WO2003047645A1 - Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and process for producing the same - Google Patents
Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and process for producing the same Download PDFInfo
- Publication number
- WO2003047645A1 WO2003047645A1 PCT/JP2002/012782 JP0212782W WO03047645A1 WO 2003047645 A1 WO2003047645 A1 WO 2003047645A1 JP 0212782 W JP0212782 W JP 0212782W WO 03047645 A1 WO03047645 A1 WO 03047645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collagen
- apatite
- sponge
- porous
- complex
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
Definitions
- the present invention relates to a novel superporous biomaterial for the purpose of developing a scaffold for replacing hard tissue, that is, a superporous composite of collagen and carbonate apatite.
- a superporous composite having excellent cell infiltration properties comprising a metabolic carbonate abatite having a composition and a crystal structure similar to that of a living bone or a tooth, and collagen, and a method for producing the same.
- Japanese Patent Application Laid-Open Publication No. 2000-266628 discloses orthopedic, neurosurgery and plastic surgery comprising various bioabsorbable organic materials including collagen and calcium phosphate compounds including carbonate-containing apatite.
- a composite type bone filling material used for repairing a bone defect in a subject or the like is described.
- Japanese Patent Application Laid-Open No. 8-187254 in accordance with the invention of the present inventors discloses that a collagen layer and an apatite / collagen layer are appropriately formed so as to be able to cope with both soft and hard tissues.
- a laminated composite film formed by laminating in combination is described. Further, Japanese Patent Application Laid-Open No.
- 8-336559 discloses a container for an artificial organ for newly generating an autologous organ tissue for treating a lesion of the organ tissue, and at least the container. It describes an artificial organ container whose inner wall is made of a material mainly composed of apatite containing an organic substance such as collagen.
- U.S. Pat. No. 5,071,4,336 describes that a sponge having hydroxyapatite and gel-like collagen is used as a bone replacement material for plastic surgery.
- U.S. Patent Nos. 5,776,193 and 6,187,047 state that porosity is imparted in the design of bone replacement materials. Have been. Further, U.S. Pat. No.
- 6,201,039 describes various medical artificial bones comprising a hydroxyapatite starting from a hydroxypatite precursor, which is treated with collagen, and which is similar to a living bone tissue. It states that the organization will be obtained.
- apatite is used as a material constituting the composite, and although carbonate apatite is exemplarily described therein, carbonate apatite is described therein.
- the chemical composition is very similar to the biological bone tissue, and the crystallographic relationship is also very similar (this point will be described later with reference to FIGS. 3 and 4).
- the material to be used has properties as a high-level biofunctional material. That is, bioactive substances and stem cells must be maintained for a certain period of time, sustained release should be exhibited, and they should have excellent cell invasiveness and be metabolized and replaced by new tissues. For various demands, those with characteristics that can meet these requirements are required.
- the conventional composite is as described above, and it cannot be said that it is a material that can sufficiently respond to the various requests as described above.
- the present invention seeks to develop and provide a scaffold material for hard tissue replacement that meets the above-mentioned demands, and as a result of intensive research, among various known apatites, carbonate apatite is particularly close to living bone tissue.
- the material has a composition and crystallinity and is excellent in affinity for living tissue, and in addition, this apatite is complexed with collagen, so-called bioregenerating medical apatite.
- the material design of the composite can be designed to be porous and high porosity sponge-like, it is excellent in terms of, for example, enhancing the infiltration of new tissues.
- the sponge-like high porosity, porous composite was successfully obtained by treating both the carbonate carbonate and collagen materials by a specific process. It has been confirmed that the composite material obtained as a result of the above can be sufficiently used as a regenerative medical engineering material, and that the intended purpose can be achieved by this. is there.
- the present invention solves the above-mentioned problems, and provides the following sponge-like porous apatite-collagen composite, sponge-like superporous apatite.collagen composite, and methods for producing them.
- a sponge-like porous body for replacing living hard tissue which is a composite for replacing living hard tissue, comprising a carbonate carbonate and collagen, wherein the tissue structure of the complex is a porous sponge. Carbonated abatite-collagen complex.
- Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alkali, and then mixed with apatite carbonate particles to obtain a water-containing composite gel composed of apatite and collagen.
- the water-containing composite gel thus obtained is centrifuged to remove water appropriately, frozen, and freeze-vacuum-dried to obtain a sponge-like porous carbonated apatite-collagen complex, which is a substitute for living hard tissue.
- spongy porous carbonated apatite / collagen composites for producing spongy porous carbonated apatite / collagen composites.
- Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alkali, and then mixed with apatite carbonate particles to form a hydrous composite gel composed of apatite and collagen.
- the resulting hydrous composite gel is centrifuged to remove water as appropriate, frozen, freeze-dried and vacuum-dried to obtain sponge-like porous apatite collagen, and then insolubilized.
- a first solution of the present invention is a living hard tissue replacement complex comprising carbonate apatite and collagen, characterized by exhibiting a porous sponge shape. This is a sponge-like porous carbonated apatite / collagen composite.
- a second solution of the present invention is a sponge-like porous material for replacing a living tissue, wherein the composite according to the first solution has a porosity of 5 to 90 vol%. It is a carbonate apatite / collagen complex.
- a third solution of the present invention is a sponge-like ultraporous material for substituting a living hard tissue, wherein the composite according to the second solution has a porosity of 50 to 90 vol%. This is a complex of carbonic acid apatite and collagen.
- a fourth solution of the present invention is characterized in that the complex according to the first solution contains 95% by weight or less of carbonate apatite and has a porosity of 5 to 90% by volume.
- a fifth solution of the present invention is the substitute for living hard tissue, characterized in that the carbonate apatite in the first solution contains a trace component similar to that contained in the living body apatite. Sponge-like porous carbonate It is a patite-collagen complex.
- a sixth solution of the present invention is a sponge-like porous material for substituting a living hard tissue, wherein the trace component in the fifth solution is Mg, Fe, Zn, F, or CI. It is a carbonate apatite / collagen complex.
- the seventh solution of the present invention is to prepare an acidic collagen solution by dissolving collagen in an acid, gelling by adding an alkaline solution, and then mixing the carbonated apatite particles, A water-containing composite gel consisting of collagen and collagen is obtained. The obtained water-containing composite gel is centrifuged to remove water as needed, and then frozen and freeze-vacuum dried to form a sponge-like porous material.
- the eighth solution of the present invention is to prepare an acidic collagen solution by dissolving collagen in an acid, gelling by adding an alkaline solution, then mixing the carbonated apatite particles, and mixing with the carbonated apatite.
- a water-containing composite gel comprising collagen was obtained, and the obtained water-containing composite gel was centrifuged to appropriately remove water, and then frozen and freeze-vacuum-dried to form a sponge-like porous carbonate.
- This is a method for producing a sponge-like porous carbonate-collagen complex for replacing living hard tissue, which comprises obtaining an apatite-collagen complex and then insolubilizing the complex.
- a ninth solution of the present invention is a sponge-like porous carbon dioxide for replacing living hard tissue, wherein the eighth insolubilization treatment is performed by irradiation with UV light.
- This is a method for producing a patite-collagen complex.
- a tenth solution of the present invention is a method for producing a sponge-like porous carbonated apatite-collagen complex for substituting a living hard tissue, wherein the eighth insolubilization treatment is a chemical treatment.
- the usual apertype is C ai.
- ( ⁇ ⁇ 4) 6 (OH) is represented by 2, carbonate Apatai you want to use in the present invention, the chemical composition of the general formula; C a 10 one X (PO 4) 6- ⁇ ( CO s) ⁇ ( OH) 2-z, where 0 ⁇ X ⁇ 3 to 5, 0 ⁇ Y 2 to 4, 0 ⁇ Z ⁇ 1 to 2, and its crystallinity is very similar to the crystal structure of living bone ing.
- FIGS. 3 and 4 a comparison of the synthetic carbonate apatite with the bones of the human body by X-ray diffraction patterns is as shown in FIGS. 3 and 4.
- the crystal structures of both are almost similar and cannot be distinguished.
- the requirement for setting the complex to be sponge-like porous or sponge-like super porous is that, by this, the bioactive substance to be introduced and osteoblasts can be retained, and the cells can be infiltrated. And ensure landing It has an action.
- the sponge-like porous composite is defined by the porosity and is selected according to the porosity in use.However, the range in which the porosity is set or selected depends on the purpose of use. The decision will be taken into account. The selection will be clarified through further experiments.
- the complex of the present invention is unique in that it is set in a sponge-like state as compared with the conventional complex, and thus the complex is recognized.
- the composite based on the previous design, as described in the present invention may be described as being porous even if the description is actually porous, or a description suggesting this or a guide to that effect.
- the present invention has a sponge shape and a porosity of 5 to 90 vol%.
- the lower limit of 5 vol% is that if it is less than 5 vol%, it will not be possible to meet the above-mentioned requirements such as cell invasiveness.
- the reason for setting the upper limit to 90 vol% is beyond this—in this case, the strength of a biomaterial support is the limit. This is what we stipulated. INDUSTRIAL APPLICABILITY
- the present invention can freely set the porosity in a wide range, thereby meeting a wide range of usage modes and demands.
- the void portion plays an important role in regenerative medical engineering as a void for holding a bioactive substance and a living cell, or as a void for implantation and infiltration of cells.
- the composite set at 50 to 90 vol% has a porosity that accounts for more than half of the volume of the composite, and can be said to be a superporous composite. Which range of porosity is to be set or selected depends on its use in regenerative medical engineering, that is, a support for bone regeneration (for osteoblast culture), a support for cell culture, and an artificial organ. It is set appropriately according to various uses such as a tissue culture support or a bone filling material, and referring to clinical examples.
- collagen will be described.
- Collagen is commercially available, and the collagen used in the present invention is usually commercially available and sufficient, and there is no particular limitation on its quality and the like.
- the significance of collagen in the present invention is that, in producing a sponge-like porous composite, it plays a role as a binder for carbonic acid apatite crystal particles and also adjusts porosity. Also plays an important role together with other factors.
- the sponge-like porous composite is produced by the above-described process, but depends on various conditions in a series of processes such as the concentration of the collagen solution, the amount of mixed carbon apatite, and the centrifugation operation for separating water.
- the porosity, etc., of the resulting composite varies and is affected.
- collagen Is dissolved in an acid and then neutralized to neutrality or alkalinity in order to dissolve and gelate. That is, collagen is dissolved by an acid and gelled when an alkali is added to the acidic solution and the pH is adjusted to 7 or more.
- the mixing operation of carbonated apatite is performed after neutralization, because if mixed at the stage when the solution is acidic, the apatite crystals may be partially eluted or altered, or the crystal structure of the particles may be altered. This may have some effect on the situation, and this should be avoided. In the region having a pH of 7 or more, the collagen in the acidic collagen solution gels. Mix apatite immediately after neutralization.
