WO2003046527A1 - Biocapteur optoelectronique integre au silicium pour la detection de biomolecules marquees a l'aide de groupes chromophores ou de nanoparticules - Google Patents
Biocapteur optoelectronique integre au silicium pour la detection de biomolecules marquees a l'aide de groupes chromophores ou de nanoparticules Download PDFInfo
- Publication number
- WO2003046527A1 WO2003046527A1 PCT/GR2002/000061 GR0200061W WO03046527A1 WO 2003046527 A1 WO2003046527 A1 WO 2003046527A1 GR 0200061 W GR0200061 W GR 0200061W WO 03046527 A1 WO03046527 A1 WO 03046527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biomolecules
- detector
- integrated
- nanoparticles
- light source
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000010703 silicon Substances 0.000 title claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 20
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 title claims description 12
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 239000013307 optical fiber Substances 0.000 claims abstract description 27
- 230000008878 coupling Effects 0.000 claims abstract description 21
- 238000010168 coupling process Methods 0.000 claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 108090000790 Enzymes Proteins 0.000 claims abstract description 5
- 102000004190 Enzymes Human genes 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims description 14
- 230000008021 deposition Effects 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 239000012491 analyte Substances 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 5
- 238000002372 labelling Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000003593 chromogenic compound Substances 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 3
- 238000001465 metallisation Methods 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000004151 rapid thermal annealing Methods 0.000 claims description 3
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000007979 citrate buffer Substances 0.000 claims description 2
- 238000005336 cracking Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- LMEWRZSPCQHBOB-UHFFFAOYSA-M silver;2-hydroxypropanoate Chemical compound [Ag+].CC(O)C([O-])=O LMEWRZSPCQHBOB-UHFFFAOYSA-M 0.000 claims description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 230000006378 damage Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 229910001338 liquidmetal Inorganic materials 0.000 claims 1
- 108091034117 Oligonucleotide Proteins 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 102000004169 proteins and genes Human genes 0.000 abstract description 6
- 108090000623 proteins and genes Proteins 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 5
- 230000004048 modification Effects 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 abstract description 4
- 230000036782 biological activation Effects 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000010354 integration Effects 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- OZTGPAHTWQZZPA-UHFFFAOYSA-N n-[bis(hydroxyamino)methyl]hydroxylamine;hydrochloride Chemical compound Cl.ONC(NO)NO OZTGPAHTWQZZPA-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- UQZHJQWIISKTJN-YALINYFNSA-N 1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 UQZHJQWIISKTJN-YALINYFNSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- LVSPDZAGCBEQAV-UHFFFAOYSA-N 4-chloronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=CC=C(Cl)C2=C1 LVSPDZAGCBEQAV-UHFFFAOYSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229940000489 arsenate Drugs 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
Definitions
- the invention refers to a monolithically integrated optoelectronic silicon biosensor that can detect biomolecules from the change of the optical coupling between the integrated light source and the integrated detector that is caused by the coupling of appropriately labeled biomolecules to be analyzed on the recognition-molecules which have been previously immobilized onto the optical fiber that connects the light source with the detector.
- Biosensors are distinguished in: a) biocatalytic sensors in which an enzyme recognizes the substance to be analyzed (analyte) yielding to products via catalytic reaction and b) sensors of biological affinity, which are further distinguished in immunosensors and DNA sensors, to which an antibody recognize an antigen or a DNA chain fragment recognize the complementary chain fragment, respectively. Based on the transduction mode of the signal produced from the molecular recognition, biosensors can be distinguished in electrochemical, semiconductor, piezoelectric, and optical sensors [1-2].
- the protein or oligonucleotide biosensors are usually realized onto solid supports (glass, quartz, polymer, semiconductor materials) on which the recognition biomolecule or more than one biomolecules, each one at a different position, are immobilized.
- the deposition of biomolecules is performed either directly with microsyringes or printing machines, or with photochemical techniques that combine photolithography and removal of photosensitive protective chemical groups from selected areas. Substrate selection is based on its functionality and cost. Glass and polymer substrates are relatively cheap materials. In addition, some polymers have an innate ability to couple biomolecules. Quartz is more expensive but it has lower autofluorescence and higher transparency in ultra violet light, two characteristics that increase the sensitivity of optical measurements.
