+

WO2002103971A2 - Procede pour transmettre un flux de donnees analogique et circuit - Google Patents

Procede pour transmettre un flux de donnees analogique et circuit Download PDF

Info

Publication number
WO2002103971A2
WO2002103971A2 PCT/EP2002/006592 EP0206592W WO02103971A2 WO 2002103971 A2 WO2002103971 A2 WO 2002103971A2 EP 0206592 W EP0206592 W EP 0206592W WO 02103971 A2 WO02103971 A2 WO 02103971A2
Authority
WO
WIPO (PCT)
Prior art keywords
data stream
analog
transformation
analog data
digital data
Prior art date
Application number
PCT/EP2002/006592
Other languages
German (de)
English (en)
Other versions
WO2002103971A3 (fr
Inventor
Dietmar STRÄUSSNIGG
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2002103971A2 publication Critical patent/WO2002103971A2/fr
Publication of WO2002103971A3 publication Critical patent/WO2002103971A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03509Tapped delay lines fractionally spaced

Definitions

  • the present invention relates to a method for transmitting an analog data stream and a circuit arrangement, and in particular relates to a method for transmitting an analog data stream, in which transients are compensated for when the analog data stream is received, and a circuit arrangement with an optimized equalization device for the time domain in the case of multiple tones. transmission method.
  • ADSL transmission techniques A major advantage of ADSL transmission techniques is that conventional cable networks can be used for transmission, usually using copper twisted pairs.
  • DSL Digital Subscriber Line
  • VDSL Very High Data Rate DSL
  • purpose methods such as CAP (Carrierless Amplitude / Phase ), DWMT (Discrete Wavelet Multitone), SLC (Single Line Code) and DMT )>to> - 1 ⁇ »c ⁇ O ⁇ o L ⁇ o C ⁇
  • ⁇ er d et J rt H ⁇ - ⁇ 3 ⁇ ⁇ 2 3 3 tr rt ⁇ ⁇ 3 cn rt d h- 1 H ⁇ C ⁇ ⁇ N ⁇ ⁇ II ⁇ P tr 2 hj 3 2 er tr tr rt d H 2 P. ⁇ p 3 ⁇ - C ⁇ hi rt j ⁇ - * ⁇ - H 2 ⁇ hj ⁇ DJ ⁇ - G DJ od ⁇ P- ⁇ - 2 O ⁇ ⁇ ⁇ ⁇ - LP ⁇ M co t, rt C ⁇ ? V rt H ? rt ⁇ - h- 1 rt he ⁇ h- 1
  • a conventional transmission channel furthermore disadvantageously contains high and low passes in order to limit the bandwidth of the analog data stream to be transmitted and to prevent out-of-band noise in analog-digital and digital-analog converters, which are designed, for example, as sigma-delta converters can be suppress.
  • An essential idea of the invention is that, in order to compensate for transient processes when an analog data stream is received, the analog data stream converted in an analog-digital converter is equalized immediately after the analog-digital converter in order to provide an equalized digital data stream, whereby the equalized digital data stream is then decimated in a decimation device. It is therefore an advantage of the method for transmitting an analog data stream according to the present invention that convergence in an equalization device is improved, as a result of which convolution of high-frequency components in the transmission signal band is avoided.
  • the method according to the invention provides an increased data transmission rate.
  • the method according to the invention for transmitting an analog data stream essentially has the following steps:
  • the analog data stream contains multiple-tone signals which are processed in such a way that a frequency spectrum of 4.3 kHz to 1.1 MHz is formed by 256 individual sine tones which can be modulated in magnitude and phase.
  • the analog data stream is sampled at a sampling rate which is above a symbol rate down to the symbol rate.
  • the digital data stream is equalized in the equalization device at a rate which is above a symbol rate.
  • the rate at which the digital data stream is equalized in the equalization device has a value which corresponds approximately to the value of the sampling rate at which the received analog data stream is sampled.
  • decimation of the equalized digital data stream is suppressed, as a result of which a further increase in the quality of transmission is provided, with an increased signal processing effort in the transformation device, which, for example, carries out a fast Fourier transformation, must be provided.
  • the transformation signals are weighted with an inverse channel transmission function of the transmission channel in a correction device in order to obtain corrected transformation signals.
  • a pair of transformation signals formed on a magnitude signal and a phase signal is provided by a determination device after an evaluation of the corrected transformation signals.
  • the circuit arrangement according to the invention for transmitting an analog data stream also has:
  • a transmission channel for transmitting the analog data stream from a data stream transmitter to a data stream receiver;
  • an analog-digital converter arranged in the data stream receiver for converting the received analog data stream into a digital data stream, in which the analog data stream is sampled at a sampling rate;
  • an equalization device for equalizing the digital data stream in the time domain in order to provide an equalized digital data stream
  • decimation means for decimating the equalized digital data stream to provide a decimated equalized digital data stream
  • e a transformer for transforming the decimated equalized digital data stream from the time domain to the frequency domain to provide transformation signals defined in magnitude and phase;
  • a determination device for determining at least one magnitude signal and at least one phase signal from at least one corrected transformation signal
  • a decoding device for decoding the at least one magnitude signal and the at least one phase signal determined in the determination device in order to provide a decoded data stream
  • a data output device for outputting the decoded data stream.
  • FIG. 1 shows a data stream receiver for receiving an analog data stream according to an embodiment of the present invention
  • Figure 2a is a block diagram of a DMT transmission link
  • FIG. 2b shows a schematic structure of a DMT symbol with a cyclic prefix
  • FIG. 3 shows the transmission arrangement illustrated in FIG. 2a for transmitting an analog data stream in a more detailed representation
  • Figure 4 shows a conventional data stream receiver.
  • FIG. 1 shows an embodiment of a DMT data stream receiver according to the present invention.
  • An analog data stream 101 which has been transmitted via a transmission channel 102, which may be subjected to noise, is fed to an analog-to-digital converter which samples the analog data stream 101 at a sampling rate 108.
  • the analog-to-digital converter 104 converts the transmitted analog data stream 101, which is superimposed with a noise signal 122, into a digital data stream 103 which is used by a pre-decimation device 107a is fed.
  • the digital data stream 103 is pre-decimated in one or more decimation stages, one or more decimation stages also being provided in a subsequent decimation device 107 (described below).
  • the data stream output by the pre-decimation device 107a is then fed to an equalization device 105.
  • the equalization device 105 works in the time domain, wherein the equalization device 105 is supplied with a symbol rate 120, with which an equalization in the time domain is provided.
  • the equalization device 105 preferably operates in the time domain with a higher sampling rate than the symbol rate 120.
  • the equalization device 105 is operated at an adjustable rate, wherein the symbol rate 120 of the equalization device 105 corresponds at most to the sampling rate 108 of the analog-digital converter 104.
  • the equalized digital data stream 106 output by the equalization device 105 is fed to a decimation device 107, in which the equalized digital data stream 107 is decimated.
  • decimation device 107 it is possible for the decimation device 107 to be integrated in the equalization device 105 in order to form an optimized time-domain equalization.
  • decimation can be completely suppressed, which means that in the subsequently required transformation device an increased effort with regard to a fast Fourier transformation is required.
  • a decimated, equalized digital data stream 109 which is provided by the decimation device 107, becomes one o co to M ⁇ 1 ⁇ ⁇
  • FIG. 2a shows a basic block diagram of an arrangement for transmitting an analog data stream according to the DMT method, the data stream transmitter 210, the transmission channel 102 and the data stream receiver 211 being illustrated.
  • Data stream transmitter 210 and data stream receiver 211 consist of separately identifiable blocks, which are briefly described below.
  • a data input device 201 serves to input data to be transmitted, the input data being forwarded to a coding device 202.
  • the data stream is decoded in accordance with a conventional method and fed to a reverse transformation device 203.
  • the reverse transformation device 203 provides a transformation from the data present in the frequency domain into data which are available in the time domain.
  • IFFT Inverse Fast Fourier Transformation
  • the transformation carried out in the reverse transformation device 203 from the frequency domain into the time domain represents a transformation inverse to the transformation carried out by the transformation device 110 shown in FIG. 1.
  • the digital data stream output by the reverse transformation device 203 is converted into an analog data stream by means of a digital-to-analog converter 204.
  • the analog data stream now present in the time domain is fed to a transmission channel 102 which provides the data transmission described above, whereby at a transmission a bandpass, highpass and / or low-pass filtering as well as an exposure to the analog data stream 101 with noise.
  • the analog data stream 101 is further fed to the analog-to-digital converter 104 arranged in the data stream receiver 211, which converts the received analog data stream 101 into a digital data stream 103, the converted digital data stream 103 being fed to the transformation device 110.
  • decoding takes place in the decoding device 117.
  • the decoded data stream becomes finally output via the data output device 119.
  • FIG. 2b shows a diagram of a discrete multi-tone symbol, the analog data stream to be transmitted being provided as a sequence of multi-tone symbols.
  • a periodic signal can be simulated for a data stream receiver when the transient caused by the transmission channel has decayed after M samples, i.e. no intersymbol interference (IST.) Occurs.
  • IST. intersymbol interference
  • the total length of a multi-tone symbol 208 with the DMT symbol end values 213 appended to the symbol start 205 is now M + N from the prefix start 207 to the DMT symbol end 206.
  • the number of DMT symbol end values 213 which are cyclically attached to the symbol start 205 must be kept as small as possible, i.e. M «N in order to obtain the smallest possible reduction in the transmission capacity and quality.
  • a multi-tone symbol 208 consists of 256 complex numbers, which means that 512 time samples (real and imaginary part) have to be transmitted as a periodic signal.
  • FIG. 3 shows a method for transmitting an analog data stream and a circuit arrangement in more detail.
  • the data stream supplied to the data input device 201 is combined into blocks, a specific number of bits to be transmitted being assigned to a complex number depending on the level.
  • the coding device 202 Finally, coding follows in accordance with the selected level, the coded data stream finally being fed to the inverse transformation device 203.
  • a multiple-tone signal 303 provided by the reverse transformation device 203 forms a digital transmitter data stream which has been transformed from the frequency domain into the time domain.
  • the multi-tone signal 303 embodied as a digital data stream is finally converted into an analog data stream in the digital-to-analog converter 204 and fed to a line driver device 304.
  • the line driver device 304 amplifies or drives the analog data stream 101 to be transmitted into a transmission channel 102, the channel transmission function of which is known in principle or can be measured.
  • the analog data stream is also overlaid with noise in the transmission channel, which is shown in FIG. 3 by an overlay device 121.
  • the superimposition device 121 is supplied with the analog data stream transmitted by the transmission channel and a noise signal 122, so that finally an analog data stream 101 superimposed with noise is obtained.
  • the analog data stream 101 is fed to a preprocessing device 301 which, according to the invention, contains the analog-to-digital converter 104 shown in FIG. 1, the equalization device 105 and the decimation device 107 in the order shown in FIG. 1.
  • a preprocessed digital data stream 302 output by the preprocessing device 301 is finally fed to the circuit units of the data stream receiver 211, which have already been described with reference to FIG. 1.
  • the description of the components of the data stream receiver 211 shown in FIG. 3 are thus omitted here in order to avoid an overlapping description.
  • decimation of the equalized digital data stream 106 can be suppressed, in which case the transforming device 110 must be capable of being subjected to a correspondingly higher rate, thereby achieving the advantage that a further improvement in the transmission quality is provided.
  • DMT symbol Discrete multi-tone symbol