- the gelation progresses due to the neutralization, the viscosity increases due to the gelation and it becomes difficult to mix, so it is preferable to carry out immediately after the neutralization.However, the gelation is adjusted to an appropriate viscosity, and As an embodiment, the mixing amount of the apa-titer particles is appropriately controlled and agitated, thereby controlling the dispersion state and the like of the two in the composite. It is not something that must be done. After the mixing operation is completed, centrifugation operation and freeze-vacuum drying treatment are performed. The significance is that the hydrogel composite obtained by mixing has not yet formed a porous state in this state, and this operation process As a result, water is removed, and the gel body becomes a sponge-like porous body.
- the complex may be a carbonate apatite.
- the point that the content was 95% by weight or less and the complex was specified only based on the upper limit of carbonate apatite is not limited to the lower limit, that is, when carbonate apatite S is substantially close to 0 wt%. (Collagen 100 wt%) is also possible.
- the upper limit set at 95 wt% when the carbonate apatite exceeds 95 wt%, the composite becomes dense and it becomes difficult to obtain the desired porosity.
- FIG. 1 is an electron micrograph showing the structure of the sponge-like superporous carbonate apatite / collagen complex of the present invention.
- Fig. 2 is an electron micrograph showing the structure of a conventional apatite-collagen complex.
- FIG. 3 is an X-ray diffraction diagram of the synthetic carbonate apatite.
- FIG. 4 is an X-ray diffraction pattern of a human bone.
- Fig. 5 is an electron micrograph showing the bone tissue of the sample not irradiated with UV.
- FIG. 6 is an electron micrograph showing the bone tissue of the sample irradiated with UV.
- the sponge-like porous carbonated abatite-collagen composite of the present invention has a sponge shape and a high porosity.
- it when used as a cell culture support, it has good retention of the introduced bioactive substance and good cell infiltration and metabolism, as described above. Not only can it be used for the same purpose as the normal apatite-collagen complex, but it can also be used in the fields, applications, or cell invasiveness that were previously considered difficult by taking advantage of the characteristics shown above.
- composition of carbonate apatite as shown in the general formula, has values of x, y, and z each within a predetermined range. It is possible.
- the pH value is set to 7 or more, that is, to the near side.
- the reaction temperature may be in the range of about 40 ° C. to 80 ° C., but keeping the temperature as low as possible at 60 ° C. is particularly preferable for obtaining uniform crystals.
- 0.05 N NaOH solution was added dropwise, and when the whole amount was neutralized, the above carbonate abatite was immediately mixed. Further, NaOH solution was added dropwise to gel the collagen, and the collagen was gelled. As a result, a sponge-like porous carbonate and collagen precursor, which is a precursor of the collagen complex, was obtained.
- This gelation reaction is caused by the acidity of the acidic collagen solution, regardless of the presence or absence of apatite. In other words, the phenomenon is based on the change in the molecular structure of the collagen itself.
- the concentration of the collagen solution prepared for the production of the complex is preferably 0.1 to 2.0% by weight.
- the state of the hydrous composite gel obtained after gelation differs in viscosity and water content. That is, the moisture content can be freely controlled by the difference in the concentration.
- the water content can be freely controlled by the difference in the concentration.
- a composite having a high porosity can be obtained, and conversely, from the water-containing composite gel having a low water content, the porosity can be obtained.
- a material having a low porosity can be obtained, thereby controlling the porosity and the porosity in a target state.
- 0.1 to 2.0 wt% is used.
- the lower limit was set because the desired composite could not exhibit its function and the shape and strength of the target composite were too weak, which hindered use. 2. If it exceeds O wt%, the viscosity at the time of gelation becomes strong, and the amount suitable for forming a bulky porous body for carbonated apatite particles is uniformly dispersed and mixed. In this case, the mixing operation and the subsequent dehydration operation for making the material porous are also difficult.
- the gelation reaction was performed in a mold having a predetermined shape, whereby a water-containing composite gel having a certain shape was obtained, and then processed into a predetermined shape by separating and removing water.
- Obtaining a sponge-like porous composite is also one of the embodiments.
- the operation of separating and removing water in the composite sponge preparation process is as follows. First, the water-containing composite gel obtained in the previous step is centrifuged to preliminarily remove water that has liberated in a substantial amount, and then removes it. The unretained water is removed by freezing the gel as it is at 180 ° C. or with liquid nitrogen for 2 hours, followed by freeze vacuum drying, and sublimation and separation of the frozen water. By performing this moisture separation operation, the mixture becomes porous, and when pressed with a finger, an elastic sponge-like porous composite having a high porosity can be obtained.
- the sponge-like porous composite obtained by the above-mentioned process dissolves and swells in the living tissue as it is, gradually loses its form, and can no longer maintain the desired form. And may cause inconvenience.
- the sponge-like porous composite has a large surface area as compared to a solid one, and is in a state where solubility is easily promoted. Therefore, it is desirable to perform insolubilization.
- the insolubilization treatment include ultraviolet irradiation and chemical treatment. The result does not change much.
- Example of insolubilization treatment Place the apatite-collagen complex obtained by the above-mentioned process in a sterile box at a distance of 10 cm under a UV lamp (10 W, ultraviolet light with a wavelength of 253.7 nm). And irradiated with UV light for 2 hours on both sides.
- a UV lamp (10 W, ultraviolet light with a wavelength of 253.7 nm).
- the insolubilization means other than the UV irradiation a treatment using a chemically treated gamma ray using Daltar aldehyde 0.1 to 5 wt% is also used.
- the porosity and the pore diameter can be freely adjusted by controlling the water content, thereby obtaining a sponge-like composite having an extremely high porosity. Can be done.
- the pore diameter has not been described in detail, it is generally said that the invasiveness of cells depends on the pore diameter, and the pore diameter into which cells can easily enter is 200 to 3 • 0 microns. In other words, this value serves as a reference index, but the optimal range will be awaiting further research.
- Another feature of the present invention is that, since the present invention is in the form of a sponge, it can be easily formed.
- the biological apatite has trace elements of trace elements such as Mg, Fe, Zn, F, CI, etc., and it is possible to approach this in the present invention.
- trace elements such as Mg, Fe, Zn, F, CI, etc.
- the addition of trace elements during production is included as an embodiment of the present invention.
- carbonate apatite having a very similar chemical composition and crystal structure to the bone of a living body is used, and this is composited with collagen, so that it has an affinity for biological tissue.
- the structure of the complex is made of sponge-like porous or ultra-porous, so that physiologically active substances and stem cells can be effectively and reliably retained for a certain period of time, and cell infiltration It provides a metabolic complex with excellent properties, and its significance is extremely large.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Materials For Medical Uses (AREA)
Abstract
In the field of regeneration therapy engineering, there have been vigorously made research and development of apatite-collagen composites. However, existing composites cannot always satisfy various requirements such as holding a physiologically active substance or stem cells such as osteoblasts for a definite period of time, accelerating the infiltration of cells, and being replaced by a new tissue through spontaneous metabolism. Under these circumstances, it is intended to provide composites fulfilling these requirements. Namely, composites of apatite carbonate, which is highly close to bone in chemical composition and crystalline structure, and collagen having an excellent compatibility with biological tissues are formed. These composites have a porous or superporous sponge-like structure, which makes it possible to surely hold a physiologically active substance or stem cells for a definite period of time. Thus, a composite having excellent cell infiltration properties and metabolic properties can be obtained.
Description
明 細 書 スポンジ状多孔質ァパタイ ト · コラーゲン複合体、 スポンジ状超多孔 質ァパタイ ト · コラーゲン複合体及びそれらの製造方法 Description: Sponge-like porous apatite / collagen composite, sponge-like superporous apatite / collagen composite, and methods for producing them
技術分野 Technical field
本発明は、 硬組織代替用スカフオールドの開発を目的と した新規超 多孔性生体材料、 すなわち、 コラーゲンと炭酸アパタイ トの超多孔性 複合体に関する。 特に、 生体骨や歯に類似した組成と結晶組織を有す る代謝性炭酸アバタイ トとコラーゲンよ りなる細胞浸潤性に優れた超 多孔性複合体とその製造方法に関する。 The present invention relates to a novel superporous biomaterial for the purpose of developing a scaffold for replacing hard tissue, that is, a superporous composite of collagen and carbonate apatite. In particular, the present invention relates to a superporous composite having excellent cell infiltration properties, comprising a metabolic carbonate abatite having a composition and a crystal structure similar to that of a living bone or a tooth, and collagen, and a method for producing the same.
背景技術 Background art
近年、 コラーゲンとァパタイ ト複合体に関する研究が盛んに行われ ている。 In recent years, research on collagen and apatite complexes has been actively conducted.
