+

WO2003044997A1 - Recepteur sans fil - Google Patents

Recepteur sans fil Download PDF

Info

Publication number
WO2003044997A1
WO2003044997A1 PCT/JP2001/010151 JP0110151W WO03044997A1 WO 2003044997 A1 WO2003044997 A1 WO 2003044997A1 JP 0110151 W JP0110151 W JP 0110151W WO 03044997 A1 WO03044997 A1 WO 03044997A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
despreading
delay profile
channel signal
channel estimation
Prior art date
Application number
PCT/JP2001/010151
Other languages
English (en)
French (fr)
Inventor
Kenichi Miyoshi
Takahisa Aoyama
Toyoki Ue
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000155372A priority Critical patent/JP3357653B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2001/010151 priority patent/WO2003044997A1/ja
Priority to EP01274764A priority patent/EP1447932A1/en
Priority to AU2002224057A priority patent/AU2002224057A1/en
Priority to CN01822779.1A priority patent/CN1266864C/zh
Priority to US10/468,444 priority patent/US20040105382A1/en
Publication of WO2003044997A1 publication Critical patent/WO2003044997A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/7117Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a wireless reception apparatus used for a CDMA (Code Division Multiple Access) wireless communication system, and more particularly to channel estimation and @@ 3 ⁇ 4 profile
  • FIG. 1 is a schematic view showing an example of the appearance of a digital mobile communication system.
  • FIG. 2 is a schematic view showing an example of channel assignment in the digital mobile communication system.
  • the base station 11 performs wireless communication with three mobile stations (ie, mobile station 12 to mobile station 14). Between the base 11 and each of the above mobile stations, the transmission data and control signals are as shown in FIG. 2: DPCH (Dedicated Physical Channel), downlink shear channel (DSCH: Downlink Shared Channel) ) Is sent.
  • DPCH Dedicated Physical Channel
  • DSCH Downlink Shared Channel
  • DSCH is a channel for transmitting data (packets) modulated by a high-rate modulation scheme (for example, modulation scheme such as 64 QAM or 16 QAM) to each mobile station in a time division manner. It is possible to change the previous mobile station.
  • the DPCH is a channel for transmitting data such as voice, known signal (PL), and TFCI (Transmit Format Combination Indicator) to each mobile station simultaneously with DSCH.
  • DSCH signal a signal transmitted using DSCH
  • DPCH signal a signal transmitted using DP CH
  • Each mobile station performs reception processing as described below. That is, the mobile station uses TFCI in the DP CH signal to recognize which mobile station the DSCH signal is for. Furthermore, this mobile station obtains a demodulated signal by performing despreading processing on the DSCH signal directed to the mobile station.
  • the DSCH signal received by the mobile station includes not only propagation @ ® but also phase fluctuation and amplitude fluctuation (hereinafter simply referred to as “fading fluctuation”) caused by fading or the like.
  • the mobile station generates a delay profile using the known signal extracted from the DP CH signal after despreading processing, and detects the reverse ife spreading timing from the generated delay profile.
  • the mobile station performs channel estimation using the extracted known signal, and detects channel variation including phase variation and amplitude variation based on this channel estimation.
  • the mobile station despreads the received signal according to the despreading timing detected as described above, extracts the DSCH signal, and extracts it using the channel estimation value detected as described above. Compensate for fading variations on the DSCH signal. As a result, the mobile station obtains a demodulated signal with reduced fading fluctuation.
  • the mobile station when QPSK modulation is used by the base station, the mobile station can correctly demodulate the received signal if it correctly detects only the phase of the received signal.
  • QAM modulation is performed by the base station. If it is used, the mobile station can not correctly demodulate the received signal unless it correctly detects not only the phase but also the amplitude of the received signal.
  • An object of the present invention is to provide a wireless receiver that performs channel estimation and delay profile generation with high accuracy.
  • a common channel for example, downlink shielded channel
  • DPCH dedicated physical channel
  • Fig. 1 is a schematic view showing an example of the configuration of the digital mobile communication system
  • Fig. 2 is a schematic view showing an example of channel assignment in the digital mobile communication system
  • FIG. 3 is a diagram showing the configuration of a mobile station apparatus equipped with the wireless reception apparatus according to the first embodiment of the present invention
  • FIG. 4 is a block diagram showing the configuration of a mobile station apparatus provided with a wireless reception apparatus according to a second embodiment of the present invention
  • FIG. 5 is a block diagram showing the configuration of a mobile station apparatus provided with a wireless reception apparatus according to a third embodiment of the present invention.
  • Fig. 6 (A) is a schematic view showing the arrangement of signal points in the Q P S K modulation method
  • Fig. 6 (B) is a schematic view showing the arrangement of signal points in the 16 Q AM modulation method
  • Fig. 6 (C) is a schematic diagram showing the arrangement of signal points in the 64 QAM modulation method.
  • a mobile station apparatus provided with a wireless reception apparatus is a base station apparatus according to the channel assignment as shown in FIG. The case where the wireless communication is performed will be described.
  • FIG. 3 is a block diagram showing a configuration of a mobile station apparatus provided with the wireless reception apparatus according to the first embodiment of the present invention.
  • DPCH despreading section 102 transmits a signal (received signal) received via antenna 101 to mobile station apparatus according to the despreading timing from delay profile combining section 115 described later.
  • the DPCH signal is extracted by performing despreading using the assigned spreading code.
  • the PL extraction unit 103 extracts a known signal (“P L” in FIG. 2) from the extracted DP CH signal.
  • the DATA section extraction unit 104 extracts data (“Da ta” in FIG. 2) from the extracted DP CH signal.
  • the TFC I section extraction unit 105 extracts TFC I (“TFCI” in FIG. 2) from the extracted DPCH signal.
  • DSCH despreading section 116 performs despreading processing using the spreading code assigned to DSCH on the received signal from antenna 101 according to the despreading timing from delay profile combining section 115 described later. Extract the DSC H signal.
  • the first channel estimation unit 106 performs channel estimation using the extracted known signal and known pie slot pattern.
  • the multiplication unit 107 multiplies the channel estimation value from the channel estimation value combining unit 110 described later and the extracted data.
  • the multiplying unit 108 multiplies the channel estimation value from the channel estimation value combining unit 110 by the extracted TFC I unit.
  • Multiplication section 109 multiplies the extracted DSCH signal by the channel estimation value from channel estimation value combining section 110.
  • the temporary determination unit 111 performs temporary determination on the multiplication result in the multiplication unit 109.
  • Second channel estimation section 112 performs channel estimation using the extracted DSCH signal and the provisional determination result.
  • the channel estimation value combining unit 110 combines the channel estimation value from the first channel estimation unit 106 and the channel estimation value from the second channel estimation unit 112.
  • the TFCI demodulation unit 117 demodulates the multiplication result in the multiplication unit 108.
  • the switch 118 outputs the multiplication result in the multiplication unit 109 as the DSCH demodulation result based on the demodulation result in the TFCI demodulation unit 117.
  • the first delay profile generation unit 113 generates a delay profile using the known signal extracted by the PL unit extraction unit 103.
  • the second delay profile generator 114 generates a delay profile file using the DSCH signal extracted by the 03011 despreader 116.
  • the delay profile combining unit 115 combines the delay profile generated by the first delay profile generating unit 113 and the delay profile generated by the second delay profile generating unit 114. Furthermore, the delay file combining unit 115 detects despreading timing using the delay profile after combining, and detects the despreading timing detected in the DP CH despreading unit 102 and the DSCH despreading unit 116 described above. send.
  • a signal transmitted by the base station apparatus is received by the antenna 101.
  • the received signal from the antenna 101 is sent to the D P C H despreading unit 102 and the D S C H despreading unit 116.
  • the received signal from the antenna 101 is subjected to a despreading process using a spreading code assigned to the DSCH.
  • the DSCH signal is extracted.
  • the despreading processing in the DSCH despreading unit 116 is performed in accordance with the despreading timing from the delay profile combining unit 115.
  • the extracted DSCH signal is sent to the multiplier 109.
  • the DPC H despreading section 102 despreads the received signal from the antenna 101 using a spreading code assigned to the present mobile station apparatus. By this, the DPCH signal is extracted.
  • the despreading processing in DPCH despreading section 102 is performed according to the despreading timing from delay profile combining section 115.