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

La présente invention concerne un procédé pour transmettre un flux de données analogique (101). Selon ce procédé, des transitoires sont compensés lorsque le flux de données analogique (101) est reçu, par transformation du flux de données analogique (101) en un flux de données numérique (103) au moyen d'un balayage du flux de données analogique (101) dans un convertisseur analogique-numérique (104), le flux de données numérique est corrigé dans le domaine temporel dans un système de correction (105), le flux de données numérique corrigé (106) est décimé dans un système de décimation (107), afin d'obtenir un flux de données numérique corrigé décimé (109), une transformation du domaine temporel au domaine fréquentiel est réalisée au moyen d'un système de transformation (110), des signaux de transformation obtenus (111a 111n) sont corrigés dans un système de correction (112), au moins un signal de valeur (114) et au moins un signal de phase (115) sont déterminés dans un système de détermination (116), puis les signaux de valeur (114) et les signaux de phase (115) sont décodés dans un système de décodage (117), afin d'obtenir un flux de données décodé (118) et de fournir celui-ci par l'intermédiaire d'un système de sortie de données (119).
PCT/EP2002/006592 2001-06-19 2002-06-14 Procede pour transmettre un flux de donnees analogique et circuit WO2002103971A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001129328 DE10129328A1 (de) 2001-06-19 2001-06-19 Verfahren zum Übertragen eines analogen Datenstroms und Schaltungsanordnung
DE10129328.3 2001-06-19

Publications (2)

Publication Number Publication Date
WO2002103971A2 true WO2002103971A2 (fr) 2002-12-27
WO2002103971A3 WO2002103971A3 (fr) 2003-04-10

Family

ID=7688558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006592 WO2002103971A2 (fr) 2001-06-19 2002-06-14 Procede pour transmettre un flux de donnees analogique et circuit

Country Status (2)

Country Link
DE (1) DE10129328A1 (fr)
WO (1) WO2002103971A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299622B2 (en) 2008-08-05 2012-10-30 International Business Machines Corporation IC having viabar interconnection and related method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317596A (en) * 1992-12-01 1994-05-31 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for echo cancellation with discrete multitone modulation
US6002722A (en) * 1996-05-09 1999-12-14 Texas Instruments Incorporated Multimode digital modem
US6185251B1 (en) * 1998-03-27 2001-02-06 Telefonaktiebolaget Lm Ericsson Equalizer for use in multi-carrier modulation systems
US6353644B1 (en) * 1998-05-13 2002-03-05 Globespan, Inc. System and method for performing time domain equalization
US6456654B1 (en) * 1998-12-22 2002-09-24 Nortel Networks Limited Frame alignment and time domain equalization for communications systems using multicarrier modulation
US6320901B1 (en) * 1999-06-15 2001-11-20 National Semiconductor Corporation Method for fast off-line training for discrete multitone transmissions
JP3732707B2 (ja) * 2000-03-16 2006-01-11 富士通株式会社 加入者側通信装置における再同期制御装置および再同期方法
US7272199B2 (en) * 2001-01-25 2007-09-18 Bandspeed, Inc. Adaptive adjustment of time and frequency domain equalizers in communications systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299622B2 (en) 2008-08-05 2012-10-30 International Business Machines Corporation IC having viabar interconnection and related method
US8492268B2 (en) 2008-08-05 2013-07-23 International Business Machines Corporation IC having viabar interconnection and related method

Also Published As

Publication number Publication date
DE10129328A1 (de) 2003-01-02
WO2002103971A3 (fr) 2003-04-10

Similar Documents

Publication Publication Date Title
DE19850642C2 (de) Verfahren zur Reduzierung des Crest-Faktors eines Signals
EP1741039B1 (fr) Traitement de signaux d'information par modification dans la representation de la zone spectrale/zone spectrale de modulation
DE19858106B4 (de) Empfänger und Verfahren zum Verhindern einer Zwischensymbolstörung in einem Hochgeschwindigkeitsübertragungssystem
DE60011224T2 (de) Ofdm-empfänger mit adaptivem entzerrer
EP3459173B1 (fr) Procédé et dispositif d'envoi ou de réception d'au moins un signal à haute fréquence avec traitement de signal en bande de base parallele et sous-échantillonné
DE10325839B4 (de) Verfahren und Schaltung zur Crestfaktor-Reduzierung
DE3889810T2 (de) Digitales Übertragungsverfahren mit Pseudo-Mehrstufen und bipolaren Kodierungstechniken.
WO2002103971A2 (fr) Procede pour transmettre un flux de donnees analogique et circuit
DE10129317B4 (de) Verfahren zum Anpassen von Filtereckfrequenzen beim Übertragen von diskreten Mehrfachtonsymbolen
DE10129327B4 (de) Verfahren zum Übertragen eines analogen Datenstroms unter Vermeidung von Nebenminima und Schaltungsanordnung
DE10208717B4 (de) Verfahren zum Übertragen eines analogen Datenstroms mit Abtastratenerhöhung im Datenstromsender und Schaltungsanordnung zur Durchführung des Verfahrens
DE10201283C2 (de) Verfahren zum Kompensieren von Spitzenwerten bei einer Datenübertragung mit diskreten Mehrfachtonsymbolen und Schaltungsanordnung zur Durchführung des Verfahrens
DE10201851B4 (de) Verfahren zum Übertragen eines analogen Datenstroms und Schaltungsanordnung zur Durchführung des Verfahrens
DE69637138T2 (de) Verfahren zur automatischen Erzeugung, in geschlossener Form, der Koeffizienten eines Entzerrungsnetzwerkes in einem Datenübertragungssystem von OFDM-Art
EP1118196B1 (fr) Recepteur numerique pour un signal produit a l'aide de la modulation discrete a tonalites multiples
DE10129331B4 (de) Verfahren und Schaltungsanordnung für Datenstromsender bei diskreten Mehrfachtonsystemen
DE102004054070B4 (de) Verfahren und Vorrichtung zur Verringerung des Crestfaktors eines Signals
DE10202876B4 (de) Verfahren zum Übertragen eines analogen Datenstroms und Vorrichtung zur Durchführung des Verfahrens
DE10350340B4 (de) Vorrichtung und Verfahren zur Übertragung eines analogen Datenstroms mit Kompensation von spektralen Nebenanteilen
DE10129015A1 (de) Verfahren zum Übertragen eines analogen Datenstroms bei einer optimierten Anpassung des Zeitbereichsentzerrers
WO2003039088A1 (fr) Egalisation de frequence pour systeme de transmission multitonalite
DE60124467T2 (de) Mehrband-DMT-Empfänger
DE10236632A1 (de) Verfahren und Schaltungsanordnung zum Übertragen eines analogen Datenstroms ohne Crestfaktorerhöhung
DE102004047718A1 (de) Verfahren und Empfängerschaltung zur Reduzierung von Rfl-Störungen
WO2000031937A1 (fr) Procede pour la compensation de dysfonctionnements lors de la production d'un signal par modulation multitonalite discrete, et circuit pour la mise en oeuvre de ce procede

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载