特開 2 0 0 0— 2 6 2 6 0 8号公報には、 コラーゲンも含めた各種 生体吸収性有機材料と炭酸含有ァパタイ トも含めた燐酸カルシウム化 合物よりなる整形外科、 脳外科、 形成外科等における骨欠損部修復用 に用いる複合型骨充填材が記載されている。 また、 本発明者等の発明 に係る特開平 8 - 1 8 2 7 5 4号公報には、 軟組織、 硬組織の両組織 に対して対応しうるよう コラーゲン層とァパタイ ト · コラーゲン層と が適宜組み合わせで積層してなる積層型複合膜が記載されている。 さ らに、 特開平 8 _ 3 3 6 5 4 9号公報には、 臓器組織の病変を治療す るための、 自家臓器組織を新たに発生させる人工臓器用容器であって、 少なく ともその容器内壁はコラーゲン等の有機物を配合したァパタイ トを主成分と した材料によって構成されている人工臓器用容器が記載 されている。
米国特許第 5 , 0 7 1 , 4 3 6号明細書には、 ヒ ドロキシァパタイ トとゲル状コラーゲンを有するスポンジを形成外科用骨補填材料とす ることが記載されている。 また米国特許第 5, 7 7 6 , 1 9 3号明細 書、 同第 6 , 1 8 7 , 0 4 7号明細書には、 骨補填材料の設計におい て、 多孔性を付与することが記載されている。 さらに米国特許第 6 , 2 0 1 , 0 3 9号明細書には、 ヒ ドロキシァ パタイ ト前駆体から出発し、 これをコラーゲン処理し、 生体骨組織に 近いヒ ドロキシァパタイ トよりなる各種医科用人工骨組織を得ること が記載されている。 これらの文献には、 確かに複合体を構成する材料としてァパタイ ト を用いることが記載され、 その中には炭酸アバタイ トも例示的に記載 されてはいるものの、 そこには、 炭酸アパタイ トが生体骨組織に対し て、 化学組成が近似し、 且つ結晶学的にも極めて近似した関係にあり (この点は第 3図、 第 4図に基づく説明で後述する)、 そのため、 生 体組織に対して親和性に優れ、 特に好ましい材料であることや、 ある いは、 ァパタイ トの中でも炭酸ァパタイ トがこれとは異なる組成のァ パタイ トに比し、 特に医科用スカフオールド材料として特に好ましい 材料であるとのこと、 についてこれを積極的に示唆している記載はな い。 また、 本発明の複合体の設計思想とする、 細胞の浸潤を増長させ よう とすること、 そのための手段として複合体をスポンジ状に高気孔 率に設定すること等につき、 示唆、 言及している記載もない。 一方、 今日の現状は、 再生医工学の急速な進展によって、 硬組織代 替材料に生理活性材料物質と共に骨芽細胞、 幹細胞を導入することに より、 迅速な骨形成も含めた生体細胞形成を促す試みが実際に行われ
るまでに至っており、 そのため、 用いる材料と しては高度な生体機能 材料と しての性質を有することが求められている。 すなわち、 生理活 性物質や幹細胞が確実に一定期間保持されること、 徐放性が発揮され るものであること、 しかも細胞浸潤性に優れ、 新生組織によって代謝 され、 置き換わる材料であること等の種々の要求に対して、 これに応 えられる特性を持ったものが求められている。 これに対して、 従前の 複合体は、 上記したとおりであり、 前示したよ うな種々の要請に対し て、 充分に対応しうる材料であるとは言い難いものであった。 本発明は、 上記要望に応えう る硬組織代替用スカフオールド材料を 開発、 提供しよう というものであり、 鋭意研究した結果、 各種公知の ァパタイ トの中でもと りわけ炭酸ァパタイ トが生体骨組織に近い組成 と結晶性とを有し、 生体組織に対して親和性に優れた材料であること を見出したものであり、 加えて、 このァパタイ トをコラーゲンにより 複合化した、 いわゆる生体再生医用ァパタイ ト · コラーゲン複合体を 得よ う とするにおいて、 該複合体の材料設計を、 多孔質且つ高気孔率 スポンジ状に設計することが出来れば、 新生組織の浸潤性を高める等 の点で優れており、 再生医工学材料としてはむしろ好ましいとの観点 で鋭意研究した。 その結果、 炭酸ァパタイ トとコラーゲンの両材料を特定のプロセス によって処理することによって、 スポンジ状を呈した高気孔率、 多孔 質複合体を得ることが出来ることに成功したものであり、 しかも、 そ の結果得られた複合材料は、 これを再生医工学材料と して充分に使用 することが出来るものであること、 これによつて所期のねらいを達成 することが出来ることを確認したものである。 Japanese Patent Application Laid-Open Publication No. 2000-266628 discloses orthopedic, neurosurgery and plastic surgery comprising various bioabsorbable organic materials including collagen and calcium phosphate compounds including carbonate-containing apatite. A composite type bone filling material used for repairing a bone defect in a subject or the like is described. Also, Japanese Patent Application Laid-Open No. 8-187254 in accordance with the invention of the present inventors discloses that a collagen layer and an apatite / collagen layer are appropriately formed so as to be able to cope with both soft and hard tissues. A laminated composite film formed by laminating in combination is described. Further, Japanese Patent Application Laid-Open No. 8-336559 discloses a container for an artificial organ for newly generating an autologous organ tissue for treating a lesion of the organ tissue, and at least the container. It describes an artificial organ container whose inner wall is made of a material mainly composed of apatite containing an organic substance such as collagen. U.S. Pat. No. 5,071,4,336 describes that a sponge having hydroxyapatite and gel-like collagen is used as a bone replacement material for plastic surgery. Also, U.S. Patent Nos. 5,776,193 and 6,187,047 state that porosity is imparted in the design of bone replacement materials. Have been. Further, U.S. Pat. No. 6,201,039 describes various medical artificial bones comprising a hydroxyapatite starting from a hydroxypatite precursor, which is treated with collagen, and which is similar to a living bone tissue. It states that the organization will be obtained. In these documents, it is true that apatite is used as a material constituting the composite, and although carbonate apatite is exemplarily described therein, carbonate apatite is described therein. The chemical composition is very similar to the biological bone tissue, and the crystallographic relationship is also very similar (this point will be described later with reference to FIGS. 3 and 4). It is a material that has excellent affinity for it and is a particularly preferred material, or it is a particularly preferred material as a medical scaffold material, because carbonate apatite has a different composition from apatite among the apatites. There is no statement that this is positively suggested. In addition, he suggests and mentions the design concept of the complex of the present invention, to increase the infiltration of cells, and to set the complex to a sponge-like high porosity as a means for that purpose. There is no description. On the other hand, today, the rapid progress of regenerative medical engineering has led to the introduction of osteoblasts and stem cells together with bioactive materials into hard tissue substitutes, thereby enabling rapid formation of living cells including bone formation. The attempt to encourage Therefore, it is required that the material to be used has properties as a high-level biofunctional material. That is, bioactive substances and stem cells must be maintained for a certain period of time, sustained release should be exhibited, and they should have excellent cell invasiveness and be metabolized and replaced by new tissues. For various demands, those with characteristics that can meet these requirements are required. On the other hand, the conventional composite is as described above, and it cannot be said that it is a material that can sufficiently respond to the various requests as described above. The present invention seeks to develop and provide a scaffold material for hard tissue replacement that meets the above-mentioned demands, and as a result of intensive research, among various known apatites, carbonate apatite is particularly close to living bone tissue. It has been found that the material has a composition and crystallinity and is excellent in affinity for living tissue, and in addition, this apatite is complexed with collagen, so-called bioregenerating medical apatite. In order to obtain a collagen composite, if the material design of the composite can be designed to be porous and high porosity sponge-like, it is excellent in terms of, for example, enhancing the infiltration of new tissues. We conducted intensive research from the viewpoint that it is preferable as a regenerative medical engineering material. As a result, the sponge-like high porosity, porous composite was successfully obtained by treating both the carbonate carbonate and collagen materials by a specific process. It has been confirmed that the composite material obtained as a result of the above can be sufficiently used as a regenerative medical engineering material, and that the intended purpose can be achieved by this. is there.
本発明は、 上記一連の知見等に基づいて成されたものである。
発明の開示 The present invention has been made based on the above series of findings and the like. Disclosure of the invention
すなわち、 本発明は上記課題解決するものであって、 下記のスポン ジ状多孔質ァパタイ ト · コラーゲン複合体、 スポンジ状超多孔質ァパ タイ ト . コラーゲン複合体及びそれらの製造方法である。 That is, the present invention solves the above-mentioned problems, and provides the following sponge-like porous apatite-collagen composite, sponge-like superporous apatite.collagen composite, and methods for producing them.
( 1 ) 炭酸ァパタイ トとコラーゲンとからなる生体硬組織代替用複 合体であって、 該複合体の組織構造が多孔質スポンジ状を呈している ことを特徴とする生体硬組織代替用スポンジ状多孔質炭酸アバタイ ト - コラーゲン複合体。 (1) A sponge-like porous body for replacing living hard tissue, which is a composite for replacing living hard tissue, comprising a carbonate carbonate and collagen, wherein the tissue structure of the complex is a porous sponge. Carbonated abatite-collagen complex.
( 2 ) 前記複合体が、 気孔率 5〜 9 0 vol %を有していることを特 徴とする前記 ( 1 ) 項に記載の生体硬組織代替用スポンジ状多孔質炭 酸ァパタイ ト · コラーゲン複合体。 (2) The sponge-like porous carbon dioxide apatite collagen for substituting a living hard tissue according to the above (1), wherein the complex has a porosity of 5 to 90 vol%. Complex.
( 3 ) 前記複合体が、 気孔率 5 0〜 9 0 vol %を有していることを 特徴とする前記 ( 2 ) 項に記載の生体硬組織代替用スポンジ状超多孔 質炭酸ァパタイ ト · コラーゲン複合体。 (3) The composite according to the above (2), wherein the composite has a porosity of 50 to 90 vol%. Complex.
( 4 ) 前記複合体が、 炭酸ァパタイ ト 9 5 w t %以下含有し、 気孔 率 5〜 9 0 vol %を有していることを特徴とする前記 ( 1 ) 項に記載 の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複 合体。 (4) The living tissue replacement according to the above (1), wherein the complex contains 95 wt% or less of carbonate apatite and has a porosity of 5 to 90 vol%. Sponge-like porous carbon apatite / collagen complex.
( 5 ) 前記炭酸ァパタイ トが、 生体ァパタイ トが含有しているのと 同様の微量成分を含んでいることを特徴とする前記 ( 1 ) 項に記載の 生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合
体。 (5) The sponge-like porous carbonic acid according to the above (1), wherein the carbonic acid apatite contains a trace component similar to that contained in the biological apatite. Apatite / collagen composite body.
( 6 ) 前記微量成分が、 M g、 F e、 Z n、 F、 C Iである前記 ( 5 ) 項に記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラ 一ゲン複合体。 (6) The sponge-like porous carbon dioxide apatite-collagen complex for substituting a living hard tissue according to the above (5), wherein the trace component is Mg, Fe, Zn, F, or CI.
( 7 ) コラーゲンを酸に溶解して酸性コラーゲン溶液を調製し、 ァ ルカリ を添加することによってゲル化し、 次いで炭酸ァパタイ ト粒子 を混合し、 炭酸ァパタイ トとコラーゲンよりなる含水複合ゲルを得、 得られた含水複合ゲルを遠心分離器にかけて水分を適宜除去し、 凍結 し、 凍結真空乾燥処理することによ りスポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体を得ることを特徴とする生体硬組織代替用スポ ンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の製造方法。 (7) Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alkali, and then mixed with apatite carbonate particles to obtain a water-containing composite gel composed of apatite and collagen. The water-containing composite gel thus obtained is centrifuged to remove water appropriately, frozen, and freeze-vacuum-dried to obtain a sponge-like porous carbonated apatite-collagen complex, which is a substitute for living hard tissue. For producing spongy porous carbonated apatite / collagen composites.
( 8 ) コラーゲンを酸に溶解して酸性コラーゲン溶液を調製し、 ァ ルカリ を添加することによつてゲル化し、 次いで炭酸ァパタイ ト粒子 を混合し、 炭酸ァパタイ トとコラーゲンよ りなる含水複合ゲルを得、 得られた含水複合ゲルを遠心分離器にかけて水分を適宜除去し、 凍結 し、 凍結真空乾燥処理することによ りスポンジ状多孔質炭酸ァパタイ ト · コラーゲンを得、 次いで不溶化処理することを特徴とする生体硬 組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の製 造方法。 (8) Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alkali, and then mixed with apatite carbonate particles to form a hydrous composite gel composed of apatite and collagen. The resulting hydrous composite gel is centrifuged to remove water as appropriate, frozen, freeze-dried and vacuum-dried to obtain sponge-like porous apatite collagen, and then insolubilized. A method for producing a sponge-like porous carbonated apatite / collagen complex for replacing living hard tissue.
