WO2003042390A1 - Phosphatases proteiques de mammiferes - Google Patents
Phosphatases proteiques de mammiferes Download PDFInfo
- Publication number
- WO2003042390A1 WO2003042390A1 PCT/US2001/043063 US0143063W WO03042390A1 WO 2003042390 A1 WO2003042390 A1 WO 2003042390A1 US 0143063 W US0143063 W US 0143063W WO 03042390 A1 WO03042390 A1 WO 03042390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphatase
- polypeptide
- nucleic acid
- protein
- sequence
- Prior art date
Links
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 title description 74
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 title description 73
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 claims abstract description 341
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 claims abstract description 316
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 308
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 278
- 229920001184 polypeptide Polymers 0.000 claims abstract description 259
- 238000000034 method Methods 0.000 claims abstract description 221
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 127
- 201000010099 disease Diseases 0.000 claims abstract description 77
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 65
- 238000011282 treatment Methods 0.000 claims abstract description 34
- 210000004027 cell Anatomy 0.000 claims description 223
- 150000007523 nucleic acids Chemical class 0.000 claims description 178
- 102000039446 nucleic acids Human genes 0.000 claims description 141
- 108020004707 nucleic acids Proteins 0.000 claims description 141
- 230000000694 effects Effects 0.000 claims description 82
- 125000003729 nucleotide group Chemical group 0.000 claims description 74
- 230000027455 binding Effects 0.000 claims description 73
- 239000002773 nucleotide Substances 0.000 claims description 73
- 239000000523 sample Substances 0.000 claims description 73
- 206010028980 Neoplasm Diseases 0.000 claims description 60
- 150000001413 amino acids Chemical class 0.000 claims description 59
- 238000003556 assay Methods 0.000 claims description 53
- 208000035475 disorder Diseases 0.000 claims description 50
- 230000003197 catalytic effect Effects 0.000 claims description 45
- 239000000126 substance Substances 0.000 claims description 45
- 238000012360 testing method Methods 0.000 claims description 44
- 238000009396 hybridization Methods 0.000 claims description 40
- 241000282414 Homo sapiens Species 0.000 claims description 39
- 239000012634 fragment Substances 0.000 claims description 36
- 239000013598 vector Substances 0.000 claims description 35
- 210000004899 c-terminal region Anatomy 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 27
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims description 25
- 230000000295 complement effect Effects 0.000 claims description 25
- 230000003993 interaction Effects 0.000 claims description 25
- 239000002853 nucleic acid probe Substances 0.000 claims description 25
- 201000001320 Atherosclerosis Diseases 0.000 claims description 18
- 238000013518 transcription Methods 0.000 claims description 18
- 230000035897 transcription Effects 0.000 claims description 18
- 230000001684 chronic effect Effects 0.000 claims description 16
- 210000000056 organ Anatomy 0.000 claims description 16
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 14
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 13
- 208000030159 metabolic disease Diseases 0.000 claims description 13
- 201000006417 multiple sclerosis Diseases 0.000 claims description 13
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 12
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 12
- 210000004408 hybridoma Anatomy 0.000 claims description 12
- 241000124008 Mammalia Species 0.000 claims description 11
- 201000004681 Psoriasis Diseases 0.000 claims description 10
- 208000027866 inflammatory disease Diseases 0.000 claims description 10
- 230000009870 specific binding Effects 0.000 claims description 10
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 9
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 9
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 8
- 208000012902 Nervous system disease Diseases 0.000 claims description 8
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 claims description 8
- 208000006673 asthma Diseases 0.000 claims description 8
- 210000004369 blood Anatomy 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 8
- 238000000338 in vitro Methods 0.000 claims description 8
- 201000008482 osteoarthritis Diseases 0.000 claims description 8
- 206010039083 rhinitis Diseases 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 206010020772 Hypertension Diseases 0.000 claims description 7
- 208000001953 Hypotension Diseases 0.000 claims description 7
- 208000019695 Migraine disease Diseases 0.000 claims description 7
- 208000019022 Mood disease Diseases 0.000 claims description 7
- 208000025966 Neurological disease Diseases 0.000 claims description 7
- 208000002193 Pain Diseases 0.000 claims description 7
- 208000028017 Psychotic disease Diseases 0.000 claims description 7
- 201000001880 Sexual dysfunction Diseases 0.000 claims description 7
- 206010052779 Transplant rejections Diseases 0.000 claims description 7
- 230000005784 autoimmunity Effects 0.000 claims description 7
- 210000004556 brain Anatomy 0.000 claims description 7
- 208000010877 cognitive disease Diseases 0.000 claims description 7
- 230000036543 hypotension Effects 0.000 claims description 7
- 231100000872 sexual dysfunction Toxicity 0.000 claims description 7
- 208000012661 Dyskinesia Diseases 0.000 claims description 6
- 208000015114 central nervous system disease Diseases 0.000 claims description 6
- 230000003394 haemopoietic effect Effects 0.000 claims description 6
- 208000027232 peripheral nervous system disease Diseases 0.000 claims description 6
- 208000037765 diseases and disorders Diseases 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 210000001072 colon Anatomy 0.000 claims description 4
- 230000001537 neural effect Effects 0.000 claims description 4
- 210000000481 breast Anatomy 0.000 claims description 3
- 210000003734 kidney Anatomy 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- 239000013642 negative control Substances 0.000 claims description 3
- 230000002611 ovarian Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 229940122907 Phosphatase inhibitor Drugs 0.000 claims 1
- 210000003169 central nervous system Anatomy 0.000 claims 1
- 201000005787 hematologic cancer Diseases 0.000 claims 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 claims 1
- 210000001428 peripheral nervous system Anatomy 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 264
- 102000004169 proteins and genes Human genes 0.000 abstract description 166
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 108091054455 MAP kinase family Proteins 0.000 abstract description 2
- 102000043136 MAP kinase family Human genes 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 145
- 150000001875 compounds Chemical class 0.000 description 128
- 108020004414 DNA Proteins 0.000 description 85
- 125000003275 alpha amino acid group Chemical group 0.000 description 61
- 230000014509 gene expression Effects 0.000 description 60
- 235000001014 amino acid Nutrition 0.000 description 49
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 47
- 230000006870 function Effects 0.000 description 42
- 210000001519 tissue Anatomy 0.000 description 38
- 230000002159 abnormal effect Effects 0.000 description 35
- 239000003446 ligand Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 31
- 241001465754 Metazoa Species 0.000 description 28
- 239000002299 complementary DNA Substances 0.000 description 28
- 201000011510 cancer Diseases 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 27
- 230000001105 regulatory effect Effects 0.000 description 26
- -1 Fas Proteins 0.000 description 23
- 108091034117 Oligonucleotide Proteins 0.000 description 23
- 239000000047 product Substances 0.000 description 23
- 239000003814 drug Substances 0.000 description 21
- 108700026244 Open Reading Frames Proteins 0.000 description 20
- 108020004999 messenger RNA Proteins 0.000 description 19
- 230000019491 signal transduction Effects 0.000 description 19
- 239000000758 substrate Substances 0.000 description 18
- 230000000692 anti-sense effect Effects 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000002347 injection Methods 0.000 description 17
- 238000003752 polymerase chain reaction Methods 0.000 description 17
- 230000004913 activation Effects 0.000 description 16
- 239000000284 extract Substances 0.000 description 16
- 102000005962 receptors Human genes 0.000 description 16
- 230000001225 therapeutic effect Effects 0.000 description 16
- 108020004705 Codon Proteins 0.000 description 15
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000003153 chemical reaction reagent Substances 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- 238000012216 screening Methods 0.000 description 15
- 239000000074 antisense oligonucleotide Substances 0.000 description 14
- 238000012230 antisense oligonucleotides Methods 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 108020003175 receptors Proteins 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 102000053642 Catalytic RNA Human genes 0.000 description 13
- 108090000994 Catalytic RNA Proteins 0.000 description 13
- 230000001413 cellular effect Effects 0.000 description 13
- 208000015122 neurodegenerative disease Diseases 0.000 description 13
- 108091092562 ribozyme Proteins 0.000 description 13
- 230000003321 amplification Effects 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000003199 nucleic acid amplification method Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 230000002103 transcriptional effect Effects 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000306 component Substances 0.000 description 11
- 206010012601 diabetes mellitus Diseases 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 10
- 230000002759 chromosomal effect Effects 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 238000001415 gene therapy Methods 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 230000000977 initiatory effect Effects 0.000 description 10
- 238000011160 research Methods 0.000 description 10
- 230000009261 transgenic effect Effects 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 9
- 102000002266 Dual-Specificity Phosphatases Human genes 0.000 description 9
- 108010000518 Dual-Specificity Phosphatases Proteins 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000004113 cell culture Methods 0.000 description 9
- 108020001507 fusion proteins Proteins 0.000 description 9
- 102000037865 fusion proteins Human genes 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 235000004400 serine Nutrition 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 230000002559 cytogenic effect Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 102000054765 polymorphisms of proteins Human genes 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 201000000980 schizophrenia Diseases 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 108020004635 Complementary DNA Proteins 0.000 description 7
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 230000004075 alteration Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 239000006184 cosolvent Substances 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 238000013537 high throughput screening Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- JYGFTBXVXVMTGB-UHFFFAOYSA-N indolin-2-one Chemical class C1=CC=C2NC(=O)CC2=C1 JYGFTBXVXVMTGB-UHFFFAOYSA-N 0.000 description 7
- 230000036470 plasma concentration Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- 238000002054 transplantation Methods 0.000 description 7
- 235000002374 tyrosine Nutrition 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 208000023275 Autoimmune disease Diseases 0.000 description 6
- 208000031229 Cardiomyopathies Diseases 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- 208000008770 Multiple Hamartoma Syndrome Diseases 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 108020004511 Recombinant DNA Proteins 0.000 description 6
- 208000001647 Renal Insufficiency Diseases 0.000 description 6
- 108700008625 Reporter Genes Proteins 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- 208000006011 Stroke Diseases 0.000 description 6
- 208000036142 Viral infection Diseases 0.000 description 6
- 238000010171 animal model Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002405 diagnostic procedure Methods 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 201000006370 kidney failure Diseases 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 6
- 238000000520 microinjection Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000010369 molecular cloning Methods 0.000 description 6
- 208000010125 myocardial infarction Diseases 0.000 description 6
- 229930014626 natural product Natural products 0.000 description 6
- 230000036542 oxidative stress Effects 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000001850 reproductive effect Effects 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 235000008521 threonine Nutrition 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 230000009385 viral infection Effects 0.000 description 6
- 108091093088 Amplicon Proteins 0.000 description 5
- 208000019901 Anxiety disease Diseases 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 208000020925 Bipolar disease Diseases 0.000 description 5
- 101000611262 Caenorhabditis elegans Probable protein phosphatase 2C T23F11.1 Proteins 0.000 description 5
- 206010053567 Coagulopathies Diseases 0.000 description 5
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 5
- 230000004568 DNA-binding Effects 0.000 description 5
- 206010012218 Delirium Diseases 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 208000010412 Glaucoma Diseases 0.000 description 5
- 208000031886 HIV Infections Diseases 0.000 description 5
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 5
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 5
- 208000023105 Huntington disease Diseases 0.000 description 5
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 5
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- 101000688229 Leishmania chagasi Protein phosphatase 2C Proteins 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 208000008589 Obesity Diseases 0.000 description 5
- 208000022873 Ocular disease Diseases 0.000 description 5
- 102100028516 Receptor-type tyrosine-protein phosphatase U Human genes 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 208000017442 Retinal disease Diseases 0.000 description 5
- 206010038923 Retinopathy Diseases 0.000 description 5
- 208000036623 Severe mental retardation Diseases 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- 239000004473 Threonine Substances 0.000 description 5
- 208000000323 Tourette Syndrome Diseases 0.000 description 5
- 208000016620 Tourette disease Diseases 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000036506 anxiety Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 208000028683 bipolar I disease Diseases 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 208000002528 coronary thrombosis Diseases 0.000 description 5
- 238000007876 drug discovery Methods 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 208000037824 growth disorder Diseases 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 208000002780 macular degeneration Diseases 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 238000002493 microarray Methods 0.000 description 5
- 206010027599 migraine Diseases 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 230000004770 neurodegeneration Effects 0.000 description 5
- 235000020824 obesity Nutrition 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 210000001236 prokaryotic cell Anatomy 0.000 description 5
- 230000010410 reperfusion Effects 0.000 description 5
- 208000037803 restenosis Diseases 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- 241000972773 Aulopiformes Species 0.000 description 4
- 101000741929 Caenorhabditis elegans Serine/threonine-protein phosphatase 2A catalytic subunit Proteins 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 102000001253 Protein Kinase Human genes 0.000 description 4
- 241000187747 Streptomyces Species 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 230000002788 anti-peptide Effects 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 238000002820 assay format Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000013060 biological fluid Substances 0.000 description 4
- 108020001778 catalytic domains Proteins 0.000 description 4
- 230000006369 cell cycle progression Effects 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000014107 chromosome localization Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010219 correlation analysis Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 210000002381 plasma Anatomy 0.000 description 4
- 239000013600 plasmid vector Substances 0.000 description 4
- 229920001469 poly(aryloxy)thionylphosphazene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- 108060006633 protein kinase Proteins 0.000 description 4
- 125000002294 quinazolinyl group Chemical class N1=C(N=CC2=CC=CC=C12)* 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 235000019515 salmon Nutrition 0.000 description 4
- 230000003248 secreting effect Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 238000010396 two-hybrid screening Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 201000007815 Bannayan-Riley-Ruvalcaba syndrome Diseases 0.000 description 3
- 208000005977 Bjornstad syndrome Diseases 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 208000012609 Cowden disease Diseases 0.000 description 3
- 201000002847 Cowden syndrome Diseases 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 230000004544 DNA amplification Effects 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 238000009007 Diagnostic Kit Methods 0.000 description 3
- 206010058314 Dysplasia Diseases 0.000 description 3
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 208000002927 Hamartoma Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 208000007279 Papillon-Lefevre Disease Diseases 0.000 description 3
- 208000035884 Papillon-Lefèvre syndrome Diseases 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 3
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 3
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 150000001718 carbodiimides Chemical class 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001212 derivatisation Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000008298 dragée Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 201000011523 endocrine gland cancer Diseases 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000013613 expression plasmid Substances 0.000 description 3
- 206010017758 gastric cancer Diseases 0.000 description 3
- 201000010536 head and neck cancer Diseases 0.000 description 3
- 208000014829 head and neck neoplasm Diseases 0.000 description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 3
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 3
- 230000007954 hypoxia Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000011005 laboratory method Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000009996 pancreatic endocrine effect Effects 0.000 description 3
- 230000001991 pathophysiological effect Effects 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 3
- 230000004850 protein–protein interaction Effects 0.000 description 3
- 150000003248 quinolines Chemical class 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004578 scanning tunneling potentiometry Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 201000011549 stomach cancer Diseases 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 206010042863 synovial sarcoma Diseases 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- 231100000041 toxicology testing Toxicity 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 3
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 208000037964 urogenital cancer Diseases 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 239000006226 wash reagent Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical group NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical group O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 2
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 2
- 108091006109 GTPases Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 108010078321 Guanylate Cyclase Proteins 0.000 description 2
- 102000014469 Guanylate cyclase Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 101001081176 Homo sapiens Hyaluronan mediated motility receptor Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 102100027735 Hyaluronan mediated motility receptor Human genes 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 201000002983 Mobius syndrome Diseases 0.000 description 2
- 208000034167 Moebius syndrome Diseases 0.000 description 2
- 108010085220 Multiprotein Complexes Proteins 0.000 description 2
- 102000007474 Multiprotein Complexes Human genes 0.000 description 2
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 102000006814 Non-Receptor Protein Tyrosine Phosphatases Human genes 0.000 description 2
- 108010086748 Non-Receptor Protein Tyrosine Phosphatases Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 2
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000015439 Phospholipases Human genes 0.000 description 2
- 108010064785 Phospholipases Proteins 0.000 description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- RADKZDMFGJYCBB-UHFFFAOYSA-N Pyridoxal Chemical compound CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 102000000395 SH3 domains Human genes 0.000 description 2
- 108050008861 SH3 domains Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108700026226 TATA Box Proteins 0.000 description 2
- NYTOUQBROMCLBJ-UHFFFAOYSA-N Tetranitromethane Chemical compound [O-][N+](=O)C([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O NYTOUQBROMCLBJ-UHFFFAOYSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 101000752225 Xenopus laevis Low density lipoprotein receptor adapter protein 1-A Proteins 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 102000030621 adenylate cyclase Human genes 0.000 description 2
- 108060000200 adenylate cyclase Proteins 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 230000005775 apoptotic pathway Effects 0.000 description 2
- 229960004405 aprotinin Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 102000036109 cAMP binding proteins Human genes 0.000 description 2
- 108091010966 cAMP binding proteins Proteins 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 230000004715 cellular signal transduction Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical group SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 2
- 230000002414 glycolytic effect Effects 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical group O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 150000002463 imidates Chemical class 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000010324 immunological assay Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 208000000509 infertility Diseases 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000021121 meiosis Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000004095 oxindolyl group Chemical group N1(C(CC2=CC=CC=C12)=O)* 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- OJUGVDODNPJEEC-UHFFFAOYSA-N phenylglyoxal Chemical compound O=CC(=O)C1=CC=CC=C1 OJUGVDODNPJEEC-UHFFFAOYSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000000865 phosphorylative effect Effects 0.000 description 2
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 230000006916 protein interaction Effects 0.000 description 2
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 108091008600 receptor tyrosine phosphatases Proteins 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000009711 regulatory function Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000002821 scintillation proximity assay Methods 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 125000000341 threoninyl group Chemical class [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 230000004862 vasculogenesis Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- FXYPGCIGRDZWNR-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[[3-(2,5-dioxopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)CCC1=O FXYPGCIGRDZWNR-UHFFFAOYSA-N 0.000 description 1
- CADQNXRGRFJSQY-UOWFLXDJSA-N (2r,3r,4r)-2-fluoro-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@](O)(F)C=O CADQNXRGRFJSQY-UOWFLXDJSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 125000003287 1H-imidazol-4-ylmethyl group Chemical group [H]N1C([H])=NC(C([H])([H])[*])=C1[H] 0.000 description 1
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- BHANCCMWYDZQOR-UHFFFAOYSA-N 2-(methyldisulfanyl)pyridine Chemical compound CSSC1=CC=CC=N1 BHANCCMWYDZQOR-UHFFFAOYSA-N 0.000 description 1
- FKJSFKCZZIXQIP-UHFFFAOYSA-N 2-bromo-1-(4-bromophenyl)ethanone Chemical compound BrCC(=O)C1=CC=C(Br)C=C1 FKJSFKCZZIXQIP-UHFFFAOYSA-N 0.000 description 1
- JQPFYXFVUKHERX-UHFFFAOYSA-N 2-hydroxy-2-cyclohexen-1-one Natural products OC1=CCCCC1=O JQPFYXFVUKHERX-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- QXABAINQWXBUFW-UHFFFAOYSA-N 3-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxypropanoic acid Chemical group OC(=O)C(O)CC1=CNC(=O)NC1=O QXABAINQWXBUFW-UHFFFAOYSA-N 0.000 description 1
- BIGBDMFRWJRLGJ-UHFFFAOYSA-N 3-benzyl-1,5-didiazoniopenta-1,4-diene-2,4-diolate Chemical compound [N-]=[N+]=CC(=O)C(C(=O)C=[N+]=[N-])CC1=CC=CC=C1 BIGBDMFRWJRLGJ-UHFFFAOYSA-N 0.000 description 1
- ONZQYZKCUHFORE-UHFFFAOYSA-N 3-bromo-1,1,1-trifluoropropan-2-one Chemical compound FC(F)(F)C(=O)CBr ONZQYZKCUHFORE-UHFFFAOYSA-N 0.000 description 1
- QHSXWDVVFHXHHB-UHFFFAOYSA-N 3-nitro-2-[(3-nitropyridin-2-yl)disulfanyl]pyridine Chemical compound [O-][N+](=O)C1=CC=CN=C1SSC1=NC=CC=C1[N+]([O-])=O QHSXWDVVFHXHHB-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical group CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- NLPWSMKACWGINL-UHFFFAOYSA-N 4-azido-2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(N=[N+]=[N-])C=C1O NLPWSMKACWGINL-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-L 4-nitrophenyl phosphate(2-) Chemical group [O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-L 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical group BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical group ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical group IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000203809 Actinomycetales Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 230000020955 B cell costimulation Effects 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-N Benzylphosphonic acid Chemical class OP(O)(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-N 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 108091007914 CDKs Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 201000003728 Centronuclear myopathy Diseases 0.000 description 1
- 235000021538 Chard Nutrition 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 101150091196 Cptp gene Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 208000009328 Dentinogenesis Imperfecta Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108700010895 Drosophila ADH Proteins 0.000 description 1
- 101710117072 Dual specificity protein phosphatase Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 244000148064 Enicostema verticillatum Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical group FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 238000010268 HPLC based assay Methods 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Chemical group OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102100026888 Mitogen-activated protein kinase kinase kinase 7 Human genes 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 102000004128 Myotubularin Human genes 0.000 description 1
- 108090000697 Myotubularin Proteins 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101800001641 NTPase Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 1
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920002642 Polysorbate 65 Polymers 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 101710109651 Putative protein phosphatase Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 101710185500 Small t antigen Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 208000032978 Structural Congenital Myopathies Diseases 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000020385 T cell costimulation Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 101710173511 Tensin homolog Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- ZKHQWZAMYRWXGA-MVKANHKCSA-N [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxy(32P)phosphoryl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO[32P](O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-MVKANHKCSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000012637 allosteric effector Substances 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 201000006797 autosomal dominant nonsyndromic deafness Diseases 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 241000902900 cellular organisms Species 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- VIMWCINSBRXAQH-UHFFFAOYSA-M chloro-(2-hydroxy-5-nitrophenyl)mercury Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[Hg]Cl VIMWCINSBRXAQH-UHFFFAOYSA-M 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-M deoxycholate Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-M 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- RJBIAAZJODIFHR-UHFFFAOYSA-N dihydroxy-imino-sulfanyl-$l^{5}-phosphane Chemical compound NP(O)(O)=S RJBIAAZJODIFHR-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000009109 downstream regulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001400 expression cloning Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Chemical group 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000001038 ionspray mass spectrometry Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- RMAHPRNLQIRHIJ-UHFFFAOYSA-N methyl carbamimidate Chemical compound COC(N)=N RMAHPRNLQIRHIJ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- NEGQCMNHXHSFGU-UHFFFAOYSA-N methyl pyridine-2-carboximidate Chemical compound COC(=N)C1=CC=CC=N1 NEGQCMNHXHSFGU-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 108091006026 monomeric small GTPases Proteins 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- YFZOUMNUDGGHIW-UHFFFAOYSA-M p-chloromercuribenzoic acid Chemical compound OC(=O)C1=CC=C([Hg]Cl)C=C1 YFZOUMNUDGGHIW-UHFFFAOYSA-M 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000003616 phosphatase activity assay Methods 0.000 description 1
- HMFAQQIORZDPJG-UHFFFAOYSA-N phosphono 2-chloroacetate Chemical compound OP(O)(=O)OC(=O)CCl HMFAQQIORZDPJG-UHFFFAOYSA-N 0.000 description 1
- 239000003934 phosphoprotein phosphatase inhibitor Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 125000000830 polyketide group Chemical group 0.000 description 1
- 229930001118 polyketide hybrid Natural products 0.000 description 1
- 125000003308 polyketide hybrid group Chemical group 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 1
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 1
- 108010000222 polyserine Proteins 0.000 description 1
- 229940099511 polysorbate 65 Drugs 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 108010029690 procollagenase Proteins 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000029983 protein stabilization Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229960003581 pyridoxal Drugs 0.000 description 1
- 235000008164 pyridoxal Nutrition 0.000 description 1
- 239000011674 pyridoxal Substances 0.000 description 1
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 1
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 1
- 229960001327 pyridoxal phosphate Drugs 0.000 description 1
- 125000004076 pyridyl group Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 101150079601 recA gene Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000020874 response to hypoxia Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- XMVJITFPVVRMHC-UHFFFAOYSA-N roxarsone Chemical group OC1=CC=C([As](O)(O)=O)C=C1[N+]([O-])=O XMVJITFPVVRMHC-UHFFFAOYSA-N 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000011537 solubilization buffer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000009211 stress pathway Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 108091008743 testicular receptors 4 Proteins 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000012256 transgenic experiment Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 230000009107 upstream regulation Effects 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 238000003158 yeast two-hybrid assay Methods 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/02—Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
Definitions
- the present invention relates to phosphatase polypeptides, nucleotide sequences encoding the phosphatase polypeptides, as well as various products and mer ⁇ feods useful for the diagnosis and treatment of various phosphatase-related diseases and conditions.