- Silicon substrates can also be used in order to get benefit from the added value of integration of detectors and reading electronics onto the chip with the immobilized biomolecules.
- different materials can be combined with mounting techniques that permit the creation of microchannels for circulation of liquid reagents and sample.
- biosensors Considering the production and transduction of the measured signal there are several types of biosensors. The majority can be distinguished in two categories: electrochemical and optical devices. Optical devices are the most flexible and allow the simultaneous precise determination of many different analytes in combination with the respective arrays of immobilized molecules. Optical biosensors can incorporate symbolometric devices, grating couplers and devices for absorbance or fluorescence measurement. The ability of optical biosensors to determine accurately many different analytes simultaneously render them the exclusive choice in development of protein or oligonucleotide chips.
- the optical biosensors pose, however, the difficulty of monolithically integrating the excitation light source and the detector with the immobilized recognition biomolecules onto the same substrate. So far, the excisting biomolecular detection devices use external light sources not integrated woth the biomolecules substrate [3- 7]. This demands the use of external light source that increases the packaging requirements making difficult the assembly of the system, requires precise alignment of the light source to the biosensor active elements, increases the volume of the system, and moves away the portability objective.
- the present invention solves this problem through the construction of an integrated optoelectronic biosensor that can detect biomolecules due to a change (drop) of optical coupling between the integrated light source and the integrated detector that is caused from the binding of the appropriately labeled biomolecules to be analyzed on the recognition molecules that have been previously immobilized onto the optical fiber that connects the light source with the detector.
- the set-up includes the optoelectronic silicon chip and its biological activation.
- the optoelectronic chip is realized following methods for integrated circuit fabrication so that the light source, the detector and the optical fiber, through which the optical coupling of the light source with the detector is performed, to be monolithically integrated on the same silicon substrate.
- the light is emitted from silicon avalanche diodes reverse biased beyond the breakdown voltage.
- the biological activation is performed through physicochemical modification of the chip surface that permits coupling of the recognition biomolecules onto the optical fiber surface.
- the biomolecules to be analyzed (protein or oligonucleotides) are labeled with chromophores of nanoparticles and after their binding to the recognition molecules decrease the optical coupling between the light source and the detector providing a measure of their concentration.
- the innovation of the proposed biosensor relies on the monolithic integration of light sources and detectors along with optical fibers onto which the recognition molecules been immobilized.
- the molecules to be analysed sould have been labeled with chromophore groups or nanoparticles prior to the binding onto the recognition molecules.
- the optical fiber is self-aligned with the light emitter and the detector using methods for integrated circuit manufacturing.
- the monolithic integration solves the manufacturing problems concerning the optical connection of the individual optical components and improves the optical coupling compared with other integration methods, for example microassembly of light emitters from synthetic emitters onto silicon substrate [9].
- the silicon avalanche diodes when used as light emitters have low quantum efficiency, the high coefficient of optical coupling and the high stability of the particular light source guaranty acceptable photocurrents and highly repeatable and stable readings.
- it permits, small area detectors with all the commensurate gains in reduced capacitance, small leakage current, and better noise performance.
- the small area advantage applies also to the light emitter by the very nature of the avalanche diode high field space charge region. Therefore, in terms of space requirements, the basic transducer unit is only limited by the length of the fiber in the waveguiding direction. This opens the opportunity of integration of multiple sensor elements onto one chip, each with a different recognition specificity in a hand held configuration.
- the multi-analyte aspect could not have been realized in portable arrangements.
- the small size of the basic opto-electronic transducer facilitates the stacking of the fluidic module and the entire packaging along with the readout electronics chips in a portable configuration.
- the size issue is of critical importance in portable devices.
- size is closely connected with the power consumption and endurance attribute of the analyser.
- the active area of every sensing element could be very small, especially in DNA chips. If an external source is to be used a small fraction of the incoming light will excite the sensing element and, therefore, higher optical and electric power will be required.