( 9 ) 前記不溶化処理が U V光照射によることを特徴とする前記 ( 8 ) 項に記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト • コラーゲン複合体の製造方法。
( 1 0 ) 前記不溶化処理が化学的処理によることを特徴とする前記 ( 8 ) 項に記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト • コラーゲン複合体の製造方法。 すなわち、 本発明の第 1番目の解決手段は、 炭酸ァパタイ トとコラ 一ゲンとからなる生体硬組織代替用複合体であって、 多孔質スポンジ 状を呈していることを特徴とする生体硬組織代替用スポンジ状多孔質 炭酸ァパタイ ト · コラーゲン複合体と したことである。 本発明の第 2番目の解決手段は、 第 1番目の解決手段における複合 体が、 気孔率 5〜9 0 vol %を有していることを特徴とする生体硬組 織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体と した ことである。 本発明の第 3番目の解決手段は、 第 2番目の解決手段における複合 体が、 気孔率 5 0〜 9 0 vol %を有していることを特徴とする生体硬 組織代替用スポンジ状超多孔質炭酸ァパタイ ト · コラーゲン複合体と したことである。 本発明の第 4番目の解決手段は、 第 1番目の解決手段における複合 体が、 炭酸ァパタイ ト 9 5 w t %以下含有し、 気孔率が 5〜 9 0 vol %に設定したことを特徴とする生体硬組織代替用スポンジ状多孔質炭 酸ァパタイ ト · コラーゲン複合体と したことである。 本発明の第 5番目の解決手段は、 第 1番目の解決手段における炭酸 ァパタイ トが、 生体ァパタイ トが含有していると同様の微量成分を含 んでいることを特徴とする生体硬組織代替用スポンジ状多孔質炭酸ァ
パタイ ト . コラーゲン複合体と したことである。 本発明の第 6番目の解決手段は、 第 5番目の解決手段における微量 成分が、 M g、 F e、 Z n、 F、 C I であることを特徴と した生体硬 組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体と し たことである。 本発明の第 7番目の解決手段は、. コラーゲンを酸に溶解して酸性コ ラーゲン溶液を調製し、 アル力リ を添加することによってゲル化し、 次いで炭酸ァパタイ ト粒子を混合し、 炭酸ァパタイ トとコラーゲンと よりなる含水複合ゲルを得、 得られた含水複合ゲルを遠心分離器にか けて水分を適宜除去した後、 さらに凍結し、 凍結真空乾燥処理するこ とによ りスポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体を得る ことを特徴とする生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト . コラーゲン複合体の製造方法である。 (9) The method for producing a sponge-like porous carbonate apatite-collagen complex for replacing living hard tissue according to the above (8), wherein the insolubilization treatment is performed by irradiation with UV light. (10) The method for producing a sponge-like porous carbonate apatite-collagen complex for substituting a living hard tissue according to the above (8), wherein the insolubilization treatment is a chemical treatment. That is, a first solution of the present invention is a living hard tissue replacement complex comprising carbonate apatite and collagen, characterized by exhibiting a porous sponge shape. This is a sponge-like porous carbonated apatite / collagen composite. A second solution of the present invention is a sponge-like porous material for replacing a living tissue, wherein the composite according to the first solution has a porosity of 5 to 90 vol%. It is a carbonate apatite / collagen complex. A third solution of the present invention is a sponge-like ultraporous material for substituting a living hard tissue, wherein the composite according to the second solution has a porosity of 50 to 90 vol%. This is a complex of carbonic acid apatite and collagen. A fourth solution of the present invention is characterized in that the complex according to the first solution contains 95% by weight or less of carbonate apatite and has a porosity of 5 to 90% by volume. It is a sponge-like porous carbon apatite / collagen complex for replacing living hard tissue. A fifth solution of the present invention is the substitute for living hard tissue, characterized in that the carbonate apatite in the first solution contains a trace component similar to that contained in the living body apatite. Sponge-like porous carbonate It is a patite-collagen complex. A sixth solution of the present invention is a sponge-like porous material for substituting a living hard tissue, wherein the trace component in the fifth solution is Mg, Fe, Zn, F, or CI. It is a carbonate apatite / collagen complex. The seventh solution of the present invention is to prepare an acidic collagen solution by dissolving collagen in an acid, gelling by adding an alkaline solution, and then mixing the carbonated apatite particles, A water-containing composite gel consisting of collagen and collagen is obtained. The obtained water-containing composite gel is centrifuged to remove water as needed, and then frozen and freeze-vacuum dried to form a sponge-like porous material. A method for producing a sponge-like porous carbonated apatite-collagen complex for replacing a living hard tissue, characterized by obtaining a carbonated apatite-collagen composite.
本発明の第 8番目の解決手段は、 コラーゲンを酸に溶解して酸性コ ラーゲン溶液を調製し、 アル力リ を添加することによってゲル化し、 次いで炭酸ァパタイ ト粒子を混合し、 炭酸ァパタイ トとコラーゲンと より なる含水複合ゲルを得、 得られた含水複合ゲルを遠心分離器にか けて水分を適宜除去した後、 さらに凍結し、 凍結真空乾燥処理するこ とによ りスポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体を得、 次いでこれを不溶化処理することを特徴とする生体硬組織代替用スポ ンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の製造方法である。 本発明の第 9番目の解決手段は、 第 8番目の不溶化処理が U V光照 射によることを特徴とする生体硬組織代替用スポンジ状多孔質炭酸ァ
パタイ ト . コラーゲン複合体の製造方法である。 本発明の第 1 0番目の解決手段は、 第 8番目の不溶化処理が化学的 処理によることを特徴とする生体硬組織代替用スポンジ状多孔質炭酸 ァパタイ ト · コラーゲン複合体の製造方法である。 通常のァパタイ トは C a i。 (Ρ θ4) 6 (OH) 2で表わされるが、 本 発明で使用する炭酸ァパタイ トは、 その化学組成は、 一般式; C a 10 一 X ( P O 4) 6— γ (CO s) γ (OH) 2— z、 但し、 0 ≤ X≤ 3〜 5、 0 < Y 2〜 4、 0 ≤ Z≤ 1〜 2で表わされ、 その結晶性は生体の骨の結 晶構造と極めて類似している。 The eighth solution of the present invention is to prepare an acidic collagen solution by dissolving collagen in an acid, gelling by adding an alkaline solution, then mixing the carbonated apatite particles, and mixing with the carbonated apatite. A water-containing composite gel comprising collagen was obtained, and the obtained water-containing composite gel was centrifuged to appropriately remove water, and then frozen and freeze-vacuum-dried to form a sponge-like porous carbonate. This is a method for producing a sponge-like porous carbonate-collagen complex for replacing living hard tissue, which comprises obtaining an apatite-collagen complex and then insolubilizing the complex. A ninth solution of the present invention is a sponge-like porous carbon dioxide for replacing living hard tissue, wherein the eighth insolubilization treatment is performed by irradiation with UV light. This is a method for producing a patite-collagen complex. A tenth solution of the present invention is a method for producing a sponge-like porous carbonated apatite-collagen complex for substituting a living hard tissue, wherein the eighth insolubilization treatment is a chemical treatment. The usual apertype is C ai. (Ρ θ4) 6 (OH) is represented by 2, carbonate Apatai you want to use in the present invention, the chemical composition of the general formula; C a 10 one X (PO 4) 6- γ ( CO s) γ ( OH) 2-z, where 0 ≤ X ≤ 3 to 5, 0 <Y 2 to 4, 0 ≤ Z ≤ 1 to 2, and its crystallinity is very similar to the crystal structure of living bone ing.
その合成方法については各種論文 〔例えば "Biomaterials" 1990,Volll, Octorber,p.568〜 572、 M.Okazakiほ 力 4 名 『 Insolubilized properties of UV-irradiated C03 -apatite — collagen composites J] に報告されており、 公 知である。 本発明において特に炭酸ァパタイ トを用いた理由は、 既に述べたと おり、 合成炭酸ァパタイ トは、 生体の骨に近い化学組成、 結晶構造を 有していることから生体組織に対して親和性に富み、 なじみがよいこ とが挙げられる。 The synthesis method has been reported in various papers [eg, "Biomaterials" 1990, Volll, Octorber, pp. 568-572, M. Okazaki and four others, "Insolubilized properties of UV-irradiated C03-apatite — collagen composites J". And is known. The reason why carbonate apatite is particularly used in the present invention has already been described. Synthetic carbonate apatite has a chemical composition and crystal structure close to that of a living body, and thus has a high affinity for living tissue. And familiarity.