- Cellular signal transduction is a fundamental mechanism whereby external stimuli that regulate diverse cellular processes are relayed to the interior of cells.
- One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of proteins by protein kinases, which enables regulation of the activity of mature proteins by altering their structure and function.
- the best characterized protein kinases in eukaryotes phosphorylate proteins on the alcohol moiety of serine, threonine and tyrosine residues. These kinases largely fall into two groups: those specific for phosphorylating serines and threonines, and those specific for phosphorylating tyrosines.
- the phosphorylation state of a given substrate is also regulated by the protein phosphatases, a class of proteins responsible for removal of the phosphate group added to a given substrate by a protein kinase.
- the protein phosphatases can also be classified as being specific for either serine/threonine or tyrosine.
- PTP protein tyrosine phosphatases
- DSP dual-specificity phosphatases
- STP serine or threonine
- phosphatases are clustered into distinct subfamilies of tyrosine phosphatases, dual- specificity phosphatases, and myotubularin-like phosphatases (Fauman et al. , supra; and Martell et al. , supra).
- Phosphatases possess a variety of non-catalytic domains that are believed to interact with upstream regulators. Examples include proline-rich domains for interaction with SH3 -containing proteins, or specific domains for interaction with Rac, Rho, and Rab small G-proteins. These interactions may provide a mechanism for cross-talk between distinct biochemical pathways in response to external stimuli such as the activation of a variety of cell surface receptors, including tyrosine kinases, cytokine receptors, TNF receptor, Fas, T cell receptors, CD28, or CD40.
- Phosphatases have been implicated as regulating a variety of cellular responses, including response to growth factors, cytokines and hormones, oxidative-, UV-, or irradiation-related stress pathways, inflammatory signals (e.g. TNF ⁇ ), apoptotic stimuli (e.g. Fas), T and B cell costimulation, the control of cytoskeletal architecture, and cellular transformation (see THE PROTEIN PHOSPHATASE FACTBOOK, Tonks etal, Academic Press, 2000).
- TNF ⁇ inflammatory signals
- Fas e.g. Fas
- T and B cell costimulation the control of cytoskeletal architecture
- a need therefore, exists to identify additional phosphatases whose inappropriate activity may lead to cancer or other disorders so that appropriate treatments for those disorders might also be identified.
- novel proteins include three phosphatase polypeptides of the STP group, one of the DSP group and one of the cPTP.
- the classification of novel proteins as belonging to established families has proven highly accurate, not only in predicting motifs present in the remaining non-catalytic portion of each protein, but also in the regulation, substrates, and signaling pathways fo these proteins.
- nucleic acid molecule encoding a phosphatase polypeptide, having an amino acid sequence of SEQ ID NO:2.
- isolated in reference to nucleic acid is meant a polymer of 10 (preferably 21, more preferably 39, most preferably 75) or more nucleotides conjugated to each other, including DNA and RNA that is isolated from a natural source or that is synthesized as the sense or complementary antisense strand.
- nucleic acids are preferred, for example those of 300, 600, 900, 1200, 1500, or more nucleotides and/or those having at least 50%, 60%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a sequence of SEQ ID NO:l.
- nucleic acid it is meant, without limitation, DNA, RNA or cDNA and where the nucleic acid is RNA, the thymine will be uracil.
- the isolated nucleic acid of the present invention is unique in the sense that it is not found in a pure or separated state in nature.
- Use of the term "isolated” indicates that a naturally occurring sequence has been removed from its normal cellular (i.e., chromosomal) environment. Thus, the sequence may be in a cell-free solution or placed in a different cellular environment. The term does not imply that the sequence is the only nucleotide chain present, but that it is essentially free (preferably about 90% pure, more preferably at least about 95% pure) of non-nucleotide material naturally associated with it, and thus is distinguished from isolated chromosomes.
- enriched in reference to nucleic acid is meant that the specific DNA or RNA sequence constitutes a significantly higher fraction (2- to 5 -fold) of the total DNA or RNA present in the cells or solution of interest than in normal or diseased cells or in the cells from which the sequence was taken. This could be caused by a person by preferential reduction in the amount of other DNA or RNA present, or by a preferential increase in the amount of the specific DNA or RNA sequence, or by a combination of the two. However, it should be noted that enriched does not imply that there are no other DNA or RNA sequences present, just that the relative amount of the sequence of interest has been significantly increased.
- the term "significant" is used to indicate that the level of increase is useful to the person making such an increase, and generally means an increase relative to other nucleic acids of about at least 2-fold, more preferably at least 5-fold, more preferably at least 10-fold or even more.
- the term also does not imply that there is no DNA or RNA from other sources.
- the DNA from other sources may, for example, comprise DNA from a yeast or bacterial genome, or a cloning vector such as pUC 19. This term distinguishes from naturally occurring events, such as viral infection, or tumor- type growths, in which the level of one mRNA may be naturally increased relative to other species of mRNA.
- nucleotide sequence in purified form.
- purified in reference to nucleic acid does not require absolute purity (such as a homogeneous preparation). Instead, it represents an indication that the sequence is relatively more pure than in the natural environment (compared to the natural level this level should be at least 2- to 5 -fold greater, e.g., in terms of mg/mL).
- Individual clones isolated from a cDNA library may be purified to electrophoretic homogeneity. The claimed DNA molecules obtained from these clones could be obtained directly from total DNA or from total RNA.
- the cDNA clones are not naturally occurring, but rather are preferably obtained via manipulation of a partially purified naturally occurring substance (messenger RNA).
- the construction of a cDNA library from mRNA involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection of the cells carrying the cDNA library.
- cDNA synthetic substance
- the process which includes the construction of a cDNA library from mRNA and isolation of distinct cDNA clones yields an approximately 10 6 -fold purification of the native message.
- purification of at least one order of magnitude preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.
- phosphatase polypeptide 32 (preferably 40, more preferably 45, most preferably 55) or more contiguous amino acids in a polypeptide having an amino acid sequence of SEQ ID NO:2.
- polypeptides 100, 200, 300, 400, 450, 500, 550, 600, 700, 800, 900 or more amino acids are preferred.
- the phosphatase polypeptide can be encoded by a full-length nucleic acid sequence or any portion of the full-length nucleic acid sequence, so long as a functional activity of the polypeptide is retained. It is well known in the art that due to the degeneracy of the genetic code numerous different nucleic acid sequences can code for the same amino acid sequence.
- substitutions may include the replacement of an amino acid by a residue having similar physicochemical properties, such as substituting one aliphatic residue (lie, Val, Leu or Ala) for another, or substitution between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gin and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr.
- amino acid sequence of the phosphatase peptide of the invention will be substantially similar to a sequence having an amino acid sequence of SEQ ID NO:2, or fragments thereof.
- a sequence that is substantially similar to a sequence of SEQ ID NO:2 will preferably have at least 50%, 60%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the sequence of SEQ ID NO:2.
- the phosphatase polypeptide will have at least about 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to one of the aforementioned sequences.
- identity is meant a property of sequences that measures their similarity or relationship. Identity is measured by dividing the number of identical residues by the total number of residues and gaps and multiplying the product by 100. "Gaps" are spaces in an alignment that are the result of additions or deletions of amino acids. Thus, two copies of exactly the same sequence have 100% identity, but sequences that are less highly conserved, and have deletions, additions, or replacements, may have a lower degree of identity. Those skilled in the art will recognize that several computer programs are available for determining sequence identity using standard parameters, for example Gapped BLAST or PSI-BLAST (Altschul, et al. (1997) Nucleic Acids Res.
- Similarity is measured by dividing the number of identical residues plus the number of conservatively substituted residues (see Bowie, etal. Science, 1999 247:1306-1310, which is incorporated herein by reference in its entirety, including any drawings, figures, or tables) by the total number of residues and gaps and multiplying the product by 100.
- the invention features isolated, enriched, or purified nucleic acid molecules encoding a phosphatase polypeptide comprising a nucleotide sequence that: (a) encodes a polypeptide having an amino acid sequence of SEQ ID NO:2; (b) is the complement of the nucleotide sequence of (a); (c) hybridizes under highly stringent conditions to the nucleotide molecule of (a) and encodes a naturally occurring phosphatase polypeptide; (d) encodes a polypeptide having an amino acid sequence of SEQ ID NO:2, except that it lacks one or more, but not all, of the domains selected from the group consisting of an N-terminal domain, a catalytic domain, a C-terminal catalytic domain, a C-terminal domain, a coiled-coil structure region, a proline-rich region, a spacer region, and a C-terminal tail; and (e) is the complement of the nucleotide sequence
- the invention features isolated, enriched or purified nucleic acid molecules comprising a nucleotide sequence substantially identical to the sequence of SEQ ID NO: 1.
- the sequence has at least 50%, 60%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the above listed sequences.
- nucleotide sequence is the complement of another nucleotide sequence if all of the nucleotides of the first sequence are complementary to all of the nucleotides of the second sequence.
- Various low or high stringency hybridization conditions may be used depending upon the specificity and selectivity desired. These conditions are well known to those skilled in the art. Under stringent hybridization conditions only highly complementary nucleic acid sequences hybridize.
- such conditions prevent hybridization of nucleic acids having more than 1 or 2 mismatches out of 20 contiguous nucleotides, more preferably, such conditions prevent hybridization of nucleic acids having more than 1 or 2 mismatches out of 50 contiguous nucleotides, most preferably, such conditions prevent hybridization of nucleic acids having more than 1 or 2 mismatches out of 100 contiguous nucleotides. In some instances, the conditions may prevent hybridization of nucleic acids having more than 5 mismatches in the full-length sequence.
- stringent hybridization assay conditions hybridization assay conditions at least as stringent as the following: hybridization in 50% formamide, 5X SSC, 50 mMNaH 2 PO 4 , pH 6.8, 0.5% SDS, 0.1 mg/mL sonicated salmon sperm DNA, and 5X Denhardt's solution at 42 °C overnight; washing with 2X SSC, 0.1% SDS at 45 °C; and washing with 0.2X SSC, 0.1% SDS at 45 °C. Under some of the most stringent hybridization assay conditions, the second wash can be done with 0.1X SSC at a temperature up to 70 °C (Berger et al.
- domain refers to a region of a polypeptide which serves a particular function.
- N-terminal or C-terminal domains of signal transduction proteins can serve functions including, but not limited to, binding molecules that localize the signal transduction molecule to different regions of the cell or binding other signaling molecules directly responsible for propagating a particular cellular signal.
- Some domains can be expressed separately from the rest of the protein and function by themselves, while others must remain part of the intact protein to retain function. The latter are termed functional regions of proteins and also relate to domains.
- N-terminal domain refers to the extracatalytic region located between the initiator methionine and the catalytic domain of the protein phosphatase.
- the N-terminal domain can be identified following a Smith- Waterman alignment of the protein sequence against the non-redundant protein database to define the N- terminal boundary of the catalytic domain. Depending on its length, the N-terminal domain may or may not play a regulatory role in phosphatase function.
- catalytic domain refers to a region of the protein phosphatase that is typically 25- 300 amino acids long and is responsible for carrying out the phosphate transfer reaction from a high-energy phosphate donor molecule such as ATP or GTP to itself (autophosphorylation) or to other proteins (exogenous phosphorylation).
- the catalytic domain of protein phosphatases is made up of 12 subdomains that contain highly conserved amino acid residues, and are responsible for proper polypeptide folding and for catalysis.
- the catalytic domain can be identified following a Smith- Waterman alignment of the protein sequence against the non-redundant protein database.
- catalytic activity defines the rate at which a phosphatase catalytic domain dephosphorylates a substrate.
- Catalytic activity can be measured, for example, by determining the amount of a substrate converted to a dephosphorylated product as a function of time.
- Catalytic activity can be measured by methods of the invention by holding time constant and determining the concentration of a phosphorylated substrate after a fixed period of time.
- Dephosphorylation of a substrate occurs at the active site of a protein phosphatase.
- the active site is normally a cavity in which the substrate binds to the protein phosphatase and is dephosphorylated.
- substrate refers to a molecule dephosphorylated by a phosphatase of the invention. Phosphatases remove phosphate groups from phosphorylated serine/threonine or tyrosine amino acids.
- the molecule may be another protein or a polypeptide.
- C-terminal domain refers to the region located between the catalytic domain or the last (located closest to the C-terminus) functional domain and the carboxy-terminal amino acid residue of the protein phosphatase.
- functional domain is meant any region of the polypeptide that may play a regulatory or catalytic role as predicted from amino acid sequence homology to other proteins or by the presence of amino acid sequences that may give rise to specific structural conformations (e.g. N-terminal domain).
- the C-terminal domain can be identified by using a Smith- Waterman alignment of the protein sequence against the non- redundant protein database to define the C-terminal boundary of the catalytic domain or of any functional C-terminal extracatalytic domain.
- C-terminal domain may or may not play a regulatory role in phosphatase function.
- the C-terminal domain may also comprise the catalytic domain (above).
- C-terminal tail refers to a C-terminal domain of a protein phosphatase, that by homology extends or protrudes past the C-terminal amino acid of its closest homolog.
- C-terminal tails can be identified by using a Smith- Waterman sequence alignment of the protein sequence against the non- redundant protein database, or by means of a multiple sequence alignment of homologous sequences using the DNAStar program Megalign.
- a C-terminal tail may or may not play a regulatory role in phosphatase function.
- coiled-coil structure region refers to a polypeptide sequence that has a high probability of adopting a coiled-coil structure as predicted by computer algorithms such as COILS (Lupas, A. (1996) Meth. Enzymology 266:513-525). Coiled-coils are formed by two or three amphipathic ⁇ -helices in parallel. Coiled-coils can bind to coiled-coil domains of other polypeptides resulting in homo- or heterodimers (Lupas, A. (1991) Science 252:1162-1164).
- proline-rich region refers to a region of a protein phosphatase whose proline content over a given amino acid length is higher than the average content of this amino acid found in proteins (i.e., >10%).' Proline-rich regions are easily discernable by visual inspection of amino acid sequences and quantitated by standard computer sequence analysis programs such as the DNAStar program EditSeq. Proline-rich regions have been demonstrated to participate in regulatory protein -protein interactions.
- spacer region refers to a region of the protein phosphatase located between predicted functional domains.
- the spacer region has no detectable homology to any amino acid sequence in the database, and can be identified by using a Smith- Waterman alignment of the protein sequence against the non-redundant protein database to define the C- and N-terminal boundaries of the flanking functional domains. Spacer regions may or may not play a fundamental role in protein phosphatase function.
- insert refers to a portion of a protein phosphatase that is absent from a close homolog. Inserts may or may not by the product alternative splicing of exons.
- Inserts can be identified by using a Smith- aterman sequence alignment of the protein sequence against the non-redundant protein database, or by means of a multiple sequence alignment of homologous sequences using the DNAStar program Megalign. Inserts may play a functional role by presenting a new interface for protein-protein interactions, or by interfering with such interactions.
- signal transduction pathway refers to the molecules that propagate an extracellular signal through the cell membrane to become an intracellular signal. This signal can then stimulate a cellular response.
- the polypeptide molecules involved in signal transduction processes are typically receptor and non-receptor protein tyrosine phosphatases, receptor and non-receptor protein phosphatases, polypeptides containing SRC homology 2 and 3 domains, phosphotyrosine binding proteins (SRC homology 2 (SH2) and phosphotyrosine binding (PTB and PH) domain containing proteins), proline-rich binding proteins (SH3 domain containing proteins), GTPases, phosphodiesterases, phospholipases, prolyl isomerases, proteases, Ca2+ binding proteins, cAMP binding proteins, guanyl cyclases, adenylyl cyclases, NO generating proteins, nucleotide exchange factors, and transcription factors.
- the invention features isolated, enriched, or purified nucleic acid molecules encoding phosphatase polypeptides, further comprising a vector or promoter effective to initiate transcription in a host cell.
- the invention also features recombinant nucleic acid, preferably in a cell or an organism.
- the recombinant nucleic acid may contain the sequence of SEQ ID NO: 1 , or a functional derivative thereof, and a vector or a promoter effective to initiate transcription in a host cell.
- the recombinant nucleic acid can alternatively contain a transcriptional initiation region functional in a cell, a sequence complementary to an RNA sequence encoding a phosphatase polypeptide and a transcriptional termination region functional in a cell. Specific vectors and host cell combinations are discussed herein.
- vector relates to a single or double-stranded circular nucleic acid molecule that can be transfected into cells and replicated within or independently of a cell genome.
- a circular double-stranded nucleic acid molecule can be cut and thereby linearized upon treatment with restriction enzymes.
- restriction enzymes An assortment of nucleic acid vectors, restriction enzymes, and the knowledge of the nucleotide sequences cut by restriction enzymes are readily available to those skilled in the art.
- a nucleic acid molecule encoding a phosphatase can be inserted into a vector by cutting the vector with restriction enzymes and ligating the two pieces together.
- transfecting defines a number of methods to insert a nucleic acid vector or other nucleic acid molecules into a cellular organism. These methods involve a variety of techniques, such as treating the cells with high concentrations of salt, an electric field, detergent, or DMSO to render the outer membrane or wall of the cells permeable to nucleic acid molecules of interest or use of various viral transduction strategies.
- promoter refers to nucleic acid sequence needed for gene sequence expression. Promoter regions vary from organism to organism, but are well known to persons skilled in the art for different organisms. For example, in prokaryotes, the promoter region contains both the promoter (which directs the initiation of RNA transcription) as well as the DNA sequences which, when transcribed into RNA, will signal synthesis initiation. Such regions will normally include those 5'-non-coding sequences involved with initiation of transcription and translation, such as the TATA box, capping sequence, CAAT sequence, and the like.
- the isolated nucleic acid comprises, consists essentially of, or consists of a nucleic acid sequence of SEQ ID NO:l, which encodes an amino acid sequence set forth in SEQ ID NO:2, a functional derivative thereof, or at least 35, 40, 45, 50, 60, 75, 100, 200, or 300 contiguous amino acids of SEQ ID NO:2.
- the nucleic acid may be isolated from a natural source by cDNA cloning or by subtractive hybridization.
- the natural source may be mammalian, preferably human, blood, semen, or tissue, and the nucleic acid may be synthesized by the triester method or by using an automated DNA synthesizer.
- the term "mammal” refers preferably to such organisms as mice, rats, rabbits, guinea pigs, sheep, and goats, more preferably to cats, dogs, monkeys, and apes, and most preferably to humans.
- the nucleic acid is a conserved or unique region, for example those useful for: the design of hybridization probes to facilitate identification and cloning of additional polypeptides, the design of PCR probes to facilitate cloning of additional polypeptides, obtaining antibodies to polypeptide regions, and designing antisense oligonucleotides.
- conserved nucleic acid regions regions present on two or more nucleic acids encoding a phosphatase polypeptide, to which a particular nucleic acid sequence can hybridize under lower stringency conditions. Examples of lower stringency conditions suitable for screening for nucleic acid encoding phosphatase polypeptides are provided in Wahl et al. Meth. Enzym. 152:399-407 (1987) and in Wahl et al. Meth. Enzym. 152:415-423 (1987), which are hereby incorporated by reference herein in its entirety, including any drawings, figures, or tables. Preferably, conserved regions differ by no more than 5 out of 20 nucleotides, even more preferably 2 out of 20 nucleotides or most preferably 1 out of 20 nucleotides.
- unique nucleic acid region is meant a sequence present in a nucleic acid coding for a phosphatase polypeptide that is not present in a sequence coding for any other naturally occurring polypeptide. Such regions preferably encode 32 (preferably 40, more preferably 45, most preferably 55) or more contiguous amino acids set forth in a full-length amino acid sequence of SEQ ID NO:2. In particular, a unique nucleic acid region is preferably of mammalian origin.
- nucleic acid probe for the detection of nucleic acid encoding a phosphatase polypeptide having an amino acid sequence set forth in SEQ ID NO:2.
- the nucleic acid probe contains a nucleotide base sequence that will hybridize to the sequence set forth in SEQ ID NO:l, or a functional derivative thereof.
- the nucleic acid probe hybridizes to nucleic acid encoding at least 12, 32, 75, 90, 105, 120, 150, 200, 250, 300 or 350 contiguous amino acids of a full-length sequence set forth in SEQ ID NO:2, or a functional derivative thereof.
- Methods for using the probes include detecting the presence or amount of phosphatase RNA in a sample by contacting the sample with a nucleic acid probe under conditions such that hybridization occurs and detecting the presence or amount of the probe bound to phosphatase RNA.
- the nucleic acid duplex formed between the probe and a nucleic acid sequence coding for a phosphatase polypeptide may be used in the identification of the sequence of the nucleic acid detected (Nelson et al, in Nonisotopic DNA Probe Techniques, Academic Press, San Diego, Kricka, ed., p. 275, 1992, hereby incorporated by reference herein in its entirety, including any drawings, figures, or tables).
- Kits for performing such methods may be constructed to include a container means having disposed therein a nucleic acid probe.
- the invention describes a recombinant cell or tissue comprising a nucleic acid molecule encoding a phosphatase polypeptide having an amino acid sequence set forth in SEQ ID NO:2.