- Figure 1 shows the basic optically interconnected device that consists from the light emitter (1) on the left side, the detector on the right side (3) and the silicon nitride optical fiber in between (2).
- the detectors (3) are standard p/n junctions optically coupled to the light emitters (1) through the silicon nitride waveguides (2). Good optical coupling is achieved by the self-alignment of the optical fiber (2) with the light emitter (1) and the detector (3) and the way the fiber bends from the field oxide to the end-points of the optical link (4).
- the light emitter and the detector are planar devices, efficient coupling to them is achieved by the bending of the optical fiber (4) so that to contacts both devices under a normal angle. Because a small radius curvature on an optical fiber can cause substantial losses of light, silicon dioxide spacers are at created at the emmiting and receiving ends to minimize the losses. These spacers (4) are created by deposition of oxide (1-2 microns thick) under conditions of low vapor pressure on top of already deposited thermal field oxide. After lithographic patterning, the vertical edges are created by anisotropic etching. Afterwards, an additional deposition of thick dioxide followed by anisotropic etching creates the spacers.
- An overall, field oxide thickness of 2.5-3 microns of remaining dioxide assures relatively smooth bending and enough distance between the long horizontal segmant of the fiber and silicon interface to minimize substrate losses.
- the spacers (4) that permit smooth bending of the fiber and part of the field oxide are deposited through sequential chemical vapors depositions (LPCVD) each one followed by annealing at higher temperatures (900 °C for 20 min). This process provides a film with low internal tension thus avoiding cracks.
- the optical fiber (2) is lithographically created by deposition of a thin film of Silicon Nitride.
- the light emitting component of the avalanche diode is created by implanting ions, boron in figure 1 where the substrate is of N type, in the silicon nitride film of the fiber with such a power that the higher concentration of the ions to be located between the nitride and the silicon interface. This way the vertical segment of the fiber and the spacers mask the underlying silicon and thus, the avalanche junction lies exactly under this segment.
- the accurate position requires Rapid Thermal Annealing of the implanted ions (1000 °C for 20 sec).
- the base of the avalanche diode has been already implanted with complementary ion, phosphorus or arsenate, before the deposition of the spacers.
- the light emitted towards and within a critical angle of the up-going vertical segment is trapped within the fiber and waveguided all the way to the detector. There, the abrupt breaking of the fiber at the vertical segment/silicon interface assures effective detection even for small diode lengths (as opposed to leaky mode detection).
- the manufacturing process of the integrated optoelectronic device has many common points with the reference [10] with two major differences: a. Rapid Thermal Annealing of the implanted ions during the construction of the avalanche diode emitter in order to avoid ions diffusion for the accurate positioning of the junction under the fiber.
- the spacers for the smooth bending of the fiber and part of the field oxide are deposited by sequential chemical vapors depositions (LPCVD) each one followed by annealing at higher temperature from the deposition temperature providing a film with low internal tensions that is not prone to cracking thus, reducing the percentage of broken optical fibers and improving the stability of the optical coupling.
- LPCVD sequential chemical vapors depositions
- An important element of the present invention is the successful immobilization of recognition biomolecules (antibodies, antigens, oligonucleotides) onto the optical fiber surface (of the silicon chip).
- the immobilization of biomolecules on the surface of silicon nitride requires its modification with aminosilanes or thiosilanes or with the creation of thin polymer films. In all cases, however, for the successful modification of the surface its previous cleaning and/or hydrophilization is required. This is achieved by treating the surface with solutions of strong acids in combination with oxidizing agents e.g. mixture of sulfuric acid and hydrogen peroxide (Piranha). These methods are appropriate for the hydrophilization of silicon nitride but they cannot be applied in the case of the biosensor described here since they destroy the aluminum contacts that are necessary for biosensor operation.