すなわち、 合成炭酸ァパタイ トと人体の骨とを X線回折パターンに よって比較すると第 3図、 第 4図に示すとおりである。 両者の結晶構 造は、 ほとんど近似しており、 区別をつけがたい。 また、 複合体をスポンジ状多孔質、 スポンジ状超多孔質に設定した 点の要件事項は、 これによつて、 導入する生理活性材料物質や、 骨芽 細胞を保持することが出来、 細胞の浸潤を助長し、 着床を確実にする
作用を有するものである。 そのスポンジ状多孔質複合体は、 気孔率によって規定され、 使用の 際はこれによって選定されることになるが、 何れの範囲に気孔率を設 定するか、 あるいは選定するかは、 使用目的を考慮して決定すること になる。 その選定に当たっては、 今後さ らに各種実験を重ねることに よって明らかにされていく ことになる。 いずれにしても、 本発明の複合体は、 従前の複合体に比し、 スポン ジ状を呈した状態に設定されている点で特有な状態のものであり、 特 異性が認められる。 それに対し、 従前の設計に基づく複合体は、 そこには記載上からは、 確かに多孔質なる記載、 あるいはこれを示唆する記載ないしはその旨 の指針があったと しても、 本発明のようにスポンジ状を呈しているも のをねらいとするところまで意図している記載はない。 むしろ、 強度 の点で敬遠しているきらいがあり、 したがって、 開発の方向は、 強度 を犠牲にしてまで積極的に多孔質スポンジ体とすることまでは考慮さ れていなレ、。 これに対して、本発明はスポンジ状を呈し、その気孔率は 5〜 9 0 vol %である。 気孔率を低く していく と、 すなわち換言すると、 複合体の 密度 (ァパタイ ト粒子の充填密度) を高く していく と、 スポンジ状を 呈さなくなり、 その特性が失われていく。 5 vol %を下限としたのは、 これ以下であると、 前示した細胞の浸潤性等の諸要求に応えることが できなくなるからである。 9 0 vol %を上限と した理由は、 これを超 えた—ところでは、 生体材料支持体と しては強度的にこの辺が限界であ
ると考え、 規定したものである。 本発明は、 広い範囲で気孔率を自在 に設定することが出来、 これによつて、 広範な使用態様、 要求に応え られるものである。 いずれにしても、 その空隙部は、 生体活性物質、 生体細胞を保持する空隙、 あるいは細胞が着床、 浸潤する空隙として、 再生医工学上重要な役割を担うものである。 特に、 5 0〜9 0 vol % に設定した複合体は、 気孔率が複合体の容積の半分以上を占め、 超多 孔性複合体ということが出来る。 何れの範囲の気孔率に設定するか、 選定するかは、 その再生医工学上の用途、 すなわち、 骨再生用 (骨芽 細胞培養用) の支持体、 細胞培養用の支持体、 人工臓器用の組織培養 用支持体、 あるいは骨補填材料等の各種用途に応じ、 そして、 臨床例 を参考にしながら適宜設定する。 なお、 その目的が細胞の浸潤性と共 に強度をも重視する場合には、 他の支持機構と組み合わせ、 併用して 用いることも出来る。 次に、 コラーゲンについて記載する。 コラーゲンは、 市販されてお り、 本発明において使用するコラーゲンは、 普通に市販されているも ので充分であり、 特にその品質等に制限はない。 本発明におけるコラ 一ゲンの意義は、 スポンジ状多孔質複合体を製造する上において、 炭 酸ァパタイ ト結晶粒子に対して結合材と しての役割を果たしていると 共に、 気孔率を調整する上においても、 他の因子と共に重要な役割を 担っているものである。 すなわちスポンジ状多孔質複合体は、 前記に 記載したプロセスによって製造されるが、 コラーゲン溶液の濃度、 炭 酸ァパタイ トの混合量、 水分を分離する遠心分離操作等の一連のプロ セスにおける諸条件によって、 得られる複合体の気孔率等は変化し、 左右される。 スポンジ状多孔質複合体を製造するプロセスにおいて、 コラーゲン
を酸に溶解し、 次いでこれを中性又はアルカリ性に中和するのは、 レヽ つたん溶解し、 ゲル化させるためである。 すなわち、 コラーゲンは酸 により溶解し、 この酸性溶液にアルカリを添加し、 p Hを 7以上にす るとゲル化する。 なお、 炭酸ァパタイ トの混合操作は中和後に行うが、 その理由は、 溶液が酸性を呈している段階で混合するとァパタイ ト結晶が一部溶出 したり、 あるいは変質したり、 その粒子の結晶構造に何らかの影響を 与えることがあり、 これを避けるためである。 p H 7以上の領域では、 該酸性コラーゲン溶液中のコラーゲンはゲル化する。 アパタイ トの混 合は、 中和後直ちに行う。 すなわち、 中和によってゲル化が進行して しまう と、 ゲル化により粘性が増し、 混合しづらくなるため中和後直 ちに行うのが好ましいが、 適度の粘性にゲル化を調整し、 そこにァパ タイ ト粒子の混合量を適宜制御、 撹拌し、 これによつて、 複合体にお ける両者の分散状態等を制御することも実施の態様として含まれ、 要 するに必ずしも中性領域でなければならないとするものではない。 混合操作が終了した後、 遠心分離操作、 凍結真空乾燥処理するが、 その意義は、 混合によって得られた含水ゲル複合体は、 その状態では 多孔質状態はまだ形成されておらず、 この操作プロセスによって、 水 分が除去され、 ゲル体はスポンジ状を呈した多孔質体となる。 That is, a comparison of the synthetic carbonate apatite with the bones of the human body by X-ray diffraction patterns is as shown in FIGS. 3 and 4. The crystal structures of both are almost similar and cannot be distinguished. In addition, the requirement for setting the complex to be sponge-like porous or sponge-like super porous is that, by this, the bioactive substance to be introduced and osteoblasts can be retained, and the cells can be infiltrated. And ensure landing It has an action. The sponge-like porous composite is defined by the porosity and is selected according to the porosity in use.However, the range in which the porosity is set or selected depends on the purpose of use. The decision will be taken into account. The selection will be clarified through further experiments. In any case, the complex of the present invention is unique in that it is set in a sponge-like state as compared with the conventional complex, and thus the complex is recognized. On the other hand, the composite based on the previous design, as described in the present invention, may be described as being porous even if the description is actually porous, or a description suggesting this or a guide to that effect. There is no intentional statement up to the point where a sponge-like one is aimed. Rather, they tend to shy away in terms of strength, and therefore, the direction of development has not been taken into account, even at the expense of strength, to aggressive porous sponge bodies. On the other hand, the present invention has a sponge shape and a porosity of 5 to 90 vol%. As the porosity is reduced, that is, in other words, as the density of the composite (the packing density of the apatite particles) is increased, the sponge does not appear and its properties are lost. The lower limit of 5 vol% is that if it is less than 5 vol%, it will not be possible to meet the above-mentioned requirements such as cell invasiveness. The reason for setting the upper limit to 90 vol% is beyond this—in this case, the strength of a biomaterial support is the limit. This is what we stipulated. INDUSTRIAL APPLICABILITY The present invention can freely set the porosity in a wide range, thereby meeting a wide range of usage modes and demands. In any case, the void portion plays an important role in regenerative medical engineering as a void for holding a bioactive substance and a living cell, or as a void for implantation and infiltration of cells. In particular, the composite set at 50 to 90 vol% has a porosity that accounts for more than half of the volume of the composite, and can be said to be a superporous composite. Which range of porosity is to be set or selected depends on its use in regenerative medical engineering, that is, a support for bone regeneration (for osteoblast culture), a support for cell culture, and an artificial organ. It is set appropriately according to various uses such as a tissue culture support or a bone filling material, and referring to clinical examples. If the purpose is to emphasize not only cell invasiveness but also strength, it can be used in combination with other support mechanisms. Next, collagen will be described. Collagen is commercially available, and the collagen used in the present invention is usually commercially available and sufficient, and there is no particular limitation on its quality and the like. The significance of collagen in the present invention is that, in producing a sponge-like porous composite, it plays a role as a binder for carbonic acid apatite crystal particles and also adjusts porosity. Also plays an important role together with other factors. That is, the sponge-like porous composite is produced by the above-described process, but depends on various conditions in a series of processes such as the concentration of the collagen solution, the amount of mixed carbon apatite, and the centrifugation operation for separating water. The porosity, etc., of the resulting composite varies and is affected. In the process of producing a spongy porous composite, collagen Is dissolved in an acid and then neutralized to neutrality or alkalinity in order to dissolve and gelate. That is, collagen is dissolved by an acid and gelled when an alkali is added to the acidic solution and the pH is adjusted to 7 or more. The mixing operation of carbonated apatite is performed after neutralization, because if mixed at the stage when the solution is acidic, the apatite crystals may be partially eluted or altered, or the crystal structure of the particles may be altered. This may have some effect on the situation, and this should be avoided. In the region having a pH of 7 or more, the collagen in the acidic collagen solution gels. Mix apatite immediately after neutralization. In other words, if the gelation progresses due to the neutralization, the viscosity increases due to the gelation and it becomes difficult to mix, so it is preferable to carry out immediately after the neutralization.However, the gelation is adjusted to an appropriate viscosity, and As an embodiment, the mixing amount of the apa-titer particles is appropriately controlled and agitated, thereby controlling the dispersion state and the like of the two in the composite. It is not something that must be done. After the mixing operation is completed, centrifugation operation and freeze-vacuum drying treatment are performed. The significance is that the hydrogel composite obtained by mixing has not yet formed a porous state in this state, and this operation process As a result, water is removed, and the gel body becomes a sponge-like porous body.
そしてその後、 不溶化処理に付すのは、 そのままでは、 コラーゲン のゲル体は溶解性があり、 生体組織によって代謝されやすく、 形態を 維持することが出来なくなり、 不都合を来すことより不溶化処理する ものである。 なお、 前記発明の開示の (4 ) において、 複合体が、 炭酸ァパタイ
ト 9 5 w t %以下含有し、 と複合体を炭酸ァパタイ トの上限限定のみ に基づき規定した点は、 下限については制限はなく、 すなわち、 実質 的に炭酸ァパタイ トカ Sほとんど 0 w t %に近い場合 (コラーゲン 1 0 0 w t % ) もあり得ることを意味するものである。 そして、 その上限 を 9 5 w t %に設定した点については、 炭酸ァパタイ トが 9 5 w t % を超えると、 複合体は密になり、 ねらいとする多孔性を得ることが困 難になること、 加えて、 コラーゲン量が少なく なり炭酸ァパタイ ト結 晶を保持して複合体の形態を保つことが困難になることより規定した ものである。 After that, the insolubilization treatment is that, as it is, the collagen gel body is soluble, is easily metabolized by living tissue, cannot maintain its form, and causes inconvenience. is there. In (4) of the disclosure of the invention, the complex may be a carbonate apatite. The point that the content was 95% by weight or less and the complex was specified only based on the upper limit of carbonate apatite is not limited to the lower limit, that is, when carbonate apatite S is substantially close to 0 wt%. (Collagen 100 wt%) is also possible. Regarding the upper limit set at 95 wt%, when the carbonate apatite exceeds 95 wt%, the composite becomes dense and it becomes difficult to obtain the desired porosity. In addition, it is specified because the amount of collagen decreases and it becomes difficult to maintain the form of the complex by retaining carbonate carbonate crystals.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明のスポンジ状超多孔質炭酸ァパタイ ト · コラーゲン 複合体の構造を示す電子顕微鏡写真である。 FIG. 1 is an electron micrograph showing the structure of the sponge-like superporous carbonate apatite / collagen complex of the present invention.
第 2図は従来のァパタイ ト · コラーゲン複合体の構造を示す電子顕 微鏡写真である。 Fig. 2 is an electron micrograph showing the structure of a conventional apatite-collagen complex.
第 3図は合成炭酸ァパタイ トの X.線回折図である。 FIG. 3 is an X-ray diffraction diagram of the synthetic carbonate apatite.
第 4図は人体の骨の X線回折図である。 FIG. 4 is an X-ray diffraction pattern of a human bone.
第 5図は U V照射しなかった試料による骨組織を示す電子顕微鏡写 真である。 Fig. 5 is an electron micrograph showing the bone tissue of the sample not irradiated with UV.
第 6図は U V照射した試料による骨組織を示す電子顕微鏡写真であ る。 FIG. 6 is an electron micrograph showing the bone tissue of the sample irradiated with UV.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のスポンジ状多孔質炭酸アバタイ ト · コラーゲン複合体は、 スポンジ状を呈している点、 その気孔率の高さにおいて、 従来技術
対して際だっており、 これによつて細胞培養支持体と して使う際、 導 入生体活性物質の保持性がよく、 細胞浸潤性、 代謝性がよいことは前 述したとおりであるが、 従前の通常のァパタイ ト · コラーゲン複合体 と同様の用途に使えることは勿論、 前示特性を生かして、 これまでは 困難とされていた分野、 使用例、 あるいは細胞浸潤性の良さを生かす ような各種細胞培養用支持体用に特化して実施することも実施形態の 一つと考えられ、 その用途は従前の態様の複合体に比し、 広範な用途 に対応することが出来るという点で汎用性に富み、 また、 細胞の着床、 浸潤性を重視する特化した用途に対応している点で特異性を有し、 い ずれにしても、 何れの性格の用途にも対応しうることから広範な実施 形態を含んでいると言える。 実施例 The sponge-like porous carbonated abatite-collagen composite of the present invention has a sponge shape and a high porosity. As described above, when used as a cell culture support, it has good retention of the introduced bioactive substance and good cell infiltration and metabolism, as described above. Not only can it be used for the same purpose as the normal apatite-collagen complex, but it can also be used in the fields, applications, or cell invasiveness that were previously considered difficult by taking advantage of the characteristics shown above. It is considered one of the embodiments to carry out the invention specifically for the support for cell culture, and its use is more versatile in that it can be used in a wider range of applications than the complex of the previous embodiment. It is unique in that it is compatible with specialized uses that emphasize the abundance, implantation and invasiveness of cells, and can be used for any purpose in any case. It can be said that the present invention includes various embodiments. Example
本発明を以下に記載する実施例に基づいて説明する。 この実施例は、 本発明を説明するためのあくまでも具体例を開示したものであり、 本 発明は、 この実施例によって限定されるものではない。 The present invention will be described based on examples described below. This embodiment discloses a specific example for describing the present invention, and the present invention is not limited to the embodiment.