  • the extracted DP CH signal is sent to the PL unit extraction unit 103, the DATA unit extraction unit 104, and the TFCI unit extraction unit 105.
  • the DATA portion extraction unit 104 extracts a data portion from the extracted DP CH signal and sends the data portion to the multiplication unit 107.
  • the TFCI part is extracted from the extracted DP CH signal and is sent to the multiplication unit 108.
  • the PL part extraction unit 103 extracts a known signal from the extracted D P CH signal and sends it to the first channel estimation unit 106.
  • the first channel estimation unit 106 performs channel estimation using the extracted known signal and known pilot pattern.
  • the channel estimation result obtained by the first channel estimation unit 106 is sent to the channel estimation value combining unit 110.
  • the channel estimation value combining unit 110 combines the channel estimation value from the first channel estimation unit 106 and the channel estimation value from the second channel estimation unit 112. At this point, since no channel estimation value is sent from the second channel estimation unit 112, the channel estimation value from the first channel estimation unit 106 is taken as the channel estimation value after combination. After this, the complex estimate of the channel estimation value after synthesis is sent from channel estimation value synthesis section 110 to multiplication section 109.
  • the multiplication unit 109 multiplies the DSCH signal from the DSCH despreading unit 116 by the complex conjugate from the channel estimation value combining unit 110. This results in a DSCH signal that is compensated for fading variations.
  • the fading fluctuation compensated here corresponds to the one estimated by the channel estimation value from the first channel estimation unit 106 (that is, the channel estimation value based on only the known signal in the DP CH signal). .
  • a temporary determination unit 111 makes a temporary determination on the DSCH signal in which the feedback fluctuation has been compensated.
  • the DSCH signal after temporary determination is sent to second channel estimation unit 112.
  • Second channel estimation unit 112 includes the DSCH signal after temporary determination from temporary determination unit 111 and the DSCH signal from DSCH despreading unit 116. Channel estimation is performed using and. Here, the DSCH signal after tentative determination is used as a known signal.
  • the channel estimation value obtained by the second channel estimation unit 112 is sent to the channel estimation value combining unit 110. At present, the channel estimation value from the first channel estimation unit 106 described above and the channel estimation value from the second channel estimation unit 112 are input to the channel estimation value combining unit 110.
  • channel estimation value combining unit 110 the above-mentioned 32 channel estimation values are combined. Thereafter, channel estimated value combining section 110 outputs the complex conjugate of the channel estimation value after combining to multiplying section 1 07 to multiplying section 109.
  • multiplying section 107 the data from DATA section extracting section 104 And a complex conjugate from the channel estimation value combining unit 110 are multiplied. As a result, data with compensated fading fluctuation can be obtained.
  • This schedule is output as the DPCH demodulation result.
  • the multiplication unit 108 multiplies the TFCI from the TFC I unit extraction unit 105 with the complex conjugate from the channel estimated value synthesis unit 110. This provides TFCI with compensated aging variations.
  • the obtained TFCI is sent to the TFC I demodulator 117.
  • the TFCI demodulation unit 11 1 demodulates the TFCI from the multiplication unit 108, and determines based on the demodulation result whether or not the D S CH signal has been transmitted to its own station. Furthermore, TFCI demodulation section 117 outputs the DSCH signal from multiplication section 1-9 as the result of the DSC H demodulation only when it is determined that the DSCH signal is transmitted to the local station. A control signal is generated. This control signal is sent to the switch 118 and to the multiplication unit 109 via a path (not shown).
  • multiplying section 109 calculates the DSCH signal from DSCH despreading section 116 and channel estimated value combining section 1
  • the complex conjugate from 10 is multiplied by This results in a D S CH signal compensated for fading variations.
  • the fading-compensated DSCH signal is output via switch 118 as the D S CH demodulation result.
  • the feedback variation compensated by the multiplying unit 107, the multiplying unit 108 and the multiplying unit 109 is the channel estimation value from the channel estimation value combining unit 110 (ie, That is, it corresponds to the one estimated by the known signal in the DPCH signal and the channel estimation value by the DSCH signal.
  • despreading timings in the DPCH despreading unit 102 and the DSCH despreading unit 116 are detected as described below.
  • the known signal extracted by the PL extraction unit 103 is sent to the first delay profile generation unit 113.
  • the DSCH signal extracted by the 03 11 11 despreading unit 116 is sent to the second delay profile generating unit 114.
  • the first delay profile generation unit 113 generates a delay profile using the known signal.
  • the generated delay profile is sent to the delay profile synthesizer 115.
  • the second delay profile generation unit 114 generates a delay profile using the DSCH signal.
  • the generated delay profile is sent to the delay file combining unit 115.
  • the delay profile combining unit 115 combines the delay profiles generated by the first delay profile generating unit 113 and the second delay profile generating unit 114. Furthermore, in the synthesized delay profile, the peak whose magnitude is the largest is detected as reverse scatter timing. The detected despreading timing is sent to the DPCH despreading unit 102 and the DSCH despreading unit 116 described above.
  • channel estimation is performed using a known signal inserted in the DP CH signal of one frame
  • a channel similar to the conventional method is used.
  • channel estimation is performed using DSCH signal. That is, in the present embodiment, the number of data used for channel estimation is significantly increased compared to the conventional method. As a result, highly accurate channel estimation can be performed.
  • the channel estimation accuracy is degraded in the conventional method, but in the present embodiment, DP Since channel estimation is performed using not only a known signal inserted in the CH signal but also a DSCH signal for one frame, the accuracy of channel estimation can be kept good.
  • the effect of delay profile generation will be described.
  • the DSCH signal is used to perform delay profile generation. That is, in the present embodiment, the delay number used for delay profile generation is significantly increased as compared with the conventional method. As a result, it is possible to detect reverse diffusion timing with high accuracy.
  • channel estimation and delay profile generation are performed using not only the DSCH signal transmitted to the own station but also the DSCH signal transmitted to the other station (despreading (despreading).
  • depreading depreading
  • the base station apparatus uses DPCH to transmit de-tune (such as voice) and various known signals to different mobile stations through different channels.
  • de-tune such as voice
  • DSCH de-tune
  • the station apparatus uses the DSCH to transmit a packet (such as a packet) on the same channel to each mobile station apparatus.
  • the present invention is not limited to DSCH.
  • channel estimation and delay profile generation may be performed based on common channel signals that may be transmitted to stations other than the own station. The same effect as that of the embodiment can be obtained. The same applies to the embodiments described later.
  • the received DSCH signal contains a signal whose receiving noise is decreasing due to the effect of fading.
  • the judgment result of the D S CH signal such that the reception power is small includes an error. If such a DSC H signal is used for channel estimation and delay profile generation, the accuracy of the extracted demodulated signal will be degraded.
  • FIG. 4 is a block diagram showing a configuration of a mobile station apparatus provided with a wireless reception apparatus according to a second embodiment of the present invention.
  • the same components in FIG. 4 as those in Embodiment 1 (FIG. 3) will be assigned the same reference numerals as in FIG. 3 and detailed explanations thereof will be omitted.
  • the performance calculation unit 201 calculates the received power (power) of the DSCH signal from the DSCH despreading unit 116, and compares the calculated received power with a predetermined threshold.
  • the patch calculation unit 201 controls a switch 202 and a switch 203, which will be described later, based on the comparison result. That is, when the calculated reception power is larger than the threshold, the performance calculation unit 201 controls the switch 202 so as to output the channel estimation value from the second channel estimation unit 112 to the channel estimation value synthesis unit 110.
  • the switch 203 is controlled to output the delay profile from the second delay profile generator 114 to the mute file synthesizer 115.
  • the performance calculation unit 201 determines the second channel. While controlling the switch 202 so as not to output the channel estimation value from the estimation unit 112 to the channel estimation value combining unit 110, it is also possible not to output the delay profile from the second delay profile generation unit 114 to the delay profile combining unit 115. Control the switch 203.
  • the switch 202 and the switch 203 perform output switching of the channel estimation value and the delay profile based on the control by the above-described power calculation unit 201.
  • a DSCH signal in which a modulation scheme having a smaller modulation multi-value number is used among the received DSCH signals in the first embodiment, a DSCH signal in which a modulation scheme having a smaller modulation multi-value number is used, and the reception power exceeds a predetermined threshold.
  • a DSCH signal in which a modulation scheme having a smaller modulation multi-value number is used and the reception power exceeds a predetermined threshold.
  • the base station apparatus uses high-speed data such as QPSK (see FIG. 6 (A)), 16 Q AM (see FIG. 6 (B)) or 64 QAM (see FIG. 6 (C)). Transmit as DSCH signal.
  • the mobile station apparatus accurately determines that amplitude information is not accurately detected for a DS CH signal using the 16 QAM scheme or the 64 QAM scheme on the condition that the DS CH signal is received with the same average received power.
  • accurate provisional determination can be performed if only phase information is accurately detected.
  • FIG. 5 is a block diagram showing a configuration of a mobile station apparatus provided with a wireless reception apparatus according to a third embodiment of the present invention.
  • the same components in FIG. 5 as those in Embodiment 1 (FIG. 3) can be assigned the same reference numerals as those in FIG. 3 and detailed explanations thereof can be omitted.
  • the performance calculation unit 201 calculates the reception performance of the DSCH signal from the DSCH despreading unit 116 as in the second embodiment, and compares the calculated reception performance with a predetermined threshold value.
  • the performance calculation unit 201 outputs the comparison result to the determination unit 302.
  • the modulation scheme detection unit 301 detects the modulation scheme used for the D S C H signal from the D S C H despreading unit 116, and outputs the detection result to the determination unit 302.
  • the determination unit 302 controls the switch 202 and the switch 203 based on the comparison result from the threshold calculation unit 201 and the detection result from the modulation scheme detection unit 301. That is, the determination unit 302 uses a modulation scheme with high received power exceeding a predetermined threshold value (that is, a modulation scheme with a smaller number of modulation levels (eg, QPSK scheme)): only the DSCH signal Control switch 202 and switch 203 so that they are used for channel estimation and delay profile generation. In other words, the determination unit 302 controls the switches 202 and 203 so that channel estimation and delay profile generation can be performed using only the DSCH signal that can make a tentative determination more accurately.
  • a predetermined threshold value that is, a modulation scheme with a smaller number of modulation levels (eg, QPSK scheme)
  • the determination unit 302 controls the switches 202 and 203 so that channel estimation and delay profile generation can be performed using only the DSCH signal that can make a tentative determination more accurately.
  • the DSCH signal is a DSCH signal in which a modulation scheme with a smaller number of modulations is used, and the reception power has exceeded a predetermined threshold!
  • a more accurate demodulated signal can be extracted.
  • the case of detecting the modulation scheme using the extracted DSCH signal has been described as an example, when the information for notifying the modulation scheme is included in the TFCI, the TFCI demodulation result is used. Modulation scheme can be detected. 1
  • the radio receiving apparatus comprises: despreading means for despreading a common channel signal; channel estimation means for obtaining a channel estimate based on the reverse spread common channel signal; and despreading based on the determined channel estimate. And demodulation means for performing propagation path compensation on the spread signal to demodulate the reception signal.
  • the radio receiving apparatus further comprises: a despreading means for despreading the common channel signal; and a «profile generation means for generating a delay profile based on the despread signal, the despreading means comprising The despreading process is performed at the timing based on the delay profile.
  • the delay profile is generated using the common channel signal with a large number of data, it is possible to generate a high-precision delay profile.
  • the despreading process can be performed at the despreading timing with high accuracy, so that a high quality demodulated signal can be obtained.
  • the wireless receiving apparatus further comprises: a temporary judgment means for provisionally judging the common channel signal after propagation path compensation, and the channel estimation means regards the provisional judgment result as a known signal and a signal before the propagation path compensation.
  • the channel estimation value is obtained by comparing with.
  • the radio receiving apparatus determines the first channel estimation value based on the despreading means for despreading the dedicated physical channel signal and the common channel signal addressed to the own station, and the dedicated physical channel signal after the despreading.
  • demodulation means for propagation path compensation and demodulation of the loop signal.
  • the combined channel estimation value is obtained using the dedicated physical channel signal and the common channel signal, it becomes a very accurate channel estimation value based on a very large number of signals.
  • propagation path compensation can be performed on the received signal with high accuracy to obtain a high quality demodulated signal.
  • the wireless reception device of the present invention generates a first delay profile based on the despreading means for despreading the dedicated physical channel signal and common channel signal addressed to the own station, and the dedicated physical channel signal after despreading.
  • the despreading means is configured to perform despreading processing at a timing based on the combined delay profile.
  • the combined delay profile is generated using the dedicated physical channel signal and the common channel signal, resulting in a very accurate delay profile based on a very large number of signals.
  • the wireless receiving apparatus further comprises: a temporary judging means for provisionally judging the common channel signal after propagation path compensation, and the second channel estimation means regards the provisional judgment result as a known signal and carries out a propagation path compensation.
  • the second channel estimated value is obtained by comparing with the previous signal.
  • the second channel estimation value can be easily obtained.
  • the wireless receiving apparatus further comprises reliability detection means for detecting the reliability of the common channel signal after despreading, and the combining means is operable to execute the first method when the reliability exceeds a predetermined threshold.
  • a combined channel estimation value is determined by combining the first and second channel estimation values, and the first channel estimation value is used as a combined channel estimation value when the reliability is less than or equal to a predetermined threshold.
  • the received common channel signal is affected by fading. If the reliability is low due to the use of a common channel signal for channel estimation, then the dedicated physical channel only needs to be used, taking into account that the accuracy of the channel estimation value may deteriorate. By using channel estimation, the best channel estimation can be performed according to the channel state.
  • the wireless receiving apparatus further comprises reliability detection means for detecting the reliability of the common channel signal after despreading, and the combining means is operable to execute the first method when the reliability exceeds a predetermined threshold.
  • the first and second delay profiles are combined to obtain a combined delay profile, and when the reliability is less than a predetermined threshold value, the first delay profile file is used as the combined delay profile.
  • the communication terminal apparatus is a communication terminal apparatus having a wireless receiving apparatus, and the wireless receiving apparatus comprises channel estimation based on despreading means for despreading the common channel signal, and the common channel signal after despreading.
  • a channel estimation means for obtaining a value, and a demodulation means for demodulating the reception signal by propagation path compensation for the despread signal based on the obtained channel estimation value are adopted.
  • the communication terminal apparatus of the present invention is a communication terminal apparatus having a wireless receiving apparatus, and the wireless receiving apparatus generates a delay profile based on the despreading means for despreading the common channel signal, and the despread signal. And a despreading unit configured to perform despreading processing at a timing based on the delay profile.
  • the high accuracy despreading timing is obtained based on the high accuracy delay profile. Since the despreading process can be performed by the ringing, it is possible to realize a communication terminal that can obtain a high quality demodulated signal.
  • the present invention can be applied to a wireless receiver performing channel estimation and delay profile generation among wireless receivers used in a CDMA wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

技術分野
本発明は CDMA (Code Division Multiple Access)方式の無線通信システ ムに用いられる無線受信装置に関し、 特に、 チャネル推定および @¾プロフアイ 明
ル生成を行う無線受信装置に関する。 田
'目:
従来の CDMA方式の無線通信システムのうちディジ夕ル移動体通信について 、 図 1および図 2を参照して説明する。 図 1は、 ディジタル移動体通信システム の様子の一例を示す模式図である。 図 2は、 ディジ夕ル移動体通信システムにお けるチャネル割り当ての一例を示す模式図である。
図 1においては、 一例として、 基地局 11が 3つの移動局 (すなわち、 移動局 12〜移動局 14) と無線通信を行う様子が示されている。基 «11と上記各 移動局との間においては、 送信デ一夕および制御信号は、 図 2に示す個別チヤネ ル ( D P C H: Dedicated Physical Channel)、 ダウンリンクシェァ一ドチヤネ ル (DSCH: Downlink Shared Channel)等を利用して送信される。
DSCHは、 高速レートの変調方式 (例えば、 64QAMや 16QAM等の変 調方式) により変調されたデータ (パケヅト) を各移動局に時分割で送信するた めのチャネルであり、 1フレーム毎に送信先となる移動局を変更することができ るものである。 DPCHは、 DSCHと同時に、 音声等のデ一夕、 既知信号 (P L) 、 および、 TFCI (Transmit Format Combination Indicator) を各移動 局に対して送信するためのチャネルである。
なお、 以後の説明を簡単にするために、 DSCHを用いて送信される信号を 「 DSCH信号」 と称し、 DP CHを用いて送信される信号を 「DPCH信号」 と 称する。 各移動局は、 以下に述べるような受信処理を行う。 すなわち、 移動局は、 DP CH信号における TF C Iを用いて、 D S CH信号がいずれの移動局宛てのもの であるかを認識する。 さらに、 この移動局は、 自局宛ての DSCH信号に対して 逆拡散処理を行うことにより復調信号を得る。
ところが、 移動局が受信する D S C H信号には、 伝搬 @®だけでなく、 フエ一 ジング等に起因する位相変動および振幅変動 (以下単に 「フェージング変動」 と いう。 ) が含まれたものとなっている。 そこで、 移動局は、 逆拡散処理後の DP CH信号から抽出した既知信号を用いて遅延プロファイルを生成し、 作成した遅 延プロファイルから逆 ife散タイミングを検出する。 また、 移動局は、 上記抽出し た既知信号を用いてチャネル推定を行い、 このチャネル推定に基づいて位相変動 や振幅変動を含む伝搬路変動を検出する。 さらに、 移動局は、 上記のように検出 した逆拡散タイミングに従って、 受信信号に対して逆拡散処理を行い、 DSCH 信号を抽出するとともに、 上記のように検出したチャネル推定値を用いて、 抽出 された DSCH信号に対するフエ一ジング変動を補償する。 これにより、 移動局 は、 フェージング変動を低減した復調信号を得る。
従来のディジ夕ル移動体通信においては、 チャネル推定と遅延プロファイル生 成をより高精度に行うことが望まれている。 すなわち、 基地局は、 DPCH信号 よりも高速レートの変調方式を用いた D S CH信号を送信するため、 移動局は、 チャネル推定および遅延プロファイル生成の精度が悪い場合には、 D S CH信号 に対するフエ一ジング変動の補償を、 高精度に行うことができなくなり、 ひいて は復調信号の品質を良好に保つことができなくなる。
例えば、 基地局により QPSK変調が用いられた場合には、 移動局は、 受信信 号の位相のみを正しく検出すれば、 正確に受信信号の復調を行うことができるが 、 基地局により QAM変調が用いられた場合には、 移動局は、 受信信号の位相だ けでなく振幅をも正しく検出しなければ、 正確に受信信号の復調を行うことがで きない。
このような理由から、 移動局においては、 チャネル推定と プロファイル生 成の精度を向上させることが望まれている。 発明の開示
本発明の目的は、 チヤネル推定および遅延プロフアイノレ生成を高精度に行う無 線受信装置を提供することである。
この目的は、 個別物理チャネル (D P C H ) 信号に含まれる既知信号 (パイ口 ヅト信号) のみならず、 自局以外の局に対しても送信される共通チャネル (例え ばダウンリンクシエアードチャネル) に基づいてチャネル推定及び遅延プロファ ィル生成を行うことにより連成される。 図面の簡単な説明
図 1は、 ディジ夕ル移動体通信システムの構成の一例を示す模式図; 図 2は、 ディジ夕ル移動体通信システムにおけるチャネル割り当ての一例を示 す模式図
図 3は、 本発明の実施の形態 1にかかる無線受信装置を備えた移動局装置の構 成を示すプロヅク図;
図 4は、 本発明の実施の形態 2にかかる無線受信装置を備えた移動局装置の構 成を示すプロック図;
図 5は、 本発明の実施の形態 3にかかる無線受信装置を備えた移動局装置の構 成を示すプロック図;
図 6 (A) は、 Q P S K変調方式における信号点の配置を示す模式図; 図 6 ( B ) は、 1 6 Q AM変調方式における信号点の配置を示す模式図; 及び
図 6 ( C ) は、 6 4 QAM変調方式における信号点の配置を示す模式図である
発明を実施するための最良の形態
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 ) ここでは、 一例として、 以下の実施の形態にかかる無線受信装置を備えた移動局 装置が、 図 1に示したような移動体通信システムにおいて、 図 2に示したような チャネル割り当てに従って基地局装置と無線通信を行う場合について説明する。
(実施の形態 1 )
図 3は、 本発明の実施の形態 1にかかる無線受信装置を備えた移動局装置の構 成を示すブロック図である。 図 3において、 DPCH逆拡散部 102は、 後述す る遅延プロファイル合成部 115からの逆 ¾散タイミングに従って、 アンテナ 1 01を介して受信された信号 (受信信号) に対して、 本移動局装置に割り当てら れた拡散符号を用いた逆拡散処理を行うことにより、 D P C H信号を抽出する。
PL部抽出部 103は、 抽出された DP CH信号から既知信号 (図 2中の 「P L」 ) を抽出する。 DATA部抽出部 104は、 抽出された DP CH信号からデ —夕 (図 2中の 「Da t a」) を抽出する。 TFC I部抽出部 105は、 抽出さ れた DPCH信号から TFC I (図 2中の 「TFCI」 ) を抽出する。
DSCH逆拡散部 116は、 後述する遅延プロファイル合成部 115からの逆 ¾散タイミングに従って、 アンテナ 101からの受信信号に対して、 DSCHに 割り当てられた拡散符号を用いた逆拡散処理を行うことにより、 DSC H信号を 抽出する。
第 1チャネル推定部 106は、 抽出された既知信号と既知パイ口ットパターン を用いてチャネル推定を行う。 乗算部 107は、 後述するチャネル推定値合成部 110からのチャネル推定値と、 抽出されたデータと、 を乗算する。 乗算部 10 8は、 チャネル推定値合成部 110からのチャネル推定値と、 抽出された TFC I部と、 を乗算する。乗算部 109は、 抽出された DSCH信号と、 チャネル推 定値合成部 110からのチャネル推定値と、 を乗算する。
仮判定部 111は、 乗算部 109における乗算結果に対して仮判定を行う。 第 2チャネル推定部 112は、 抽出された D S CH信号と仮判定結果とを用いたチ ャネル推定を行う。 チャネル推定値合成部 110は、 第 1チャネル推定部 106 からのチャネル推定値と、 第 2チャネル推定部 112からのチャネル推定値と、 を合成する。 TFCI復調部 117は、 乗算部 108における乗算結果に対して復調処理を 行う。 スィツチ 118は、 TFCI復調部 117における復調結果に基づいて、 乗算部 109における乗算結果を DSCH復調結果として出力する。
第 1遅延プロファイル生成部 113は、 PL部抽出部 103により抽出された 既知信号を用いて遅延プロファイルを生成する。 第 2遅延プロファイル生成部 1 14は、 03011逆拡散部116により抽出された DSCH信号を用いて遅延プ 口ファイルを生成する。 遅延プロファイル合成部 115は、 第 1遅延プロフアイ ル生成部 113により生成された遅延プロファイルと、 第 2遅延プロファイル生 成部 114により生成された遅延プロファイルと、 を合成する。 さらに、 遅延プ 口ファイル合成部 115は、 合成後の遅延プロファイルを用いて逆拡散タイミン グを検出し、 検出した逆拡散タイミングを上述した DP CH逆拡散部 102およ び D S C H逆拡散部 116に送る。
次いで、 上記構成を有する移動局装置の動作について説明する。 ここでは、 一 例として、 1フレーム分の D S CH信号を復調する場合について説明する。 基地局装置により送信された信号は、 アンテナ 101により受信される。 アン テナ 101からの受信信号は、 D P C H逆拡散部 102および D S C H逆拡散部 116に送られる。
D S CH逆拡散部 116においては、 アンテナ 101からの受信信号に対して 、 DSCHに割り当てられた拡散符号を用いた逆拡散処理がなされる。 これによ り、 DSCH信号が抽出される。 なお、 この DSCH逆拡散部 116における逆 拡散処理は、 遅延プロフアイル合成部 115からの逆拡散夕ィミングに従つて行 われる。 抽出された DSCH信号は、 乗算部 109に送られる。
DPC H逆拡散部 102においては、 アンテナ 101からの受信信号に対して 、 本移動局装置に割り当てられた拡散符号を用いた逆拡散処理がなされる。 これ により、 DPCH信号が抽出される。 なお、 この DP CH逆拡散部 102におけ る逆拡散処理は、 遅延プロファイル合成部 115からの逆拡散タイミングに従つ て行われる。抽出された DP CH信号は、 PL部抽出部 103、 DATA部抽出 部 104および TFCI部抽出部 105に送られる。 DATA部抽出部 104では、 抽出された DP CH信号からデータ部分が抽出 されて乗算部 107に送られる。 丁1^( 1部抽出部105では、 抽出された DP CH信号から TF CI部分が抽出されて乗算部 108に送られる。
P L部抽出部 103では、 抽出された D P C H信号から既知信号が抽出されて 第 1チャネル推定部 106に送られる。 第 1チャネル推定部 106では、 抽出さ れた既知信号と既知パイロットパターンを用いたチャネル推定が行われる。 第 1 チャネル推定部 106により得られたチャネル推定結果は、 チャネル推定値合成 部 110に送られる。
チャネル推定値合成部 110では、 第 1チャネル推定部 106からのチャネル 推定値と第 2チャネル推定部 112からのチャネル推定値との合成が行われる。 現時点では、 第 2チヤネル推定部 1 12からはチヤネル推定値が送られていない ので、 第 1チャネル推定部 106からのチャネル推定値が合成後のチャネル推定 値とされる。 この後、 チャネル推定値合成部 110から乗算部 109に対して、 合成後のチヤネル推定値の複素共役が送られる。
乗算部 109では、 DSCH逆拡散部 116からの DSCH信号と、 チヤネノレ 推定値合成部 110からの複素共役と、 が乗算される。 これにより、 フェージン グ変動が補償された DSCH信号が得られる。 なお、 ここで補償されるフヱ一ジ ング変動とは、 第 1チャネル推定部 106からのチャネル推定値 (すなわち、 D P CH信号における既知信号のみによるチャネル推定値) により推定されたもの に相当する。
フエ一ジング変動が補償された DSCH信号は、 仮判定部 111により仮判定 がなされる。 仮判定後の DSCH信号は、 第 2チャネル推定部 112に送られる 第 2チャネル推定部 112では、 仮判定部 111からの仮判定後の DSCH信 号と、 DSCH逆拡散部 116からの DSCH信号と、 を用いたチャネル推定が 行われる。 ここで、 仮判定後の DSCH信号は既知信号とみなして用いられる。 第 2チャネル推定部 112により得られたチャネル推定値は、 チャネル推定値合 成部 1 10に送られる。 現時点では、 チャネル推定値合成部 1 10には、 上述した第 1チャネル推定部 106からのチャネル推定値と、 第 2チャネル推定部 112からのチャネル推定 値と、 が入力される。 よって、 チャネル推定値合成部 110では、 上言 32つのチ ャネル推定値が合成される。 この後、 チャネル推定値合成部 1 10から乗算部 1 07〜乗算部 109に対して、 合成後のチャネル推定値の複素共役が出力される 乗算部 107では、 DAT A部抽出部 104からのデータと、 チャネル推定値 合成部 110からの複素共役と、 の乗算が行われる。 これにより、 フエ一ジング 変動が補償されたデータが得られる。 このデ一夕は、 DPCH復調結果として出 力される。 乗算部 108では、 TFC I部抽出部 105からの TFCIと、 チヤ ネル推定値合成部 1 10からの複素共役と、 の乗算が行われる。 これにより、 フ エージング変動が補償された TFCIが得られる。 得られた TFCIは、 TFC I復調部 1 17に送られる。
TFCI復調部 1 1 Ίでは、 乗算部 108からの TFCIが復調され、 この復 調結果に基づいて、 D S CH信号が自局宛てに送信されたものであるか否かが判 定される。 さらに、 TFCI復調部 1 17では、 DSCH信号が自局宛てに送信 されたものであると判定された場合にのみ、 乗算部 1◦ 9からの D S CH信号を DSC H復調結果として出力する旨の制御信号が生成される。 この制御信号は、 スィヅチ 1 18に送られるとともに、 乗算部 109に図示しない径路を介して送 られる。
すなわち、 D S CH信号が自局宛てに送信されたものであると判定された場合 には、 乗算部 109では、 D S CH逆拡散部 1 16からの D S CH信号と、 チヤ ネル推定値合成部 1 10からの複素共役と、 が乗算される。 これにより、 フエ一 ジング変動が補償された D S CH信号が得られる。 フェージング変動が補償され た DSCH信号は、 スイッチ 1 18を介して、 D S CH復調結果として出力され る。
このときに乗算部 107、 乗算部 108および乗算部 109で補償されるフエ —ジング変動とは、 チャネル推定値合成部 110からのチヤネノレ推定値 (すなわ ち、 DPCH信号における既知信号と DSCH信号によるチャネル推定値) によ り推定されたものに相当する。
一方、 上述したチャネル推定と並行して、 DPCH逆拡散部 102および DS CH逆拡散部 116における逆拡散タイミングが、 次に述べるように検出される 。 まず、 P L部抽出部 103により抽出された既知信号は、 第 1遅延プロフアイ ル生成部 113に送られる。 03〇11逆拡散部116により抽出された DSCH 信号は、 第 2遅延プロファイル生成部 114に送られる。
第 1遅延プロフアイル生成部 113では、 上記既知信号を用いて遅延プロファ ィルが生成される。 生成された遅延プロファイルは、 遅延プロファイル合成部 1 15に送られる。第 2遅延プロファイル生成部 114では、 上記 DSCH信号を 用いて遅延プロファイルが生成される。 生成された遅延プロファイルは、 遅延プ 口ファイル合成部 115に送られる。
遅延プロファイル合成部 115では、 第 1遅延プロファイル生成部 113およ び第 2遅延プロファイル生成部 114のそれそれにより生成された遅延プロファ ィルが合成される。 さらに、 合成された遅延プロファイルの中において、 その大 きさが最大となるピークが逆 ¾散タイミングとして検出される。検出された逆 散タイミングは、 上述した DPCH逆拡散部 102および DSCH逆拡散部 11 6に送られる。
次いで、 上記構成を有する移動局装置の効果について、 チャネル推定および遅 延プロファイル生成のそれぞれに着目して説明する。 まず、 チャネル推定におけ る効果について説明する。従来方式では、 図 2に示すように、 1フレームの DP CH信号に挿入された既知信号を用いて、 チャネル推定を行っているのに対して 、 本実施の形態では、 従来方式と同様なチャネル推定に加えて、 さらに、 DSC H信号を用いてチャネル推定を行っている。 すなわち、 本実施の形態では、 従来 方式に比べて、 チャネル推定に用いるデ一夕数を大幅に増加させている。 この結 果、 高精度なチャネル推定を行うことができる。
さらに、 フヱ一ジング変動の周期が 1フレームに対応する周期よりも短い場合 には、 従来方式ではチャネル推定の精度が劣化するが、 本実施の形態では、 DP C H信号に挿入された既知信号だけでなく、 1フレーム分の D S C H信号をも用 いてチャネル推定を行うので、 チャネル推定の精度を良好に保つことができる。 次に、 遅延プロファイル生成における効果について説明する。 ^方式では、 図 2に示すように、 1フレームの D P C H信号に挿入された既知ΐ号を用いて、 遅延プロファイルを生成しているのに対して、 本実施の形態では、 従来方式と同 様な遅延プロファイル生成に加えて、 さらに、 D S C H信号を用いて遅延プロフ アイル生成を行っている。 すなわち、 本実施の形態では、 従来方式に比べて、 遅 延プロファイル生成に用いるデ一夕数を大幅に増加させている。 この結果、 逆拡 散タイミングの検出を高精度に行うことができる。
このように、 本実施の形態によれば、 自局宛てに送信された D S C H信号のみ ならず、 他局宛てに送信された D S C H信号をも用いて、 チャネル推定および遅 延プロファイルの生成 (逆拡散タイミングの検出) を行うことにより、 通常の D P C Η信号だけでなく高速レートの変調方式を用いて送信された D S C Η信号を 用いて、 高精度な復調信号を抽出することができる。
なお、 本実施の形態においては、 最大の効果を得るための例として、 D P C H 信号における既知信号および D S C H信号を用いて、 チャネル推定と遅延プロフ ァィル生成とを並行して行う場合について説明したが、 上記チャネル推定および 上記遅延プロフアイル生成のうち 、ずれか一方を単独に適用した場合においても 、 従来方式に比べて高精度な復調信号を抽出することができることはいうまでも ない。
また、 本実施の形態においては、 基地局装置が、 各移動局装置に対してそれぞ れ異なるチャネルによりデ一夕 (音声等) および各種既知信号を送信するために D P C Hを用い、 さらに、 基地局装置が、 各移動局装置に対して同一のチャネル によりデ一夕 (パケヅト等) を送信するために D S C Hを用いた場合について説 明した。 しかし、 本発明は D S C Hに限らず、 要は、 自局以外の局に対しても送 信される可能性のある共通チャネル信号に基づいてチヤネル推定及び遅延プロフ ァィル生成を行うようすれば、 上述の実施の形態と同様の効果を得ることができ る。 これは後述する実施の形態についても同様である。 (実施の形態 2)
本実施の形態では、 実施の形態 1において、 受信された S C H信号のうち受 信パヮが所定の閾値を超えた信号のみをチャネル推定および遅延プロファイル生 成に用いる場合について説明する。
上述した実施の形態 1では、 受信したすべての DSCH信号をチャネル推定お よび遅延プロファイル生成に用いている。 ところが、 受信される DSCH信号の 中には、 フェージングの影響により受信ノ ワが小さくなつている信号が含まれて いる。 このような受信パヮが小さくなっている D S CH信号の仮判定結果には、 ェラ一が含まれている可能性が高 、。 このような DSC H信号を用 L、てチャネル 推定および遅延プロファイル生成を行った場合には、 抽出される復調信号の精度 が劣化することになる。
そこで、 本実施の形態においては、 受信された DSCH信号のうち受信パヮが 所定の閾値を超えた信号のみを、 チャネル推定および遅延プロファイル生成に用 いる。 以下、 本実施の形態にかかる無線受信装置について、 図 4を参,照して説明 する。
図 4は、 本発明の実施の形態 2にかかる無線受信装置を備えた移動局装置の構 成を示すブロック図である。 なお、 図 4における実施の形態 1 (図 3) と同一の 構成については、 図 3におけるものと同一の符号を付して、 詳しい説明を省略す る。
図 4において、 パヮ算出部 201は、 DSCH逆拡散部 116からの DSCH 信号の受信パヮ (電力) を算出し、 算出した受信パヮと所定の閾値との比較を行 う。 このパヮ算出部 201は、 比較の結果に基づいて、 後述するスィツチ 202 およびスィツチ 203を制御する。 すなわち、 パヮ算出部 201は、 算出した受 信パヮが閾値より大きい場合には、 第 2チャネル推定部 112からのチャネル推 定値をチャネル推定値合成部 110に出力するようにスィッチ 202を制御する とともに、 第 2遅延プロファイル生成部 114からの遅延プロファイルを プ 口ファイル合成部 115に出力するようにスィッチ 203を制御する。 逆に、 パ ヮ算出部 201は、 算出した受信パヮが閾値以下である場合には、 第 2チャネル 推定部 112からのチャネル推定値をチャネル推定値合成部 110に出力しない ようにスィツチ 202を制御するとともに、 第 2遅延プロファイル生成部 114 からの遅延プロファイルを遅延プロファイル合成部 115に出力しないようにス イッチ 203を制御する。
スイッチ 202およびスイッチ 203は、 上述したパヮ算出部 201による制 御に基づいて、 それそれ、 チャネル推定値および遅延プロファイルの出力切換を 行う。
このように、 本実施の形態によれば、 受信された DSCH信号のうち受信パヮ が所定の閾値を超えた信号のみを、 チャネル推定および遅延プロファイル生成に 用いることにより、 フェージングの影響により DSCHの受信パヮが小さくなる 可能性がある場合においても、 高精度な復調信号を抽出することができる。
(実施の形態 3)
本実施の形態においては、 実施の形態 1において、 受信された DSCH信号の うち、 変調多値数のより小さい変調方式が用いられた DSCH信号であり、 かつ 、 受信パヮが所定の閾値を超えた DSCH信号のみを、 チャネル推定および遅延 プロファイル生成に用いる場合について説明する。
一般に、 基地局装置は、 QPSK方式 (図 6 (A)参照)、 16 Q AM方式 ( 図 6 (B)参照) や 64QAM方式 (図 6 (C)参照)等を用いた高速レートの データを DSCH信号として送信する。 移動局装置は、 同じ平均受信電力で DS CH信号を受信するという条件においては、 16 QAM方式や 64QAM方式が 用いられた D S CH信号については、 振幅情報を正確に検出しないと正確な仮判 定ができないのに対して、 QP SK方式が用いられた DSCH信号については、 位相情報のみを正確に検出すれば正確な仮判定を行うことができる。
そこで、 本実施の形態においては、 チャネル推定および遅延プロフアイノレ生成 をより高精度に行うために、 変調多値数のより小さい変調方式が用いられた DS CH信号であり、 かつ、 受信パヮが所定の閾値を超えた DSCH信号のみを、 チ ャネル推定および遅延プロファイル生成に用いる。 これにより、 チャネル推定お よび遅延プロフアイル生成を高精度に行うことができる。 以下、 本実施の形態にかかる無線受信装置について、 図 5を参照して説明する 。 図 5は、 本発明の実施の形態 3にかかる無線受信装置を備えた移動局装置の構 成を示すブロック図である。 なお、 図 5における実施の形態 1 (図 3) と同一の 構成については、 図 3におけるものと同一の符号を付して、 詳しい説明を省略す ることができる。
図 5において、 パヮ算出部 201は、 実施の形態 2と同様に DSCH逆拡散 部 116からの DSCH信号の受信パヮを算出し、 算出した受信パヮと所定の閾 値との比較を行う。 このパヮ算出部 201は、 比較結果を決定部 302に出力す る。 変調方式検出部 301は、 D S C H逆拡散部 116からの D S C H信号に用 いられている変調方式を検出し、 検出結果を決定部 302に出力する。
決定部 302は、 パヮ算出部 201からの比較結果、 および、 変調方式検出部 301からの検出結果に基づいて、 スィツチ 202およびスィツチ 203を制御 する。 すなわち、 決定部 302は、 受信パヮが所定の閾値を超え、 かつ、 信頼性 の高い変調方式 (すなわち、 変調多値数がより小さい変調方式 (例えば QPSK 方式) ) が用いられた: DSCH信号のみを、 チャネル推定および遅延プロフアイ ル生成に用いるように、 スイッチ 202およびスイッチ 203を制御する。換言 すれば、 決定部 302は、 より正確に仮判定できるような DSC H信号のみを用 いてチヤネル推定および遅延プロフアイル生成を行うことができるように、 スィ ツチ 202およびスィヅチ 203を制御する。 具体的なスィッチ 202およびス イッチ 203の動作は、 実施の形態 2で説明したものと同様である。
このように、 本実施の形態によれば、 受信された DSCH信号のうち、 変調多 値数のより小さい変調方式が用いられた DSCH信号であり、 かつ、 受信パヮが 所定の閾値を超えた! S CH信号のみを、 チャネル推定および遅延プロファイル 生成に用いることにより、 さらに高精度な復調信号を抽出することができる。 なお本実施の形態においては、 抽出した DSCH信号を用いて変調方式を検出 する場合を例にとり説明したが、 TFCIに変調方式を通知するための情報が含 まれているときには、 T F C I復調結果を用いて変調方式を検出することが可能 である。 1
13 さらに本発明は、 上述した実施の形態に限定されず、 種々変更して実施するこ とが可能である。
本発明の無線受信装置は、 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡 散後の共通チャネル信号に基づいてチャネル推定値を求めるチャネル推定手段と 、 求めたチャネル推定値に基づいて逆拡散後の信号に対して伝搬路補償して受信 信号を復調する復調手段と、 を具備する構成を採る。
この構成によれば、 デ一夕数の多い共通チャネル信号を用いてチャネル推定値 を求めているので、 高精度のチャネル推定を行うことができる。 この結果、 受信 信号に対して高精度に伝搬路補償して品質の良い復調信号を得ることができる。 また本発明の無線受信装置は、 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の信号に基づいて遅延プロファイルを生成する «プロフアイル生成手 段と、 を具備し、 逆拡散手段は、 遅延プロファイルに基づくタイミングで逆拡散 処理を行う構成を採る。
この構成によれば、 デ一夕数の多い共通チャネル信号を用いて遅延プロフアイ ルを生成しているので、 高精度の遅延プロファイルを生成できる。 この結果、 高 精度の逆拡散タイミングで逆拡散処理を行うことができるので、 品質の良い復調 信号を得ることができる。
また本発明の無線受信装置は、 伝搬路補償後の共通チャネル信号を仮判定する 仮判定手段を、 さらに具備し、 チャネル推定手段は当該仮判定結果を既知信号と 見なして伝搬路補償前の信号と比較することによりチャネル推定値を求める構成 を採る。
この構成によれば、 チャネル推定値を容易に求めることができるようになる。 また本発明の無線受信装置は、 自局宛の個別物理チャネル信号及び共通チャネ ル信号を逆拡散する逆拡散手段と、 逆拡散後の個別物理チャネル信号に基づいて 第 1のチャネル推定値を求める第 1のチャネル推定手段と、 逆拡散後の共通チヤ ネル信号に基づいて第 2のチャネル推定値を求める第 2のチャネル推定手段と、 第 1及び第 2のチャネル推定値を合成した合成チャネル推定値を求める合成手段 と、 合成チャネル値に基づいて逆拡散後の個別物理チャネル信号及び共通チャネ ル信号を伝搬路補償して復調する復調手段と、 を具備する構成を採る。
この構成によれば、 合成チャネル推定値は、 個別物理チャネル信号及び共通チ ャネル信号を使って求められるので、 非常にデ一夕数の多い信号に基づく非常に 高精度のチャネル推定値となる。 この結果、 受信信号に対して高精度に伝搬路補 償して品質の良い復調信号を得ることができる。
また本発明の無線受信装置は、 自局宛の個別物理チャネル信号及び共通チヤネ ル信号を逆拡散する逆拡散手段と、 逆拡散後の個別物理チャネル信号に基づいて 第 1の遅延プロファイルを生成する第 1の遅延プロファイル生成手段と、 逆拡散 後の共通チャネル信号に基づいて第 2の遅延プロフアイルを生成する第 2の遅延 プロファイル生成手段と、 第 1及び第 2の遅延プロファイルを合成した合成遅延 プロファイルを求める合成手段と、 を具備し、 逆拡散手段は合成遅延プロフアイ ルに基づくタイミングで逆拡散処理を行う構成を採る。
この構成によれば、 合成遅延プロファイルは、 個別物理チャネル信号及び共通 チャネル信号を使って生成されるので、 非常にデ一夕数の多い信号に基づく非常 に高精度の遅延プロファイルとなる。 この結果、 高精度の逆拡散夕ィミングで逆 拡散処理を行うことができるので品質の良い復調信号を得ることができる。 また本発明の無線受信装置は、 伝搬路補償後の共通チャネル信号を仮判定する 仮判定手段を、 さらに具備し、 第 2のチャネル推定手段は当該仮判定結果を既知 信号と見なして伝搬路補償前の信号と比較することにより第 2のチヤネル推定値 を求める構成を採る。
この構成によれば、 第 2のチヤネル推定値を容易に求めることができるように なる。
また本発明の無線受信装置は、 逆拡散後の共通チャネル信号の信頼度を検出す る信頼度検出手段を、 さらに具備し、 合成手段は、 当該信頼度が所定の閾値を超 える場合に第 1及び第 2のチャネル推定値を合成することにより合成チャネル推 定値を求めると共に、 当該信頼度が所定の閾値以下の場合には第 1のチャネル推 定値を合成チャネル推定値とする構成を採る。
この構成によれば、 例えば受信された共通チャネル信号がフエージングの影響 により信頼度が低い場合には、 共通チャネル信号をチャネル推定に用いると却つ てチャネル推定値の精度が悪くなるおそれがあることを考慮して、 このような場 合には個別物理チャネルのみを用いてチャネル推定を行うことで、 伝搬路状態に 応じて最良のチャネル推定を行うことができるようになる。
また本発明の無線受信装置は、 逆拡散後の共通チャネル信号の信頼度を検出す る信頼度検出手段を、 さらに具備し、 合成手段は、 当該信頼度が所定の閾値を超 える場合に第 1及び第 2の遅延プロフアイルを合成することにより合成遅延プロ ファイルを求めると共に、 当該信頼度が所定の閾値以下の場合には第 1の遅延プ 口ファイルを合成遅延プロファイルとする構成を採る。
この構成によれば、 例えば受信された共通チャネル信号がフエージングの影響 により信頼度が低い場合には、 共通チャネル信号を逆拡散タイミングの設定に用 いると却って逆拡散夕ィミングの精度が悪くなるおそれがあることを考慮して、 このような場合には個別物理チャネルのみを用いて逆拡散タイミングを決定する ことで、 伝搬路状態に応じて最良の逆拡散タイミングを決定できるようになる。 また本発明の通信端末装置は、 無線受信装置を有する通信端末装置であって、 無線受信装置は、 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の共通 チヤネル信号に基づいてチヤネル推定値を求めるチヤネル推定手段と、 求めたチ ャネル推定値に基づいて逆拡散後の信号に対して伝搬路補償して受信信号を復調 する復調手段と、 を具備する構成を採る。
この構成によれば、 高精度のチャネル推定値に基づき高精度の伝搬路補償を行 うことができるので、 品質の良い復調信号を得ることができる通信端末装置を実 現できる。
また本発明の通信端末装置は、 無線受信装置を有する通信端末装置であって、 無線受信装置は、 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の信号 に基づいて遅延プロファイルを生成する遅延プロファイル生成手段と、 を具備し 、 逆拡散手段が遅延プロフアイルに基づく夕イミングで逆拡散処理を行う構成を 採る。
この構成によれば、 高精度の遅延プロファイルに基づき高精度の逆拡散タイミ ングで逆拡散処理を行うことができるので、 品質の良い復調信号を得ることがで きる通信端末装置を実現できる。
以上説明したように、 本発明によれば、 共通チャネル信号に基づいてチャネル 推定及び遅延プロフアイル検出を行うようにしたことにより、 チヤネル推定及び 遅延プロファイル生成を高精度に行うことができる無線受信装置を実現し得る。 本明細書は、 2000年 5月 25日出願の特願 2000-155372に基づ く。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 CDMA方式の無線通信システムに用いられる無線受信装置のうち チャネル推定および遅延プロファイル生成を行う無線受信装置に適用し得る。

Claims

請求の範囲
1 . 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の共通チャネル信号 に基づいてチャネル推定値を求めるチャネル推定手段と、 求めたチャネル推定値 に基づいて逆拡散後の信号に対して伝搬路補償して受信信号を復調する復調手段 と、 を具備することを特徴とする無線受信装置。
2 . 共通チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の信号に基づいて遅 延プロファイルを生成する遅延プロファイル生成手段と、 を具備し、 前記逆拡散 手段は、 前記遅延プロファイルに基づくタイミングで逆拡散処理を行う、 ことを 特徴とする無線受信装置。
3 . 伝搬路補償後の共通チャネル信号を仮判定する仮判定手段を、 さらに具備し 、 チャネル推定手段は当該仮判定結果を既知信号と見なして伝搬路補償前の信号 と比較することによりチャネル推定値を求める、 ことを特徴とする請求項 1に記
4 . 共通チャネル信号は、 ダウンリンクシェアードチャネル信号であることを特 徴とする請求項 1に記載の無線受信装置。
5 . 共通チャネル信号は、 ダウンリンクシェア一ドチャネル信号であることを特 徴とする請求項 2に記載の無線受信装置。
6 . 逆拡散後の信号に基づいて遅延プロファイルを生成する羅プロファイル生 成手段を、 さらに具備し、 逆拡散手段は前記遅延プロファイルに基づくタイミン グで逆拡散処理を行う、 ことを特徴とする請求項 1に記載の無線受信装置。
7 . 自局宛の個別物理チャネル信号及び共通チヤネソレ信号を逆拡散する逆拡散手 段と、 逆拡散後の個別物理チャネル信号に基づいて第 1のチャネル推定値を求め る第 1のチャネル推定手段と、 逆拡散後の共通チャネル信号に基づいて第 2のチ ャネル推定値を求める第 2のチャネル推定手段と、 前記第 1及び第 2のチャネル 推定値を合成した合成チャネル推定値を求める合成手段と、 前記合成チャネル値 に基づいて逆拡散後の前記個別物理チャネル信号及び共通チャネル信号を伝搬路 補償して復調する復調手段と、 を具備することを特徴とする無線受信装置。
8 . 自局宛の個別物理チャネル信号及び共通チャネル信号を逆拡散する逆拡散手 段と、 逆拡散後の個別物理チャネル信号に基づいて第 1の遅延プロファイルを生 成する第 1の遅延プロフアイル生成手段と、 逆拡散後の共通チャネル信号に基づ いて第 2の遅延プロファイルを生成する第 2の遅延プロファイル生成手段と、 前 記第 1及び第 2の遅延プロファイルを合成した合成遅延プロファイルを求める合 成手段と、 を具備し、 前記逆拡散手段は前記合成遅延プロファイルに基づくタイ ミングで逆拡散処理を行う、 ことを特徴とする無線受信装置。
9 . 逆拡散後の個別物理チャネル信号に基づいて第 1の遅延プロフアイソレを生成 する第 1の遅延プロファイル生成手段と、 逆拡散後の共通チャネル信号に基づい て第 2の遅延プロファイルを生成する第 2の遅延プロファイソレ生成手段と、 第 1 及び第 2の遅延プロファイルを合成した合成遅延プロファイルを求める合成手段 と、 をさらに具備し、 逆拡散手段は合成遅延プロファイルに基づくタイミングで 逆拡散処理を行う、 ことを特徴とする請求項 7に記載の無線受信装置。
1 0 . 伝搬路補償後の前記共通チャネル信号を仮判定する仮判定手段を、 さらに 具備し、 第 2のチャネル推定手段は当該仮判定結果を既知信号と見なして伝搬路 補償前の信号と比較することにより第 2のチャネル推定値を求める、 ことを特徵 とする請求項 7に記載の無線受信装置。
1 1 . 逆拡散後の共通チャネル信号の信頼度を検出する信頼度検出手段を、 さら に具備し、 合成手段は、 当該信頼度が所定の閾値を超える場合に第 1及び第 2の チャネル推定値を合成することにより合成チャネル推定値を求めると共に、 当該 信頼度が所定の閾値以下の場合には第 1のチャネル推定値を合成チヤネノレ推定値 とする、 ことを特徴とする請求項 7に記載の無線受信装置。
1 2 . 逆拡散後の共通チャネル信号の信頼度を検出する信頼度検出手段を、 さら に具備し、 合成手段は、 当該信頼度が所定の閾値を超える場合に第 1及び第 2の 遅延プロフアイルを合成することにより合成遅延プロファイルを求めると共に、 当該信頼度が所定の閾値以下の場合には第 1の遅延プロフアイルを合成遅延プロ ファイルとする、 ことを特徴とする請求項 8に記載の無線受信装置。
1 3 . 信頼度検出手段は、 逆拡散後の共通チャネル信号の電力に基づいて信頼度 を検出することを特徴とする請求項 1 2に記載の無線受信装置。
1 4 . 信頼度検出手段は、 逆拡散後の共通チャネル信号の電力に基づいて信頼度 を検出することを特徴とする請求項 1 2に記載の無線受信装置。
1 5 . 信頼度検出手段は、 共通チャネル信号の変調方式に基づいて信頼度を検出 することを特徴とする請求項 1 2に記載の無線受信装置。
1 6 . 信頼度検出手段は、 共通チャネル信号の変調方式に基づいて信頼度を検出 することを特徴とする請求項 1 2に記載の無線受信装置。
1 7 . 無線受信装置を有する通信端末装置であって、 当該無線受信装置は、 共通 チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の共通チャネル信号に基づい てチヤネル推定値を求めるチヤネル推定手段と、 求めたチャネル推定値に基づい て逆拡散後の信号に対して伝搬路補償して受信信号を復調する復調手段と、 を具 備することを特徴とする通信端末装置。
1 8 . 無線受信装置を有する通信端末装置であって、 当該無線受信装置は、 共通 チャネル信号を逆拡散する逆拡散手段と、 逆拡散後の信号に基づいて遅延プロフ アイルを生成する遅延プロファイル生成手段と、 を具備し、 前記逆拡散手段が前 記遅延プロファイルに基づくタイミングで逆拡散処理を行う、 ことを特徴とする
1 9 . 共通チャネル信号は、 ダウンリンクシヱァ一ドチャネル信号であることを 特徴とする請求項 1 7に記載の無線受信装置。
2 0 . 共通チャネル信号は、 ダウンリンクシエア一ドチャネル信号であることを 特徴とする請求項 1 8に記載の無線受信装置。
PCT/JP2001/010151 2000-05-25 2001-11-21 Recepteur sans fil WO2003044997A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000155372A JP3357653B2 (ja) 2000-05-25 2000-05-25 無線受信装置
PCT/JP2001/010151 WO2003044997A1 (fr) 2000-05-25 2001-11-21 Recepteur sans fil
EP01274764A EP1447932A1 (en) 2001-11-21 2001-11-21 Wireless receiver
AU2002224057A AU2002224057A1 (en) 2001-11-21 2001-11-21 Wireless receiver
CN01822779.1A CN1266864C (zh) 2001-11-21 2001-11-21 无线电接收装置
US10/468,444 US20040105382A1 (en) 2000-05-25 2001-11-21 Radio reception apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000155372A JP3357653B2 (ja) 2000-05-25 2000-05-25 無線受信装置
PCT/JP2001/010151 WO2003044997A1 (fr) 2000-05-25 2001-11-21 Recepteur sans fil

Publications (1)

Publication Number Publication Date
WO2003044997A1 true WO2003044997A1 (fr) 2003-05-30

Family

ID=27736284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010151 WO2003044997A1 (fr) 2000-05-25 2001-11-21 Recepteur sans fil

Country Status (2)

Country Link
JP (1) JP3357653B2 (ja)
WO (1) WO2003044997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791952B2 (en) 2017-05-03 2023-10-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data re-transmission control method and related product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357653B2 (ja) * 2000-05-25 2002-12-16 松下電器産業株式会社 無線受信装置
JP3831229B2 (ja) 2001-10-31 2006-10-11 富士通株式会社 伝搬路特性推定装置
JP3972770B2 (ja) 2002-08-28 2007-09-05 日本電気株式会社 Tf判定装置及びそれに用いるtf判定方法並びにそのプログラム
CN101091363B (zh) * 2004-10-29 2013-02-06 艾利森电话股份有限公司 信道估算
US7876809B2 (en) 2005-02-16 2011-01-25 Nec Corporation Code division multiple access (CDMA) receiving device, and path searching method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964529A2 (en) * 1998-06-12 1999-12-15 Matsushita Electric Industrial Co., Ltd. Channel estimation apparatus and communication terminal apparatus
EP1065795A2 (en) * 1999-07-02 2001-01-03 Matsushita Electric Industrial Co., Ltd. CDMA communication terminal apparatus and radio reception method
JP2001326586A (ja) * 2000-05-17 2001-11-22 Nec Corp Cdma通信システム及びそれに用いるチャネル推定方法
JP2001333123A (ja) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd 通信端末装置及び復調方法
JP2001339325A (ja) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd 無線受信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964529A2 (en) * 1998-06-12 1999-12-15 Matsushita Electric Industrial Co., Ltd. Channel estimation apparatus and communication terminal apparatus
EP1065795A2 (en) * 1999-07-02 2001-01-03 Matsushita Electric Industrial Co., Ltd. CDMA communication terminal apparatus and radio reception method
JP2001326586A (ja) * 2000-05-17 2001-11-22 Nec Corp Cdma通信システム及びそれに用いるチャネル推定方法
JP2001333123A (ja) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd 通信端末装置及び復調方法
JP2001339325A (ja) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd 無線受信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791952B2 (en) 2017-05-03 2023-10-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data re-transmission control method and related product

Also Published As

Publication number Publication date
JP3357653B2 (ja) 2002-12-16
JP2001339325A (ja) 2001-12-07

Similar Documents

Publication Publication Date Title
JP4574924B2 (ja) 無線パケットデータ通信システムにおける閉ループパワー制御設定点を決定する方法および装置
EP1653645B1 (en) A method and device of the estimating carrier frequency offset of subscriber terminal
US7647060B2 (en) Wireless communications system and method using transmission timing control
US20040203397A1 (en) Signal-to-noise ratio estimation of CDMA signals
US20020136271A1 (en) Communication terminal device, and base station device
EP0886389A2 (en) Transmission power control for variable bit rate CDMA mobile telephone system
CN102948122B (zh) 用于多载波接收机的频移误差补偿方法及设备
JP3858433B2 (ja) パイロット信号検出方法及び受信機
KR20020073561A (ko) 무선 인프라 장치
CN101053169B (zh) 在软切换期间估计最佳天线权重的方法以及接收机
US6556554B1 (en) Device and method for communicating power control signals in mobile communication system
JPWO2002058265A1 (ja) パスサーチ方法及びパスサーチ装置、並びに移動体端末装置
JP2001267987A (ja) 無線基地局装置及び無線通信方法
JP2991862B2 (ja) 移動体通信における送信電力制御装置およびシステム
JP2000151465A (ja) 無線通信装置及び無線通信方法
WO2003044997A1 (fr) Recepteur sans fil
EP1065802B1 (en) Transmission power control method and apparatus by measuring the Eb/No of a weighted signals' combination
US6895038B2 (en) Communication system
EP1156600A1 (en) Cdma terminal and cdma method
US20040105382A1 (en) Radio reception apparatus
JPH08168075A (ja) 移動無線装置
JP2001326591A (ja) Cdma移動通信システムの移動機
JP3375537B2 (ja) スペクトラム拡散送信機及び受信機
JP5379791B2 (ja) 時分割二重システムに基づくcdmaシステムにおける適応結合チャネル推定方法およびシステム
JP3628247B2 (ja) 信号復調方法および受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018227791

Country of ref document: CN

Ref document number: 10468444

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001274764

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001274764

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001274764

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载