- the nucleic acid may be under the control of the genomic regulatory elements, or may be under the control of exogenous regulatory elements including an exogenous promoter.
- exogenous it is meant a promoter that is not normally coupled in vivo transcriptionally to the coding sequence for the phosphatase polypeptides.
- the polypeptide is preferably a fragment of the protein encoded by a full- length amino acid sequence set forth in SEQ ID NO:2.
- fragment is meant an amino acid sequence present in a phosphatase polypeptide.
- such a sequence comprises at least 32, 45, 50, 60, 100, 200, or 300 contiguous amino acids of a full-length sequence set forth in SEQ ID NO:2.
- the invention features an isolated, enriched, or purified phosphatase polypeptide having the amino acid set forth in SEQ ID NO:2.
- isolated in reference to a polypeptide is meant a polymer of 6 (preferably 12, more preferably 18, most preferably 25, 32, 40, or 50) or more amino acids conjugated to each other, including polypeptides that are isolated from a natural source or that are synthesized.
- longer polypeptides are preferred, such as those with 100, 200, 300, 400, 450, 500, 550, 600, 700, 800, 900 or more contiguous amino acids of a full-length sequence set forth in SEQ ID NO:2.
- the isolated polypeptides of the present invention are unique in the sense that they are not found in a pure or separated state in nature. Use of the term "isolated” indicates that a naturally occurring sequence has been removed from its normal cellular environment. Thus, the sequence may be in a cell-free solution or placed in a different cellular environment. The term does not imply that the sequence is the only amino acid chain present, but that it is essentially free (at least about 90% pure, more preferably at least about 95% pure or more) of non-amino acid-based material naturally associated with it.
- enriched in reference to a polypeptide is meant that the specific amino acid sequence constitutes a significantly higher fraction (2- to 5- fold) of the total amino acid sequences present in the cells or solution of interest than in normal or diseased cells or in the cells from which the sequence was taken. This could be caused by a person by preferential reduction in the amount of other amino acid sequences present, or by a preferential increase in the amount of the specific amino acid sequence of interest, or by a combination of the two. However, it should be noted that enriched does not imply that there are no other amino acid sequences present, just that the relative amount of the sequence of interest has been significantly increased.
- the term significant here is used to indicate that the level of increase is useful to the person making such an increase, and generally means an increase relative to other amino acid sequences of about at least 2-fold,, more preferably at least 5- to 10-fold or even more.
- the term also does not imply that there is no amino acid sequence from other sources.
- the other source of amino acid sequences may, for example, comprise amino acid sequence encoded by a yeast or bacterial genome, or a cloning vector such as pUC19. The term is meant to cover only those situations in which man has intervened to increase the proportion of the desired amino acid sequence.
- an amino acid sequence be in purified form.
- purified in reference to a polypeptide does not require absolute purity (such as a homogeneous preparation); instead, it represents an indication that the sequence is relatively purer than in the natural environment. Compared to the natural level this level should be at least 2-to 5 -fold greater (e.g. , in terms of mg/mL). Purification of at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated. The substance is preferably free of contamination at a functionally significant level, for example 90%, 95%, or 99% pure.
- the phosphatase polypeptide is a fragment of the protein encoded by a full-length amino acid sequence set forth in SEQ ID NO:2.
- the phosphatase polypeptide contains at least 32, 45, 50, 60, 100, 200, or 300 contiguous amino acids of a full-length sequence set forth in SEQ ID NO:2, or a functional derivative thereof.
- the phosphatase polypeptide comprises an amino acid sequence having (a) an amino acid sequence set forth in SEQ ID NO:2; and (b) an amino acid sequence set forth in SEQ ID NO:2, except that it lacks one or more of the domains selected from the group consisting of a C-terminal catalytic domain, an N-terminal domain, a catalytic domain, a C-terminal domain, a coiled-coil structure region, a proline-rich region, a spacer region, and a C-terminal tail.
- the polypeptide can be isolated from a natural source by methods well- known in the art.
- the natural source may be mammalian, preferably human, blood, semen, or tissue, and the polypeptide may be synthesized using an automated polypeptide synthesizer.
- the invention includes a recombinant phosphatase polypeptide having (a) an amino acid sequence set forth in SEQ ID NO:2.
- recombinant phosphatase polypeptide is meant a polypeptide produced by recombinant DNA techniques such that it is distinct from a naturally occurring polypeptide either in its location (e.g. , present in a different cell or tissue than found in nature), purity or structure. Generally, such a recombinant polypeptide will be present in a cell in an amount different from that normally observed in nature.
- the polypeptides to be expressed in host cells may also be fusion proteins which include regions from heterologous proteins. Such regions may be included to allow, e.g. , secretion, improved stability, or facilitated purification of the polypeptide.
- a sequence encoding an appropriate signal peptide can be incorporated into expression vectors.
- a DNA sequence for a signal peptide secretory leader
- a signal peptide that is functional in the intended host cell promotes extracellular secretion of the polypeptide.
- the signal sequence will be cleaved from the polypeptide upon secretion of the polypeptide from the cell.
- preferred fusion proteins can be produced in which the N-terminus of a phosphatase polypeptide is fused to a carrier peptide.
- the polypeptide comprises a fusion protein which includes a heterologous region used to facilitate purification of the polypeptide. Many of the available peptides used for such a function allow selective binding of the fusion protein to a binding partner.
- a preferred binding partner includes one or more of the IgG binding domains of protein A which are easily purified to homogeneity by affinity chromatography on, for example, IgG-coupled Sepharose.
- many vectors have the advantage of carrying a stretch of histidine residues that can be expressed at the N-terminal or C-terminal end of the target protein, and thus the protein of interest can be recovered by metal chelation chromatography.
- a nucleotide sequence encoding a recognition site for a proteolytic enzyme such as enterophosphatase, factor X procollagenase or thrombin may immediately precede the sequence for a phosphatase polypeptide to permit cleavage of the fusion protein to obtain the mature phosphatase polypeptide.
- fusion-protein binding partners include, but are not limited to, the yeast I-factor, the honeybee melatin leader in sf9 insect cells, 6-His tag, thioredoxin tag, hemaglutinin tag, GST tag, and OmpA signal sequence tag.
- the binding partner which recognizes and binds to the peptide may be any ion, molecule or compound including metal ions (e.g., metal affinity columns), antibodies, or fragments thereof, and any protein or peptide which binds the peptide, such as the FLAG tag.
- the invention features an antibody (e.g., a monoclonal or polyclonal antibody) having specific binding affinity to a phosphatase polypeptide or a phosphatase polypeptide domain or fragment where the polypeptide is selected from the group having a sequence at least about 90% identical to an amino acid sequence set forth in SEQ ID NO:2.
- specific binding affinity is meant that the antibody binds to the target phosphatase polypeptide with greater affinity than it binds to other polypeptides under specified conditions.
- Antibodies or antibody fragments are polypeptides that contain regions that can bind other polypeptides. Antibodies can be used to identify an endogenous source of phosphatase polypeptides, to monitor cell cycle regulation, and for immuno-localization of phosphatase polypeptides within the cell.
- polyclonal refers to antibodies that are heterogenous populations of antibody molecules derived from the sera of animals immunized with an antigen or an antigenic functional derivative thereof.
- various host animals may be immunized by injection with the antigen.
- Various adjuvants may be used to increase the immunological response, depending on the host species.
- “Monoclonal antibodies” are substantially homogenous populations of antibodies to a particular antigen. They may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. Monoclonal antibodies may be obtained by methods known to those skilled in the art (Kohler et al, Nature 256:495-497, 1975, and U.S. Patent No. 4,376,110, both of which are hereby incorporated by reference herein in their entirety including any figures, tables, or drawings).
- An antibody of the present invention includes "humanized" monoclonal and polyclonal antibodies.
- Humanized antibodies are recombinant proteins in which non-human (typically murine) complementarity determining regions of an antibody have been transferred from heavy and light variable chains of the non-human (e.g. murine) immunoglobulin into a human variable domain, followed by the replacement of some human residues in the framework regions of their murine counterparts.
- Humanized antibodies in accordance with this invention are suitable for use in therapeutic methods.
- General techniques for cloning murine immunoglobulin variable domains are described, for example, by the publication of Orlandi et al, Proc. Nat'lAcad. Sci. USA 86: 3833 (1989).
- antibody fragment refers to a portion of an antibody, often the hypervariable region and portions of the surrounding heavy and light chains, that displays specific binding affinity for a particular molecule.
- a hypervariable region is a portion of an antibody that physically binds to the polypeptide target.
- An antibody fragment of the present invention includes a "single-chain antibody," a phrase used in this description to denote a linear polypeptide that binds antigen with specificity and that comprises variable or hypervariable regions from the heavy and light chains of an antibody.
- single chain antibodies can be produced by conventional methodology.
- the Vh and VI regions of the Fv fragment can be covalently joined and stabilized by the insertion of a disulfide bond. See Glockshuber, et al, Biochemistry 1362 (1990).
- the Vh and VI regions can be joined by the insertion of a peptide linker.
- a gene encoding the Vh, VI and peptide linker sequences can be constructed and expressed using a recombinant expression vector.
- Amino acid sequences comprising hypervariable regions from the Vh and VI antibody chains can also be constructed using disulfide bonds or peptide linkers.
- Antibodies or antibody fragments having specific binding affinity to a phosphatase polypeptide of the invention may be used in methods for detecting the presence and/or amount of phosphatase polypeptide in a sample by probing the sample with the antibody under conditions suitable for phosphatase-antibody immunocomplex formation and detecting the presence and/or amount of the antibody conjugated to the phosphatase polypeptide. Diagnostic kits for performing such methods may be constructed to include antibodies or antibody fragments specific for the phosphatase as well as a conjugate of a binding partner of the antibodies or the antibodies themselves.
- An antibody or antibody fragment with specific binding affinity to a phosphatase polypeptide of the invention can be isolated, enriched, or purified from a prokaryotic or eukaryotic organism. Routine methods known to those skilled in the art enable production of antibodies or antibody fragments, in both prokaryotic and eukaryotic organisms. Purification, enrichment, and isolation of antibodies, which are polypeptide molecules, are described above.
- Antibodies having specific binding affinity to a phosphatase polypeptide of the invention may be used in methods for detecting the presence and/or amount of phosphatase polypeptide in a sample by contacting the sample with the antibody under conditions such that an immunocomplex forms and detecting the presence and/or amount of the antibody conjugated to the phosphatase polypeptide.
- Diagnostic kits for performing such methods may be constructed to include a first container containing the antibody and a second container having a conjugate of a binding partner of the antibody and a label, such as, for example, a radioisotope. The diagnostic kit may also include notification of an FDA approved use and instructions therefor.
- the invention features a hybridoma which produces an antibody having specific binding affinity to a phosphatase polypeptide or a phosphatase polypeptide domain, where the polypeptide is selected from the group having an amino acid sequence set forth in SEQ ID NO:2.
- hybrida is meant an immortalized cell line that is capable of secreting an antibody, for example an antibody to a phosphatase of the invention.
- the antibody to the phosphatase comprises a sequence of amino acids that is able to specifically bind a phosphatase polypeptide of the invention.
- kits comprising antibodies that bind to a polypeptide encoded by any of the nucleic acid molecules described above, and a negative control antibody.
- the term "negative control antibody” refers to an antibody derived from similar source as the antibody having specific binding affinity, but where it displays no binding affinity to a polypeptide of the invention.
- the invention features a phosphatase polypeptide binding agent able to bind to a phosphatase polypeptide selected from the group having (a) an amino acid sequence set forth in SEQ ID NO:2.
- the binding agent is preferably a purified antibody that recognizes an epitope present on a phosphatase polypeptide of the invention.
- Other binding agents include molecules that bind to phosphatase polypeptides and analogous molecules that bind to a phosphatase polypeptide. Such binding agents may be identified by using assays that measure phosphatase binding partner activity.
- the invention also features a method for screening for human cells containing a phosphatase polypeptide of the invention or an equivalent sequence.
- the method involves identifying the novel polypeptide in human cells using techniques that are routine and standard in the art, such as those described herein for identifying the phosphatases of the invention (e.g., cloning, Southern or Northern blot analysis, in situ hybridization, PCR amplification, etc.).
- the invention features methods for identifying a substance that modulates phosphatase activity comprising the steps of: (a) contacting a phosphatase polypeptide comprising an amino acid sequence substantially identical to a sequence set forth in SEQ ID NO:2 with a test substance; (b) measuring the activity of said polypeptide; and (c) determining whether said substance modulates the activity of said polypeptide. More preferably, the sequence is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the listed sequences.
- modulates refers to the ability of a compound to alter the function of a phosphatase of the invention.
- a modulator preferably activates or inhibits the activity of a phosphatase of the invention depending on the concentration of the compound exposed to the phosphatase.
- modulates also refers to altering the function of phosphatases of the invention by increasing or decreasing the probability that a complex forms between the phosphatase and a natural binding partner.
- a modulator preferably increases the probability that such a complex forms between the phosphatase and the natural binding partner, more preferably increases or decreases the probability that a complex forms between the phosphatase and the natural binding partner depending on the concentration of the compound exposed to the phosphatase, and most preferably decreases the probability that a complex forms between the phosphatase and the natural binding partner.
- activates refers to increasing the cellular activity of the phosphatase.
- inhibit refers to decreasing the cellular activity of the phosphatase.
- Phosphatase activity is preferably the interaction with a natural binding partner followed by removal of a phosphate from a phosphorylated substrate.
- complex refers to an assembly of at least two molecules bound to one another. Signal transduction complexes often contain at least two protein molecules bound to one another.
- natural binding partner refers to polypeptides, lipids, small molecules, or nucleic acids that bind to phosphatases in cells.
- a change in the interaction between a phosphatase and a natural binding partner can manifest itself as an increased or decreased probability that the interaction forms, or an increased or decreased concentration of phosphatase/natural binding partner complex.
- contacting refers to mixing a solution comprising the test compound with a liquid medium bathing the cells of the methods.
- the solution comprising the compound may also comprise another component, such as dimethyl sulfoxide (DMSO), which facilitates the uptake of the test compound or compounds into the cells of the methods.
- DMSO dimethyl sulfoxide
- the solution comprising the test compound may be added to the medium bathing the cells by utilizing a delivery apparatus, such as a pipette-based device or syringe-based device.
- the invention features methods for identifying a substance that modulates phosphatase activity in a cell comprising the steps of: (a) expressing a phosphatase polypeptide in a cell, wherein said polypeptide has the amino acid sequence set forth in SEQ ID NO:2; (b) adding a test substance to said cell; and (c) monitoring a change in cell phenotype or the interaction between said polypeptide and a natural binding partner.
- expressing refers to the production of phosphatases of the invention from a nucleic acid vector containing phosphatase genes within a cell.
- the nucleic acid vector is transfected into cells using well known techniques in the art as described herein.
- Another aspect of the instant invention is directed to methods of identifying compounds that bind to phosphatase polypeptides of the present invention, comprising contacting the phosphatase polypeptides with a compound, and determining whether the compound binds the phosphatase polypeptides.
- Binding can be determined by binding assays which are well known to the skilled artisan, including, but not limited to, gel-shift assays, Western blots, radiolabeled competition assay, phage-based expression cloning, co-fractionation by chromatography, co-precipitation, cross linking, interaction trap/two-hybrid analysis, southwestern analysis, ELISA, and the like, which are described in, for example, Current Protocols in Molecular Biology, 1999, John Wiley & Sons, NY, which is incorporated herein by reference in its entirety.
- the compounds to be screened include, but are not limited to, compounds of extracellular, intracellular, biological or chemical origin.
- the methods of the invention also embrace compounds that are attached to a label, such as a radiolabel (e.g., 125 1, 35 S, 32 P, 33 P, 3 H), a fluorescence label, a chemiluminescent label, an enzymic label and an immunogenic label.
- a label such as a radiolabel (e.g., 125 1, 35 S, 32 P, 33 P, 3 H), a fluorescence label, a chemiluminescent label, an enzymic label and an immunogenic label.
- a label such as a radiolabel (e.g., 125 1, 35 S, 32 P, 33 P, 3 H)
- fluorescence label e.g., 125 1, 35 S, 32 P, 33 P, 3 H
- fluorescence label e.g., 125 1, 35 S, 32 P, 33 P, 3 H
- chemiluminescent label e.g., chemiluminescent label
- an enzymic label e.g
- enzyme Assays can be used to examine enzymatic activity including, but not limited to, photometric, radiometric, HPLC, electrochemical, and the like, which are described in, for example, Enzyme Assays: A Practical Approach, eds. R. Eisenthal and M. J. Danson, 1992, Oxford University Press, which is incorporated herein by reference in its entirety.
- Another aspect of the present invention is directed to methods of identifying compounds which modulate (t.e., increase or decrease) activity of a phosphatase polypeptide comprising contacting the phosphatase polypeptide with a compound, and determining whether the compound modifies activity of the phosphatase polypeptide.
- These compounds are also referred to as "modulators of protein phosphatases.”
- the activity in the presence of the test compound is measured to the activity in the absence of the test compound. Where the activity of a sample containing the test compound is higher than the activity in a sample lacking the test compound, the compound will have increased the activity. Similarly, where the activity of a sample containing the test compound is lower than the activity in the sample lacking the test compound, the compound will have inhibited the activity.
- the present invention is particularly useful for screening compounds by using a phosphatase polypeptide in any of a variety of drug screening techniques.
- the compounds to be screened include, but are not limited to, extracellular, intracellular, biological or chemical origin.
- the phosphatase polypeptide employed in such a test may be in any form, preferably, free in solution, attached to a solid support, borne on a cell surface or located intracellularly.
- One skilled in the art can, for example, measure the formation of complexes between a phosphatase polypeptide and the compound being tested.
- one skilled in the art can examine the diminution in complex formation between a phosphatase polypeptide and its substrate caused by the compound being tested.
- the activity of phosphatase polypeptides of the invention can be determined by, for example, examining the ability to bind or be activated by chemically synthesised peptide ligands. Alternatively, the activity of the phosphatase polypeptides can be assayed by examining their ability to bind metal ions such as calcium, hormones, chemokines, neuropeptides, neurotransmitters, nucleotides, lipids, odorants, and photons. Thus, modulators of the phosphatase polypeptide' s activity may alter a phosphatase function, such as a binding property of a phosphatase or an activity such as signal transduction or membrane localization.
- a phosphatase function such as a binding property of a phosphatase or an activity such as signal transduction or membrane localization.
- the assay may take the form of a yeast growth assay, an Aequorin assay, a Luciferase assay, a mitogenesis assay, a MAP Phosphatase activity assay, as well as other binding or function-based assays of phosphatase activity that are generally known in the art.
- the invention includes any of the receptor and non-receptor protein tyrosine phosphatases, receptor and non-receptor protein phosphatases, polypeptides containing SRC homology 2 and 3 domains, phosphotyrosine binding proteins (SRC homology 2 (SH2) and phosphotyrosine binding (PTB and PH) domain containing proteins), proline-rich binding proteins (SH3 domain containing proteins), GTPases, phosphodiesterases, phospholipases, prolyl isomerases, proteases, Ca2+ binding proteins, cAMP binding proteins, guanyl cyclases, adenylyl cyclases, NO generating proteins, nucleotide exchange factors, and transcription factors.
- SRC homology 2 SH2
- PTB and PH phosphotyrosine binding
- proline-rich binding proteins SH3 domain containing proteins
- GTPases phosphodiesterases
- phospholipases prolyl isomerases
- proteases Ca2+
- Biological activities of phosphatases according to the invention include, but are not limited to, the binding of a natural or a synthetic ligand, as well as any one of the functional activities of phosphatases known in the art.
- Non-limiting examples of phosphatase activities include transmembrane signaling of various forms, which may involve phosphatase binding interactions and/or the exertion of an influence over signal transduction.
- the modulators of the invention exhibit a variety of chemical structures, which can be generally grouped into mimetics of natural phosphatase ligands, and peptide and non-peptide allosteric effectors of phosphatases.
- the invention does not restrict the sources for suitable modulators, which may be obtained from natural sources such as plant, animal or mineral extracts, or non-natural sources such as small molecule libraries, including the products of combinatorial chemical approaches to library construction, and peptide libraries.
- Recombinant receptors are preferred for binding assay HTS because they allow for better specificity (higher relative purity), provide the ability to generate large amounts of receptor material, and can be used in a broad variety of formats (see Hodgson, Bio/Technology, 1992, 10, 973-980; each of which is incorporated herein by reference in its entirety).
- a variety of heterologous systems is available for functional expression of recombinant receptors that are well known to those skilled in the art. Such systems include bacteria (Strosberg, et al, Trends in Pharmacological Sciences, 1992, 13, 95-98), yeast (Pausch, Trends in Biotechnology, 1997, 15, 487-494), several kinds of insect cells (Vanden Broeck, Int. Rev.
- the identified peptide is labeled with a suitable radioisotope, including, but not limited to, 125 I, 3 H, 35 S or 32 P, by methods that are well known to those skilled in the art.
- a suitable radioisotope including, but not limited to, 125 I, 3 H, 35 S or 32 P, by methods that are well known to those skilled in the art.
- the peptides may be labeled by well-known methods with a suitable fluorescent derivative (Baindur, et al, Drug Dev. Res., 1994, 33, 373-398; Rogers, Drug Discovery Today, 1997, 2, 156-160).
- Radioactive ligand specifically bound to the receptor in membrane preparations made from the cell line expressing the recombinant protein can be detected in HTS assays in one of several standard ways, including filtration of the receptor-ligand complex to separate bound ligand from unbound ligand (Williams, Med. Res. Rev., 1991, 11, 147-184.; Sweetnam, et al, J. Natural Products, 1993, 56, 441-455).
- Alternative methods include a scintillation proximity assay (SPA) or a FlashPlate format in which such separation is unnecessary (Nakayama, Cur. Opinion Drug Disc. Dev., 1998, 1, 85-91 Bosse, etal, J. Biomolecular Screening, 1998, 3, 285-292.).
- Binding of fluorescent ligands can be detected in various ways, including fluorescence energy transfer (FRET), direct spectrophotofluorometric analysis of bound ligand, or fluorescence polarization (Rogers, Drug Discovery Today, 1997, 2, 156-160; Hill, Cur. Opinion Drug Disc. Dev., 1998, 1, 92-97).
- FRET fluorescence energy transfer
- the phosphatases and natural binding partners required for functional expression of heterologous phosphatase polypeptides can be native constituents of the host cell or can be introduced through well-known recombinant technology.
- the phosphatase polypeptides can be intact or chimeric.
- the phosphatase activation results in the stimulation or inhibition of other native proteins, events that can be linked to a measurable response.