〔スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の作製手順〕 〔炭酸ァパタイ トの製造〕 ; [Procedure for preparing sponge-like porous carbonate apatite / collagen complex] [Production of carbonate apatite];
1. 3モル CH 3 C O O NH4緩衝水溶液を準備し、 さらに 1 ◦ 0 ミ リモル C a (CHs C OO) 21120水溶液 0. 5 リ ッ トル、 6 0 ミ リモル (NH4) 2 C O 3 を含む 6 0 ミ リモル NH4H2 P O4 水溶 液 0. 5 リ ツ トルを準備する。 1. Prepare a 3 molar CH 3 COO NH4 buffer aqueous solution, and further add 0.5 mL of a 1 00 mmol aqueous Ca (CHsCOO) 21120 aqueous solution, including 60 millimol (NH4) 2 CO 3 60 Millimol NH4H2PO4 aqueous solution Prepare 0.5 liter.
これら C a側及ぴ P側溶液を、 緩衝溶液中に撹拌しながら、 反応温 度 6 0 ± 1 °C、 p H 7. 4 ± 0. 2 °Cの条件となるよう監視、 制御し ながらマイク口チューブポンプにて徐々に一定の速度で供給しながら 全量を添加した。 p H値のコン トロールは、 アンモニア水と p Hコン
トローラーによって調整して行った。 反応の結果、 C a /P供給モル 比 ; 1 0 0 / 6 0 ; 1. 6 7で供給され、 得られた結晶粒子を分析し たところ、 出発混合物と得られた炭酸ァパタイ トの化学組成との間に は、 一定の関係が成立し、 出発混合物は、 ほぼ全量が化学量論的関係 で反応し、 その結果、 目的とする前述の一般式; C a 10 - X (P 04) 6 一 γ (C O 3) γ (OH) 2— z、 但し、 0≤X≤ 3〜 5、 0く Y 2〜4、 0≤Z≤:!〜 2によって表される組成領域の炭酸ァパタイ トが生成し、 回収されたことが判った。 得られた炭酸ァパタイ ト結晶粒は、 これを 分離し、 水洗、 乾燥し、 本発明で狙いとする炭酸ァパタイ ト · コラー ゲン複合体用の原料とする。 なお、 ここに開示した例は、 あくまでも 一実施態様であり、 これに限定されるものではない。 すなわち、 炭酸 ァパタイ トの組成については、 前示一般式にも示したとおり、 x、 y、 zの値はそれぞれ所定の範囲の値を有するものであることから、 この 範囲において変化させ、 実施することが可能である。 While stirring these Ca-side and P-side solutions in a buffer solution, monitor and control them so that the reaction temperature is 60 ± 1 ° C and the pH is 7.4 ± 0.2 ° C. The whole amount was added while gradually supplying at a constant speed with a microphone mouth tube pump. The control of the pH value is based on the ammonia water and the pH control. Adjusted with a trawler. As a result of the reaction, the supplied Ca / P molar ratio; 100/60; 1.67, and the obtained crystal particles were analyzed. The chemical composition of the starting mixture and the obtained carbonate apatite was analyzed. between the, fixed relationship is established, the starting mixture is reacted almost whole amount in stoichiometric relationships, so that the above-mentioned general formula of interest; C a 10 - X (P 0 4) 6 i γ (CO 3 ) γ (OH) 2—z, where 0≤X≤3 ~ 5, 0≤Y2 ~ 4, 0≤Z≤ :! It was found that carbonate apatite in the composition range represented by No. 2 was generated and recovered. The obtained carbonate apatite crystal grains are separated, washed with water, and dried, and used as a raw material for the carbonate apatite-collagen complex targeted in the present invention. Note that the example disclosed here is merely an embodiment, and the present invention is not limited to this. In other words, the composition of carbonate apatite, as shown in the general formula, has values of x, y, and z each within a predetermined range. It is possible.
反応の際、 及び終点の p H値の調整に際しては、 p H 7以上、 すな わちアル力リ側に設定する。 反応温度は 4 0°C〜 8 0°C程度の範囲で あれば、 差し支えないが、 極力 6 0 °C—定の温度を保つことが均一な 結晶を得るのには特に好ましい。 During the reaction and when adjusting the pH value of the end point, the pH value is set to 7 or more, that is, to the near side. The reaction temperature may be in the range of about 40 ° C. to 80 ° C., but keeping the temperature as low as possible at 60 ° C. is particularly preferable for obtaining uniform crystals.
〔コラーゲン溶液の調整及び炭酸ァパタイ ト · コラーゲン含水複合ゲ ルの製造〕 ; [Preparation of collagen solution and production of carbonate apatite / collagen hydrous composite gel];
牛皮由来の凍結真空乾燥ァテロコラーゲン 〔(株) 二ツビ、 日本〕 を 1 0 _3N塩酸溶液で溶解して、 あるいは、 市販されているコラーゲ ン溶液 CC E L L GEN (株) 高研、 日本〕 を使用して 0. 5 w t % コラーゲン溶液を準備した。 このコラーゲン溶液に 0. 0 5 N N a OH溶液を滴下し、 全量が中和した時点で、 直ちに前記炭酸アバタイ トを混合し、 更に N a OH溶液を滴下してコラーゲンをゲル化し、 そ
の結果、 スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の前駆 体である炭酸ァパタイ ト · コラーゲン含水複合ゲルを得た。 Freeze vacuum drying § terrorist collagen from cowhide [Corporation two Tsubi, Japan] was dissolved in 1 0 _ 3 N hydrochloric acid solution, or commercially available collagen solution CC ELL GEN Co. Koken, Japan] Was used to prepare a 0.5 wt% collagen solution. To this collagen solution, 0.05 N NaOH solution was added dropwise, and when the whole amount was neutralized, the above carbonate abatite was immediately mixed. Further, NaOH solution was added dropwise to gel the collagen, and the collagen was gelled. As a result, a sponge-like porous carbonate and collagen precursor, which is a precursor of the collagen complex, was obtained.
このゲル化反応は、 酸性コラーゲン溶液をアル力リ性することによ つて生じ、 アパタイ トの添加の有無に関わらない。 すなわち、 コラー ゲン自体の分子構造上の変化に基づく現象である。 複合体の製造に際 して準備するコラーゲン溶液の濃度は、 0 . 1〜 2 . O w t %が好ま しい。 This gelation reaction is caused by the acidity of the acidic collagen solution, regardless of the presence or absence of apatite. In other words, the phenomenon is based on the change in the molecular structure of the collagen itself. The concentration of the collagen solution prepared for the production of the complex is preferably 0.1 to 2.0% by weight.
コラーゲン溶液の濃度の違いによって、 ゲル化後によって得られる 含水複合ゲルの状態は、 粘性及び含水率が異なる。 すなわち、 この濃 度の違いによって、 含水率を自在に制御することが出来る。 含水率を 自在に制御することよって、 すなわち、 含水率を高くすることによつ て、 気孔率の高い複合体を得ることが出来、 逆に含水率の低い含水複 合ゲルからは、 気孔率の低いものを得ることが出来、 これによつて、 目的とする状態の気孔率、 多孔質とするための制御が行われるもので ある。 以上述べたとおり、 コラーゲン溶液の濃度を調整することは、 極めて重要であるが、 前示実施例において 0 . 1〜 2 . O w t %と し たのは、 0 . 1 w t %以下では、 バインダーと しての機能が発揮する ことが出来ず、 目的とする複合体の形状並びに強度が弱すぎ、 使用上 支障来すことからこれを下限値としたものである。 2 . O w t %を超 えると、 ゲル化したときの粘性が強くなり、 炭酸アパタイ ト粒子を目 的とする嵩高な多孔質体を形成するのに適した分量を、 均一に分散混 入する際の混合操作や、 その後の多孔質化するための脱水操作も困難 となり、 これらを勘案して上限値とした。 Due to the difference in the concentration of the collagen solution, the state of the hydrous composite gel obtained after gelation differs in viscosity and water content. That is, the moisture content can be freely controlled by the difference in the concentration. By controlling the water content freely, that is, by increasing the water content, a composite having a high porosity can be obtained, and conversely, from the water-containing composite gel having a low water content, the porosity can be obtained. Thus, a material having a low porosity can be obtained, thereby controlling the porosity and the porosity in a target state. As described above, it is extremely important to adjust the concentration of the collagen solution. However, in the above examples, 0.1 to 2.0 wt% is used. Therefore, the lower limit was set because the desired composite could not exhibit its function and the shape and strength of the target composite were too weak, which hindered use. 2. If it exceeds O wt%, the viscosity at the time of gelation becomes strong, and the amount suitable for forming a bulky porous body for carbonated apatite particles is uniformly dispersed and mixed. In this case, the mixing operation and the subsequent dehydration operation for making the material porous are also difficult.
〔複合体スポンジ作製〕 ; [Preparation of composite sponge];
本工程は、 上記プロセスによって得られた含水複合ゲルから水を特 定の除去手段によって分離除去する工程であり、 本工程によって水分
が抜け、 これによつて多孔質が形成される。 すなわち、 目的とする高 気孔率を有するスポンジ状多孔質複合体が実現し、 得られるものであ る。 In this step, water is separated and removed from the water-containing composite gel obtained by the above-mentioned process by a specific removing means. Through which a porous material is formed. That is, an intended sponge-like porous composite having a high porosity is realized and obtained.
なお、 その際、 ゲル化反応を所定形状の型内で行い、 これによつて、 一定の形状を有する含水複合ゲルを得、 次いで水分を分離除去するこ とによつて所定形状に加工されたスポンジ状多孔質複合体を得ること もその態様の一つである。 At this time, the gelation reaction was performed in a mold having a predetermined shape, whereby a water-containing composite gel having a certain shape was obtained, and then processed into a predetermined shape by separating and removing water. Obtaining a sponge-like porous composite is also one of the embodiments.
勿論、 後から任意に切断、 接着等により、 適宜形状に加工しうるこ とは当然のことであり、 この加工性に優れた点も本発明の特徴の一つ である。 この複合体スポンジ作成工程における水分の分離除去操作は、 まず、 前段の工程で得られた含水複合ゲルを遠心分離器にかけて、 遊 離した相当量の水分を予備的に水分を除去し、 次いで取り除き得なか つた水分は、 該ゲルをそのまま一 8 0 °Cで又は液体窒素によって 2時 間凍結し、 その後凍結真空乾燥処理し、 凍結された水分を昇華分離す ることによって、 取り除く ものである。 この水分分離操作を施すこと によって多孔質となり、 指で押すと弾力性のある高気孔率をもったス ポンジ状多孔質複合体を得ることが出来る。 Needless to say, it can be processed into an appropriate shape by arbitrarily cutting, bonding, or the like later, and this excellent workability is also one of the features of the present invention. The operation of separating and removing water in the composite sponge preparation process is as follows. First, the water-containing composite gel obtained in the previous step is centrifuged to preliminarily remove water that has liberated in a substantial amount, and then removes it. The unretained water is removed by freezing the gel as it is at 180 ° C. or with liquid nitrogen for 2 hours, followed by freeze vacuum drying, and sublimation and separation of the frozen water. By performing this moisture separation operation, the mixture becomes porous, and when pressed with a finger, an elastic sponge-like porous composite having a high porosity can be obtained.
〔不溶化処理〕 (Insolubilization treatment)
次に、 上記工程によって得られたスポンジ状多孔質複合体は、 そ のままでは生体組織内において、 溶解膨潤し、 その形態が次第に失わ れ、 目的とする形態を維持することが出来なくなるところまでに至り、 不都合を来すことがある。 特に、 本発明のように高気孔率をもったス ポンジ状多孔質複合体の場合、 中実のものに比し表面積が大であり、 溶解性が進みやすい状態であることから、 これを防止するため、 不溶 化処理をすることが望ましい。 不溶化処理手段と しては、 紫外光照射 や化学的処理による手段とがあるが、 何れの手段によっても、 作用効
果はさほど変わらない。 Next, the sponge-like porous composite obtained by the above-mentioned process dissolves and swells in the living tissue as it is, gradually loses its form, and can no longer maintain the desired form. And may cause inconvenience. In particular, in the case of a sponge-like porous composite having a high porosity as in the present invention, the sponge-like porous composite has a large surface area as compared to a solid one, and is in a state where solubility is easily promoted. Therefore, it is desirable to perform insolubilization. Examples of the insolubilization treatment include ultraviolet irradiation and chemical treatment. The result does not change much.
(不溶化処理の実施例) 前示工程によって得られたァパタイ ト · コ ラーゲン複合体を滅菌箱中、 U Vランプ ( 1 0 W、 波長 2 5 3 . 7 n mの紫外光) 下 1 0 c mの所にセッ トし、 表裏それぞれに 2時間ずつ U V照射した。 (Example of insolubilization treatment) Place the apatite-collagen complex obtained by the above-mentioned process in a sterile box at a distance of 10 cm under a UV lamp (10 W, ultraviolet light with a wavelength of 253.7 nm). And irradiated with UV light for 2 hours on both sides.
この試料を、 動物実験に基づいて U V照射しないものと比較した結 果、 U V照射しなかった試料 (第 5図) は、 容易に膨潤剥離するが、 U V照射した試料 (第 6図) では一定の形状を保ち、 骨と良好な接合 を示した。 As a result of comparing this sample with a sample without UV irradiation based on animal experiments, the sample without UV irradiation (Fig. 5) swells and peels easily, but the sample with UV irradiation (Fig. 6) shows a constant value. The shape of the bone was maintained, and good bonding with the bone was shown.
なお、 上記 U V照射以外の不溶化手段と しては、 ダルタールアルデ ヒ ド 0 . 1〜 5 w t %を用いた化学処理ガンマ線を用いた処理も用い られる。 As the insolubilization means other than the UV irradiation, a treatment using a chemically treated gamma ray using Daltar aldehyde 0.1 to 5 wt% is also used.
これらの手段による不溶化は、 U V照射による場合、 タンパク質の 隣接するアミノ基分子間に一 C N = N—架橋が形成されることにより、 また、 グルタールアルデヒ ドによる場合は、 一 N— C H 2— N—橋架 け結合が形成されることによるものと考えられている。 すなわち、 以上述べたとおり本発明は、 コラーゲン濃度の違い等に より、 異なる粘性、 異なる含水率の複合ゲルを得、 これにより 目的に 応じて、 適当な気孔率と孔径を有するスポンジを作製する点にある。 本発明では、 ゲルの水分を自在に変えることが出来るため、 これを制 御することによって気孔率と孔径を自在に調整することが出来、 これ によって気孔率の極めて高いスポンジ状複合体を得ることが出来る。 なお、 孔径については、 詳しくは言及していなかつたが、 一般に細胞 の浸潤性は孔径に依存し、 細胞が容易に進入できる孔径は 2 0 0〜 3 ◦ 0 ミクロンといわれている。 すなわち、 この値が一つの参考指標と なるが、 最適の範囲については、 今後の研究に待つところ大である。
また、 本発明は、 スポンジ状であるため、 成形加工が容易であるこ ともその特徴の一つとして挙げられる。 なお、 生体ァパタイ トは、 M g、 F e、 Z n、 F、 C I等の微量元 素の微量元素を有しており、 本発明でもこれに近づけることは可能で あり、 そのため炭酸ァパタイ トを製造する際に微量元素を添加するこ とは、 発明の実施の態様として含むものである。 以上によって得られた本発明の高気孔率且つスポンジ状多孔質炭酸 ァパタイ ト · コラーゲン複合体を電子顕微鏡写真によって観察すると、 この複合体は、 コラーゲンの疎らな繊維状組織の中に、 アパタイ ト粒 子が所々に房状に点在した構造を示しており、 複合体全容積の大部分 を空洞 · 空隙が占めており、 極めて疎なスポンジ状を呈していること が観察された (第 1図)。 Insolubilization by these means, in the case of UV irradiation, by one CN = N-bridge between adjacent amino groups molecules of the protein are formed, and when by glutaric aldehyde arsenide de shows an N-CH 2 - It is believed that this is due to the formation of N-bridge bonds. That is, as described above, the present invention obtains composite gels having different viscosities and different water contents depending on the difference in collagen concentration and the like, thereby producing a sponge having an appropriate porosity and pore diameter according to the purpose. It is in. In the present invention, since the water content of the gel can be freely changed, the porosity and the pore diameter can be freely adjusted by controlling the water content, thereby obtaining a sponge-like composite having an extremely high porosity. Can be done. Although the pore diameter has not been described in detail, it is generally said that the invasiveness of cells depends on the pore diameter, and the pore diameter into which cells can easily enter is 200 to 3 • 0 microns. In other words, this value serves as a reference index, but the optimal range will be awaiting further research. Another feature of the present invention is that, since the present invention is in the form of a sponge, it can be easily formed. The biological apatite has trace elements of trace elements such as Mg, Fe, Zn, F, CI, etc., and it is possible to approach this in the present invention. The addition of trace elements during production is included as an embodiment of the present invention. When the high porosity and sponge-like porous carbonate-collagen complex of the present invention obtained as described above is observed by an electron micrograph, this complex shows that apatite particles are present in a collagen-sparse fibrous tissue. It shows a structure in which pups are scattered in tufts in some places, and it is observed that cavities and voids occupy most of the total volume of the complex, and that it has a very sparse sponge shape (Fig. ).
一方、 従来のァパタイ ト · コラーゲン複合体 (第 2図) は、 ァパタ イ ト粒子が第 1図の試料に比し、 密に充填されており、 両者の組織、 構造の違いは歴然としている。 産業上の利用可能性 On the other hand, in the conventional apatite-collagen complex (Fig. 2), the apatite particles are more densely packed than in the sample in Fig. 1, and the difference in the structure and structure between the two is evident. Industrial applicability
以上のように、 本発明によれば、 生体の骨と化学組成、 結晶構造と も極めて近似した炭酸ァパタイ トを使用し、 これをコラーゲンによつ て複合したものであるので生体組織と親和性のよい複合体を得ること が出来たことに加え、 複合体の構造をスポンジ状多孔質、 あるいは超 多孔質と したことにより生理活性物質や幹細胞を確実に効果的に一定 期間保持し、 細胞浸潤性に優れ、 代謝性のある複合体を提供するもの であり、 その意義は、 極めて大きい。
As described above, according to the present invention, carbonate apatite having a very similar chemical composition and crystal structure to the bone of a living body is used, and this is composited with collagen, so that it has an affinity for biological tissue. In addition to being able to obtain a complex with good quality, the structure of the complex is made of sponge-like porous or ultra-porous, so that physiologically active substances and stem cells can be effectively and reliably retained for a certain period of time, and cell infiltration It provides a metabolic complex with excellent properties, and its significance is extremely large.
Claims
請 求 の 範 囲 The scope of the claims
1 · 炭酸ァパタイ トとコラーゲンとからなる生体硬組織代替用複合体 であって、 該複合体の組織構造が多孔質スポンジ状を呈していること を特徴とする生体硬組織代替用スポンジ状多孔質炭酸アバタイ ト · コ ラーゲン複合体。 1. A living body hard tissue replacement complex comprising a carbonate apatite and collagen, wherein the tissue structure of the complex has a porous sponge shape. Carbonated abatite / collagen complex.
2 . 前記複合体が、 気孔率 5〜 9 0 vol %を有していることを特徵と する請求の範囲第 1項に記載の生体硬組織代替用スポンジ状多孔質炭 酸ァパタイ ト · コラーゲン複合体。 2. The sponge-like porous carbon apatite-collagen composite for living hard tissue replacement according to claim 1, wherein the composite has a porosity of 5 to 90 vol%. body.
3 . 前記複合体が、 気孔率 5 0〜 9 0 vol %を有していることを特徴 とする請求の範囲第 2項に記載の生体硬組織代替用スポンジ状超多孔 質炭酸ァパタイ ト · コラーゲン複合体。 3. The sponge-like ultra-porous carbonate apatite collagen for replacing living hard tissue according to claim 2, wherein the composite has a porosity of 50 to 90 vol%. Complex.
4 . 前記複合体が、 炭酸アパタイ ト 9 5 w t %以下含有し、 気孔率 5 〜 9 0 vol %を有していることを特徴とする請求の範囲第 1項に記載 の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複 合体。 4. The substitute for living hard tissue according to claim 1, wherein the composite contains 95 wt% or less of carbonate apatite and has a porosity of 5 to 90 vol%. Sponge-like porous carbon apatite / collagen complex.
5 . 前記炭酸ァパタイ トが、 生体ァパタイ トが含有していると同様の 微量成分を含んでいることを特徴とする請求の範囲第 1項記載の生体 硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体。 5. The sponge-like porous carbon apatite for substituting a living hard tissue according to claim 1, wherein the carbonate apatite contains a trace component similar to that contained in the biological apatite. · Collagen complex.