- a method for cleaning and hydrophilization of the silicon nitride surface with oxygen plasma is included. Hydrophilization is followed by modification of the surface through immersion of the wafer in solution of aminosilane or thiosilane or creation of thin polymer film with spin coating. Using appropriate reagents is possible to immobilize the recognition biomolecules onto the surface of the optical fiber by covalent coupling as well as by adsorption. The creation of measurable signal is based on the fact that the analyte molecules after their coupling on the recognition elements that exist on the optical fiber change the coefficient of optical coupling between the light source and the detector. This change is measured as an alteration in the detector photocurrent.
- the interaction of the immobilized analyte molecules (oligonucleotides or proteins) with the waveguided photons is accomplished through physics of evanescent wave optics.
- chromophore groups or special nanoparticles that are efficient photons couplers are used for labeling of analyte molecules.
- the chromophore groups absorb photons through transitions on their electronic structure.
- Nanoparticles are more efficient concerning the reduction of the optical coupling either due to increased photon scattering or due to strong resonance of surface plasmons. This resonance is particularly strong in gold nanoparticles. In this case, the resonance can be further enhanced by metal deposition on the gold nanoparticles surface, after their immobilization that will increase significantly their size.
- Metal deposition is usually achieved from a metal ion solution in presence of a reducing agent.
- the measurable signal is the percentage of light drop before and after the binding of the labeled analyte molecules.
- the drop is expressed as the ratio of photocurrent measured before the binding of the labeled molecules towards the photocurrent before their binding.
- Enzyme commonly used in immunoassays, such as the horse radish peroxidase (HRP) in combination with several chromogenic substrates that yield insoluble products (e.g. 4-chloro-l-naphthol, 3,3', 5,5'- tetramethyl-benzidine) and alkaline phosphatase (AP) in combination with 5-bromo- 4-chloro-3-indole phosphate and blue of p-nitrotetrazole (BCIP/NBT), can be used for labeling of the biomolecules.
- HRP horse radish peroxidase
- AP alkaline phosphatase
- BCIP/NBT blue of p-nitrotetrazole
- Example 1 The die with the device of figure 1, which has been fabricated as described in page 3, line 10, to page 4, line 9, is cleaned and hydrophilized in oxygen plasma for 30 seconds. Following that, the device is immersed in a 2% (v/v) 3- amino-propyltriethoxysilane solution in doubly distilled water for 20 min. Then, the device is immersed in deionized water for 45 seconds and the water that remains on the surface is removed under a gentle nitrogen stream. After that, the wafer is placed on top of a heating plate adjusted at 120 °C for 20 minutes.
- the modified with biomolecules dies are washed with deionized water, dried under nitrogen stream and the photocurrent of the detectors before the addition of the analyte is determined.
- solutions of streptavidin labeled with R-Phycoerythrin at concentrations ranging from 1.66 to 166 pmole/mL in 0.05 M phosphate buffer, pH 6.5, which contains 40 g of bovine serum albumin, 9 g of sodium chloride and 0.5 g of sodium azide per liter are placed on the devices and incubated for 30 min.
- the devices are, then, washed with 0.05 M phosphate buffer, pH 6.5, containing 0.5 mL of Tween 20 per liter, with deionized water and dried under nitrogen stream.
- the detector photocurrent is measured.
- the streptavidin detection sensitivity curve obtained using optoelectronic devices of figure 1 with a 900-micron long optical fiber is presented in figure 2. As it is calculated, the detection limit is 1.6 pmole/mL. Example 2.
- the dies are washed firstly with 0.05 M tris(hydroxyamino)methane-hydrochloric acid buffer, pH 7.4, which contains 0.5 mL of Tween 20 per liter, and then with deionized water. After that, the wafers are dried under nitrogen streamand the detector photocurrent is measured.
- the nanoparticles that have been immobilized onto the optical fibers exhibited strong surface plasmon resonance and due to this phenomenon they provide a sensitivity curve (figure 3) with a detection limit of 8 fmole/mL, for the optoelectronic device presented in figure 1 using the 900-micron long optical fiber.
- Example 3 On the die with the device of figure 1, which has been fabricated as described in page 3, line 10, to page 4, line 9, which has been treated following the process that is described in example 2, a solution for metal silver deposition that contains 0.11 g of silver lactate, 0.85 g of hydrocinone in 100 mL of 0.2 M citrate buffer, pH 3.5, is applied for 20 minutes. After that, the wafers are washed with deionized water and dried under nitrogen stream. Measurement of the detectors photocurrents follows.
- the silver deposition on the already immobilized gold nanoparticles increases significantly their size (the diameter of the nanoparticles is increased from 8 to 100 nanometers) and results in further significant decrease of the measured photocurrent compared with the photocurrent that is measured after binding of biomolecules labeled with gold nanoparticles (e.g. 80% decrease of the signal for a concentration of gold nanoparticle labeled streptavidin of 0.6 femtomoles per mL).
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Silicon Compounds (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02793256A EP1448978B1 (fr) | 2001-11-29 | 2002-11-29 | Biocapteur optoelectronique integre au silicium pour la detection de biomolecules marquees a l'aide de groupes chromophores ou de nanoparticules |
DE60230801T DE60230801D1 (de) | 2001-11-29 | 2002-11-29 | Integrierter optoelektronischer silizium-biosensor zum nachweis von mit chromophoren gruppen oder nanopartikeln markierten biomolekülen |
AU2002358915A AU2002358915A1 (en) | 2001-11-29 | 2002-11-29 | Integrated optoelectronic silicon biosensor for the detection of biomolecules labeled with chromophore groups or nanoparticles |
US10/496,099 US7319046B2 (en) | 2001-11-29 | 2002-11-29 | Integrated optoelectronic silicon biosensor for the detection of biomolecules labeled with chromophore groups or nanoparticles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GR20010100550 | 2001-11-29 | ||
GR20010100550A GR1004178B (el) | 2001-11-29 | 2001-11-29 | Ολοκληρωμενος οπτοηλεκτρονικος βιοαισθητηρας πυριτιου για ανιχνευση βιομοριων επισημασμενων με χρωμοφορες ομαδες ή νανοσωματιδια |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003046527A1 true WO2003046527A1 (fr) | 2003-06-05 |
Family
ID=10944843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GR2002/000061 WO2003046527A1 (fr) | 2001-11-29 | 2002-11-29 | Biocapteur optoelectronique integre au silicium pour la detection de biomolecules marquees a l'aide de groupes chromophores ou de nanoparticules |
Country Status (7)
Country | Link |
---|---|
US (1) | US7319046B2 (fr) |
EP (1) | EP1448978B1 (fr) |
AT (1) | ATE420345T1 (fr) |
AU (1) | AU2002358915A1 (fr) |
DE (1) | DE60230801D1 (fr) |
GR (1) | GR1004178B (fr) |
WO (1) | WO2003046527A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006014326A1 (fr) * | 2004-07-02 | 2006-02-09 | Lumera Corporation | Biocapteur à fibres optiques |
GR20050100623A (el) * | 2005-12-27 | 2007-07-23 | Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων "Δημοκριτος" | Βιοαισθητηρες ταυτοχρονης ανιχνευσης πολλαπλων αναλυτων που βασιζονται σε μονολιθικα ολοκληρωμενουσοπτοηλεκτρονικους μεταλλακτες σηματος |
WO2008029374A3 (fr) * | 2006-09-08 | 2008-08-21 | Univ Nova De Lisboa | Système de détection et de quantification de matière biologique constitué par un ou plusieurs capteurs optiques et une ou plusieurs sources de lumière, procédé associé et applications apparentées |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7274458B2 (en) | 2005-03-07 | 2007-09-25 | 3M Innovative Properties Company | Thermoplastic film having metallic nanoparticle coating |