- Examples of such biological responses include, but are not limited to, the following: the ability to survive in the absence of a limiting nutrient in specifically engineered yeast cells (Pausch, Trends in Biotechnology, 1997, 15, 487-494); changes in intracellular Ca 2+ concentration as measured by fluorescent dyes (Murphy, et al, Cur. Opinion Drug Disc. Dev., 1998, 1, 192-199). Fluorescence changes can also be used to monitor ligand-induced changes in membrane potential or intracellular pH; an automated system suitable for HTS has been described for these purposes (Schroeder, et al, J. Biomolecular Screening, 1996, 1, 75-80). Assays are also available for the measurement of common second but these are not generally preferred for HTS.
- the invention contemplates a multitude of assays to screen and identify inhibitors of ligand binding to phosphatase polypeptides.
- the phosphatase polypeptide is immobilized and interaction with a binding partner is assessed in the presence and absence of a candidate modulator such as an inhibitor compound.
- interaction between the phosphatase polypeptide and its binding partner is assessed in a solution assay, both in the presence and absence of a candidate inhibitor compound.
- an inhibitor is identified as a compound that decreases binding between the phosphatase polypeptide and its natural binding partner.
- Another contemplated assay involves a variation of the di- hybrid assay wherein an inhibitor of protein/protein interactions is identified by detection of a positive signal in a transformed or transfected host cell, as described in PCT publication number WO 95/20652, published August 3, 1995 and is included by reference herein including any figures, tables, or drawings.
- Candidate modulators contemplated by the invention include compounds selected from libraries of either potential activators or potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.
- Chemical libraries consist of random chemical structures, some of which are analogs of known compounds or analogs of compounds that have been identified as “hits” or “leads” in other drug discovery screens, while others are derived from natural products, and still others arise from non-directed synthetic organic chemistry.
- Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) thereof. For a review, see Science 282:63-68 (1998).
- Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. These libraries are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are non-peptide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or “lead”) to optimize the capacity of the "hit” to modulate activity.
- binding partners can be designed and include soluble forms of binding partners, as well as such binding partners as chimeric, or fusion, proteins.
- assays may be used to identify specific peptide ligands of a phosphatase polypeptide, including assays that identify ligands of the target protein through measuring direct binding of test ligands to the target protein, as well as assays that identify ligands of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods.
- binding interactions are evaluated indirectly using the yeast two- hybrid system described in Fields et al, Nature, 340:245-246 (1989), and Fields et al, Trends in Genetics, 10:286-292 (1994), both of which are incorporated herein by reference.
- the two-hybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA binding proteins, to identify peptides that bind to a protein, and to screen for drugs.
- the two-hybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast.
- UAS upstream activation sequence
- the assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein.
- the DNA-binding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene.
- the second hybrid protein which contains the activation domain, cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene.
- the first protein is a phosphatase gene product, or fragment thereof, that is known to interact with another protein or nucleic acid
- this assay can be used to detect agents that interfere with the binding interaction.
- Expression of the reporter gene is monitored as different test agents are added to the system. The presence of an inhibitory agent results in lack of a reporter signal.
- the yeast two-hybrid assay can also be used to identify proteins that bind to the gene product.
- a fusion polynucleotide encoding both a phosphatase polypeptide (or fragment) and a UAS binding domain i.e., a first protein
- a large number of hybrid genes each encoding a different second protein fused to an activation domain are produced and screened in the assay.
- the second protein is encoded by one or more members of a total cDNA or genomic DNA fusion library, with each second protein coding region being fused to the activation domain. This system is applicable to a wide variety of proteins, and it is not even necessary to know the identity or function of the second binding protein.
- the system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.
- Other assays may be used to search for agents that bind to the target protein.
- One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state.
- the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined by any method which distinguishes between the folded and unfolded states of the target protein. The function of the target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.
- methods of screening for compounds which modulate phosphatase activity comprise contacting test compounds with phosphatase polypeptides and assaying for the presence of a complex between the compound and the phosphatase polypeptide.
- the ligand is typically labelled. After suitable incubation, free ligand is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular compound to bind to the phosphatase polypeptide.
- high throughput screening for compounds having suitable binding affinity to phosphatase polypeptides is employed. Briefly, large numbers of different small peptide test compounds are synthesised on a solid substrate.
- the peptide test compounds are contacted with the phosphatase polypeptide and washed. Bound phosphatase polypeptide is then detected by methods well known in the art.
- Purified polypeptides of the invention can also be coated directly onto plates for use in the aforementioned drug screening techniques.
- non-neutralizing antibodies can be used to capture the protein and immobilize it on the solid support.
- inventions comprise using competitive screening assays in which neutralizing antibodies capable of binding a polypeptide of the invention specifically compete with a test compound for binding to the polypeptide.
- the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants with a phosphatase polypeptide.
- Radiolabeled competitive binding studies are described in A.H. Lin et al. Antimicrobial Agents and Chemotherapy, 1997, vol. 41, no. 10. pp. 2127-2131, the disclosure of which is incorporated herein by reference in its entirety. Therapeutic Methods
- the invention includes methods for treating a disease or disorder by administering to a patient in need of such treatment a phosphatase polypeptide substantially identical to an amino acid sequence selected from the group consisting of those set forth in SEQ ID NO:2, and any other phosphatase polypeptide of the present invention.
- a phosphatase polypeptide of the invention may also be administered indirectly by via administration of suitable polynucleotide means for in vivo expression of the phosphatase polypeptide.
- the phosphatase polypeptide will have 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to one of the aforementioned sequences.
- the invention provides methods for treating a disease or disorder by administering to a patient in need of such treatment a substance that modulates the activity of a phosphatase substantially identical to a sequence selected from the group consisting of those set forth in SEQ ID NO:2 any other phosphatase polypeptide of the present invention.
- the disease is selected from the group consisting of rheumatoid arthritis, atherosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic and reproductive disorders, and cancer.
- these diseases include cancer of tissues or hematopoietic origin; central or peripheral nervous system diseases and conditions including migraine, pain, sexual dysfunction, mood disorders, attention disorders, cognition disorders, hypotension, and hypertension; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome; neurodegenerative diseases including Alzheimer's, Parkinson's, Multiple sclerosis, and Amyotrophic lateral sclerosis; viral infections caused by HIV-1 , HIV-2 or other viral- or prion-agents or fungal- or bacterial- organisms; metabolic disorders including Diabetes and obesity and their related syndromes, among others; cardiovascular disorders including reperfusion restenosis, coronary thrombosis, clotting disorders, unregulated cell growth disorders, atherosclerosis; ocular disease including glaucoma, retinopathy, and macular degeneration; inflammatory disorders including rheumatoid arthritis, chronic inflammatory bowel disease, chronic inflammatory
- the invention provides methods for treating or preventing a disease or disorder by administering to a patient in need of such treatment a substance that modulates the activity of a phosphatase polypeptide having an amino acid sequence of SEQ ID NO:2.
- the disease is selected from the group consisting of rheumatoid arthritis, atherosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic and reproductive disorders, and cancer.
- these diseases include cancer of tissues or hematopoietic origin; central or peripheral nervous system diseases and conditions including migraine, pain, sexual dysfunction, mood disorders, attention disorders, cognition disorders, hypotension, and hypertension; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome; neurodegenerative diseases including Alzheimer's, Parkinson's, Multiple sclerosis, and Amyotrophic lateral sclerosis; viral infections caused by HIV-1, HIV-2 or other viral- or prion-agents or fungal- or bacterial- organisms; metabolic disorders including Diabetes and obesity and their related syndromes, among others; cardiovascular disorders including reperfusion restenosis, coronary thrombosis, clotting disorders, unregulated cell growth disorders, atherosclerosis; ocular disease including glaucoma, retinopathy, and macular degeneration; inflammatory disorders including rheumatoid arthritis, chronic inflammatory bowel disease, chronic inflammatory pelvis
- the disease is selected from the group consisting of cancers, immune-related diseases and disorders, cardiovascular disease, brain or neuronal-associated diseases, and metabolic disorders. More specifically these diseases include cancer of tissues or hematopoietic origin; central or peripheral nervous system diseases and conditions including migraine, pain, sexual dysfunction, mood disorders, attention disorders, cognition disorders, hypotension, and hypertension; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome; neurodegenerative diseases including Alzheimer's, Parkinson's, Multiple sclerosis, and Amyotrophic lateral sclerosis; viral infections caused by HIV-1, HIV-2 or other viral- or prion-agents or fungal- or bacterial- organisms; metabolic disorders including Diabetes and obesity and their related syndromes, among others; cardiovascular disorders including reperfusion restenosis, coronary thrombosis, clotting disorders, unregulated cell growth disorders, atherosclerosis; ocular disease including glau
- the invention also features methods of treating or preventing a disease or disorder by administering to a patient in need of such treatment a substance that modulates the activity of a phosphatase polypeptide having an amino acid sequence set forth in SEQ ID NO:2.
- the disease is selected from the group consisting of rheumatoid arthritis, atherosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic and reproductive disorders, and cancer.
- the immune-related diseases and disorders are selected from the group consisting of rheumatoid arthritis, chronic inflammatory bowel disease, chronic inflammatory pelvic disease, multiple sclerosis, asthma, osteoarthritis, psoriasis, atherosclerosis, rhinitis, , and organ transplantation.
- Substances useful for treatment of phosphatase-related disorders or diseases preferably show positive results in one or more in vitro assays for an activity corresponding to treatment of the disease or disorder in question (Examples of such assays are provided and referenced herein, including Example 9).
- the substances that modulate the activity of the phosphatases preferably include, but are not limited to, antisense oligonucleotides, ribozymes, and other inhibitors of protein phosphatases, as determined by methods and screens referenced in this section and in Example 9 below, and any other suitable methods.
- antisense oligonucleotides and ribozymes are discussed more fully in the Section "Gene Therapy," below.
- preventing refers to decreasing the probability that an organism contracts or develops an abnormal condition.
- treating refers to having a therapeutic effect and at least partially alleviating or abrogating an abnormal condition in the organism.
- a therapeutic effect refers to the inhibition or activation factors causing or contributing to the abnormal condition.
- a therapeutic effect relieves to some extent one or more of the symptoms of the abnormal condition.
- a therapeutic effect can refer to one or more of the following: (a) an increase or decrease in the proliferation, growth, and/or differentiation of cells; (b) activation or inhibition (i.e., slowing or stopping) of cell death; (c) inhibition of degeneration; (d) relieving to some extent one or more of the symptoms associated with the abnormal condition; and (e) enhancing the function of the affected population of cells.
- Compounds demonstrating efficacy against abnormal conditions can be identified as described herein.
- abnormal condition refers to a function in the cells or tissues of an organism that deviates from their normal functions in that organism.
- An abnormal condition can relate to cell proliferation, cell differentiation, or cell survival.
- An abnormal condition may also include irregularities in cell cycle progression, i.e., irregularities in normal cell cycle progression through mitosis and meiosis.
- Abnormal cell proliferative conditions include cancers such as fibrotic and mesangial disorders, abnormal angiogenesis and vasculogenesis, wound healing, psoriasis, diabetes mellitus, and inflammation.
- Abnormal differentiation conditions include, but are not limited to neurodegenerative disorders, slow wound healing rates, and slow tissue grafting healing rates.
- Abnormal cell survival conditions relate to conditions in which programmed cell death (apoptosis) pathways are activated or abrogated.
- a number of protein phosphatases are associated with the apoptosis pathways. Aberrations in the function of any one of the protein phosphatases could lead to cell immortality or premature cell death.
- aberration in conjunction with the function of a phosphatase in a signal transduction process, refers to a phosphatase that is over- or under-expressed in an organism, mutated such that its catalytic activity is lower or higher than wild- type protein phosphatase activity, mutated such that it can no longer interact with a natural binding partner, is no longer modified by another protein phosphatase or protein phosphatase, or no longer interacts with a natural binding partner.
- administering relates to a method of incorporating a compound into cells or tissues of an organism.
- the abnormal condition can be prevented or treated when the cells or tissues of the organism exist within the organism or outside of the organism.
- Cells existing outside the organism can be maintained or grown in cell culture dishes.
- many techniques exist in the art to administer compounds including (but not limited to) oral, parenteral, dermal, injection, and aerosol applications.
- multiple techniques exist in the art to administer the compounds including (but not limited to) cell microinjection techniques, transformation techniques, and carrier techniques.
- the abnormal condition can also be prevented or treated by administering a compound to a group of cells having an aberration in a signal transduction pathway to an organism.
- the effect of administering a compound on organism function can then be monitored.
- the organism is preferably a mouse, rat, rabbit, guinea pig, or goat, more preferably a monkey or ape, and most preferably a human.
- the invention features methods for detection of a phosphatase polypeptide in a sample as a diagnostic tool for diseases or disorders, wherein the method comprises the steps of: (a) contacting the sample with a nucleic acid probe which hybridizes under hybridization assay conditions to a nucleic acid target region of a phosphatase polypeptide having an amino acid set forth in SEQ ID NO:2, said probe comprising the nucleic acid sequence encoding the polypeptide, fragments thereof, and the complements of the sequences and fragments; and (b) detecting the presence or amount of the probe:target region hybrid as an indication of the disease.
- the disease or disorder is selected from the group consisting of rheumatoid arthritis, arteriosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic disorders including diabetes, reproductive disorders including infertility, and cancer.
- the phosphatase "target region” is the nucleotide base sequence set forth in SEQ ID NO:l, or the corresponding full-length sequences, a functional derivative thereof, or a fragment thereof or a domain thereof to which the nucleic acid probe will specifically hybridize. Specific hybridization indicates that in the presence of other nucleic acids the probe only hybridizes detectably with the nucleic acid target regions of the phosphatase of the invention.
- Putative target regions can be identified by methods well known in the art consisting of alignment and comparison of the most closely related sequences in the database.
- the nucleic acid probe hybridizes to a phosphatase target region encoding at least 6, 12, 75, 90, 105, 120, 150, 200, 250, 300 or 350 contiguous amino acids of a sequence set forth in SEQ ID NO: 2, or the corresponding full-length amino acid sequence, or a functional derivative thereof.
- Hybridization conditions should be such that hybridization occurs only with the phosphatase genes in the presence of other nucleic acid molecules. Under stringent hybridization conditions only highly complementary nucleic acid sequences hybridize. Preferably, such conditions prevent hybridization of nucleic acids having more than 1 or 2 mismatches out of 20 contiguous nucleotides. Such conditions are defined, above.
- the diseases for which detection of phosphatase genes in a sample could be diagnostic include diseases in which phosphatase nucleic acid (DNA and/or RNA) is amplified in comparison to normal cells.
- amplification is meant increased numbers of phosphatase DNA or RNA in a cell compared with normal cells.
- phosphatases are typically found as single copy genes.
- the chromosomal location of the phosphatase genes may be amplified, resulting in multiple copies of the gene, or amplification.
- Gene amplification can lead to amplification of phosphatase RNA, or phosphatase RNA can be amplified in i the absence of phosphatase DNA amplification.
- RNA can be the detectable presence of phosphatase RNA in cells, since in some normal cells there is no basal expression of phosphatase RNA. In other normal cells, a basal level of expression of phosphatase exists, therefore in these cases amplification is the detection of at least 1 -2-fold, and preferably more, phosphatase RNA, compared to the basal level.
- the diseases that could be diagnosed by detection of phosphatase nucleic acid in a sample preferably include cancers.
- the test samples suitable for nucleic acid probing methods of the present invention include, for example, cells or nucleic acid extracts of cells, or biological fluids.
- the samples used in the above-described methods will vary based on the assay format, the detection method and the nature of the tissues, cells or extracts to be assayed. Methods for preparing nucleic acid extracts of cells are well known in the art and can be readily adapted in order to obtain a sample that is compatible with the method utilized.
- the invention features a method for detection of a phosphatase polypeptide in a sample as a diagnostic tool for a disease or disorder, wherein the method comprises: (a) comparing a nucleic acid target region encoding the phosphatase polypeptide in a sample, where the phosphatase polypeptide has an amino acid sequence set forth in SEQ ID NO:2, or one or more fragments thereof, with a control nucleic acid target region encoding the phosphatase polypeptide, or one or more fragments thereof; and (b) detecting differences in sequence or amount between the target region and the control target region, as an indication of the disease or disorder.
- the disease is selected from the group consisting of cancers, immune-related diseases and disorders, cardiovascular disease, brain or neuronal-associated diseases, and metabolic disorders. More specifically these diseases include cancer of tissues or hematopoietic origin; central or peripheral nervous system diseases and conditions including migraine, pain, sexual dysfunction, mood disorders, attention disorders, cognition disorders, hypotension, and hypertension; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome; neurodegenerative diseases including Alzheimer's, Parkinson's, Multiple sclerosis, and Amyotrophic lateral sclerosis; viral infections caused by HIV-1, HIV-2 or other viral- or prion-agents or fungal- or bacterial- organisms; metabolic disorders including Diabetes and obesity and their related syndromes, among others; cardiovascular disorders including reperfusion restenosis, coronary thrombosis, clotting disorders, unregulated cell growth disorders, atherosclerosis; ocular disease including glau
- comparing refers to identifying discrepancies between the nucleic acid target region isolated from a sample, and the control nucleic acid target region.
- the discrepancies can be in the nucleotide sequences, e.g. insertions, deletions, or point mutations, or in the amount of a given nucleotide sequence. Methods to determine these discrepancies in sequences are well-known to one of ordinary skill in the art.
- the "control" nucleic acid target region refers to the sequence or amount of the sequence found in normal cells, e.g. cells that are not diseased as discussed previously.
- sequences of this invention will be useful for screening for small molecule compounds that inhibit the catalytic activity of the encoded protein phosphatase with potential utility in treating disorders including cancers of tissues or blood particular those involving breast, colon, lung, prostate, cervical, brain, ovarian, bladder, or kidney; central or peripheral nervous system diseases and conditions including migraine, pain, sexual dysfunction, mood disorders, attention disorders, cognition disorders, hypotension, and hypertension; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome; neurodegenerative diseases including Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis; viral infections caused by HIV-1 , HIV-2 or other viral- or prion-agents or fungal- or bacterial- organisms; metabolic disorders including Diabetes and obesity and their related syndromes, among others; cardiovascular disorders including reperfusion restenosis, coronary thrombosis, clotting disorders, unregulated cell
- Figure 1 shows the nucleotide sequence for human protein phosphatase SGP037 (SEQ ID NO:1).
- Figure 2 provides the amino acid sequence (SEQ ID NO:2) for the human protein phosphatase SGP037 encoded by SEQ ID NO: 1.
- the present invention relates to the isolation and characterization of new polypeptides, nucleotide sequences encoding these polypeptides, various products and assay methods that can be used to identify compounds useful for the diagnosis and treatment of various polypeptide-related diseases and conditions, for example cancer.
- Polypeptides, preferably phosphatases, and nucleic acids encoding such polypeptides may be produced, using well-known and standard synthesis techniques when given the sequences presented herein.
- genes according to the invention can be better understood.
- the invention additionally provides a number of different embodiments, such as those described below.
- dbSNP the database of single nucleotide polymorphisms maintained atNCBI ( ' http://www.ncbi.nlm.nih.gov/SNP/index.html). None of the sequences used in this application have SNPs represented in dbSNP.
- the present invention additionally provides nucleic acid probes and uses therefor.
- a nucleic acid probe of the present invention may be used to probe an appropriate chromosomal or cDNA library by usual hybridization methods to obtain other nucleic acid molecules of the present invention.
- a chromosomal DNA or cDNA library may be prepared from appropriate cells according to recognized methods in the art (cf. "Molecular Cloning: A Laboratory Manual", second edition, Cold Spring Harbor Laboratory, Sambrook, Fritsch, & Maniatis, eds., 1989).
- nucleic acid probes having nucleotide sequences which correspond to N-terminal and C-terminal portions of the amino acid sequence of the polypeptide of interest.
- the synthesized nucleic acid probes may be used as primers in a polymerase chain reaction (PCR) carried out in accordance with recognized PCR techniques, essentially according to PCR Protocols, "A Guide to Methods and Applications", Academic Press, Michael, et al, eds., 1990, utilizing the appropriate chromosomal or cDNA library to obtain the fragment of the present invention.
- PCR polymerase chain reaction
- the hybridization probes of the present invention can be labeled by standard labeling techniques such as with a radiolabel, enzyme label, fluorescent label, biotin-avidin label, chemiluminescence, and the like. After hybridization, the probes may be visualized using known methods.
- the nucleic acid probes of the present invention include RNA, as well as
- the nucleic acid probe may be immobilized on a solid support.
- solid supports include, but are not limited to, plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, and acrylic resins, such as polyacrylamide and latex beads. Techniques for coupling nucleic acid probes to such solid supports are well known in the art.
- test samples suitable for nucleic acid probing methods of the present invention include, for example, cells or nucleic acid extracts of cells, or biological fluids.
- the samples used in the above-described methods will vary based on the assay format, the detection method and the nature of the tissues, cells or extracts to be assayed. Methods for preparing nucleic acid extracts of cells are well known in the art and can be readily adapted in order to obtain a sample which is compatible with the method utilized.
- One method of detecting the presence of nucleic acids of the invention in a sample comprises (a) contacting said sample with the above-described nucleic acid probe under conditions such that hybridization occurs, and (b) detecting the presence of said probe bound to said nucleic acid molecule.
- One skilled in the art would select the nucleic acid probe according to techniques known in the art as described above. Samples to be tested include but should not be limited to RNA samples of human tissue.
- a kit for detecting the presence of nucleic acids of the invention in a sample comprises at least one container means having disposed therein the above-described nucleic acid probe.
- the kit may further comprise other containers comprising one or more of the following: wash reagents and reagents capable of detecting the presence of bound nucleic acid probe.
- detection reagents include, but are not limited to radiolabelled probes, enzymatic labeled probes (horseradish peroxidase, alkaline phosphatase), and affinity labeled probes (biotin, avidin, or steptavidin).
- the kit further comprises instructions for use.
- a compartmentalized kit includes any kit in which reagents are contained in separate containers.
- Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allow the efficient transfer of reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another.
- Such containers will include a container which will accept the test sample, a container which contains the probe or primers used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, and the like), and containers which contain the reagents used to detect the hybridized probe, bound antibody, amplified product, or the like.
- wash reagents such as phosphate buffered saline, Tris-buffers, and the like
- a classification of the protein class and family to which it belongs a summary of non- catalytic protein motifs, as well as a chromosomal location. This information is useful in determing function, regulation and/or therapeutic utility for each of the proteins. Amplification of chromosomal region can be associated with various cancers.
- the phosphatase classification and protein domains often reflect pathways, cellular roles, or mechanisms of up- or down-stream regulation. Also disease- relevant genes often occur in families of related genes. For example, if one member of a phosphatase family functions as an oncogene, a tumor suppressor, or has been found to be disrupted in an immune, neurologic, cardiovascular, or metabolic disorder, frequently other family members may play a related role. Chromosomal location can identify candidate targets for a tumor amplicon or a tumor-suppressor locus. Summaries of prevalent tumor amplicons are available in the literature, and can identify tumor types to experimentally be confirmed to contain amplified copies of a phosphatase gene which localizes to an adjacent region. A more specific characterization of the polypeptides of the invention, including potential biological and clinical implications, is provided, e.g., in EXAMPLES 2 and 3.
- polypeptides described in the present invention belong to the group of serine-threonine phosphatases (STP). This classification relies, at least in part, on the conserved core amino acid sequence motifs that make up the catalytic domain of this class of phosphatases.
- SGP037 SEQ ID NO:2
- the Serine-threonine phosphatases can be divided into four major classes represented by PP1, PP2A, PP2B, and PP2C.
- PP2A is found associated with multiple regulatory subunits and its inactivation leads to transformation by viral components such as small T antigen. Mutations in one of the regulatory subunits have been associated with colorectal cancers consistent with a role as a tumor suppressor (Takagi et al. Gut 2000 47:268-71. Recently, PP2A has also been implicated in activation of T lymphocytes (Chuang et al.
- PP1 has been implicated in a variety of cellular functions including response to hypoxia, apoptosis and cytokinesis (Taylor et al, PNAS 2000 97:12091-96, Aylion et al. EMBO J 2000 19 2237-46, Orr et al, Infect. Immun. 2000 68: 1350-58).
- PP2C phosphatases are involved in many cellular processes, including modulation of integrin signal transduction (Leung-Hagesteijn C, et al., EMBO J. 2001 May 1;20(9):2160-2170); the regulation of the TAK1 signaling pathway (Hanada M, et al., J Biol Chem.
- the invention provides methods for detecting a polypeptide in a sample as a diagnostic tool for diseases or disorders, wherein the method comprises the steps of: (a) contacting the sample with a nucleic acid probe which hybridizes under hybridization assay conditions to a nucleic acid target region of a polypeptide of SEQ ID NO:2, said probe comprising the nucleic acid sequence encoding the polypeptide, fragments thereof, and the complements of the sequences and fragments; and (b) detecting the presence or amount of the ⁇ robe:target region hybrid as an indication of the disease.
- the disease or disorder is selected from the group consisting of rheumatoid arthritis, atherosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic disorder including diabetes, reproductive disorders including infertility, and cancer.
- Hybridization conditions should be such that hybridization occurs only with the genes in the presence of other nucleic acid molecules. Under stringent hybridization conditions only highly complementary nucleic acid sequences hybridize. Preferably, such conditions prevent hybridization of nucleic acids having 1 or 2 mismatches out of 20 contiguous nucleotides. Such conditions are defined herein.
- the diseases for which detection of genes in a sample could be diagnostic include diseases in which nucleic acid (DNA and/or RNA) is amplified in comparison to normal cells.
- amplification is meant increased numbers of DNA or RNA in a cell compared with normal cells.
- RNA can be the detectable presence of RNA in cells, since in some normal cells there is no basal expression of RNA. In other normal cells, a basal level of expression exists, therefore in these cases amplification is the detection of at least 1 -2-fold, and preferably more, compared to the basal level.
- the diseases that could be diagnosed by detection of nucleic acid in a sample preferably include cancers.
- the test samples suitable for nucleic acid probing methods of the present invention include, for example, cells or nucleic acid extracts of cells, or biological fluids. The samples used in the above-described methods will vary based on the assay format, the detection method and the nature of the tissues, cells or extracts to be assayed. Methods for preparing nucleic acid extracts of cells are well known in the art and can be readily adapted in order to obtain a sample that is compatible with the method utilized.
- the present invention relates to an antibody having binding affinity to a phosphatase of the invention.
- the polypeptide may have the amino acid sequence set forth in SEQ ID NO:2, or a functional derivative thereof, or at least 9 contiguous amino acids thereof (preferably, at least 20, 30, 35, or 40 contiguous amino acids thereof).
- the present invention also relates to an antibody having specific binding affinity to a phosphatase of the invention.
- an antibody may be isolated by comparing its binding affinity to a phosphatase of the invention with its binding affinity to other polypeptides.
- Those which bind selectively to a phosphatase of the invention would be chosen for use in methods requiring a distinction between a phosphatase of the invention and other polypeptides.
- Such methods could include, but should not be limited to, the analysis of altered phosphatase expression in tissue containing other polypeptides.
- the phosphatases of the present invention can be used in a variety of procedures and methods, such as for the generation of antibodies, for use in identifying pharmaceutical compositions, and for studying DNA/protein interaction.
- the phosphatases of the present invention can be used to produce antibodies or hybridomas.
- One skilled in the art will recognize that if an antibody is desired, such a peptide could be generated as described herein and used as an immunogen.
- the antibodies of the present invention include monoclonal and polyclonal antibodies, as well as fragments of these antibodies, and humanized forms. Humanized forms of the antibodies of the present invention may be generated using one of the procedures known in the art such as chimerization or CDR grafting.
- the present invention also relates to a hybridoma which produces the above- described monoclonal antibody, or binding fragment thereof.
- a hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.
- techniques for preparing monoclonal antibodies and hybridomas are well known in the art (Campbell, "Monoclonal Antibody Technology:
- Any animal which is known to produce antibodies can be immunized with the selected polypeptide.
- Methods for immunization are well known in the art. Such methods include subcutaneous or intraperitoneal injection of the polypeptide.
- One skilled in the art will recognize that the amount of polypeptide used for immunization will vary based on the animal which is immunized, the antigenicity of the polypeptide and the site of injection.
- the polypeptide may be modified or administered in an adjuvant in order to increase the peptide antigenicity.
- Methods of increasing the antigenicity of a polypeptide are well known in the art. Such procedures include coupling the antigen with a heterologous protein (such as globulin or ⁇ -galactosidase) or through the inclusion of an adjuvant during immunization.
- a heterologous protein such as globulin or ⁇ -galactosidase
- spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Agl4 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.
- myeloma cells such as SP2/0-Agl4 myeloma cells
- Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al, Exp. Cell Res. 175:109-124, 1988).
- Hybridomas secreting the desired antibodies are cloned and the class and subclass are determined using procedures known in the art (Campbell, "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology", supra, 1984).
- antibody-containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.
- the above-described antibodies may be detectably labeled.
- Antibodies can be detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, and the like), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, and the like) fluorescent labels (such as FITC or rhodamine, and the like), paramagnetic atoms, and the like.
- affinity labels such as biotin, avidin, and the like
- enzymatic labels such as horseradish peroxidase, alkaline phosphatase, and the like
- fluorescent labels such as FITC or rhodamine, and the like
- paramagnetic atoms and the like.
- the antibodies of the present invention may be indirectly labelled by the use of secondary labelled anti-rabbit antibodies.
- the labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues which express a specific peptide.
- the above-described antibodies may also be immobilized on a solid support.
- Such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir et al, "Handbook of Experimental Immunology” 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10, 1986; Jacoby et al, Meth. Enzym. 34, Academic Press, N.Y., 1974).
- the immobilized antibodies of the present invention can be used for in vitro, in vivo, and in situ assays as well as in immunochromotography.
- Anti-peptide peptides can be generated by replacing the basic amino acid residues found in the peptide sequences of the phosphatases of the invention with acidic residues, while maintaining hydrophobic and uncharged polar groups. For example, lysine, arginine, and/or histidine residues are replaced with aspartic acid or glutamic acid and glutamic acid residues are replaced by lysine, arginine or histidine.
- the present invention also encompasses a method of detecting a phosphatase polypeptide in a sample, comprising: (a) contacting the sample with an above- described antibody, under conditions such that immunocomplexes form, and (b) detecting the presence of said antibody bound to the polypeptide.
- the methods comprise incubating a test sample with one or more of the antibodies of the present invention and assaying whether the antibody binds to the test sample. Altered levels of a phosphatase of the invention in a sample as compared to normal levels may indicate disease.
- Incubation conditions vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the antibody used in the assay.
- immunological assay formats such as radioimmunoassays, enzyme-linked immunosorbent assays, diffusion-based Ouchterlony, or rocket immunofluorescent assays
- Examples of such assays can be found in Chard ("An Introduction to Radioimmunoassay and Related Techniques" Elsevier Science Publishers, Amsterdam, The Netherlands, 1986), Bullock et al.
- the immunological assay test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as blood, serum, plasma, or urine.
- the test samples used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can readily be adapted in order to obtain a sample which is testable with the system utilized.
- kits contains all the necessary reagents to carry out the previously described methods of detection.
- the kit may comprise: (i) a first container means containing an above-described antibody, and (ii) second container means containing a conjugate comprising a binding partner of the antibody and a label.
- the kit further comprises one or more other containers comprising one or more of the following: wash reagents and reagents capable of detecting the presence of bound antibodies.
- detection reagents include, but are not limited to, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the chromophoric, enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody.
- the compartmentalized kit may be as described above for nucleic acid probe kits.
- the antibodies described in the present invention can readily be incorporated into one of the established kit formats which are well known in the art.
- the present invention also relates to a method of detecting a compound capable of binding to a phosphatase of the invention comprising incubating the compound with a phosphatase of the invention and detecting the presence of the compound bound to the phosphatase.
- the compound may be present within a complex mixture, for example, serum, body fluid, or cell extracts.
- the present invention also relates to a method of detecting an agonist or antagonist of phosphatase activity or phosphatase binding oartner activity comprising incubating cells that produce a phosphatase of the invention in the presence of a compound and detecting changes in the level of phosphatase activity or phosphatase binding partner activity.
- the compounds thus identified would produce a change in activity indicative of the presence of the compound.
- the compound may be present within a complex mixture, for example, serum, body fluid, or cell extracts. Once the compound is identified it can be isolated using techniques well known in the art.
- the invention additionally provides methods for treating a disease or abnormal condition by administering to a patient in need of such treatment a substance that modulates the activity of a polypeptide of SEQ ID NO:2, a functional derivative thereof, and a fragment thereof.
- the disease is selected from the group consisting of rheumatoid arthritis, atherosclerosis, autoimmune disorders, organ transplantation, myocardial infarction, cardiomyopathies, stroke, renal failure, oxidative stress-related neurodegenerative disorders, metabolic and reproductive disorders, and cancer.
- Substances useful for treatment of disorders or diseases preferably show positive results in one or more assays for an activity corresponding to treatment of the disease or disorder in question
- Substances that modulate the activity of the polypeptides preferably include, but are not limited to, antisense oligonucleotides and inhibitors of protein phosphatases.
- preventing refers to decreasing the probability that an organism contracts or develops an abnormal condition.
- treating refers to having a therapeutic effect and at least partially alleviating or abrogating an abnormal condition in the organism.
- a therapeutic effect refers to the inhibition or activation of factors causing or contributing to the abnormal condition.
- a therapeutic effect relieves to some extent one or more of the symptoms of the abnormal condition.
- a therapeutic effect can refer to one or more of the following: (a) an increase or decrease in the proliferation, growth, and/or differentiation of cells; (b) inhibition (slowing or stopping) or activation of cell death; (c) inhibition of degeneration; (d) relieving to some extent one or more of the symptoms associated with the abnormal condition; and (e) enhancing the function of the affected population of cells.
- Compounds demonstrating efficacy against abnormal conditions can be identified as described herein.
- abnormal condition refers to a function in the cells or tissues of an organism that deviates from their normal functions in that organism.
- An abnormal condition can relate to cell proliferation, cell differentiation or cell survival.
- An abnormal condition may also include irregularities in cell cycle progression, i.e., irregularities in normal cell cycle progression through mitosis and meiosis.
- Abnormal cell proliferative conditions include cancers such as fibrotic and mesangial disorders, abnormal angiogenesis and vasculogenesis, wound healing, psoriasis, diabetes mellitus, and inflammation.
- Abnormal differentiation conditions include, but are not limited to, neurodegenerative disorders, slow wound healing rates, and slow tissue grafting healing rates.
- Abnormal cell survival conditions may also relate to conditions in which programmed cell death (apoptosis) pathways are activated or abrogated.
- apoptosis programmed cell death
- a number of protein phosphatases are associated with the apoptosis pathways. Aberrations in the function of any one of the protein phosphatases could lead to cell immortality or premature cell death.
- aberration in conjunction with the function of a phosphatase in a signal transduction process, refers to a phosphatase that is over- or under-expressed in an organism, mutated such that its catalytic activity is lower or higher than wild- type protein phosphatase activity, mutated such that it can no longer interact with a natural binding partner, is no longer modified by another protein kinase or protein phosphatase, or no longer interacts with a natural binding partner.
- administering relates to a method of incorporating a compound into cells or tissues of an organism.
- the abnormal condition can be prevented or treated when the cells or tissues of the organism exist within the organism or outside of the organism.
- Cells existing outside the organism can be maintained or grown in cell culture dishes.
- many techniques exist in the art to administer compounds including (but not limited to) oral, parenteral, dermal, injection, and aerosol applications.
- multiple techniques exist in the art to administer the compounds including (but not limited to) cell microinjection techniques, transformation techniques and carrier techniques.
- the abnormal condition can also be prevented or treated by administering a compound to a group of cells having an aberration in a signal transduction pathway to an organism.
- the effect of administering a compound on organism function can then be monitored.
- the organism is preferably a mouse, rat, rabbit, guinea pig or goat, more preferably a monkey or ape, and most preferably a human.
- the present invention also encompasses a method of modulating phosphatase associated activity in a mammal comprising administering to said mammal an agonist or antagonist to an amino acid sequence of SEQ ID NO:2, a functional derivative thereof, and a fragment thereof in an amount sufficient to effect said modulation.
- the present application also contemplates a method of treating diseases in a mammal with an agonist or antagonist of the activity of one of the above mentioned polypeptides of the invention comprising administering the agonist or antagonist to a mammal in an amount sufficient to agonize or antagonize a phosphatase-associated function.
- microarray expression analysis is performed to establish expression profiles of various phosphatase genes according to the invention, and thereby identify the ones whose expression correlates with certain diseased conditions.
- Such treatment may be effectuated to a wide range of diseases, including cancer, pathophysiological hypoxia, cardiovascular disorders, Papillon-Lefevre syndrome, Cowden disease, ectordermal dysplasia, M ⁇ ebius syndrome, Bjornstad syndrome, Bannayan Zonana syndrome, schizophrenia and hamartomas.
- diseases including cancer, pathophysiological hypoxia, cardiovascular disorders, Papillon-Lefevre syndrome, Cowden disease, ectordermal dysplasia, M ⁇ ebius syndrome, Bjornstad syndrome, Bannayan Zonana syndrome, schizophrenia and hamartomas.
- cancer pathophysiological hypoxia
- cardiovascular disorders Papillon-Lefevre syndrome
- Cowden disease ectordermal dysplasia
- M ⁇ ebius syndrome M ⁇ ebius syndrome
- Bjornstad syndrome Bannayan Zonana syndrome
- schizophrenia and hamartomas Of particular importance is treatment to various type of cancers.
- the present invention provides methods for treating pathologies, including breast cancer, urogenital cancer, prostate cancer, head and neck cancer, lung cancer, synovial sarcomas, renal cell carcinoma, non-small cell lung cancer, hepatocellular carcinoma, pancreatic endocrine tumors, stomach cancer, gliobastoma, colorectal cancer, and thyroid cancer.
- cDNAs made from RNA samples of a variety of tissue sources may be spotted onto nylon membranes and hybridized with radio-labeled probes derived from the phosphatase genes of interest.
- the data generated will specifically demonstrate which phosphatase genes are differentially expressed in certain diseased conditions and, thereby, form targets of the treatment method according to the present invention. That is, modulators or agents that are capable of regulating their activities, either in vivo or in vitro, may be identified and used in the treatment of the given diseased conditions.
- a method for detecting a phosphatase in a sample as a diagnostic tool for a disease or disorder using nucleotide probes derived from the phosphatase gene sequences disclosed in the present invention, such as those disclosed herein.
- diagnostic measures may be used for a wide range of diseases, including cancer, pathophysiological hypoxia, cardiovascular disorders, Papillon-Lefevre syndrome, Cowden disease, ectordermal dysplasia, Moebius syndrome, Bjornstad syndrome, Bannayan Zonana syndrome, schizophrenia and hamartomas.
- diseases including cancer, pathophysiological hypoxia, cardiovascular disorders, Papillon-Lefevre syndrome, Cowden disease, ectordermal dysplasia, Moebius syndrome, Bjornstad syndrome, Bannayan Zonana syndrome, schizophrenia and hamartomas.
- cancer pathophysiological hypoxia
- cardiovascular disorders Papillon-Lefevre syndrome, Cowden disease
- ectordermal dysplasia
- the diagnostic method of the present invention may be used to test for breast cancer, urogenital cancer, prostate cancer, head and neck cancer, lung cancer, synovial sarcomas, renal cell carcinoma, non-small cell lung cancer, hepatocellular carcinoma, pancreatic endocrine tumors, stomach cancer, gliobastoma, colorectal cancer, and thyroid cancer.
- phosphatase genes whose expression correlates with certain diseased conditions may be identified by the procedure described above.
- the data obtained from the microarray data also can be used to diagnose a patient who may be suffering from a particular pathology.
- a method of diagnosing the cancer condition connected to melanoma, according to the present invention is, therefore, to contact a test sample, which may be collected from a patient, with a nucleotide probe which is capable of hybridizing to the nucleic acid sequence which encodes the protein represented by SEQ ID NO:l; and then to detect the presence of the hybridized probe:target pairs and to quantify the level of such hybridization as an indication of the cancer condition connected to neuroblastoma.
- the expression analysis according to the preferred embodiment of this invention thus, confers specificity and effectiveness to the diagnostic method disclosed.
- comparison and correlation analysis may be carried out based on expression data generated in the way similar to that described here; they also necessarily fall in the scope of the present invention. Inferences derived from those comparison and correlation analysis may similarly be used in substantiating the diagnostic method according to this invention.
- One scenario to be noted is when pairs of samples of normal tissues and diseased tissues are used to make the expression arrays the data generated will specifically demonstrate which phosphatase genes are differentially expressed in certain diseased conditions and therefore may serve as diagnostic markers used in the aforementioned diagnostic method.
- a phosphatase in a sample as a diagnostic tool for a disease or disorder by comparing a nucleic acid target region of the phosphatase genes disclosed in the present invention, such genes encoding the amino acid sequences listed in Figure 2, with a control region; and then detecting differences in sequence or amount between the target region and control region as an indication of the disease or disorder.
- This method also may be used for diagnosing a wide range of diseases, including cancer, pathophysiological hypoxia, cardiovascular disorders, Papillon-Lefevre syndrome, Cowden disease, ectordermal dysplasia, Moebius syndrome, Bjornstad syndrome, Bannayan Zonana syndrome, schizophrenia and hamartomas.
- this particular method may similarly be used to test for breast cancer, urogenital cancer, prostate cancer, head and neck cancer, lung cancer, synovial sarcomas, renal cell carcinoma, non-small cell lung cancer, hepatocellular carcinoma, pancreatic endocrine tumors, stomach cancer, gliobastoma, colorectal cancer, and thyroid cancer.
- a target region can be any particular region of interest in a phosphatase gene, such as an upstream regulatory region. Variations of sequence in an upstream regulatory region in a phosphatase gene often have functional implications some of which may be significant in bringing about certain diseased conditions. , Changes of the amount of a target region, e.g., changes of number of copies of a regulatory region such as a receptor-binding site, in certain phosphatase genes, may also represent mechanisms of functional differentiation and hence may be connected to certain diseased states. Detection of such differences in sequence and amount of a target region compared to a control region therefore may effectively lead to detection of a diseased condition.
- microarray studies may be used to identify the potential connections between a diseased condition and variations of a target region among a set of phosphatase genes.
- nucleic acid probes may be made that correspond to a given target region and a control region, respectively, of a phosphatase gene of interest. Samples from normal and diseased tissues are used to make microarray as discussed, supra, and in Example 3.
- Hybridization of these probes to the array so made will yield comparative profiles of the region of interest in the normal and diseased condition, and thus may derive a definition of differences of the target region and control region that is characterized of the disease in question. Such definition, in turn, may serve as an indication of the diseased condition as used in the second-mentioned diagnostic method according to the present invention. It should be appreciated that many equivalent or similar methods may be used in carrying out the diagnosis according to this method which would become apparent to the skilled person in the art based on the example provided here, and therefore, they are covered in the scope of this invention.
- indolinone compounds form classes of acid resistant and membrane permeable organic molecules.
- WO 96/22976 published August 1, 1996 by Ballinari et al. describes hydrosoluble indolinone compounds that harbor tetralin, naphthalene, quinoline, and indole substituents fused to the oxindole ring. These bicyclic substituents are in turn substituted with polar moieties including hydroxylated alkyl, phosphate, and ether moieties.
- U.S. Patent Application Serial Nos. 08/702,232 filed August 23, 1996, entitled “Indolinone Combinatorial Libraries and Related Products and Methods for the Treatment of Disease" by Tang et al. (U.S. Serial No. 08/702,232) and U.S. Patent No. 5,880,141 , entitled
- substances capable of modulating phosphatase activity include, but are not limited to, tyrphostins, quinazolines, quinoxolines, and quinolines.
- the quinazolines, tyrphostins, quinolines, and quinoxolines referred to above include well known compounds such as those described in the literature.
- representative publications describing quinazolines include Barker et al, EPO Publication No. 0 520 722 Al ; Jones et al. , U.S. Patent No. 4,447,608; Kabbe et al, U.S. Patent No. 4,757,072; Kaul and Vougioukas, U.S. Patent No.
- the present invention also relates to a recombinant DNA molecule comprising, 5' to 3', a promoter effective to initiate transcription in a host cell and the above-described nucleic acid molecules.
- the present invention relates to a recombinant DNA molecule comprising a vector and an above-described nucleic acid molecule.
- the present invention also relates to a nucleic acid molecule comprising a transcriptional region functional in a cell, a sequence complementary to an RNA sequence encoding an amino acid sequence corresponding to the above- described polypeptide, and a transcriptional termination region functional in said cell.
- the above-described molecules may be isolated and/or purified DNA molecules.
- the present invention also relates to a cell or organism that contains an above-described nucleic acid molecule and thereby is capable of expressing a polypeptide.
- the polypeptide may be purified from cells which have been altered to express the polypeptide.
- a cell is said to be "altered to express a desired polypeptide" when the cell, through genetic manipulation, is made to produce a protein which it normally does not produce or which the cell normally produces at lower levels.
- One skilled in the art can readily adapt procedures for introducing and expressing either genomic, cDNA, or synthetic sequences into either eukaryotic or prokaryotic cells.
- a nucleic acid molecule such as DNA, is said to be "capable of expressing" a polypeptide if it contains nucleotide sequences which contain transcriptional and translational regulatory information and such sequences are “operably linked” to nucleotide sequences which encode the polypeptide.
- An operable linkage is a linkage in which the regulatory DNA sequences and the DNA sequence sought to be expressed are connected in such a way as to permit gene sequence expression.
- the precise nature of the regulatory regions needed for gene sequence expression may vary from organism to organism, but shall in general include a promoter region which, in prokaryotes, contains both the promoter (which directs the initiation of RNA transcription) as well as the DNA sequences which, when transcribed into RNA, will signal synthesis initiation. Such regions will normally include those 5'- non-coding sequences involved with initiation of transcription and translation, such as the TATA box, capping sequence, CAAT sequence, and the like.
- the non-coding region 3' to the sequence encoding a phosphatase of the invention may be obtained by the above-described methods.
- This region may be retained for its transcriptional termination regulatory sequences, such as termination and polyadenylation.
- the transcriptional termination signals may be provided. Where the transcriptional termination signals are not satisfactorily functional in the expression host cell, then a 3' region functional in the host cell may be substituted.
- Two DNA sequences are said to be operably linked if the nature of the linkage between the two DNA sequences allows the protase phosphatase sequence to be transcribed, i.e., where the linkage does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region sequence to direct the transcription of a gene sequence encoding a phosphatase of the invention, or (3) interfere with the ability of the gene sequence of a phosphatase of the invention to be transcribed by the promoter region sequence.
- a promoter region would be operably linked to a DNA sequence if the promoter were capable of effecting transcription of that DNA sequence.
- transcriptional and translational signals recognized by an appropriate host are necessary to express a gene encoding a phosphatase of the invention.
- the present invention encompasses the expression of a gene encoding a phosphatase of the invention (or a functional derivative thereof) in either prokaryotic or eukaryotic cells.
- Prokaryotic hosts are, generally, very efficient and convenient for the production of recombinant proteins and are, therefore, one type of preferred expression system for phosphatases of the invention.
- Prokaryotes most frequently are represented by various strains of E. coli. However, other microbial strains may also be used, including other bacterial strains.
- plasmid vectors that contain replication sites and control sequences derived from a species compatible with the host may be used.
- suitable plasmid vectors may include pBR322, pUCl 18, pUCl 19 and the like; suitable phage or bacteriophage vectors may include ⁇ gtlO, ⁇ gtl 1 and the like; and suitable virus vectors may include pMAM-neo, pKRC and the like.
- the selected vector of the present invention has the capacity to replicate in the selected host cell. Recognized prokaryotic hosts include bacteria such as E. coli, Bacillus, Streptomyces, Pseudomonas, Salmonella, Serratia, and the like.
- the prokaryotic host must be compatible with the replicon and control sequences in the expression plasmid.
- a phosphatase of the invention or a functional derivative thereof in a prokaryotic cell, it is necessary to operably link the sequence encoding the phosphatase of the invention to a functional prokaryotic promoter.
- Such promoters may be either constitutive or, more preferably, regulatable (i.e., inducible or derepressible).
- constitutive promoters include the int promoter of bacteriophage ⁇ , the bla promoter of the ⁇ -lactamase gene sequence of pBR322, and the cat promoter of the chloramphenicol acetyl transferase gene sequence of pPR325, and the like.
- inducible prokaryotic promoters include the major right and left promoters of bacteriophage ⁇ (PL and P R ), the trp, recA, ⁇ acZ, ⁇ acl, and gal promoters of E. coli, the ⁇ -amylase (Ulmanen et al, J. Bacteriol. 162:176-182, 1985) and the ⁇ -28-specific promoters of B.
- subtilis (Gilman et al, Gene Sequence 32:11-20, 1984), the promoters of the bacteriophages of Bacillus (Gryczan, In: The Molecular Biology of the Bacilli, Academic Press, Inc., NY, 1982), and Streptomyces promoters (Ward et al, Mol. Gen. Genet. 203:468-478, 1986).
- Prokaryotic promoters are reviewed by Glick (Ind. Microbiot. 1:277-282, 1987), Cenatiempo (Biochimie 68:505-516, 1986), and Gottesman (Ann. Rev. Genet. 18:415-442, 1984).
- ribosome-binding site upstream of the gene sequence-encoding sequence.
- Such ribosome-binding sites are disclosed, for example, by Gold et al. (Ann. Rev. Microbiol. 35:365-404, 1981).
- the selection of control sequences, expression vectors, transformation methods, and the like, are dependent on the type of host cell used to express the gene.
- “cell”, “cell line”, and “cell culture” may be used interchangeably and all such designations include progeny.
- the words “transformants” or “transformed cells” include the primary subject cell and cultures derived therefrom, without regard to the number of transfers.
- progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. However, as defined, mutant progeny have the same functionality as that of the originally transformed cell.
- Host cells which may be used in the expression systems of the present invention are not strictly limited, provided that they are suitable for use in the expression of the phosphatase polypeptide of interest. Suitable hosts may often include eukaryotic cells. Preferred eukaryotic hosts include, for example, yeast, fungi, insect cells, mammalian cells either in vivo, or in tissue culture. Mammalian cells which may be useful as hosts include HeLa cells, cells of fibroblast origin such as VERO or CHO-K1, or cells of lymphoid origin and their derivatives.
- Preferred mammalian host cells include SP2/0 and J558L, as well as neuroblastoma cell lines such as IMR 332, which may provide better capacities for correct post-translational processing.
- plant cells are also available as hosts, and control sequences compatible with plant cells are available, such as the cauliflower mosaic virus 35S and 19S, and nopaline synthase promoter and polyadenylation signal sequences.
- Another preferred host is an insect cell, for example the Drosophila larvae. Using insect cells as hosts, the Drosophila alcohol dehydrogenase promoter can be used (Rubin, Science 240:1453-1459, 1988).
- baculovirus vectors can be engineered to express large amounts of phosphatases of the invention in insect cells (Jasny, Science 238:1653, 1987; Miller et al, In: Genetic Engineering, Vol. 8, Plenum, Setlow et al, eds., pp. 277-297, 1986).
- yeast expression systems Any of a series of yeast expression systems can be utilized which incorporate promoter and termination elements from the actively expressed sequences coding for glycolytic enzymes that are produced in large quantities when yeast are grown in mediums rich in glucose. Known glycolytic gene sequences can also provide very efficient transcriptional control signals. Yeast provides substantial advantages in that it can also carry out post-translational modifications. A number of recombinant DNA strategies exist utilizing strong promoter sequences and high copy number plasmids which can be utilized for production of the desired proteins in yeast. Yeast recognizes leader sequences on cloned mammalian genes and secretes peptides bearing leader sequences (i.e., pre-peptides).
- transcriptional and translational regulatory signals may be employed, depending upon the nature of the host.
- the transcriptional and translational regulatory signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, cytomegalovirus, simian virus, or the like, where the regulatory signals are associated with a particular gene sequence which has a high level of expression.
- promoters from mammalian expression products such as actin, collagen, myosin, and the like, may be employed.
- Transcriptional initiation regulatory signals may be selected which allow for repression or activation, so that expression of the gene sequences can be modulated.
- regulatory signals which are temperature-sensitive so that by varying the temperature, expression can be repressed or initiated, or are subject to chemical (such as metabolite) regulation.
- eukaryotic regulatory regions Such regions will, in general, include a promoter region sufficient to direct the initiation of RNA synthesis.
- Preferred eukaryotic promoters include, for example, the promoter of the mouse metallothionein I gene sequence (Hamer et al, J. Mol. Appl. Gen. 1:273-288, 1982); the TK promoter of Herpes virus (McKnight, Cell 31:355-365, 1982); the SV40 early promoter (Benoist et al, Nature (London) 290:304-31, 1981); and the yeast gal4 gene sequence promoter (Johnston et al, Proc. Natl. Acad. Sci. (USA) 79:6971- 6975, 1982; Silver et al, Proc. Natl. Acad. Sci. (USA) 81:5951-5955, 1984).
- eukaryotic mRNA Translation of eukaryotic mRNA is initiated at the codon which encodes the first methionine. For this reason, it is preferable to ensure that the linkage between a eukaryotic promoter and a DNA sequence which encodes a phosphatase of the invention (or a functional derivative thereof) does not contain any intervening codons which are capable of encoding a methionine (i.e., AUG). The presence of such codons results either in the formation of a fusion protein (if the AUG codon is in the same reading frame as the phosphatase of the invention coding sequence) or a frame-shift mutation (if the AUG codon is not in the same reading frame as the phosphatase of the invention coding sequence).
- a nucleic acid molecule encoding a phosphatase of the invention and an operably linked promoter may be introduced into a recipient prokaryotic or eukaryotic cell either as a nonreplicating DNA or RNA molecule, which may either be a linear molecule or, more preferably, a closed covalent circular molecule. Since such molecules are incapable of autonomous replication, the expression of the gene may occur through the transient expression of the introduced sequence. Alternatively, permanent expression may occur through the integration of the introduced DNA sequence into the host chromosome.
- a vector may be employed which is capable of integrating the desired gene sequences into the host cell chromosome.
- Cells which have stably integrated the introduced DNA into their chromosomes can be selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector.
- the marker may provide for prototrophy to an auxotrophic host, biocide resistance, e.g. , antibiotics, or heavy metals, such as copper, or the like.
- the selectable marker gene sequence can either be directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as transcription promoters, enhancers, and termination signals. cDNA expression vectors incorporating such elements include those described by Okayama (Mol. Cell. Biol. 3:280-289, 1983).
- the introduced nucleic acid molecule can be incorporated into a plasmid or viral vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors may be employed for this purpose. Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.
- Preferred prokaryotic vectors include plasmids such as those capable of replication in E. coli (such as, for example, pBR322, Col ⁇ l, pSClOl, pACYC 184, ⁇ VX; "Molecular Cloning: A Laboratory Manual", 1989, supra).
- Bacillus plasmids include ⁇ C194, pC221, ⁇ T127, and the like (Gryczan, In: The Molecular Biology of the Bacilli, Academic Press, NY, pp. 307-329, 1982).
- Suitable Streptomyces plasmids include plJlOl (Kendall et al, J. Bacteriol.
- Preferred eukaryotic plasmids include, for example, BPV, vaccinia, SV40, 2- micron circle, and the like, or their derivatives.
- Such plasmids are well known in the art (Botstein et al, Miami Wntr. Symp. 19:265-274, 1982; Broach, In: "The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance", Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 445-470, 1981; Broach, Cell 28:203-204, 1982; Bollon et ⁇ /., J. Clin. Hematol. Oncol. 10:39-48, 1980; Maniatis, In: Cell Biology: A Comprehensive Treatise, Vol. 3, Gene Sequence Expression, Academic Press, NY, pp. 563-608, 1980).
- the DNA construct(s) may be introduced into an appropriate host cell by any of a variety of suitable means, i.e., transformation, transfection, conjugation, protoplast fusion, electroporation, particle gun technology, calcium phosphate-precipitation, direct microinjection, and the like.
- recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned gene(s) results in the production of a phosphatase of the invention, or fragments thereof.
- DNA can be injected into the pronucleus of a fertilized egg before fusion of the male and female pronuclei, or injected into the nucleus of an embryonic cell (e.g., the nucleus of a two-cell embryo) following the initiation of cell division (Brinster et al, Proc. Nat. Acad. Sci. USA 82:4438-4442, 1985).
- Embryos can be infected with viruses, especially retroviruses, modified to carry inorganic-ion receptor nucleotide sequences of the invention.
- Pluripotent stem cells derived from the inner cell mass of the embryo and stabilized in culture can be manipulated in culture to incorporate nucleotide sequences of the invention.
- a transgenic animal can be produced from such cells through implantation into a blastocyst that is implanted into a foster mother and allowed to come to term. Animals suitable for transgenic experiments can be obtained from standard commercial sources such as Charles River (Wilmington, MA), Taconic (Germantown, NY), Harlan Sprague Dawley (Indianapolis, IN), etc.
- transgenic mouse female mice are induced to superovulate. Females are placed with males, and the mated females are sacrificed by CO 2 asphyxiation or cervical dislocation and embryos are recovered from excised oviducts. Surrounding cumulus cells are removed. Pronuclear embryos are then washed and stored until the time of injection. Randomly cycling adult female mice are paired with vasectomized males. Recipient females are mated at the same time as donor females. Embryos then are transferred surgically. The procedure for generating transgenic rats is similar to that of mice (Hammer et al, Cell 63:1099-1112, 1990).
- a clone containing the sequence(s) of the invention is co-transfected with a gene encoding resistance.
- the gene encoding neomycin resistance is physically linked to the sequence(s) of the invention.
- DNA molecules introduced into ES cells can also be integrated into the chromosome through the process of homologous recombination (Capecchi, Science 244:1288-1292, 1989).
- Methods for positive selection of the recombination event (i.e., neo resistance) and dual positive-negative selection (i.e., neo resistance and gancyclovir resistance) and the subsequent identification of the desired clones by PCR have been described by Capecchi, supra and Joyner et al. (Nature 338:153-156, 1989), the teachings of which are incorporated herein in their entirety including any drawings.
- the final phase of the procedure is to inject targeted ES cells into blastocysts and to transfer the blastocysts into pseudopregnant females.
- the resulting chimeric animals are bred and the offspring are analyzed by Southern blotting to identify individuals that carry the transgene.
- Procedures for the production of non-rodent mammals and other animals have been discussed by others (Houdebine and Chourrout, supra; Pursel et al, Science 244:1281-1288, 1989; and Simms et al, Bio/Technology 6:179-183, 1988).
- the invention provides transgenic, nonhuman mammals containing a transgene encoding a phosphatase of the invention or a gene affecting the expression of the phosphatase.
- Such transgenic nonhuman mammals are particularly useful as an in vivo test system for studying the effects of introduction of a phosphatase, or regulating the expression of a phosphatase(z. e. , through the introduction of additional genes, antisense nucleic acids, or ribozymes).
- transgenic animal is an animal having cells that contain DNA which has been artificially inserted into a cell, which DNA becomes part of the genome of the animal which develops from that cell.
- Preferred transgenic animals are primates, mice, rats, cows, pigs, horses, goats, sheep, dogs and cats.
- the transgenic DNA may encode human phosphatases. Native expression in an animal may be reduced by providing an amount of antisense RNA or DNA effective to reduce expression of the receptor.
- Gene Therapy Phosphatases or their genetic sequences will also be useful in gene therapy
- an expression vector containing a phosphatase coding sequence is inserted into cells, the cells are grown in vitro and then infused in large numbers into patients.
- a DNA segment containing a promoter of choice is transferred into cells containing an endogenous gene encoding phosphatases of the invention in such a manner that the promoter segment enhances expression of the endogenous phosphatase gene (for example, the promoter segment is transferred to the cell such that it becomes directly linked to the endogenous phosphatase gene).
- a promoter of choice for example a strong promoter
- the gene therapy may involve the use of an adenovirus containing phosphatase cDNA targeted to a tumor, systemic phosphatase increase by implantation of engineered cells, injection with phosphatase-encoding virus, or injection of naked phosphatase DNA into appropriate tissues.
- Target cell populations may be modified by introducing altered forms of one or more components of the protein complexes in order to modulate the activity of such complexes. For example, by reducing or inhibiting a complex component activity within target cells, an abnormal signal transduction event(s) leading to a condition may be decreased, inhibited, or reversed. Deletion or missense mutants of a component, that retain the ability to interact with other components of the protein complexes but cannot function in signal transduction, may be used to inhibit an abnormal, deleterious signal transduction event.
- Expression vectors derived from viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, several RNA viruses, or bovine papilloma virus, may be used for delivery of nucleotide sequences (e.g., cDNA) encoding recombinant phosphatase of the invention protein into the targeted cell population (e.g. , tumor cells).
- viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, several RNA viruses, or bovine papilloma virus.
- recombinant viral vectors containing coding sequences can be used to construct recombinant viral vectors containing coding sequences (Maniatis et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NT., 1989; Ausubel et al, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y., 1989).
- recombinant nucleic acid molecules encoding protein sequences can be used as naked DNA or in a reconstituted system e.g., liposomes or other lipid systems for delivery to target cells (e.g., Feigner et al, Nature 337:387-8, 1989).
- Several other methods for the direct transfer of plasmid DNA into cells exist for use in human gene therapy and involve targeting the DNA to receptors on cells by complexing the plasmid DNA to proteins (Miller, supra).
- gene transfer can be performed by simply injecting minute amounts of DNA into the nucleus of a cell, through a process of microinjection (Capecchi, Cell 22:479-88, 1980). Once recombinant genes are introduced into a cell, they can be recognized by the cell's normal mechanisms for transcription and translation, and a gene product will be expressed. Other methods have also been attempted for introducing DNA into larger numbers of cells. These methods include: transfection, wherein DNA is precipitated with calcium phosphate and taken into cells by pinocytosis (Chen et al, Mol Cell Biol.
- adenovirus proteins are capable of destabilizing endosomes and enhancing the uptake of DNA into cells.
- the admixture of adenovirus to solutions containing DNA complexes, or the binding of DNA to polylysine covalently attached to adenovirus using protein crosslinking agents substantially improves the uptake and expression of the recombinant gene (Curiel et al, Am. J. Respir. Cell. Mol. Biol, 6:247-52, 1992).
- Gene transfer means the process of introducing a foreign nucleic acid molecule into a cell. Gene transfer is commonly performed to enable the expression of a particular product encoded by the gene.
- the product may include a protein, polypeptide, anti-sense DNA or RNA, or enzymatically active RNA.
- Gene transfer can be performed in cultured cells or by direct administration into animals. Generally gene transfer involves the process of nucleic acid contact with a target cell by non-specific or receptor mediated interactions, uptake of nucleic acid into the cell through the membrane or by endocytosis, and release of nucleic acid into the cytoplasm from the plasma membrane or endosome.
- Gene therapy is a form of gene transfer and is included within the definition of gene transfer as used herein and specifically refers to gene transfer to express a therapeutic product from a cell in vivo or in vitro. Gene transfer can be performed ex vivo on cells which are then transplanted into a patient, or can be performed by direct administration of the nucleic acid or nucleic acid-protein complex into the patient.
- a vector having nucleic acid sequences encoding a phosphatase polypeptide in which the nucleic acid sequence is expressed only in specific tissue.
- Methods of achieving tissue-specific gene expression are set forth in International Publication No. WO 93/09236, filed November 3, 1992 and published May 13, 1993.
- nucleic acid sequence contained in the vector may include additions, deletions or modifications to some or all of the sequence of the nucleic acid, as defined above.
- Expression, including over-expression, of a phosphatase polypeptide of the invention can be inhibited by administration of an antisense molecule that bmds to and inhibits expression of the mRNA encoding the polypeptide.
- expression can be inhibited in an analogous manner using a ribozyme that cleaves the mRNA.
- General methods of using antisense and ribozyme technology to control gene expression, or of gene therapy methods for expression of an exogenous gene in this manner are well known in the art.
- ribozyme refers to an RNA structure of one or more RNAs having catalytic properties. Ribozymes generally exhibit endonuclease, ligase or polymerase activity. Ribozymes are structural RNA molecules which mediate a number of RNA self-cleavage reactions. Various types of trans-acting ribozymes, including "hammerhead” and “hairpin” types, which have different secondary structures, have been identified. A variety of ribozymes have been characterized. See, for example, U.S. Pat. Nos.
- antisense refers of nucleic acid molecules or their derivatives which specifically hybridize, e.g., bind, under cellular conditions, with the genomic DNA and/or cellular mRNA encoding a phosphatase polypeptide of the invention, so as to inhibit expression of that protein, for example, by inhibiting transcription and/or translation.
- the binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.
- the antisense construct is an nucleic acid which is generated ex vivo and that, when introduced into the cell, can inhibit gene expression by, without limitation, hybridizing with the mRNA and/or genomic sequences of a phosphatase polynucleotide of the invention.
- Antisense approaches can involve the design of oligonucleotides (either DNA or RNA) that are complementary to phosphatase polypeptide mRNA and are based on the phosphatase polynucleotides of the invention, including SEQ ID NO:l.
- the antisense oligonucleotides will bind to the phosphatase polypeptide mRNA transcripts and prevent translation. Although absolute complementarity is preferred, it is not required.
- a sequence "complementary" to a portion of an RNA means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
- the ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be).
- One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- oligonucleotides that are complementary to the 5' end of the message should work most efficiently at inhibiting translation.
- sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. (Wagner, R. (1994) Nature 372:333).
- Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention.
- antisense nucleic acids should be at least six nucleotides in length, and are preferably less than about 100 and more preferably less than about 50 or 30 nucleotides in length. Typically they should be between 10 and 25 nucleotides in length.
- the antisense sequence is selected from an oligonucleotide sequence that comprises, consists of, or consists essentially of about 10-30, and more preferably 15-25, contiguous nucleotide bases of a nucleic acid sequence selected from the group consisting of SEQ ID NO:l or domains thereof.
- the invention includes an isolated, enriched or purified nucleic acid molecule comprising, consisting of or consisting essentially of about 10-30, and more preferably 15-25 contiguous nucleotide bases of a nucleic acid sequence that encodes a polypeptide of SEQ ID NO:2.
- antisense oligonucleotides can be designed. Such antisense oligonucleotides would be administered to cells expressing the target phosphatase and the levels of the target RNA or protein with that of an internal control RNA or protein would be compared. Results obtained using the antisense oligonucleotide would also be compared with those obtained using a suitable control oligonucleotide.
- a preferred control oligonucleotide is an oligonucleotide of approximately the same length as the test oligonucleotide. Those antisense oligonucleotides resulting in a reduction in levels of target RNA or protein would be selected.
- the oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
- the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc.
- the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6553- 6556; Lemaifre et al.
- the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization- triggered cleavage agent, etc.
- the antisense oligonucleotide may comprise at least one modified base moiety which is selected from moieties such as 5-fluorouracil, 5-bromouracil, 5- chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, and 5- (carboxyhydroxyethyl) uracil.
- the antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
- the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof, (see also U.S. Pat. Nos. 5,176,996; 5,264,564; and 5,256,775)
- the antisense oligonucleotide is an ⁇ -anomeric oligonucleotide.
- An ⁇ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gautier et al. (1987) Nucl Acids Res. 15:6625- 6641).
- the oligonucleotide is a 2'-0-methylribonucleotide (lnoue et al. (1987) Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (lnoue et al.
- an antisense construct of the present invention can be delivered, for example, as an expression plasmid or vector that, when transcribed in the cell, produces RNA complementary to at least a unique portion of the cellular mRNA which encodes a phosphatase polypeptide of the invention. While antisense nucleotides complementary to the phosphatase polypeptide coding region sequence can be used, those complementary to the transcribed untranslated region are most preferred.
- Gene replacement means supplying a nucleic acid sequence which is capable of being expressed in vivo in an animal and thereby providing or augmenting the function of an endogenous gene which is missing or defective in the animal.
- the compounds described herein including phosphatase polypeptides of the invention, antisense molecules, ribozymes, and any other compound that modulates the activity of a phosphatase polypeptide of the invention, can be administered to a human patient per se, or in pharmaceutical compositions where it is mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s).
- Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, PA, latest edition.
- Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intrameduUary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections.
- compositions of the present invention may be manufactured in a manner that is itself known, e.g. , by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
- compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
- the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
- Suitable carriers include excipients such as, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl- cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
- disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings.
- suitable coatings For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
- Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
- compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotefrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotefrafluoroethane, carbon dioxide or other suitable gas.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- a suitable vehicle e.g., sterile pyrogen-free water
- the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
- the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- a pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water- miscible organic polymer, and an aqueous phase.
- the cosolvent system may be the VPD co-solvent system.
- VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
- the VPD co-solvent system (VPD:D5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
- co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
- hydrophobic pharmaceutical compounds may be employed.
- Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
- Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.
- the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
- sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.
- additional strategies for protein stabilization may be employed.
- compositions also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- tyrosine or serine/threonine phosphatase modulating compounds of the invention may be provided as salts with pharmaceutically compatible counterions.
- Pharmaceutically compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents that are the corresponding free base forms.
- compositions suitable for use in the present invention include compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. Methods of determining the dosages of compounds to be administered to a patient and modes of administering compounds to an organism are disclosed in U.S. Application Serial No. 08/702,282, filed August 23, 1996 and International patent publication number WO 96/22976, published August 1 1996, both of which are incorporated herein by reference in their entirety, including any drawings, figures or tables. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.
- Therapeutically effective doses for the compounds described herein can be estimated initially from cell culture and animal models. For example, a dose can be formulated in animal models to achieve a circulating concentration range that initially takes into account the IC 50 as determined in cell culture assays. The animal model data can be used to more accurately determine useful doses in humans.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC 50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the tyrosine or serine/threonine phosphatase activity). Such information can be used to more accurately determine useful doses in humans.
- Toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD 50 and ED 50 .
- Compounds which exhibit high therapeutic indices are preferred.
- the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- Toxicity studies can also be carried out by measuring the blood cell composition.
- toxicity studies can be carried out in a suitable animal model as follows: 1) the compound is administered to mice (an untreated control mouse should also be used); 2) blood samples are periodically obtained via the tail vein from one mouse in each treatment group; and 3) the samples are analyzed for red and white blood cell counts, blood cell composition and the percent of lymphocytes versus polymorphonuclear cells. A comparison of results for each dosing regime with the controls indicates if toxicity is present.
- the expected daily dose of a hydrophobic pharmaceutical agent is between 1 to 500 mg/day, preferably 1 to 250 mg/day, and most preferably 1 to 50 mg/day. Drugs can be delivered less frequently provided plasma levels of the active moiety are sufficient to maintain therapeutic effectiveness.
- Plasma levels should reflect the potency of the drug. Generally, the more potent the compound the lower the plasma levels necessary to achieve efficacy. Plasma half-life and biodistribution of the drug and metabolites in the plasma, tumors and major organs can also be determined to facilitate the selection of drugs most appropriate to inhibit a disorder. Such measurements can be carried out. For example, HPLC analysis can be performed on the plasma of animals treated with the drug and the location of radiolabeled compounds can be determined using detection methods such as X-ray, CAT scan and MRI. Compounds that show potent inhibitory activity in the screening assays, but have poor pharmacokinetic characteristics, can be optimized by altering the chemical structure and retesting. In this regard, compounds displaying good pharmacokinetic characteristics can be used as a model.
- Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the phosphatase modulating effects, or minimal effective concentration (MEC).
- MEC minimal effective concentration
- the MEC will vary for each compound but can be estimated from in vitro data; e.g., the concentration necessary to achieve 50-90% inhibition of the phosphatase using the assays described herein. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
- Dosage intervals can also be determined using MEC value.
- Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.
- the effective local concentration of the drug may not be related to plasma concentration.
- the amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
- compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
- the pack may for example comprise metal or plastic foil, such as a blister pack.
- the pack or dispenser device may be accompanied by instructions for administration.
- the pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the polynucleotide for human or veterinary adminisfration.
- Such notice for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert.
- compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
- Suitable conditions indicated on the label may include treatment of a tumor, inhibition of angiogenesis, treatment of fibrosis, diabetes, and the like.
- a functional derivative is meant a “chemical derivative,” “fragment,” or “variant,” of the polypeptide or nucleic acid of the invention, which terms are defined below.
- a functional derivative retains at least a portion of the function of the protein, for example reactivity with an antibody specific for the protein, enzymatic activity or binding activity mediated through noncatalytic domains, which permits its utility in accordance with the present invention. It is well known in the art that due to the degeneracy of the genetic code numerous different nucleic acid sequences can code for the same amino acid sequence. Equally, it is also well known in the art that conservative changes in amino acid can be made to arrive at a protein or polypeptide that retains the functionality of the original. In both cases, all permutations are intended to be covered by this disclosure.
- nucleic acid sequence can vary substantially since, with the exception of methionine and tryptophan, the known amino acids can be coded for by more than one codon.
- portions or all of the genes of the invention could be synthesized to give a nucleic acid sequence significantly different from that set forth in SEQ ID NO: 1. The encoded amino acid sequence thereof would, however, be preserved.
- nucleic acid sequence may comprise a nucleotide sequence which results from the addition, deletion or substitution of at least one nucleotide to the 5'-end and/or the 3'-end of the nucleic acid formula set forth in SEQ ID NO:l, or a derivative thereof.
- Any nucleotide or polynucleotide may be used in this regard, provided that its addition, deletion or substitution does not alter the amino acid sequence of that set forth in SEQ ID NO:2, which is encoded by the nucleotide sequence.
- the present invention is intended to include any nucleic acid sequence resulting from the addition of ATG as an initiation codon at the 5'-end of the inventive nucleic acid sequence or its derivative, or from the addition of TTA, TAG or TGA as a termination codon at the 3 '-end of the inventive nucleotide sequence or its derivative.
- the nucleic acid molecule of the present invention may, as necessary, have restriction endonuclease recognition sites added to its 5'-end and/or 3'-end.
- nucleic acid sequence affords an opportunity to promote secretion and/or processing of heterologous proteins encoded by foreign nucleic acid sequences fused thereto.
- All variations of the nucleotide sequence of the phosphatase genes of the invention and fragments thereof permitted by the genetic code are, therefore, included in this invention.
- the two polypeptides are functionally equivalent, as are the two nucleic acid molecules that give rise to their production, even though the differences between the nucleic acid molecules are not related to the degeneracy of the genetic code.
- a "chemical derivative" of the complex contains additional chemical ⁇ moieties not normally a part of the protein. Covalent modifications of the protein or peptides are included within the scope of this invention. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the peptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues, as described below.
- Cysteinyl residues most commonly are reacted with alpha-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, chloroacetyl phosphate, N- alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p- chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2- oxa-l,3-diazole. Histidyl residues are derivatized by reaction with diethylprocarbonate at pH
- Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect or reversing the charge of the lysinyl residues.
- Other suitable reagents for derivatizing primary amine containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase- catalyzed reaction with glyoxylate.
- Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine alpha-amino group.
- Tyrosyl residues are well-known targets of modification for introduction of spectral labels by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizol and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.
- Carboxyl side groups are selectively modified by reaction with carbodiimide (R'-N-C-N-R) such as l-cyclohexyl-3-(2-morpholinyl(4- ethyl) carbodiimide or l-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
- carbodiimide R'-N-C-N-R
- aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
- Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.
- Derivatization with bifunctional agents is useful, for example, for cross- linking the component peptides of the protein to each other or to other proteins in a complex to a water-insoluble support matrix or to other macromolecular carriers.
- Commonly used cross-linking agents include, for example, 1 , 1 -bis(diazoacetyl)-2- phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-l,8-octane.
- Derivatizing agents such as methyl-3-[p-azidophenyl) dithiolpropioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light.
- reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.
- Such derivatized moieties may improve the stability, solubility, absorption, biological half-life, and the like.
- the moieties may alternatively eliminate or attenuate any undesirable side effect of the protein complex and the like.
- Moieties capable of mediating such effects are disclosed, for example, in Remington's
- fragment is used to indicate a polypeptide derived from the amino acid sequence of the proteins, of the complexes having a length less than the full- length polypeptide from which it has been derived.
- a fragment may, for example, be produced by proteolytic cleavage of the full-length protein.
- the fragment is obtained recombinantly by appropriately modifying the DNA sequence encoding the proteins to delete one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence.
- Fragments of a protein are useful for screening for substances that act to modulate signal transduction, as described herein. It is understood that such fragments may retain one or more characterizing portions of the native complex. Examples of such retained characteristics include: catalytic activity; substrate specificity; interaction with other molecules in the intact cell; regulatory functions; or binding with an antibody specific for the native complex, or an epitope thereof.
- variant polypeptide which either lacks one or more amino acids or contains additional or substituted amino acids relative to the native polypeptide.
- the variant may be derived from a naturally occurring complex component by appropriately modifying the protein DNA coding sequence to add, remove, and/or to modify codons for one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence. It is understood that such variants having added, substituted and/or additional amino acids retain one or more characterizing portions of the native protein, as described above.
- a functional derivative of a protein with deleted, inserted and/or substituted amino acid residues may be prepared using standard techniques well-known to those of ordinary skill in the art.
- the modified components of the functional derivatives may be produced using site-directed mutagenesis techniques (as exemplified by Adelman et al. , 1983, DNA 2: 183) wherein nucleotides in the DNA coding the sequence are modified such that a modified coding sequence is modified, and thereafter expressing this recombinant DNA in a prokaryotic or eukaryotic host cell, using techniques such as those described above.
- site-directed mutagenesis techniques as exemplified by Adelman et al. , 1983, DNA 2: 183
- nucleotides in the DNA coding the sequence are modified such that a modified coding sequence is modified, and thereafter expressing this recombinant DNA in a prokaryotic or eukaryotic host cell, using techniques such as those described above.
- proteins with amino acid deletions, insertions and/or substitutions may be conveniently prepared by direct chemical synthesis, using methods well-known in the art.
- the functional derivatives of the proteins typically exhibit the same qualitative biological activity
- the invention also provides methods for determining whether a nucleic acid sequence encodes a phosphatase, according to the invention, which contains one or more characterizing portions of the native complex.
- examples of such retained characteristics include: catalytic activity; substrate specificity; interaction with other molecules in the intact cell; regulatory functions; or binding with an antibody specific for the native complex, or an epitope thereof.
- the invention provides an assay analyzing one or more characteristics — in particular, the presence of a catalytic domain - of a polypeptide phosphatase encoded by a given nucleic acid molecule.
- a suitable assay can begin by purifying and quantitating a phosphatase protein.
- the protein then can be assayed, for example, by serial dilution and incubation in a buffer (e.g. ABT buffer) comprising a substrate capable of undergoing hydrolysis and optionally a reducing agent capable of increasing any catalytic activity of the polypeptide.
- a buffer e.g. ABT buffer
- the substrate is p- nitrophenyl phosphate (pNPP) and the reducing agent is dithiothreitol (DTT), at mM concentrations of 4X and IX, respectively.
- Incubation can be at room temperature from about 2 minutes to overnight, depending on activity.
- NaOH which can be about 100 ul of 10 N NaOH.
- the suspension can be centrifuged and the supernatant analyzed at an OD of 410 nM to determine whether the protein phosphatase exhibited catalytic properties.
- Table 1 documents the name of each gene, the classification of each gene product, the positions of the open reading frames within the sequence, and the length of the corresponding peptide. From top to bottom the data presented is as follows: “Gene Name”, “ID#na”, “ID#aa”, “FL/Cat”, “Superfamily”, “Group”, “Family”, “NA ength”, “ORF Start”, “ORF End”, “ORF Length”, and “AA ength”.
- “Gene name” refers to name given the sequence encoding the phosphatase or phosphatase- like enzyme.
- Each gene is represented by "SGP” designation followed by an arbitrary number. The SGP name usually represents multiple overlapping sequences built into a single contiguous sequence (a “contig”).
- ID#na and ID#aa refer to the identification numbers given each nucleic acid and amino acid sequence in this patent application.
- FL/Cat refers to the length of the gene, with FL indicating full length, and “Cat' indicating that only the catalytic domain is presented.
- Partial in this column indicates that the sequence encodes a partial protein phosphatase catalytic domain.
- Superfamily identifies whether the gene is a dual specificity phosphatase, a protein tyrosine phosphatase or a serine threonine phosphatase.
- Group and “Family” refer to the phosphatase classification defined by sequence homology and based on previously established phylogenetic (The Protein Phosphatase Factsbook, Nick Tonks, Shirish Shenolikar , Harry Charbonneau, Academic Pr, 2000).
- NA_length refers to the length in nucleotides of the corresponding nucleic acid sequence.
- ORF start refers to the beginning nucleotide of the open reading frame.
- ORF end refers to the last nucleotide of the open reading frame, including the stop codon.
- ORF length refers to the length in nucleotides of the open reading frame.
- AA length refers to the length in amino acids of the peptide encoded in the corresponding nucleic acid sequence.
- Table 2 lists the following features of the genes described in this application: chromosomal localization, single nucleotide polymorphisms (SNPs), representation in dbEST, and repeat regions. From top to bottom, the data presented is as follows: “Gene Name”, “ID#na”, “ID#aa”, “FL/Cat”, “Superfamily”, “Group”, “Family”, “Chromosome”, “SNPs”, “dbEST iits", & “Repeats”. The contents of the first 7 columns (i.e.,. "Gene Name”, “ID#na”, “ID#aa”, “FL/Cat”, “Superfamily", “Group”, “Family”) are as described above for Table 1.
- “Chromosome” refers to the cytogenetic localization of the gene. Information in the “SNPs” column describes the nucleic acid position and degenerate nature of candidate single nucleotide polymorphisms (SNPs).
- “dbEST hits” lists accession numbers of entries in the public database of ESTs (dbEST, http://www.ncbi.nlm.nih.gov/dbEST/index.html) that contain at least 100 bp of 100% identity to the corresponding gene. These ESTs were identified by blastn of dbEST.
- “Repeats” contains information about the location of short sequences, approximately 21 bp in length, that are of low complexity and that are present in several distinct genes. These repeats were identified by blastn of the DNA sequence against the non-redundant nucleic acid database at NCBI (nrna). To be included in this repeat column, the sequence typically has 100%) identity over its length and is present in at least 5 different genes.
- Table 3 lists the extent and the boundaries of the phosphatase catalytic domains.
- the row headings are: “Gene Name”, “ID#na”, “ID#aa”, “FL/Cat”, “Domain”, “Phos_start”, “Phos_end”, “Profile_start”, “Profile_end”, “Other Domains” and “SH2 Boundaries.”
- the contents rows Gene Name”, “ID#na”, “ID#aa”, “FL/Cat”, are as described above for Table 1.
- “Phos Start”, “Phos End”, “Profile Start” and “Profile End” refer to data obtained using a Hidden-Markov Model to define catalytic range boundaries (http://pfam.wustl.edu/index.html).
- Genes which have a partial catalytic domain will have a "Profile Start” of greater than 1 (indicating that the beginning of the phosphatase domain is missing, and/or a “Profile End” of less than 261 (indicating that the C-terminal end of the phosphatase domain is missing).
- the "Other domains” column lists non-phosphatase domains identified in the novel phosphatase proteins by PFAM searching (http ://pfam. wustl. edu .
- Table 4 describes the results of Smith Waterman similarity searches (Matrix: PamlOO; gap open/extension penalties 12/2) of the amino acid sequences against the NCBI database of non-redundant protein sequences
- EXAMPLE 1 Identification and characterization of protein phosphatase genes from genomic DNA
- SGP037 was identified from the Celera human genomic sequence databases using hidden Markov models (HMMRs). Novel phosphatases were identified from the Celera human genomic sequence databases, and from the public Human Genome Sequencing project (http://www.ncbi.nlm.nih.gov using hidden Markov models
- HMMRs The genomic database entries were translated in six open reading frames and searched against the model using a Timelogic Decypher box with a Field programmable array (FPGA) accelerated version of HMMR2.1.
- FPGA Field programmable array
- the DNA sequences encoding the predicted protein sequences aligning to the HMMR profile were extracted from the original genomic database.
- the nucleic acid sequences were then clustered using the Pangea Clustering tool to eliminated repetitive entries.
- the putative protein phosphatase sequences were then sequentially run through a series of queries and filters to identify novel protein phosphatase sequences.
- HMMR identified sequences were searched using BLASTN and BLASTX against a nucleotide and amino acid repository containing known human protein phosphatases and all subsequent new protein phosphatase sequences as they are identified.
- the output was parsed into a spreadsheet to facilitate elimination of known genes by manual inspection.
- Two models were developed, a "complete” model and a "partial” or Smith Waterman model.
- the p «"+i «» ⁇ TM ⁇ » ⁇ IP1 TMrao ⁇ c i tr> identify sub-catalytic phosphatase domains, whereas the complete model was used to identify complete catalytic domains.
- the selected hits were then queried using BLASTN against the public nrna and EST databases to confirm they are indeed unique.
- the novel genes were judged to be orthologues of previously identified rodent or vertebrate protein phosphatases.
- Another method for defining DNA extensions from genomic sequence used iterative searches of genomic databases through the Genescan program to predict exon splicing. These predicted genes were then assessed to see if they represented "real" extensions of the partial genes based on homology to related phosphatases.
- Another method involved using the Genewise program http://www.sanger.ac.uk/Software/Wise2/ ) to predict potential ORFs based on homology to the closest orthologue/homologue. Genewise requires two inputs, the homologous protein, and genomic DNA containing the gene of interest.
- the genomic DNA was identified by blastn searches of Celera and Human Genome Project databases.
- the orthologs were identified by blastp searches of the NCBI non-redundant protein database (NRAA). Genewise compares the protein sequence to a genomic DNA sequence, allowing for introns and frameshifting errors.
- accession numbers of the protein ortholog and the genomic DNA are given. (Genewise uses the ortholog 1 to assemble the coding sequence of the target gene from the genomic sequence).
- the amino acid sequences for the orthologs were obtained from the NCBI non-redundant database of proteins .(http://www.ncbi.nlm.nih.gov/Entrez/protein.html).
- the genomic DNA came from two sources: Celera and NCBI-NRNA, as indicated below. cDNA sources are also listed below.
- HGP Human Genome Project
- NCBI National Center for Biotechnology Information.
- SGP037 nucleic acid sequence was derived from Genewise algorithm run with Celera genomic DNA 17000062841010 and 181000066365070, using genes T01361 and AAF26953 as homologs. The sequence was confirmed using Incyte consensus sequence 8124196CB 1.
- SGP037 SEQ ID NO:l is 1192 nucleotides long.
- the open reading frame starts at position 1 and ends at poition 1192, giving an ORF length of 1192 nucleotides.
- the predicted protein is 372 amino acids long (Seq ID NO:2). This sequence is full length (start methionine to stop codon). It is classified as
- ESTs for this gene in the public domain include: BG742244, BI438273.1, BG713950.1, BF671966.1. This gene does not contain repetitive.
- EXAMPLE 2 Predicted Proteins SGP037, ID#NA_1, ID#AA_2, encodes a protein that is 372 amino acids long. It is classified as a serine threonine phosphatase.
- the phosphatase domain in this protein matches the hidden Markov profile for a PP2C phosphatase from profile position 12 to profile position 301 (a nearly full length catalytic domain).
- the position of the catalytic region within the encoded protein is from amino acid 104 to amino acid 339.
- the results of a Smith Waterman search of the public database of amino acid sequences (NRAA) with this protein sequence yielded the following results.
- SGP037 is 35% identical to NP_197876.1, a Protein phosphatase 2C-like protein from Arabidopsis thaliana.
- the Celera browser was used to localize celera configurations to specific cytogenic bands (http ://www.celera. com) .
- accession number for the nucleic acid sequence was used to query the accession number
- Unigene database The site containing the Unigene search engine is: http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html. Information on map position within the Unigene database is imported from several sources, including the Online
- nucleic acid for the gene of interest is used as a query against databases, such as dbsts and htgs (described at http ://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html) containing sequences that have been mapped already. The nucleic acid sequence is searched using
- BLAST-2 at NCBI (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-newblast) and is used to query either dbsts or htgs.
- phosphatase polynuelcotides of the present invention can be used to identify individuals who have or are at risk for developing relevant diseases and/or disorders. As discussed elsewhere in this application, the polypeptides and polynucleotides of the present invention are useful in identifying compounds that modulate phosphatase activity, and in turn ameliorate various diseases and/or disorders.
- SNPs single nucleotide polymorphisms
- Candidate SNPs for the genes in this patent were identified by blastn searching the nucleic acid sequences against the public database of sequences containing documented SNPs (dbSNP, at NCBI, http://www.ncbi.nlm.nih.gov/SNP/snpblastpretty.html). dbSNP accession numbers for the SNP-containing sequences are given.
- SNPs were also identified by comparing several databases of expressed genes (dbEST, NRNA) and genomic sequence (i.e., NRNA) for single basepair mismatches. The results are shown in Table 2, in the column labeled "SNPs". These are candidate SNPs - their actual frequency in the human population was not determined. The code below is standard for representing DNA sequence:
- V A, C or G (i.e., not T)
- N A, C, G or T
- aNy X A, C, G or T
- SNPs may be important in identifying heritable traits associated with a gene.
- Results SGP037 does not contain a SNP corresponding to the polymorphisms in dbSNP.
- RNAs are isolated using the Guanidine Salts/Phenol extraction protocol of Chomczynski and Sacchi (P. Chomczynski andN. Sacchi, Anal. Biochem. 162, 156 (1987)) from primary human tumors, normal and tumor cell lines, normal human tissues, and sorted human hematopoietic cells. These RNAs are used to generate single-stranded cDNA using the Superscript Preamplification System
- a typical reaction uses 10 ⁇ g total RNA with 1.5 ⁇ g oligo(dT) 12-18 in a reaction volume of 60 ⁇ L.
- the product is treated with RNaseH and diluted to 100 ⁇ L with H 2 0.
- 1-4 ⁇ L of this sscDNA is used in each reaction.
- the primers are added at a final concentration of 5 ⁇ M each to a mixture containing 10 mM TrisHCl, pH 8.3, 50 mM KCI, 1.5 mM MgCl 2 , 200 ⁇ M each deoxynucleoside triphosphate, 0.001% gelatin, 1.5 U AmpliTaq DNA Polymerase (Perkin-Elmer/Cetus), and 1-4 ⁇ L cDNA. Following 3 min denaturation at 95 °C, the cycling conditions are 94 °C for 30 s, 50 °C for 1 min, and 72 °C for 1 min 45 s for 35 cycles.
- PCR fragments migrating between 300-350 bp are isolated from 2% agarose gels using the GeneClean Kit (Bio 101), and T-A cloned into the pCRII vector (lnvitrogen Corp. U.S.A.) according to the manufacturer's protocol. Colonies are selected for mini plasmid DNA-preparations using Qiagen columns and the plasmid DNA is sequenced using a cycle sequencing dye-terminator kit with AmpliTaq DNA Polymerase, FS (ABl, Foster City, CA). Sequencing reaction products are run on an ABl Prism 377 DNA Sequencer, and analyzed using the BLAST alignment algorithm (Altschul, S.F. et al, J.Mol.Biol. 215: 403-10).
- Probes Human cDNA libraries are probed with PCR or EST fragments corresponding to phosphatase-related genes. Probes are 32 P-labeled by random priming and used at 2x10 6 cpm/mL following standard techniques for library screening. Pre-hybridization (3 h) and hybridization (overnight) are conducted at 42 °C in 5X SSC, 5X Denhart's solution, 2.5% dextran sulfate, 50 mM
- DNA sequencing is carried out on both strands using a cycle sequencing dye-terminator kit with AmpliTaq DNA Polymerase, FS (ABl, Foster City, CA). Sequencing reaction products are run on an ABl Prism 377 DNA Sequencer.
- Expression constructs are generated for some of the human cDNAs including: a) full-length clones in a pCDNA expression vector; b) a GST-fusion construct containing the catalytic domain of the novel phosphatase fused to the C- terminal end of a GST expression cassette; and c) a full-length clone containing a Cys to Ser (C to S) mutation at the predicted catalytic site within the phosphatase domain, inserted in the pCDNA vector.
- the "C to S” mutants of the phosphatase might function as dominant negative constructs, and will be used to elucidate the function of these novel phosphatases.
- Specific immunoreagents are raised in rabbits against KLH- or MAP-conjugated synthetic peptides corresponding to isolated phosphatase polypeptides. C-terminal peptides are conjugated to KLH with glutaraldehyde, leaving a free C-terminus. Internal peptides are MAP-conjugated with a blocked N-terminus. Additional immunoreagents can also be generated by immunizing rabbits with the bacterially expressed GST-fusion proteins containing the cytoplasmic domains of each novel PTP or STP.
- the various immune sera are first tested for reactivity and selectivity to recombinant protein, prior to testing for endogenous sources.
- Proteins in SDS PAGE are transferred to immobilon membrane.
- the washing buffer is PBST (standard phosphate-buffered saline pH 7.4 + 0.1% Triton X-100).
- Blocking and antibody incubation buffer is PBST +5% milk.
- Antibody dilutions varied from 1:1000 to 1:2000.
- the pcDNA expression plasmids (10 ⁇ g DNA/100 mm plate) containing the phosphatase constructs are introduced into 293 cells with lipofectamine (Gibco BRL). After 72 hours, the cells are harvested in 0.5 mL solubilization buffer (20 mM HEPES, pH 7.35, 150 mM NaCI, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl 2 , 1 mM EGTA, 2 mM phenylmethylsulfonyl fluoride, 1 ⁇ g/mL aprotinin).
- Nonidet P-40 (Sigma)
- recombinant protein is detected using the various anti- peptide or anti-GST-fusion specific antisera.
- phosphatase inhibitors (10 mM NaHPO 4 , pH 7.25, 150 mM NaCI, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 0.2% sodium azide, 1 mM NaF, 1 mM EGTA, 4 mM sodium orthovanadate, 1% aprotinin, 5 ⁇ g/mL leupeptin).
- Cell debris is removed by centrifugation (12000 x g, 15 min, 4 °C) and the lysate is precleared by two successive incubations with 50 ⁇ L of a 1 : 1 slurry of protein A sepharose for 1 hour each.
- One-half mL of the cleared supernatant is reacted with 10 ⁇ L of protein A purified phosphatase-specific antisera (generated from the GST fusion protein or antipeptide antisera) plus 50 ⁇ L of a 1:1 slurry of protein A-sepharose for 2 hr at 4 °C.
- the beads are then washed 2 times in PBSTDS, and 2 times in HNTG (20 mM HEPES, pH 7.5/150 mMNaCl, 0,1% Triton X-100, 10% glycerol).
- the immunopurified phosphatases on sepharose beads are resuspended in 20 ⁇ L HNTG plus 30 mM MgCl 2 , 10 mM MnCl 2 , and 20 ⁇ Ci [ ⁇ 32 P]ATP (3000
- the phosphatase reactions are run for 30 min at room temperature, and stopped by addition of HNTG supplemented with 50 mM EDTA.
- the samples are washed 6 times in HNTG, boiled 5 min in SDS sample buffer and analyzed by 6% SDS-PAGE followed by autoradiography.
- Phosphoamino acid analysis is performed by standard 2D methods on 32 P-labeled bands excised from the SDS-PAGE gel.
- Nylon membranes are purchased from Boehringer Mannheim. Denaturing solution contains 0.4 M NaOH and 0.6 M NaCI. Neutralization solution contains 0.5 M Tris-HCL, pH 7.5 and 1.5 M NaCI. Hybridization solution contains 50% formamide, 6X SSPE, 2.5X Denhardt's solution, 0.2 mg/mL denatured salmon DNA, 0.1 mg/mL yeast tRNA, and 0.2 % sodium dodecyl sulfate. Restriction enzymes are purchased from Boehringer Mannheim. Radiolabeled probes are prepared using the Prime-it II kit by Stratagene. The beta-actin DNA fragment used for a probe template is purchased from Clontech.
- Genomic DNA is isolated from a variety of tumor cell lines (such as MCF-7, MDA-MB-231, Calu-6, A549, HCT-15, HT-29, Colo 205, LS-180, DLD-1, HCT- 116, PC3, CAPAN-2, MIA-PaCa-2, PANC-1, AsPc-1, BxPC-3, OVCAR-3, SKOV3, SW 626 and PA-1, and from two normal cell lines.
- a 10 ⁇ g aliquot of each genomic DNA sample is digested with EcoR I restriction enzyme and a separate 10 ⁇ g sample is digested with Hind III restriction enzyme.
- restriction-digested DNA samples are loaded onto a 0.7% agarose gel and, following electrophoretic separation, the DNA is capillary-transferred to a nylon membrane by standard methods (Sambrook, J. et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory).
- Phage display provides a method for isolating molecular interactions based on affinity for a desired bait. cDNA fragments cloned as fusions to phage coat proteins are displayed on the surface of the phage. Phage(s) interacting with a bait are enriched by affinity purification and the insert DNA from individual clones is analyzed. T7 Phage Display Libraries
- Protein domains to be used as baits are generated as C-terminal fusions to GST and expressed in E. coli.
- Peptides are chemically synthesized and biotinylated at the N-terminus using a long chain spacer biotin reagent. Selection
- T7DN primer 15 pmol/ ⁇ L
- AACCCCTCAAGACCCGTTTAG 0.2 mL 25 mM MgCl 2 or MgSO 4 to compensate for EDTA Q.S. to 10 mL with distilled water
- the present invention relates to compounds demonstrating the ability to modulate protein enzymes related to cellular signal transduction; preferably, protein phosphatases; and most preferably, protein tyrosine phosphatases.
- the assays described below are employed to select those compounds demonstrating the optimal degree of the desired activity.
- the phrase "optimal degree of desired activity" refers to the highest therapeutic index, defined above, against a protein enzyme which mediates cellular signal fransduction and which is related to a particular disorder so as to provide an animal or a human patient, suffering from such disorder with a therapeutically effective amount of a compound of this invention at the lowest possible dosage.
- Assays for Determining Inhibitory Activity Various procedures known in the art may be used for identifying, evaluating or assaying the inhibition of activity of protein enzymes, in particular protein phosphatases, by the compounds of the invention.
- protein enzymes in particular protein phosphatases
- such assays involve exposing target cells in culture to the compounds and (a) biochemically analyzing cell lysates to assess the level and/or identity of phosphorylated proteins; or (b) scoring phenotypic or functional changes in treated cells as compared to control cells that were not exposed to the test substance.
- the cells are exposed to the compound of the invention and compared to positive controls which are exposed only to the natural ligand, and to negative controls which are not exposed to either the compound or the natural ligand.
- the assay may be carried out in the absence of the ligand.
- the cells are exposed to the compound of the invention in the presence of the natural ligand and compared to controls which are not exposed to the compound of the invention.
- the assays described below may be used as a primary screen to evaluate the ability of the compounds of this invention to inhibit phosphatase activity of the compounds of the invention.
- the assays may also be used to assess the relative potency of a compound by testing a range of concentrations, in a range from 100 ⁇ M to 1 pM, for example, and computing the concentration at which the amount of phosphorylation or signal transduction is reduced or increased by 50% (IC50) compared to controls.
- target cells having a substrate molecule that is phosphorylated or dephosphorylated on a tyrosine residue during signal fransduction are exposed to the compounds of the invention and radiolabelled phosphate, and thereafter, lysed to release cellular contents, including the substrate of interest.
- the substrate may be analyzed by separating the protein components of the cell lysate using a sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) technique, in either one or two dimensions, and detecting the presence of phosphorylated proteins by exposing to X-ray film.
- SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- the protein components separated by SDS-PAGE are transferred to a nitrocellulose membrane, the presence of pTyr is detected using an antiphosphotyrosine (anti-pTyr) antibody.
- anti-pTyr antiphosphotyrosine
- the substrate of interest be first isolated by incubating the cell lysate with a substrate-specific anchoring antibody bound to a solid support, and thereafter, washing away non-bound cellular components, and assessing the presence or absence of pTyr on the solid support by an anti-pTyr antibody.
- This preferred method can readily be performed in a microtiter plate format by an automated robotic system, allowing for testing of large numbers of samples within a reasonably short time frame.
- the anti-pTyr antibody can be detected by labeling it with a radioactive substance which facilitates its detection by autoradiography.
- the anti- pTyr antibody can be conjugated with an enzyme, such as horseradish peroxidase, and detected by subsequent addition of an appropriate substrate for the enzyme, the choice of which would be clear to one skilled in the art.
- a further alternative involves detecting the anti-pTyr antibody by reacting with a second antibody which recognizes the anti-pTyr antibody, this second antibody being labeled with either a radioactive substance or an enzyme as previously described. Any other methods for the detection of an antibody known in the art may be used.
- the above methods may also be used in a cell-free system wherein cell lysate containing the signal-transducing substrate molecule and phosphatase is mixed with a compound of the invention and a kinase.
- the substrate is phosphorylated by initiating the kinase reaction by the addition of adenosine triphosphate (ATP).
- ATP adenosine triphosphate
- the reaction mixture may be analyzed by the SDS-PAGE technique or it may be added to a substrate-specific anchoring antibody bound to a solid support, and a detection procedure as described above is performed on the separated or captured substrate to assess the presence or absence of pTyr. The results are compared to those obtained with reaction mixtures to which the compound is not added.
- the cell-free system does not require the natural ligand or knowledge of its identity.
- Posner et al. U.S. Patent No. 5,155,031 describes the use of insulin receptor as a substrate and rat adipocytes as target cells to demonstrate the ability of pervanadate to inhibit PTP activity.
- the ability of the compounds of this invention to modulate the activity of PTPs, which control signal transduction, may also be measured by scoring for morphological or functional changes associated with ligand binding. Any qualitative or quantitative techniques known in the art may be applied for observing and measuring cellular processes which come under the control of phosphatases in a signaling pathway. Such cellular processes may include, but are not limited to, anabolic and catabolic processes, cell proliferation, cell differentiation, cell adhesion, cell migration and cell death.
- vanadate has been shown to activate an insulin-sensitive facilitated transport system for glucose and glucose analogs in rat adipocytes (Dubyak et al, 1980, J. Biol. Chem., 256:5306-5312).
- the activity of the compounds of the invention may be assessed by measuring the increase in the rate of transport of glucose analog such as 2-deoxy- 3 H-glucose in rat adipocytes that have been exposed to the compounds.
- Vanadate also mimics the effect of insulin on glucose oxidation in rat adipocytes (Shechter et al, 1980, Nature, 284:556-558).
- the compounds of this invention may be tested for stimulation of glucose oxidation by measuring the conversion of 14 C-glucose to 14 CO 2 .
- the effect of sodium orthovanadate on erythropoietin-mediated cell proliferation has been measured by cell cycle analysis based on DNA content as estimated by incorporation of tritiated thymidine during DNA synthesis (Spivak et al, 1992, Exp. Hematol, 20:500-504).
- the activity of the compounds of this invention toward phosphatases that play a role in cell proliferation may be assessed by cell cycle analysis.
- the activity of the compounds of this invention can also be assessed in animals using experimental models of disorders caused by or related to dysfunctional signal transduction.
- the activity of a compound of this invention may be tested for its effect on insulin receptor signal transduction in non-obese diabetic mice (Lund et al, 1990, Nature, 345:727-729), B B Wistar rats and streptozotocin- induced diabetic rats (Solomon et al. , 1989, Am. J. Med. Sci. , 297:372-376).
- the activity of the compounds may also be assessed in animal carcinogenesis experiments since phosphatases can play an important role in dysfunctional signal transduction leading to cellular transformation.
- okadaic acid a phosphatase inhibitor, has been shown to promote tumor formation on mouse skin (Suganuma et al, 1988, Proc. Natl. Acad. Sci., 85:1768-1771).
- the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosages for use in humans.
- the dosage of the compounds of the invention should lie within a range of circulating concentrations with little or no toxicity.
- the dosage may vary within this range depending on the dosage form employed and the route of adminisfration.
- This assay may be used to test the ability of the compounds of the invention to inhibit dephosphorylation of phosphotyrosine (pTyr) residues on insulin receptor (IR).
- substrate molecules such as platelet derived growth factor receptor
- IR insulin receptor
- cell lysates can be prepared and added to microtiter plates coated with anti-insulin receptor antibody.
- the level of phosphorylation of the captured insulin receptor is detected using an anti-pTyr antibody and an enzyme-linked secondary antibody.
- the following in vitro assay procedure is preferred to determine the level of activity and effect of the different compounds of the present invention on one or more of the PTPs. Similar assays can be designed along the same lines for any PTP using techniques well known in the art.
- the catalytic assays described herein are performed in a 96-well format.
- the general procedure begins with the determination of PTP optimal pH using a three- component buffer system that minimizes ionic strength variations across a wide range of buffer pH.
- the Michaelis-Menten constant, or Km is determined for each specific substrate-PTP system. This Km value is subsequently used as the substrate reaction concentration for compound screening.
- the test PTP is exposed to varying concentrations of compound for fifteen minutes and allowed to react with substrate for ten minutes. The results are plotted as percent inhibition versus compound concentration and the IC50 interpolated from the plot.
- Assay Buffer is used as solvent for all assay solutions unless otherwise indicated.
- Tri's (Fisher Scientific BP152-5) 50 mm
- PTPase activity is assayed at 25°C in a 100- ⁇ l reaction mixture containing an appropriate concentration of pNPP or FDP as subsfrate.
- the reaction is initiated by addition of the PTP and quenched after 10 min by addition of 50 ⁇ l of IN NaOH.
- the non-enzymatic hydrolysis of the subsfrate is corrected by measuring the confrol without the addition of the enzyme.
- the amount of p-nitrophenol produced is determined from the absorbance at 410 nm.
- Plasmids designed for bacterial GST-PTP fusion protein expression are derived by insertion of PCR-generated human PTP fragments into pGEX vectors (Pharmacia Biotech). Several of these constructs are then used to subclone phosphatases into pFastBac-1 for expression in Sf-9 insect cells. Oligonucleotides that are used for the initial amplification of PTP genes are shown below. The cDNAs are prepared using the Gilbo BRL superscript preamplification system on RNAs purchased from Clontech.
- nucleic acid sequence can be modified to form a second nucleic acid sequence, encoding the same polypeptide as encoded by the first nucleic acid sequences, using routine procedures and without undue experimentation.
- nucleic acids that encode the claimed peptides and proteins are also fully described herein, as if all were written out in full taking into account the codon usage, especially that preferred in humans.
- changes in the amino acid sequences of polypeptides, or in the corresponding nucleic acid sequence encoding such polypeptide may be designed or selected to take place in an area of the sequence where the significant activity of the polypeptide remains unchanged.
- an amino acid change may take place within a ⁇ -turn, away from the active site of the polypeptide.
- changes such as deletions (e.g. removal of a segment of the polypeptide, or in the corresponding nucleic acid sequence encoding such polypeptide, which does not affect the active site) and additions (e.g.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Wood Science & Technology (AREA)
- Reproductive Health (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- Endocrinology (AREA)
- Obesity (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/043063 WO2003042390A1 (fr) | 2001-11-13 | 2001-11-13 | Phosphatases proteiques de mammiferes |
JP2003544204A JP2005509418A (ja) | 2001-11-13 | 2001-11-13 | 哺乳動物蛋白質ホスファターゼ |
EP01274728A EP1446487A1 (fr) | 2001-11-13 | 2001-11-13 | Phosphatases proteiques de mammiferes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/043063 WO2003042390A1 (fr) | 2001-11-13 | 2001-11-13 | Phosphatases proteiques de mammiferes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003042390A1 true WO2003042390A1 (fr) | 2003-05-22 |
Family
ID=21742985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/043063 WO2003042390A1 (fr) | 2001-11-13 | 2001-11-13 | Phosphatases proteiques de mammiferes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1446487A1 (fr) |
JP (1) | JP2005509418A (fr) |
WO (1) | WO2003042390A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447608A (en) * | 1979-12-19 | 1984-05-08 | National Research Development Corporation | Anti-cancer quinazoline derivatives |
WO1991015495A1 (fr) * | 1990-04-02 | 1991-10-17 | Pfizer Inc. | Composes d'acide benzylphosphonique utilises comme inhibiteurs de la tyrosine kinase |
US5700821A (en) * | 1996-07-30 | 1997-12-23 | University Of Pittsburgh | Phosphatase inhibitors and methods of use thereof |
WO2000055174A1 (fr) * | 1999-03-12 | 2000-09-21 | Human Genome Sciences, Inc. | Sequences de genes et polypeptides associees au cancer de la prostate de l'homme |
WO2001016097A1 (fr) * | 1999-08-27 | 2001-03-08 | Sugen, Inc. | Mimetiques phosphates et procedes de traitement utilisant des inhibiteurs de phosphatase |
WO2001055425A1 (fr) * | 2000-01-26 | 2001-08-02 | Biodoor Gene Technology Ltd. Shanghai | Nouveau polypeptide, proteine phosphatase humaine 2c26, et polynucleotide codant pour ce polypeptide |
WO2001054472A2 (fr) * | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Acides nucleiques, proteines et anticorps |
WO2001077290A2 (fr) * | 2000-04-06 | 2001-10-18 | Genetics Institute, Llc. | Polynucleotides codant pour des nouvelles proteines secretees |
WO2001096571A2 (fr) * | 2000-06-16 | 2001-12-20 | Bayer Aktiengesellschaft | Regulation de la proteine humaine phosphatase iic abi2 |
WO2001096546A2 (fr) * | 2000-06-16 | 2001-12-20 | Incyte Genomics, Inc. | Proteine-phosphatases |
-
2001
- 2001-11-13 JP JP2003544204A patent/JP2005509418A/ja active Pending
- 2001-11-13 EP EP01274728A patent/EP1446487A1/fr not_active Withdrawn
- 2001-11-13 WO PCT/US2001/043063 patent/WO2003042390A1/fr not_active Application Discontinuation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447608A (en) * | 1979-12-19 | 1984-05-08 | National Research Development Corporation | Anti-cancer quinazoline derivatives |
WO1991015495A1 (fr) * | 1990-04-02 | 1991-10-17 | Pfizer Inc. | Composes d'acide benzylphosphonique utilises comme inhibiteurs de la tyrosine kinase |
US5700821A (en) * | 1996-07-30 | 1997-12-23 | University Of Pittsburgh | Phosphatase inhibitors and methods of use thereof |
WO2000055174A1 (fr) * | 1999-03-12 | 2000-09-21 | Human Genome Sciences, Inc. | Sequences de genes et polypeptides associees au cancer de la prostate de l'homme |
WO2001016097A1 (fr) * | 1999-08-27 | 2001-03-08 | Sugen, Inc. | Mimetiques phosphates et procedes de traitement utilisant des inhibiteurs de phosphatase |
WO2001055425A1 (fr) * | 2000-01-26 | 2001-08-02 | Biodoor Gene Technology Ltd. Shanghai | Nouveau polypeptide, proteine phosphatase humaine 2c26, et polynucleotide codant pour ce polypeptide |
WO2001054472A2 (fr) * | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Acides nucleiques, proteines et anticorps |
WO2001077290A2 (fr) * | 2000-04-06 | 2001-10-18 | Genetics Institute, Llc. | Polynucleotides codant pour des nouvelles proteines secretees |
WO2001096571A2 (fr) * | 2000-06-16 | 2001-12-20 | Bayer Aktiengesellschaft | Regulation de la proteine humaine phosphatase iic abi2 |
WO2001096546A2 (fr) * | 2000-06-16 | 2001-12-20 | Incyte Genomics, Inc. | Proteine-phosphatases |
Non-Patent Citations (2)
Title |
---|
DATABASE EMBL [online] 31 October 2001 (2001-10-31), ISOGAI T ET AL, XP002214897, Database accession no. AK054678 * |
DATABASE WPI Section Ch Week 200152, Derwent World Patents Index; Class B04, AN 2001-483265, XP002214997 * |
Also Published As
Publication number | Publication date |
---|---|
EP1446487A1 (fr) | 2004-08-18 |
JP2005509418A (ja) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070202107A1 (en) | Novel kinases | |
EP1073723B1 (fr) | Proteines kinases apparentees a la famille de ste20 | |
US20050125852A1 (en) | Novel kinases | |
US20060234344A1 (en) | Protein kinases | |
JP2002508937A (ja) | Aur1および/またはaur2関連疾患の診断および治療 | |
WO2001046394A2 (fr) | Proteines phosphatases mammiferes | |
US20060140954A1 (en) | Novel human protein kinases and protein kinase-like enzymes | |
US20040157306A1 (en) | Mammalian protein phosphatases | |
WO2001055356A2 (fr) | Nouvelles proteines kinases humaines et enzymes semblables aux proteines kinases | |
US20030027308A1 (en) | Novel human protein phosphatases identified from genomic sequencing | |
WO1999066051A2 (fr) | Kinases en rapport avec nek et avec bub1 | |
US20020090703A1 (en) | Mammalian protein phosphatases | |
AU2001251510A1 (en) | Human protein kinases and protein kinase-like enzymes | |
US20050084877A1 (en) | Mammalian protein phosphatases | |
US20030211989A1 (en) | Novel human protein kinases and protein kinase-like enzymes | |
WO2003042390A1 (fr) | Phosphatases proteiques de mammiferes | |
US20060188974A1 (en) | Human protein kinases and protein kinase-like enzymes | |
CA2395093A1 (fr) | Proteines phosphatases mammiferes | |
EP1299525A2 (fr) | Proteines phosphatases mammiferes | |
US20030224378A1 (en) | Novel human protein kinases and protein kinase-like enzymes | |
EP1576087A2 (fr) | Procede de detection a distance d'homologues et kinases identifies par ce procede |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003544204 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001274728 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001274728 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001274728 Country of ref document: EP |