6 . 前記微量成分が、 M g、 F e、 Z n、 F、 C I である請求の範囲 第 5項記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コ ラーゲン複合体。
6. The sponge-like porous apatite-collagen complex for substituting a living hard tissue according to claim 5, wherein the trace component is Mg, Fe, Zn, F, CI.
7 . コラーゲンを酸に溶解して酸性コラーゲン溶液を調製し、 アル力 リを添加することによってゲル化し、 次いで炭酸ァパタイ ト粒子を混 合し、 炭酸ァパタイ トとコラーゲンよりなる含水複合ゲルを得、 得ら れた含水複合ゲルを遠心分離器にかけて水分を適宜除去し、 凍結し、 凍結真空乾燥処理することによりスポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体を得ることを特徴とする生体硬組織代替用スポンジ 状多孔質炭酸ァパタイ ト · コラーゲン複合体の製造方法。 7. Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alcohol, and then mixed with apatite carbonate particles to obtain a hydrous composite gel composed of apatite and collagen. The obtained water-containing composite gel is centrifuged to remove water appropriately, frozen, and freeze-vacuum-dried to obtain a sponge-like porous carbonated apatite-collagen complex, which is a substitute for living hard tissue. For producing a sponge-like porous carbonated apatite-collagen composite for use.
8 . コラーゲンを酸に溶解して酸性コラーゲン溶液を調製し、 アル力 リを添加することによってゲル化し、 次いで炭酸ァパタイ ト粒子を混 合し、 炭酸ァパタイ トとコラーゲンよりなる含水複合ゲルを得、 得ら れた含水複合ゲルを遠心分離器にかけて水分を適宜除去し、 凍結し、 凍結真空乾燥処理することによりスポンジ状多孔質炭酸アバタイ ト · コラーゲンを得、 次いで不溶化処理することを特徴とする生体硬組織 代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の製造方 法。 8. Collagen is dissolved in acid to prepare an acidic collagen solution, gelled by adding alcohol, and then mixed with carbonated apatite particles to obtain a hydrous composite gel composed of carbonated apatite and collagen. The obtained water-containing composite gel is centrifuged to remove water appropriately, frozen, freeze-vacuum-dried to obtain sponge-like porous carbonated abatite collagen, and then subjected to insolubilization treatment. A method for producing a sponge-like porous carbonated apatite-collagen complex for hard tissue replacement.
9 . 前記不溶化処理が U V光照射によることを特徴とする請求の範囲 第 8項記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コ ラーゲン複合体の製造方法。 9. The method for producing a sponge-like porous carbonated carbonate-collagen complex for replacing living hard tissue according to claim 8, wherein the insolubilization treatment is performed by UV light irradiation.
1 0 . 前記不溶化処理が化学的処理によることを特徴とする請求の範 囲第 8項記載の生体硬組織代替用スポンジ状多孔質炭酸ァパタイ ト · コラーゲン複合体の製造方法。
10. The method according to claim 8, wherein the insolubilization treatment is performed by a chemical treatment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001374469A JP2003169845A (en) | 2001-12-07 | 2001-12-07 | Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and method of manufacturing the same |
JP2001-374469 | 2001-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003047645A1 true WO2003047645A1 (en) | 2003-06-12 |
Family
ID=19183025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/012782 WO2003047645A1 (en) | 2001-12-07 | 2002-12-05 | Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and process for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2003169845A (en) |
WO (1) | WO2003047645A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046414A1 (en) * | 2004-10-28 | 2006-05-04 | National Institute For Materials Science | Process for producing porous object comprising apatite/collagen composite fiber |
WO2008026634A1 (en) * | 2006-08-31 | 2008-03-06 | Osaka University | Mesenchymal cell proliferation stimulator and skeletal system biomaterial |
US9976011B2 (en) | 2010-07-14 | 2018-05-22 | The Curators Of The University Of Missouri | Polymer composites and fabrications thereof |
US11883302B2 (en) | 2021-11-22 | 2024-01-30 | Warsaw Orthopedic, Inc. | Spinal implant having a compressible insert |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4717336B2 (en) * | 2003-08-06 | 2011-07-06 | グンゼ株式会社 | Bone regeneration base material and method for producing the same |
WO2006031196A1 (en) * | 2004-09-14 | 2006-03-23 | Agency For Science, Technology And Research | Porous biomaterial-filler composite and a method for making the same |
JP2007050084A (en) * | 2005-08-17 | 2007-03-01 | National Institute For Materials Science | Bone reconstruction material manufacturing method, bone reconstruction material, and bone tissue induction method |
JP5024780B2 (en) * | 2005-09-09 | 2012-09-12 | 独立行政法人物質・材料研究機構 | Method for producing unidirectional porous composite and unidirectional porous composite |
EP2065017B1 (en) | 2006-08-22 | 2014-01-01 | Mitsubishi Electric Corporation | Laser processing apparatus |
JP2010273847A (en) * | 2009-05-28 | 2010-12-09 | Tokyo Institute Of Technology | High density porous composite |
CN102892728B (en) * | 2010-03-16 | 2014-07-09 | 株式会社日冷食品 | Preparation method of porous body using antifreeze protein |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07275343A (en) * | 1994-04-04 | 1995-10-24 | Eyun Pharm Co Ltd | Natural bone substitution type artificial bone and its manufacture |
JPH08276003A (en) * | 1995-04-07 | 1996-10-22 | Terumo Corp | Head tissue restorative dental material and imbedded medical appliance |
WO1997014376A1 (en) * | 1995-10-16 | 1997-04-24 | Orquest, Inc. | Bone grafting matrix |
JP2000143219A (en) * | 1998-11-02 | 2000-05-23 | Advance Co Ltd | Production of calcium phosphate material |
WO2000045871A1 (en) * | 1999-02-04 | 2000-08-10 | Sdgi Holdings, Inc. | Highly-mineralized osteogenic sponge compositions, and uses thereof |
US6319712B1 (en) * | 1998-01-30 | 2001-11-20 | Deutsche Institute Fur Textil-Und Faserforschung Stuttgart | Biohybrid articular surface replacement |
-
2001
- 2001-12-07 JP JP2001374469A patent/JP2003169845A/en active Pending
-
2002
- 2002-12-05 WO PCT/JP2002/012782 patent/WO2003047645A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07275343A (en) * | 1994-04-04 | 1995-10-24 | Eyun Pharm Co Ltd | Natural bone substitution type artificial bone and its manufacture |
JPH08276003A (en) * | 1995-04-07 | 1996-10-22 | Terumo Corp | Head tissue restorative dental material and imbedded medical appliance |
WO1997014376A1 (en) * | 1995-10-16 | 1997-04-24 | Orquest, Inc. | Bone grafting matrix |
US6319712B1 (en) * | 1998-01-30 | 2001-11-20 | Deutsche Institute Fur Textil-Und Faserforschung Stuttgart | Biohybrid articular surface replacement |
JP2000143219A (en) * | 1998-11-02 | 2000-05-23 | Advance Co Ltd | Production of calcium phosphate material |
WO2000045871A1 (en) * | 1999-02-04 | 2000-08-10 | Sdgi Holdings, Inc. | Highly-mineralized osteogenic sponge compositions, and uses thereof |
Non-Patent Citations (2)
Title |
---|
KIMURA H. ET AL: "A study of the apatite-collagen composite", JAP. J. ORAL. BIOL., vol. 34, 1992, pages 331 - 338, XP002964720 * |
PARK J.C. ET AL: "A bone replaceable artificial bone substitute: morphological and physiochemical characterizations", YONSEI MEDICAL JOURNAL, vol. 41, no. 4, 2000, pages 468 - 476, XP002964719 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046414A1 (en) * | 2004-10-28 | 2006-05-04 | National Institute For Materials Science | Process for producing porous object comprising apatite/collagen composite fiber |
US7732573B2 (en) | 2004-10-28 | 2010-06-08 | National Institute For Materials Science | Method for producing porous body comprising apatite/collagen composite fibers |
WO2008026634A1 (en) * | 2006-08-31 | 2008-03-06 | Osaka University | Mesenchymal cell proliferation stimulator and skeletal system biomaterial |
US8222216B2 (en) | 2006-08-31 | 2012-07-17 | Osaka University | Mesenchymal cell proliferation promoter and skeletal system biomaterial |
US9976011B2 (en) | 2010-07-14 | 2018-05-22 | The Curators Of The University Of Missouri | Polymer composites and fabrications thereof |
US11883302B2 (en) | 2021-11-22 | 2024-01-30 | Warsaw Orthopedic, Inc. | Spinal implant having a compressible insert |
Also Published As
Publication number | Publication date |
---|---|
JP2003169845A (en) | 2003-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4260880B2 (en) | Bone substitute material and method for producing the same | |
EP1566186B1 (en) | Apatite/collagen crosslinked porous material containing self-organized apatite/collagen composite and process for producing the same | |
CA2236572C (en) | Low temperature calcium phosphate apatite and a method of its manufacture | |
EP0987032B1 (en) | Ceramic material for osteoinduction comprising micropores in the surface of macropores | |
JP4981451B2 (en) | Composite biomaterial comprising calcium phosphate material, collagen and glycosaminoglycan | |
US7163965B2 (en) | Process for producing porous composite materials | |
CA2585577C (en) | Process for producing a porous object comprising long and short apatite/collagen composite fibers | |
Van et al. | Injectable hydrogel composite based gelatin-PEG and biphasic calcium phosphate nanoparticles for bone regeneration | |
JP3770555B2 (en) | Composite biomaterial | |
WO2009009784A1 (en) | Formable bioceramics | |
WO2003047645A1 (en) | Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and process for producing the same | |
CN1058689C (en) | Porous calcium phosphate cement containing pore-creating agent | |
KR101777427B1 (en) | Biomaterials containing calcium phosphate | |
CN103830774B (en) | A kind of bone cement and preparation method thereof | |
JP2005531339A (en) | Tissue-engineered orthopedic scaffold | |
CN1200043C (en) | Inorganic/organic nano-composite bioactivity porous material and its preparation method | |
US20100233269A1 (en) | Mineralized polymer particles and the method for their production | |
JP3831402B2 (en) | Regenerative medical material containing biodegradable resin and calcium phosphate and method for producing the same | |
JP2003210569A (en) | Porous bone augmentation material | |
JPH0588623B2 (en) | ||
JP4297393B2 (en) | Chitosan-calcium phosphate complex and method for producing the same | |
JP2004269333A (en) | Molded carbon fiber reinforced composite material containing calcium phosphate-based material, method for producing the same, and artificial bone using the same | |
Griffin et al. | Calcium phosphate nanocomposites via in situ mineralization in block copolymer hydrogels | |
EP1671662A1 (en) | Structural body constituted of biocompatible material impregnated with fine bone dust and process for producing the same | |
JPH047227B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |