex 64 × 64 pixel images, in 16 bits, the pixel dimension being 50 μm. Sampling then takes place without loss of information. The memory size of the recording medium required is 50 Mbytes per broadcaster, or 100 Mbytes for two broadcasters.
Pour le même exemple de réalisation que ci-dessus, on trouve que le nombre de photo-électrons intervenant pour le calcul d'un pic de corrélation est de 2400 environ, le bruit de lecture étant de 1000 photo- électrons, ce qui fait que le rapport signal/bruit pour chaque pixel est de 7 dB en puissance.For the same example of embodiment as above, we find that the number of photo-electrons involved in the calculation of a correlation peak is approximately 2400, the reading noise being 1000 photo-electrons, which means that the signal / noise ratio for each pixel is 7 dB in power.
Avec la matrice de détection de 256X256 pixels et des grains de speckle d'un diamètre de 100 μm, on intercepte en moyenne 25X25 gains de speckle, et le rapport signal/bruit du pic d'intercorrélation, sans distorsion, est donc de 28 dB, ce qui assure une détection du pic sans ambiguïté. Le rapport signal/bruit du pic de corrélation est de plus de 60 dB, ce qui assure que la position du pic peut être obtenue à 1 % de sa largeur, soit à 1 μm près. Les mesures relatives de position entre chaque trame vidéo n'ont pas besoin d'être corrigées en fonction de la rotation du crayon, car cette rotation peut être considérée comme négligeable en l'espace de 1 ms.With the detection matrix of 256X256 pixels and speckle grains with a diameter of 100 μm, we intercept on average 25X25 speckle gains, and the signal-to-noise ratio of the cross-correlation peak, without distortion, is therefore 28 dB , which ensures unambiguous peak detection. The signal-to-noise ratio of the correlation peak is more than 60 dB, which ensures that the position of the peak can be obtained at 1% of its width, that is to within 1 μm. The relative position measurements between each video frame do not need to be corrected as a function of the rotation of the pencil, since this rotation can be considered negligible in the space of 1 ms.
Le calcul de la trajectoire du crayon est effectué a posteriori. Etant donné les dimensions relatives des grains de speckle et des pixels, un pré-traitement en temps réel des images est effectué afin de les réduire à des images de 64X64 pixels, sans perte d'informations. Pour une minute d'acquisition vidéo, le nombre d'images à stocker en provenance de chaque matrice CCD est de 60000, à moins que l'on ne dispose de moyens de calcul performants permettant de calculer en temps réel les déplacements relatifs des images. Dans ce cas, il suffirait de stocker seulement une image sur M (avec 10<M<100), c'est-à-dire seulement les images permettant de corriger les biais en les positionnant par rapport au speckle de référence. Si les mouvements imprimés par l'utilisateur au crayon sont à basse fréquence, on peut interpoler la trajectoire à partir de trames non successives. Si ce calcul en temps réel ou l'interpolation ne sont pas possibles, il faut stocker 642 X 60000 X2 = 500 Moctets/minute de données pour leur analyse a posteriori.The pencil trajectory is calculated a posteriori. Given the relative dimensions of the speckle grains and the pixels, a real-time pre-processing of the images is carried out in order to reduce them to images of 64 × 64 pixels, without loss of information. For one minute of video acquisition, the number of images to be stored from each CCD matrix is 60,000, unless there are high-performance calculation means enabling the relative movements of the images to be calculated in real time. In this case, it would suffice to store only one image on M (with 10 <M <100), that is to say only the images making it possible to correct the biases by positioning them with respect to the reference speckle. If the movements printed by the user in pencil are at low frequency, the trajectory can be interpolated from non-successive frames. If this real-time calculation or interpolation is not possible, 64 2 X 60000 X2 = 500 Mbytes / minute of data must be stored for their subsequent analysis.
On peut mettre en œuvre le programme suivant pour analyser les données fournies par chaque détecteur :The following program can be implemented to analyze the data provided by each detector:
Pour les deux détecteurs, effectuer : Recherche de la première image parmi le champ de speckle de référence. On se donne un domaine de recherche de quelques centimètres.For the two detectors, carry out: Search for the first image in the reference speckle field. We give ourselves a research area of a few centimeters.
Temps de calcul : 40 corrélations (5ms chaque) + 20 rotations (1 ms chaque) <300 msCalculation time: 40 correlations (5 ms each) + 20 rotations (1 ms each) <300 ms
A) Pour chaque nouvelle image de chaque détecteur, calculer la position des pics d'intercorrélation avec l'image précédente.A) For each new image of each detector, calculate the position of the intercorrelation peaks with the previous image.
Temps de calcul : 10 ms par logiciel. Ce temps pourrait être diminué d'un ordre de grandeur en calculant cette intercorrélation à l'aide de processeurs FFT dédiés.Calculation time: 10 ms by software. This time could be reduced by an order of magnitude by calculating this cross-correlation using dedicated FFT processors.
Une image sur M, effectuer : B) Pour chaque angle θ = [-1 °,0,+1 °]An image on M, perform: B) For each angle θ = [-1 °, 0, + 1 °]
Calcul de la nouvelle matrice de rotation par rapport à la référence.Calculation of the new rotation matrix compared to the reference.
C) Pour chaque détecteurC) For each detector
- Rotation de l'image de θ par rapport à la précédente. - Recherche des 4 pics de corrélation dans un intervalle donné- Rotation of the image of θ compared to the previous one. - Search for the 4 correlation peaks in a given interval
Fin de boucle C Fin de boucle BEnd of loop C End of loop B
Interpolation sub-pixel des deux pics trouvés .Sub-pixel interpolation of the two peaks found.
Estimation de la nouvelle trajectoire et du nouveau domaine de recherche Fin de boucle AEstimation of the new trajectory and the new area of research End of loop A
On calcule la trajectoire par recalage grossier (50 μm) des positions sur les champs de référence, puis par affinage avec les données de positions relatives.The trajectory is calculated by rough registration (50 μm) of the positions on the reference fields, then by refinement with the relative position data.
Temps de calcul par incrémentation :Calculation time by increment:
- 3 rotations de l'image au plus proche voisin = 3 ms- 3 rotations of the image to the nearest neighbor = 3 ms
- calcul de 12 corrélations = 60 ms- calculation of 12 correlations = 60 ms
- Une interpolation "sub-pixel" serait négligeable si l'on procédait par interpolation simple (polynominale ou barycentre)- A "sub-pixel" interpolation would be negligible if we proceeded by simple interpolation (polynomial or barycenter)
Le temps de calcul par incrément est inférieur à 100 msCalculation time per increment is less than 100 ms
Si M>100, le calcul est donc faisable pendant l'acquisition. Le temps de calcul total est donc limité par le traitement des déplacements relatifs (10 ms chaque). Il est donc important de pouvoir faire ce calcul par processeur dédié pour diminuer ce temps de calcul. Dans ce cas, le traitement durerait moins d'une minute. Dans le cas contraire, il faudrait compter 10 fois plus de temps de traitement que de temps d'acquisition. Une autre solution si les mouvements sont lents consiste à espacer les mesures relatives et donc diminuer le nombre de mesures . If M> 100, the calculation is therefore feasible during the acquisition. The total calculation time is therefore limited by the processing of the relative displacements (10 ms each). It is therefore important to be able to do this calculation by dedicated processor to reduce this calculation time. In this case, the treatment would last less than a minute. Otherwise, it would take 10 times more processing time than acquisition time. Another solution if the movements are slow consists in spacing the relative measures and therefore reducing the number of measures.

Claims

REVENDICATIONS
1 - Dispositif de mesure de position, d'orientation et de trajectoire d'un objet solide, caractérisé en ce qu'il comporte au moins deux dispositifs de génération de champs aléatoires optiques (5,16,17) illuminant toute la zone dans laquelle peut se déplacer l'objet mobile (11), au moins un dispositif de mesure de champ local (7,14,15) solidaire de l'objet mobile, relié à un dispositif corrélateur numérique (8) auquel est relié un dispositif de mémorisation (9) des caractéristiques desdits champs aléatoires, ce dispositif corrélateur étant relié à un dispositif (10) de détermination des coordonnées dudit (desdits) dispositifs de mesure.1 - Device for measuring the position, orientation and trajectory of a solid object, characterized in that it comprises at least two devices for generating optical random fields (5,16,17) illuminating the entire area in which can move the mobile object (11), at least one local field measurement device (7,14,15) integral with the mobile object, connected to a digital correlating device (8) to which is connected a storage device (9) characteristics of said random fields, this correlating device being connected to a device (10) for determining the coordinates of said (said) measuring devices.
2- Dispositif de mesure selon la revendication 1 , caractérisé en ce que les champs aléatoires sont des champs produits par des diffuseurs éclairés par un faisceau cohérent (1 -2, 5-6, 16-17).2- A measuring device according to claim 1, characterized in that the random fields are fields produced by diffusers illuminated by a coherent beam (1 -2, 5-6, 16-17).
3 - Dispositif selon la revendication 2, caractérisé en ce que les axes optiques des diffuseurs sont convergents (P) et font entre eux un angle d'environ 20°.3 - Device according to claim 2, characterized in that the optical axes of the diffusers are convergent (P) and form between them an angle of about 20 °.
4 - Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que les générateurs de "speckle" comportent une source de lumière cohérente (1 ,5) illuminant une surface diffusante (2,6)4 - Device according to one of claims 2 or 3, characterized in that the "speckle" generators comprise a coherent light source (1, 5) illuminating a diffusing surface (2,6)
5 - Dispositif selon l'une des revendications précédentes, caractérisé en ce que les dispositifs de mesure de champ local sont des matrices de photodétecteurs (7,14,15).5 - Device according to one of the preceding claims, characterized in that the local field measurement devices are arrays of photodetectors (7,14,15).
6 - Dispositif selon l'une des revendications 3 à 5, caractérisé en ce que l'objet mobile est un "crayon" optique (11) sur lequel sont fixés deux dispositifs de mesure de champ optique local (14, 15).6 - Device according to one of claims 3 to 5, characterized in that the mobile object is an optical "pencil" (11) on which are fixed two local optical field measurement devices (14, 15).
7- Dispositif selon la revendication 6, caractérisé en ce qu'au cours des déplacements du "crayon", celui-ci est maintenu de façon que le point de convergence (P) des axes optiques des deux générateurs de "speckle" soit maintenu sensiblement equidistant des deux dispositifs de mesure de champ optique (14,15). 7- Device according to claim 6, characterized in that during movements of the "pencil", it is maintained so that the point of convergence (P) of the optical axes of the two generators of "speckle" is maintained substantially equidistant from the two optical field measuring devices (14,15).
PCT/FR2002/004221 2001-12-11 2002-12-06 Device for measuring position, orientation and trajectory of a solid object WO2003050565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0115989A FR2833342B1 (en) 2001-12-11 2001-12-11 DEVICE FOR MEASURING THE POSITION, ORIENTATION AND TRAJECTORY OF A SOLID OBJECT
FR01/15989 2001-12-11