US7889347B2 (en) * | 2005-11-21 | 2011-02-15 | Plexera Llc | Surface plasmon resonance spectrometer with an actuator driven angle scanning mechanism |
US7463358B2 (en) * | 2005-12-06 | 2008-12-09 | Lumera Corporation | Highly stable surface plasmon resonance plates, microarrays, and methods |
US7486855B2 (en) * | 2006-12-27 | 2009-02-03 | 3M Innovative Properties Company | Optical microresonator |
US7512298B2 (en) * | 2006-12-01 | 2009-03-31 | 3M Innovative Properties Company | Optical sensing methods |
US7933022B2 (en) | 2006-12-01 | 2011-04-26 | 3M Innovative Properties Company | Integrated optical disk resonator |
US7702202B2 (en) * | 2006-12-01 | 2010-04-20 | 3M Innovative Properties Company | Optical microresonator |
US7903906B2 (en) * | 2006-12-01 | 2011-03-08 | 3M Innovative Properties Company | Optical sensing devices and methods |
US7903240B2 (en) * | 2006-12-01 | 2011-03-08 | 3M Innovative Properties Company | Optical sensing device |
EP2156185B1 (fr) * | 2007-06-01 | 2013-08-14 | Atonomics A/S | Amplification d'un résonateur d'ondes acoustiques de surface (saw) biologique avec des nanoparticules pour la détection d'un élément cible à analyser. |
US20090060786A1 (en) * | 2007-08-29 | 2009-03-05 | Gibum Kim | Microfluidic apparatus for wide area microarrays |
US8004669B1 (en) | 2007-12-18 | 2011-08-23 | Plexera Llc | SPR apparatus with a high performance fluid delivery system |
US20100081927A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081915A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, Alimited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081916A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware. | Histological facilitation systems and methods |
US20100081928A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological Facilitation systems and methods |
US20100081926A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081924A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
WO2010141365A2 (fr) | 2009-06-01 | 2010-12-09 | Cornell University | Système optofluidique intégré utilisant des microsphères |
KR101242138B1 (ko) * | 2009-11-27 | 2013-03-12 | 한국전자통신연구원 | 광 바이오 센서, 광 바이오 센서 어레이 및 이를 이용한 바이오 물질의 검출 방법 |
US8137981B2 (en) | 2010-02-02 | 2012-03-20 | Nokia Corporation | Apparatus and associated methods |
WO2015126373A1 (fr) * | 2014-02-19 | 2015-08-27 | Empire Technology Development Llc | Dispositifs de biodétection et leurs procédés d'utilisation et de préparation |
US9588289B1 (en) | 2016-01-20 | 2017-03-07 | International Business Machines Corporation | Cointegration of optical waveguides, microfluidics, and electronics on sapphire substrates |
US9643181B1 (en) | 2016-02-08 | 2017-05-09 | International Business Machines Corporation | Integrated microfluidics system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999037996A1 (fr) * | 1998-01-23 | 1999-07-29 | Torsana Biosensor A/S | Detection d'une substance par les modifications de l'indice de refraction |
WO2001071322A2 (fr) * | 2000-03-22 | 2001-09-27 | Goh M Cynthia | Procede et appareil pour un dosage destine aux analytes multiples |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE64237T1 (de) * | 1985-05-22 | 1991-06-15 | Siemens Ag | Verfahren zum herstellen von mit bor und phosphor dotierten siliziumoxid-schichten fuer integrierte halbleiterschaltungen. |
GB8813307D0 (en) | 1988-06-06 | 1988-07-13 | Amersham Int Plc | Biological sensors |
US6589726B1 (en) * | 1991-09-04 | 2003-07-08 | Metrigen, Inc. | Method and apparatus for in situ synthesis on a solid support |
US5418058A (en) * | 1993-10-04 | 1995-05-23 | The Regents Of The University Of California | Chemical microsensors |
US5494801A (en) * | 1993-12-03 | 1996-02-27 | Biostar, Inc. | Microorganism antigen extraction methods |
US5494798A (en) * | 1993-12-09 | 1996-02-27 | Gerdt; David W. | Fiber optic evanscent wave sensor for immunoassay |
EP0725269A3 (fr) * | 1995-02-03 | 1997-12-17 | Motorola, Inc. | Capteur optique et procédé correspondant |
US6586193B2 (en) * | 1996-04-25 | 2003-07-01 | Genicon Sciences Corporation | Analyte assay using particulate labels |
US6342349B1 (en) * | 1996-07-08 | 2002-01-29 | Burstein Technologies, Inc. | Optical disk-based assay devices and methods |
US6750016B2 (en) * | 1996-07-29 | 2004-06-15 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
JP2000012856A (ja) * | 1998-06-26 | 2000-01-14 | Sony Corp | Mosトランジスタの製造方法 |
US6801677B1 (en) * | 1998-09-10 | 2004-10-05 | The Regents Of The Universtiy Of California | Waveguide-based optical chemical sensor |
US6239017B1 (en) * | 1998-09-18 | 2001-05-29 | Industrial Technology Research Institute | Dual damascene CMP process with BPSG reflowed contact hole |
WO2000017401A2 (fr) * | 1998-09-21 | 2000-03-30 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Conduite et observation d'accumulation d'acide nucleique, microplaquette, dispositif et systeme a cet effet |
JP3605607B2 (ja) * | 2000-07-11 | 2004-12-22 | ノースウエスタン ユニバーシティ | 銀染色の増強による検出方法 |
US6608360B2 (en) * | 2000-12-15 | 2003-08-19 | University Of Houston | One-chip micro-integrated optoelectronic sensor |
US20020182763A1 (en) * | 2001-03-22 | 2002-12-05 | Stoltz Richard A. | Rapid thermal annealing of waveguide |
WO2002096262A2 (fr) * | 2001-05-25 | 2002-12-05 | Northwestern University | Nanoparticules du type noyau coquille ne s'alliant pas |
US20030013218A1 (en) * | 2001-07-10 | 2003-01-16 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices for detecting chemical reactant |
-
2001
- 2001-11-29 GR GR20010100550A patent/GR1004178B/el unknown
-
2002
- 2002-11-29 DE DE60230801T patent/DE60230801D1/de not_active Expired - Lifetime
- 2002-11-29 US US10/496,099 patent/US7319046B2/en not_active Expired - Fee Related
- 2002-11-29 EP EP02793256A patent/EP1448978B1/fr not_active Expired - Lifetime
- 2002-11-29 AU AU2002358915A patent/AU2002358915A1/en not_active Abandoned
- 2002-11-29 WO PCT/GR2002/000061 patent/WO2003046527A1/fr not_active Application Discontinuation
- 2002-11-29 AT AT02793256T patent/ATE420345T1/de not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999037996A1 (fr) * | 1998-01-23 | 1999-07-29 | Torsana Biosensor A/S | Detection d'une substance par les modifications de l'indice de refraction |
WO2001071322A2 (fr) * | 2000-03-22 | 2001-09-27 | Goh M Cynthia | Procede et appareil pour un dosage destine aux analytes multiples |
Non-Patent Citations (3)
Title |
---|
HUANG F S ET AL: "RAPID THERMAL ANNEALING OF THE THROUGH-FILM SILICON IMPLANTATION ON GAAS", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. PART 2, no. B59/B60, July 1991 (1991-07-01), pages 1003 - 1006, XP001032198, ISSN: 0168-583X * |
MISIAKOS K ET AL: "MONILITHIC SILICON OPTOELECTRIC BIOCHIPS", PROCEEDINGS OF THE 40TH. IEEE CONFERENCE ON DECISION AND CONTROL. (CDC). ORLANDO, FL, DEC. 4 - 7, 2001, IEEE CONFERENCE ON DECISION AND CONTROL, NEW YORK, NY: IEEE, US, vol. 5 OF 5. CONF. 40, 2 December 2001 (2001-12-02), pages 359 - 362, XP001086556, ISBN: 0-7803-7061-9 * |
MISIAKOS K ET AL: "MONOLITHIC INTEGRATION OF LIGHT EMITTING DIODES, DETECTORS AND OPTICAL FIBERS ON A SILICON WAFER: A CMOS COMPATIBLE OPTICAL SENSOR", INTERNATIONAL ELECTRON DEVICES MEETING 1998. IEDM TECHNICAL DIGEST. SAN FRANCISCO, CA, DEC. 6 - 9, 1998, NEW YORK, NY: IEEE, US, 6 December 1998 (1998-12-06), pages 25 - 28, XP000859313, ISBN: 0-7803-4775-7 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006014326A1 (fr) * | 2004-07-02 | 2006-02-09 | Lumera Corporation | Biocapteur à fibres optiques |