Publications (1)

Publication Number Publication Date
WO2003050565A1 true WO2003050565A1 (en) 2003-06-19

Family

ID=8870333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004221 WO2003050565A1 (en) 2001-12-11 2002-12-06 Device for measuring position, orientation and trajectory of a solid object

Country Status (2)

Country Link
FR (1) FR2833342B1 (en)
WO (1) WO2003050565A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264734A2 (en) * 1986-10-11 1988-04-27 Mesacon Gesellschaft für Messtechnik mbH Method and apparatus for contactless optical distance measurement, in particular by triangulation
US6066842A (en) * 1996-10-11 2000-05-23 Trw Inc. Laser along-body tracker (SABOT III)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264734A2 (en) * 1986-10-11 1988-04-27 Mesacon Gesellschaft für Messtechnik mbH Method and apparatus for contactless optical distance measurement, in particular by triangulation
US6066842A (en) * 1996-10-11 2000-05-23 Trw Inc. Laser along-body tracker (SABOT III)

Also Published As

Publication number Publication date
FR2833342B1 (en) 2004-02-27
FR2833342A1 (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US8982363B2 (en) Method and apparatus to determine depth information for a scene of interest
EP0279730B1 (en) Method and device for tridimensional measurement
WO1990008939A1 (en) Method for calibrating a system for the tri-dimensional acquisition of shape and system for implementing such method
US8129703B2 (en) Intraoral imaging system and method based on conoscopic holography
FR2493541A1 (en) METHOD AND EQUIPMENT FOR ANALYZING RADIATION DEVIATION
FR2614691A1 (en) PROFILE MEASUREMENT APPARATUS, BY DIGITAL MOIRE TECHNIQUE, CALIBRATED TO ALLOW A PRECISE CONVERSION OF PHASE INFORMATION INTO DISTANCE MEASUREMENTS FOLLOWING SEVERAL DIRECTIONS
FR2836215A1 (en) SYSTEM AND METHOD FOR THREE-DIMENSIONAL MODELING AND RENDERING OF AN OBJECT
FR2559577A1 (en) POLYGONAL TRACE MEASUREMENT METHOD AND MEASURING DEVICE
FR2756626A1 (en) SYSTEM FOR MEASURING GAMES AND FLOORS BETWEEN OPPOSITE PARTS
EP3069185A1 (en) Three-dimensional focusing device and method for a microscope
CN109752844B (en) An imaging method and system based on random light intensity fluctuations
EP0649001B1 (en) Procedure to measure the form and/or evenness of a moving material and device for its execution
EP0970391B1 (en) Optical device for the contactless measurement of distance of a light source
EP1157261B1 (en) Method and device for analysing a highly dynamic wavefront
FR2872897A1 (en) OPTICAL DEVICE FOR MEASURING THE THICKNESS OF AT LEAST PARTIALLY TRANSPARENT MEDIA
FR2620818A1 (en) OPTICAL PROBE
EP0328443B1 (en) Method for digitizing the surface of a three-dimensional object, and mapping apparatus to carry out this method
WO2003050565A1 (en) Device for measuring position, orientation and trajectory of a solid object
CA2198022C (en) Method for the correlation of three dimensional measurements obtained by image capturing units and system for carrying out said method
WO2008046998A1 (en) Method for correcting a wave front analyser and analyser implementing said method
FR2749086A1 (en) Optical odometer for measuring object velocity
EP2734813B1 (en) Digital movement measuring device
FR2700847A1 (en) DTC matrix star viewer, detection method, and application to the registration of a spacecraft.
WO2012076826A1 (en) Method and device for characterizing the internal dynamics of a sample of material in the presence of a rigid displacement
WO2020181560A1 (en) Imaging method and system based on random light intensity fluctuation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载