GR20050100623A (el) * | 2005-12-27 | 2007-07-23 | Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων "Δημοκριτος" | Βιοαισθητηρες ταυτοχρονης ανιχνευσης πολλαπλων αναλυτων που βασιζονται σε μονολιθικα ολοκληρωμενουσοπτοηλεκτρονικους μεταλλακτες σηματος |
WO2007074348A3 (fr) * | 2005-12-27 | 2007-10-11 | Nat Ct For Scient Res Ncsr Dem | Biocapteurs d'analytes multiples bases sur des transducteurs optoelectroniques |
WO2008029374A3 (fr) * | 2006-09-08 | 2008-08-21 | Univ Nova De Lisboa | Système de détection et de quantification de matière biologique constitué par un ou plusieurs capteurs optiques et une ou plusieurs sources de lumière, procédé associé et applications apparentées |
US8377699B2 (en) | 2006-09-08 | 2013-02-19 | Universidade Nova De Lisboa | Detection and quantification system of biological, matter constituted by one or more optical sensors and one or more light sources, associated process and related applications |
Also Published As
Publication number | Publication date |
---|---|
DE60230801D1 (de) | 2009-02-26 |
GR1004178B (el) | 2003-03-05 |
US7319046B2 (en) | 2008-01-15 |
EP1448978A1 (fr) | 2004-08-25 |
US20050003520A1 (en) | 2005-01-06 |
ATE420345T1 (de) | 2009-01-15 |
EP1448978B1 (fr) | 2009-01-07 |
AU2002358915A1 (en) | 2003-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1448978B1 (fr) | Biocapteur optoelectronique integre au silicium pour la detection de biomolecules marquees a l'aide de groupes chromophores ou de nanoparticules | |
US8358419B2 (en) | Integrated plasmonic sensing device and apparatus | |
US6534011B1 (en) | Device for detecting biochemical or chemical substances by fluorescence excitation | |
JP4231051B2 (ja) | 測定対象物質の濃度測定方法、測定対象物質の濃度測定用キット及びセンサチップ | |
AU693666B2 (en) | Composite waveguide for solid phase binding assays | |
JP4684507B2 (ja) | センサープラットホームを使用する方法 | |
EP1413876A2 (fr) | Capteur guide d'ondes planaire à plusieurs modes, materiaux et méthodes de fabrication | |
US7915053B2 (en) | Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor | |
WO2009115847A1 (fr) | Réseaux de capteurs biologiques, chimiques et physiques, intégrés de manière monolithique, basés sur l'interférométrie de mach-zhender à large bande | |
EP1371967B1 (fr) | Cuvette pour un dispositif de lecteur pour mettre en évidence des substances selon la technique du champ évanescent | |
US6870237B1 (en) | Repeated structure of nanometer thin films with symmetric or asymmetric configuration for SPR signal modulation | |
JP5660035B2 (ja) | 融合タンパク質含有集合体、その製造方法及び該集合体を用いたアッセイ法 | |
Petrou et al. | Silicon optocouplers for biosensing | |
Misiakos et al. | Monolithic silicon optoelectronic devices for protein and DNA detection | |
Misiakos et al. | Monolithic silicon optoelectronic biochips | |
Misiakos et al. | A bioanalytical microsystem for protein and DNA sensing based on a monolithic silicon optoelectronic transducer | |
Misiakos et al. | Monolithic silicon optical microdevices for biomolecular sensing | |
Misiakos et al. | Monolithic silicon interferometric optoelectronic devices for label-free multi-analyte biosensing applications | |
WO2007074348A2 (fr) | Biocapteurs d'analytes multiples bases sur des transducteurs optoelectroniques | |
Jabbour | Immunoassay-Based Microsensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10496099 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002793256 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002793256 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |