WO2002102994A2 - Proteines secretees humaines - Google Patents
Proteines secretees humaines Download PDFInfo
- Publication number
- WO2002102994A2 WO2002102994A2 PCT/US2002/008278 US0208278W WO02102994A2 WO 2002102994 A2 WO2002102994 A2 WO 2002102994A2 US 0208278 W US0208278 W US 0208278W WO 02102994 A2 WO02102994 A2 WO 02102994A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- polypeptide
- referenced
- fragment
- encoded
- Prior art date
Links
- 241000282414 Homo sapiens Species 0.000 title abstract description 37
- 108090000623 proteins and genes Proteins 0.000 title description 233
- 102000004169 proteins and genes Human genes 0.000 title description 136
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 710
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 698
- 229920001184 polypeptide Polymers 0.000 claims abstract description 697
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 447
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 447
- 239000002157 polynucleotide Substances 0.000 claims abstract description 446
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 169
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 129
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 129
- 239000013598 vector Substances 0.000 claims abstract description 57
- 208000026278 immune system disease Diseases 0.000 claims abstract description 37
- 239000000556 agonist Substances 0.000 claims abstract description 31
- 239000005557 antagonist Substances 0.000 claims abstract description 31
- 239000012634 fragment Substances 0.000 claims description 231
- 239000002299 complementary DNA Substances 0.000 claims description 220
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 159
- 230000004071 biological effect Effects 0.000 claims description 60
- 230000000694 effects Effects 0.000 claims description 52
- 230000027455 binding Effects 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 17
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 91
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 239000000203 mixture Substances 0.000 abstract description 12
- 238000012216 screening Methods 0.000 abstract description 11
- 238000010189 synthetic method Methods 0.000 abstract description 4
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 238000010188 recombinant method Methods 0.000 abstract description 3
- 235000018102 proteins Nutrition 0.000 description 131
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 127
- 125000003729 nucleotide group Chemical group 0.000 description 123
- 239000002773 nucleotide Substances 0.000 description 120
- 210000004027 cell Anatomy 0.000 description 112
- 230000000295 complement effect Effects 0.000 description 88
- 201000010099 disease Diseases 0.000 description 85
- 238000003556 assay Methods 0.000 description 84
- 230000000875 corresponding effect Effects 0.000 description 82
- 108091028043 Nucleic acid sequence Proteins 0.000 description 68
- 235000001014 amino acid Nutrition 0.000 description 64
- 239000000523 sample Substances 0.000 description 58
- 230000014509 gene expression Effects 0.000 description 48
- 210000001519 tissue Anatomy 0.000 description 47
- 208000035475 disorder Diseases 0.000 description 42
- 229940024606 amino acid Drugs 0.000 description 40
- 239000013615 primer Substances 0.000 description 36
- 150000001413 amino acids Chemical class 0.000 description 35
- 238000009396 hybridization Methods 0.000 description 35
- 238000005516 engineering process Methods 0.000 description 33
- 238000012360 testing method Methods 0.000 description 32
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 29
- 108700026244 Open Reading Frames Proteins 0.000 description 29
- 239000002585 base Substances 0.000 description 29
- 230000000890 antigenic effect Effects 0.000 description 28
- 238000012217 deletion Methods 0.000 description 28
- 230000037430 deletion Effects 0.000 description 28
- 238000003752 polymerase chain reaction Methods 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 26
- 230000004913 activation Effects 0.000 description 24
- 238000006467 substitution reaction Methods 0.000 description 24
- 230000005714 functional activity Effects 0.000 description 22
- 210000001744 T-lymphocyte Anatomy 0.000 description 19
- -1 allelic variants Proteins 0.000 description 16
- 125000000539 amino acid group Chemical group 0.000 description 16
- 230000035897 transcription Effects 0.000 description 16
- 238000013518 transcription Methods 0.000 description 16
- 230000002163 immunogen Effects 0.000 description 15
- 239000013612 plasmid Substances 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 14
- 210000004899 c-terminal region Anatomy 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000002519 immonomodulatory effect Effects 0.000 description 14
- 210000000987 immune system Anatomy 0.000 description 14
- 108091026890 Coding region Proteins 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 13
- 108010076504 Protein Sorting Signals Proteins 0.000 description 13
- 108091027981 Response element Proteins 0.000 description 13
- 230000002759 chromosomal effect Effects 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 238000012163 sequencing technique Methods 0.000 description 13
- 229960000723 ampicillin Drugs 0.000 description 12
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 230000028993 immune response Effects 0.000 description 11
- 108091005461 Nucleic proteins Proteins 0.000 description 10
- 239000000427 antigen Substances 0.000 description 10
- 102000036639 antigens Human genes 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 10
- 238000004590 computer program Methods 0.000 description 10
- 239000000975 dye Substances 0.000 description 10
- 210000002865 immune cell Anatomy 0.000 description 10
- 238000006366 phosphorylation reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000019491 signal transduction Effects 0.000 description 10
- 101001121099 Homo sapiens MICOS complex subunit MIC26 Proteins 0.000 description 9
- 102100026636 MICOS complex subunit MIC26 Human genes 0.000 description 9
- 230000006907 apoptotic process Effects 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 238000003776 cleavage reaction Methods 0.000 description 9
- 206010012601 diabetes mellitus Diseases 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 210000004698 lymphocyte Anatomy 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 239000002987 primer (paints) Substances 0.000 description 9
- 230000007017 scission Effects 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 8
- 230000004069 differentiation Effects 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 210000003979 eosinophil Anatomy 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 230000001613 neoplastic effect Effects 0.000 description 7
- 230000004075 alteration Effects 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000000021 kinase assay Methods 0.000 description 6
- 230000002969 morbid Effects 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 230000026731 phosphorylation Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 206010020751 Hypersensitivity Diseases 0.000 description 5
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 208000008675 hereditary spastic paraplegia Diseases 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 230000003308 immunostimulating effect Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 210000000822 natural killer cell Anatomy 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 238000010839 reverse transcription Methods 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000058061 Glucose Transporter Type 4 Human genes 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000002123 RNA extraction Methods 0.000 description 4
- 101710086015 RNA ligase Proteins 0.000 description 4
- 108091006300 SLC2A4 Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 230000035508 accumulation Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 210000001789 adipocyte Anatomy 0.000 description 4
- 230000001668 ameliorated effect Effects 0.000 description 4
- 230000033115 angiogenesis Effects 0.000 description 4
- 230000008827 biological function Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 210000001072 colon Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000003828 downregulation Effects 0.000 description 4
- 210000001723 extracellular space Anatomy 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000002873 global sequence alignment Methods 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- 238000000670 ligand binding assay Methods 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 229960004452 methionine Drugs 0.000 description 4
- 210000000229 preadipocyte Anatomy 0.000 description 4
- 230000004853 protein function Effects 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- JSXMFBNJRFXRCX-NSHDSACASA-N (2s)-2-amino-3-(4-prop-2-ynoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(OCC#C)C=C1 JSXMFBNJRFXRCX-NSHDSACASA-N 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 208000035473 Communicable disease Diseases 0.000 description 3
- 241001559589 Cullen Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 102000008070 Interferon-gamma Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 102000019145 JUN kinase activity proteins Human genes 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 102000002569 MAP Kinase Kinase 4 Human genes 0.000 description 3
- 108010068304 MAP Kinase Kinase 4 Proteins 0.000 description 3
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000002788 anti-peptide Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000020411 cell activation Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 230000037433 frameshift Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000004727 humoral immunity Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000003463 hyperproliferative effect Effects 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 229960001438 immunostimulant agent Drugs 0.000 description 3
- 239000003022 immunostimulating agent Substances 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000002887 multiple sequence alignment Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000007899 nucleic acid hybridization Methods 0.000 description 3
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 3
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000037425 regulation of transcription Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000019838 Blood disease Diseases 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 2
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 2
- 241000282461 Canis lupus Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 2
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 2
- 108010055166 Chemokine CCL5 Proteins 0.000 description 2
- 102000001327 Chemokine CCL5 Human genes 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 208000017701 Endocrine disease Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 2
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 206010019799 Hepatitis viral Diseases 0.000 description 2
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 2
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 2
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102100037808 Mitogen-activated protein kinase 8 Human genes 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 2
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 2
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 2
- 238000012233 TRIzol extraction Methods 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003527 anti-angiogenesis Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000005890 cell-mediated cytotoxicity Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000004715 cellular signal transduction Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000008556 epithelial cell proliferation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 208000014951 hematologic disease Diseases 0.000 description 2
- 208000018706 hematopoietic system disease Diseases 0.000 description 2
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 230000005965 immune activity Effects 0.000 description 2
- 238000003312 immunocapture Methods 0.000 description 2
- 238000010324 immunological assay Methods 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000005007 innate immune system Anatomy 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 208000017169 kidney disease Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000000066 myeloid cell Anatomy 0.000 description 2
- 231100000417 nephrotoxicity Toxicity 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009822 protein phosphorylation Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 229960001153 serine Drugs 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000005909 tumor killing Effects 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 201000001862 viral hepatitis Diseases 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- KYPWIZMAJMNPMJ-OMMKOOBNSA-N 3,6-Dideoxy-L-galactose Chemical compound C[C@@H]1O[C@@H](O)[C@@H](O)C[C@@H]1O KYPWIZMAJMNPMJ-OMMKOOBNSA-N 0.000 description 1
- QRYXYRQPMWQIDM-UHFFFAOYSA-N 3-benzoyl-3-(2,5-dioxopyrrol-1-yl)-1-hydroxypyrrolidine-2,5-dione Chemical compound O=C1N(O)C(=O)CC1(C(=O)C=1C=CC=CC=1)N1C(=O)C=CC1=O QRYXYRQPMWQIDM-UHFFFAOYSA-N 0.000 description 1
- MVCATMWWLOULMN-UHFFFAOYSA-N 4-(2-chlorophenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=CC=C1Cl MVCATMWWLOULMN-UHFFFAOYSA-N 0.000 description 1
- WJKKJJXROCHBMA-UHFFFAOYSA-N 4-[3,5-bis(trifluoromethyl)phenoxy]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 WJKKJJXROCHBMA-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 201000010717 Bruton-type agammaglobulinemia Diseases 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 241000698776 Duma Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 1
- QTANTQQOYSUMLC-UHFFFAOYSA-O Ethidium cation Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 QTANTQQOYSUMLC-UHFFFAOYSA-O 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 description 1
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 230000010556 Heparin Binding Activity Effects 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 101100456626 Homo sapiens MEF2A gene Proteins 0.000 description 1
- 101000996127 Homo sapiens Solute carrier family 2, facilitated glucose transporter member 4 Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- XCXUZPXOFFRGGP-DMTCNVIQSA-N L-4-hydroxyglutamic semialdehyde Chemical compound [O-]C(=O)[C@@H]([NH3+])C[C@@H](O)C=O XCXUZPXOFFRGGP-DMTCNVIQSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100079042 Mus musculus Myef2 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 102000009609 Pyrophosphatases Human genes 0.000 description 1
- 108010009413 Pyrophosphatases Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 101150110386 SLC2A4 gene Proteins 0.000 description 1
- 102000007078 STAT Transcription Factors Human genes 0.000 description 1
- 108010072819 STAT Transcription Factors Proteins 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 1
- 208000016349 X-linked agammaglobulinemia Diseases 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000000781 anti-lymphocytic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- HRURXKIZWNSHQB-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;cobalt(2+) Chemical compound [Co+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F HRURXKIZWNSHQB-UHFFFAOYSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000003200 chromosome mapping Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- GDLBFKVLRPITMI-UHFFFAOYSA-N diazoxide Chemical compound ClC1=CC=C2NC(C)=NS(=O)(=O)C2=C1 GDLBFKVLRPITMI-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000028023 exocytosis Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 108010052621 fas Receptor Proteins 0.000 description 1
- 102000018823 fas Receptor Human genes 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 208000001031 fetal erythroblastosis Diseases 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- GZYPWOGIYAIIPV-JBDTYSNRSA-N ginsenoside Rb1 Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)O[C@@](C)(CCC=C(C)C)[C@@H]1[C@@H]2[C@@]([C@@]3(CC[C@H]4C(C)(C)[C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)CC[C@]4(C)[C@H]3C[C@H]2O)C)(C)CC1)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GZYPWOGIYAIIPV-JBDTYSNRSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 102000052262 human SLC2A4 Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 101150014102 mef-2 gene Proteins 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N methyl acetate Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000897 modulatory effect Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 230000007896 negative regulation of T cell activation Effects 0.000 description 1
- 230000013184 negative regulation of T cell differentiation Effects 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 108010039177 polyphenylalanine Proteins 0.000 description 1
- 230000016412 positive regulation of cytokine production Effects 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000013197 protein A assay Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 1
- 238000002416 scanning tunnelling spectroscopy Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 208000011317 telomere syndrome Diseases 0.000 description 1
- MQBASTZLTYLEON-UHFFFAOYSA-N tert-butyl n-(2-hydrazinyl-2-oxoethyl)carbamate Chemical compound CC(C)(C)OC(=O)NCC(=O)NN MQBASTZLTYLEON-UHFFFAOYSA-N 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating immune disorders and diseases.
- Antibodies that bind these polypeptides are also encompassed by the present invention.
- vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies are also encompassed by the present invention.
- the invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
- the present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
- the immune system is an intricate network of cells, tissues and soluble molecules that function to protect the body from invasion by foreign substances and pathogens.
- the major cells of the immune system are lymphocytes, including B cells and T cells, and myeloid cells, including basophils, eosinophils, neutrophils, mast cells, monocytes, macrophages and dendritic cells.
- lymphocytes including B cells and T cells
- myeloid cells including basophils, eosinophils, neutrophils, mast cells, monocytes, macrophages and dendritic cells.
- soluble molecules- such as antibodies, complement proteins, and cytokines- circulate in lymph and blood plasma, and play important roles in immunity.
- the immune system can be subdivided into the acquired and innate immune systems.
- the cells of the innate immune system e.g., neutrophils, eosinophils, basophils, mast cells
- the cells of the acquired immune system B and T cells
- B and T cells are antigen specific. Repeated exposure of B and T cells to an antigen results in improved immune responses (memory responses) produced by these cell types.
- the cells and products of the acquired immune system can recruit components of the innate system to mount a focused immune response.
- An immune response is seldom carried out by a single cell type, but rather requires the coordinated efforts of several cell types.
- cells of the immune system communicate with each other and with other cells of the body. Communication between cells may be made by cell-cell contact, between membrane bound molecules on each cell, or by the interaction of soluble components of the immune system with cellular receptors. Signaling between cell types may have one or more of a variety of consequences, including activation, proliferation, differentiation, and apoptosis. Activation and differentiation of immune cells may result in the expression or secretion of polypeptides, or other molecules, which in turn affect the function of other cells and/or molecules of the immune system. Molecules which stimulate or suppress immune system function are known as immunomodulators.
- Immunomodulators may enhance (immunoprophylaxis, immunostimulation), restore (immunosubstitution, immunorestoration) or suppress (immunosuppression, immunodeviation) immunological functions or activities.
- Immunomodulatory compounds have many important applications in clinical practice.
- immunosuppressing agents which attenuate or prevent unwanted immune responses
- a mechanism of action common to many immunosuppressants is the inhibition of T cell activation and/or differentiation.
- Antilymphocyte antibodies have also been used to attenuate immune system functions.
- Currently- used immunosuppressive agents can produce a number of side effects which limit their use. Among the most serious secondary effects include kidney and liver toxicity, increased risk of infection, hyperglycemia, neoplasia, and osteoporosis (see, e.g., Freeman, Clin. Biochem. 24(1):9- 14 (1991); Mitchison, Dig. Dis.ll(2):78-101 (1993)).
- Immunostimulants which enhance the activity of immune cells and molecules, comprise another class of immunomodulatory agents with important clinical applications. Such applications include, for example, the treatment of immunodeficiency disorders (e.g. AIDS and severe combined immunodeficiency), chronic infectious diseases (e.g. viral hepatitis, papillomavirus, and herpesvirus), and cancer.
- immunodeficiency disorders e.g. AIDS and severe combined immunodeficiency
- chronic infectious diseases e.g. viral hepatitis, papillomavirus, and herpesvirus
- cancer An important class of endogenous immunostimulants is the cytokines. These soluble signaling molecules are produced by a number of cell types, and are critical to the regulation of the immune response. Immunostimulatory mechanisms can include proliferation, differentiation and/or activation of immune cells or progenitors of immune cells.
- interleukin-2 binds to IL-2 receptors on T lymphocytes and induces proliferation and differentiation.
- Another cytokine, interferon alpha stimulates the immune system through a variety of mechanisms, including activation of macrophages, T lymphocytes, and natural killer cells. Interferon alpha also induces the expression of antiviral proteins (see Chapter 50, The Pharmacological Basis of Therapeutics. 9 th Edition, Eds. Hardman, Limbird, Molinoff, Ruddon, and Gilman, McGraw Hill (1996)). Limitations of current immunostimulant therapies include anaphylaxis, pulmonary edema, and renal toxicity, to name a few.
- autoimmune disorders e.g., systemic lupus erythematosus, rheumatoid arthritis, idiopathic thrombocytopenic purpura and multiple sclerosis
- immunodeficiencies e.g., X-linked agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, and ataxia telangiectasia
- chronic infections e.g., HIV, viral hepatitis, and herpesvirus
- neoplastic disorders See, e.g. "Immune Activity" section infra.
- immune related molecules would be useful as agents to
- the present invention encompasses human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating immune disorders and diseases.
- Antibodies that bind these polypeptides are also encompassed by the present invention; as are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies.
- the invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
- the present invention also encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
- Table 1A summarizes information concerning certain polypnucleotides and polypeptides of the invention.
- the first column provides the gene number in the application for each clone identifier.
- the second column provides a unique clone identifier, "Clone ID:”, for a cDNA clone related to each contig sequence disclosed in Table 1A.
- Third column the cDNA
- Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits contain multiple different clones corresponding to the same gene.
- Vector refers to the type of vector contained in the corresponding cDNA Clone identified in the second column.
- the nucleotide sequence identified as "NT SEQ ID NO:X” was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones.
- Total NT Seq refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X.”
- the deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq.” (seventh column) and the "3' NT of Clone Seq.” (eighth column) of SEQ ID NO:X.
- nucleotide position of SEQ ID NO:X of the putative start codon is identified as "5' NT of Start Codon.”
- nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep.”
- the translated amino acid sequence, beginning with the methionine is identified as "AA SEQ ID NO:Y,” although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
- the first and last amino acid position of SEQ ID NO: Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep.”
- the predicted first amino acid position of SEQ ID NO: Y of the secreted portion is identified as "Predicted First AA of Secreted Portion”.
- the amino acid position of SEQ ID NO:Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF”.
- SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
- SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention.
- polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table 1A and/or elsewhere herein Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors.
- the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
- the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
- the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ID NO: Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1A.
- the nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods The predicted amino acid sequence can then be verified from such deposits.
- amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
- Table 1A Also provided in Table 1A is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.
- pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
- Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
- Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0 were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 75:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue.
- Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al, Bio/Technology 9: (1991).
- the present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:X, SEQ ID NO:
- allelic variants, orthologs, and/or species homologs Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ID NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC.
- allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
- the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z.
- the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z.
- Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention.
- the present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
- Table IB.l and Table 1B.2 summarize some of the polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) and contig nucleotide sequence identifiers (SEQ ID NO:X)) and further summarizes certain characteristics of these polynucleotides and the polypeptides encoded thereby.
- the first column of Tables IB.l and 1B.2 provide the gene numbers in the application for each clone identifier.
- the second column of Tables IB.l and 1B.2 provide unique clone identifiers, "Clone ID:”, for cDNA clones related to each contig sequence disclosed in Table 1A and/or Table IB.
- the third column of Tables IB.l and 1B.2 provide unique contig identifiers, "Contig ID:” for each of the contig sequences disclosed in these tables.
- the fourth column of Tables IB.l and 1B.2 provide the sequence identifiers, "SEQ ID NO:X", for each of the contig sequences disclosed in Table 1A and or IB.
- the fifth column of Table IB.l provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:X that delineates the preferred open reading frame (ORF) that encodes the amino acid sequence shown in the sequence listing and referenced in Table IB.l as SEQ ID NO:Y (column 6).
- Column 7 of Table IB.l lists residues comprising predicted epitopes contained in the polypeptides encoded by each of the preferred ORFs (SEQ ID NO:Y).
- polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the predicted epitopes described in Table IB.l. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
- Column 8 of Table IB.l (“Cytologic Band") provides the chromosomal location of polynucleotides corresponding to SEQ ED NO:X. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database.
- Table IB.l Column 9 labeled "OMIM Disease Reference(s)".
- OMIM Disease Reference(s) A key to the OMEM reference identification numbers is provided in Table 5.
- Table 1B.2 Column 5 of Table 1B.2, 'Tissue Distribution" shows the expression profile of tissue, cells, and/or cell line libraries which express the polynucleotides of the invention. The first code number shown in Table 1B.2 column 5 (preceding the colon), represents the tissue/cell source identifier code corresponding to the key provided in Table 4. Expression of these polynucleotides was not observed in the other tissues and/or cell libraries tested.
- the second number in column 5 represents the number of times a sequence corresponding to the reference polynucleotide sequence (e.g., SEQ ID NO:X) was identified in the corresponding tissue/cell source.
- tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology.
- cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array.
- cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo(dT) to prime reverse transcription.
- Table 1C summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ED:), contig sequences (contig identifier (Contig ED:) contig nucleotide sequence identifiers (SEQ ED NO:X)), and genomic sequences (SEQ ED NO:B).
- the first column provides a unique clone identifier, "Clone TD:”, for a cDNA clone related to each contig sequence.
- the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
- the third column provides a unique contig identifier, "Contig ED:” for each contig sequence.
- the fourth column provides a BAC identifier "BAC ED NO:A” for the BAC clone referenced in the corresponding row of the table.
- the fifth column provides the nucleotide sequence identifier, "SEQ ED NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table.
- the sixth column "Exon From- To" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
- the present invention encompasses a method of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating immune diseases or disorders; comprising administering to a patient in which such treatment, prevention, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A, Table IB, and Table 1C, in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the disease or disorder.
- the polynucleotides, polypeptides, agonists, or antagonists of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists thereof (including antibodies) could be used to treat the associated disease.
- Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities.
- the first column (“Gene No.") provides the gene number in the application for each clone identifier.
- the second column (“cDNA Clone ED:”) provides the unique clone identifier for each clone as previously described and indicated in Tables 1A, IB, and lC.
- the third column (“AA SEQ ID NO:Y”) indicates the Sequence Listing SEQ ED Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables 1A, IB, and 2).
- the fourth column (“Biological Activity”) indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides).
- the fifth column (“Exemplary Activity Assay”) further describes the corresponding biological activity and provides information pertaining to the various types of assays which may be performed to test, demonstrate, or quantify the corresponding biological activity. Table ID describes the use of FMAT technology, inter alia, for testing or demonstrating various biological activities.
- Fluorometric microvolume assay technology is a fluorescence-based system that provides a means to perform nonradioactive cell- and bead-based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays. FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead-based immunocapture assays.
- FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways.
- FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
- immunomodulatory proteins such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)
- Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity.
- the phosphorylation and de-phosphorylation of specific amino acid residues e.g. Tyrosine, Serine, Threonine
- cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways.
- cell signal transduction via phosphorylation/de-phosphorylation is crucial to the regulation of a wide variety of cellular processes (e.g. proliferation, differentiation, migration, apoptosis, etc.).
- kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998).
- Polynucleotides encoding polypeptides of the present invention can be used in assays to test for one or more biological activities.
- One such biological activity which may be tested includes the ability of polynucleotides and polypeptides of the invention to stimulate up-regulation or down-regulation of expression of particular genes and proteins.
- polynucleotides and polypeptides of the present invention exhibit activity in altering particular gene and protein expression patterns, it is likely that these polynucleotides and polypeptides of the present invention may be involved in, or capable of effecting changes in, diseases associated with the altered gene and protein expression profiles.
- polynucleotides, polypeptides, or antibodies of the present invention could be used to treat said associated diseases.
- TaqMan® assays may be performed to assess the ability of polynucleotides (and polypeptides they encode) to alter the expression pattern of particular "target" genes.
- TaqMan® reactions are performed to evaluate the ability of a test agent to induce or repress expression of specific genes in different cell types.
- TaqMan® gene expression quantification assays ('TaqMan® assays") are well known to, and routinely performed by, those of ordinary skill in the art.
- TaqMan® assays are performed in a two step reverse transcription / polymerase chain reaction (RT-PCR). Ln the first (RT) step, cDNA is reverse transcribed from total RNA samples using random hexamer primers. In the second (PCR) step, PCR products are synthesized from the cDNA using gene specific primers.
- RT-PCR reverse transcription / polymerase chain reaction
- the Taqman® PCR reaction exploits the 5' nuclease activity of AmpliTaq Gold ® DNA Polymerase to cleave a Taqman® probe (distinct from the primers) during PCR.
- the Taqman® probe contains a reporter dye at the 5 '-end of the probe and a quencher dye at the 3' end of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence.
- the probe specifically anneals between the forward and reverse primer sites.
- AmpliTaq Fold DNA Polymerase then cleaves the probe between the reporter and quencher when the probe hybridizes to the target, resulting in increased fluorescence of the reporter (see Figure 2). Accumulation of PCR products is detected directly by monitoring the increase in fluorescence, of the reporter dye.
- vector controls or constructs containing the coding sequence for the gene of interest are transfected into cells, such as for example 293T cells, and supernatants collected after 48 hours.
- cells such as for example 293T cells
- multiple primary human cells or human cell lines are used; such cells may include but are not limited to, Normal Human Dermal Fibroblasts, Aortic Smooth Muscle, Human Umbilical Vein Endothelial Cells, HepG2, Daudi, Jurkat, U937, Caco, and THP-1 cell lines.
- Cells are plated in growth media and growth is arrested by culturing without media change for 3 days, or by switching cells to low serum media and incubating overnight.
- RNA is isolated; for example, by using Trizol extraction or by using the Ambion RNAqueous(TM)-4PCR RNA isolation system. Expression levels of multiple genes are analyzed using TAQMAN, and expression in the test sample is compared to control vector samples to identify genes induced or repressed.
- Table IE indicates particular disease classes and preferred indications for which polynucleotides, polypeptides, or antibodies of the present invention may be used in detecting, diagnosing, preventing, treating and/or ameliorating said diseases and disorders based on "target" gene expression patterns which may be up- or down-regulated by polynucleotides (and the encoded polypeptides) corresponding to each indicated cDNA Clone ID (shown in Table IE, Column 2).
- the present invention encompasses a method of detecting, diagnosing, preventing, treating, and/or ameliorating a disease or disorder listed in the "Disease Class" and/or "Preferred Indication” columns of Table IE; comprising administering to a patient in which such detection, diagnosis, prevention, or treatment is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, diagnose, prevent, treat, or ameliorate the disease or disorder.
- the first and second columns of Table ID show the "Gene No.” and "cDNA Clone ED No.”, respectively, indicating certain nucleic acids and proteins (or antibodies against the same) of the invention (including polynucleotide, polypeptide, and antibody fragments or variants thereof) that may be used in detecting, diagnosing, preventing, treating, or ameliorating the disease(s) or disorder(s) indicated in the corresponding row in the "Disease Class” or "Preferred Indication” Columns of Table IE.
- the present invention also encompasses methods of detecting, diagnosing, preventing, treating, or ameliorating a disease or disorder listed in the "Disease Class” or "Preferred Indication” Columns of Table IE; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in the "Disease Class” or “Preferred Indication” Columns of Table IE.
- the "Disease Class” Column of Table IE provides a categorized descriptive heading for diseases, disorders, and/or conditions (more fully described below) that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
- the "Preferred Indication” Column of Table IE describes diseases, disorders, and/or conditions that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
- Cell Line and “Exemplary Targets” Columns of Table IE indicate particular cell lines and target genes, respectively, which may show altered gene expression patterns (i.e., up- or down-regulation of the indicated target gene) in Taqman assays, performed as described above, utilizing polynucleotides of the cDNA Clone ED shown in the corresponding row. Alteration of expression patterns of the indicated “Exemplary Target” genes is correlated with a particular "Disease Class” and/or "Preferred Indication” as shown in the corresponding row under the respective column headings.
- Cancer in the "Disease Class” Column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof) may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate neoplastic diseases and/or disorders (e.g., leukemias, cancers, etc., as described below under “Hyperproliferative Disorders”).
- neoplastic diseases and/or disorders e.g., leukemias, cancers, etc., as described below under “Hyperproliferative Disorders”
- “Hyperproliferative Disorders” blood disorders (e.g., as described below under “Immune Activity” “Cardiovascular Disorders” and/or “Blood-Related Disorders”), and infections (e.g., as described below under “Infectious Disease”).
- Angiogenesis in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), diseases and/or disorders of the cardiovascular system (e.g., as described below under "Cardiovascular Disorders"), diseases and/or disorders involving cellular and genetic abnormalities (e.g., as described below under "Diseases at the Cellular Level"), diseases and or disorders involving angiogenesis (e.g., as described below under "Anti- Angiogenesis Activity”), to promote or inhibit cell or tissue regeneration (e.g., as described below under "Regeneration”), or to promote wound healing (e.g., as described below under "Wound Healing and Epithelial Cell Proliferation”).
- neoplastic diseases e
- Diabetes in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diabetes (including diabetes mellitus types I and IE), as well as diseases and/or disorders associated with, or consequential to, diabetes (e.g. as described below under “Endocrine Disorders,” “Renal Disorders,” and “Gastrointestinal Disorders”). Description of Table 2
- Table 2 summarizes homology and features of some of the polypeptides of the invention.
- the first column provides a unique clone identifier, "Clone D:”, corresponding to a cDNA clone disclosed in Table 1A or Table IB.
- the second column provides the unique contig identifier, "Contig ED:” corresponding to contigs in Table IB and allowing for correlation with the information in Table IB.
- the third column provides the sequence identifier, "SEQ D NO:X", for the contig polynucleotide sequence.
- the fourth column provides the analysis method by which the homology/identity disclosed in the Table was determined.
- NR non-redundant protein database
- PFAM protein families
- polypeptides of the invention comprise, or alternatively consist of, an amino acid sequence encoded by a polynucleotide in SEQ ED NO:X as delineated in columns 8 and 9, or fragments or variants thereof.
- Table 3 provides polynucleotide sequences that may be disclaimed according to certain embodiments of the invention.
- the first column provides a unique clone identifier, "Clone ID”, for a cDNA clone related to contig sequences disclosed in Table IB.
- the second column provides the sequence identifier, "SEQ ED NO:X”, for contig sequences disclosed in Table 1A and/or Table IB.
- the third column provides the unique contig identifier, "Contig ED:”, for contigs disclosed in Table IB.
- the fourth column provides a unique integer 'a' where 'a' is any integer between 1 and the final nucleotide minus 15 of SEQ ED NO:X
- the fifth column provides a unique integer 'b' where 'b' is any integer between 15 and the final nucleotide of SEQ ED NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ TD NO:X, and where b is greater than or equal to a + 14.
- the uniquely defined integers can be substituted into the general formula of a-b, and used to describe polynucleotides which may be preferably excluded from the invention.
- preferably excluded from the invention are at least one, two, three, four, five, ten, or more of the polynucleotide sequence(s) having the accession number(s) disclosed in the sixth column of this Table (including for example, published sequence in connection with a particular BAC clone).
- preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone).
- Table 4 provides a key to the tissue/cell source identifier code disclosed in Table IB.2, column 5.
- Column 1 provides the tissue/cell source identifier code disclosed in Table 1B.2, Column 5.
- Columns 2-5 provide a description of the tissue or cell source. Note that "Description” and “Tissue” sources (i.e. columns 2 and 3) having the prefix “a_” indicates organs, tissues, or cells derived from “adult” sources. Codes corresponding to diseased tissues are indicated in column 6 with the word “disease.” The use of the word “disease” in column 6 is non-limiting.
- the tissue or cell source may be specific (e.g.
- tissue/cell source is a library
- column 7 identifies the vector used to generate the library.
- Table 5 provides a key to the OMEM reference identification numbers disclosed in Table IB.l, column 9.
- OMEM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM. McKusick- Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/).
- Column 2 provides diseases associated with the cytologic band disclosed in Table IB.l, column 8, as determined using the Morbid Map database.
- Table 6 summarizes some of the ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application. These deposits were made in addition to those described in the Table 1A.
- Table 7 shows the cDNA libraries sequenced, and ATCC designation numbers and vector information relating to these cDNA libraries.
- the first column shows the first four letters indicating the Library from which each library clone was derived.
- the second column indicates the catalogued tissue description for the corresponding libraries.
- the third column indicates the vector containing the corresponding clones.
- the fourth column shows the ATCC deposit designation for each libray clone as indicated by the deposit information in Table 6.
- isolated refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state.
- an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.
- isolated does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.
- a "secreted” protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.
- a "polynucleotide” refers to a molecule having a nucleic acid sequence encoding SEQ ED NO:Y or a fragment or variant thereof (e.g., the polypeptide delinated in columns fourteen and fifteen of Table 1A); a nucleic acid sequence contained in SEQ TD NO:X (as described in column 5 of Table 1A and/or Table IB) or the complement thereof; a cDNA sequence contained in Clone ED: (as described in column 2 of Table 1A and/or Table IB and contained within a library deposited with the ATCC); a nucleotide sequence encoding the polypeptide encoded by a nucleotide sequence in SEQ ED NO:B as defined in column 6 (EXON From-To) of Table 1C or a fragment or variant thereof; or a nucleotide coding sequence in SEQ ED NO:B as defined in column 6 of Table 1C or the complement thereof.
- the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence.
- a "polypeptide” refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined (obviously excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a polyA tail of a sequence corresponding to a cDNA).
- SEQ ED NO:X was often generated by overlapping sequences contained in multiple clones (contig analysis).
- a representative clone containing all or most of the sequence for SEQ TD NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library.
- HGS Human Genome Sciences, Inc.
- each clone is identified by a cDNA Clone ED (identifier generally referred to herein as Clone ED:).
- Clone ED identifier generally referred to herein as Clone ED:
- Each Clone ID is unique to an individual clone and the Clone ED is all the information needed to retrieve a given clone from the HGS library.
- Table 7 provides a list of the deposited cDNA libraries.
- Table 7 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE.” The name of a cDNA clone (Clone ED) isolated from that library begins with the same four characters, for example "HTWEP07".
- Table 1A and/or Table IB correlates the Clone ED names with SEQ ID NO:X. Thus, starting with an SEQ ED NO:X, one can use Tables 1A, IB, 6, 7, and 9 to determine the corresponding Clone ED, which library it came from and which ATCC deposit the library is contained in.
- the ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA.
- the ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.
- the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length.
- polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron.
- the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
- a "polynucleotide” of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ED NO:X, or the complement thereof (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments described herein), the polynucleotide sequence delineated in columns 7 and 8 of Table 1A or the complement thereof, the polynucleotide sequence delineated in columns 8 and 9 of Table 2 or the complement thereof, and/or cDNA sequences contained in Clone ED: (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments, or the cDNA clone within the pool of cDNA clones deposited with the ATCC, described herein), and or the polynucleotide sequence delineated in column 6 of Table 1C or the complement thereof.
- SEQ ED NO:X or the
- “Stringent hybridization conditions” refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in O.lx SSC at about 65 degree C. Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions.
- Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature.
- washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
- blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations.
- the inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
- polynucleotide which hybridizes only to polyA ⁇ sequences (such as any 3' terminal polyA ⁇ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide,” since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).
- polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
- polynucleotides can be composed of single- and double- stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double- stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions.
- polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA.
- a polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
- Modified bases include, for example, tritylated bases and unusual bases such as inosine.
- a variety of modifications can be made to DNA and RNA; thus, "polynucleotide” embraces chemically, enzymatically, or metabolically modified forms.
- the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length.
- polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron.
- the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
- SEQ ID NO:X refers to a polynucleotide sequence described in column 5 of Table 1A
- SEQ ID NO:Y refers to a polypeptide sequence described in column 10 of Table 1A
- SEQ ED NO:X is identified by an integer specified in column 6 of Table 1A.
- the polypeptide sequence SEQ ED NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ED NO:X.
- the polynucleotide sequences are shown in the sequence listing immediately followed by all of the polypeptide sequences.
- a polypeptide sequence corresponding to polynucleotide sequence SEQ ED NO: 2 is the first polypeptide sequence shown in the sequence listing.
- the second polypeptide sequence corresponds to the polynucleotide sequence shown as SEQ ED NO:3, and so on.
- the polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
- the polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
- polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
- Modifications include acetylation, acylation, ADP- ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
- SEQ ED NO:X refers to a polynucleotide sequence described, for example, in Tables 1A, Table IB, or Table 2, while “SEQ ED NO:Y” refers to a polypeptide sequence described in column 11 of Table 1A and or Table IB. SEQ ED NO:X is identified by an integer specified in column 4 of Table IB. The polypeptide sequence SEQ ID NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ TD NO:X. "Clone ED:” refers to a cDNA clone described in column 2 of Table 1A and/or IB.
- a polypeptide having functional activity refers to a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein. Such functional activities include, but are not limited to, biological activity (e.g. activity useful in treating, preventing and/or ameliorating immune diseases and disorders), antigenicity (ability to bind [or compete with a polypeptide for binding] to an anti-polypeptide antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.
- the polypeptides of the invention can be assayed for functional activity (e.g.
- a polypeptide having biological activity refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).
- Table 1A summarizes information concerning certain polypnucleotides and polypeptides of the invention.
- the first column provides the gene number in the application for each clone identifier.
- the second column provides a unique clone identifier, "Clone ED:”, for a cDNA clone related to each contig sequence disclosed in Table 1A.
- Third column the cDNA Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits contain multiple different clones corresponding to the same gene.
- “Vector” refers to the type of vector contained in the corresponding cDNA Clone identified in the second column.
- nucleotide sequence identified as "NT SEQ TD NO:X” was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones.
- the overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ TD NO:X.
- Total NT Seq refers to the total number of nucleotides in the contig sequence identified as SEQ ED NO:X.”
- the deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq.” (seventh column) and the "3' NT of Clone Seq.” (eighth column) of SEQ TD NO:X.
- the nucleotide position of SEQ ED NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon.”
- the nucleotide position of SEQ ED NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep.”
- the translated amino acid sequence, beginning with the methionine is identified as "AA SEQ ED NO:Y,” although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
- the first and last amino acid position of SEQ ED NO: Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep.”
- the predicted first amino acid position of SEQ ED NO: Y of the secreted portion is identified as "Predicted First AA of Secreted Portion”.
- the amino acid position of SEQ ID NO:Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF'.
- SEQ ED NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ED NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
- SEQ ED NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ TD NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention.
- polypeptides identified from SEQ ED NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table 1A and/or elsewhere herein
- DNA sequences generated by sequencing reactions can contain sequencing errors.
- the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
- the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence.
- the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
- the present invention provides not only the generated nucleotide sequence identified as SEQ ED NO:X, and the predicted translated amino acid sequence identified as SEQ TD NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1A.
- the nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods The predicted amino acid sequence can then be verified from such deposits.
- amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
- Table 1A Also provided in Table 1A is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.
- pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
- Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
- Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0 were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 75:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue.
- Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al, Bio/Technology 9: (1991).
- the present invention also relates to the genes corresponding to SEQ ED NO:X, SEQ ID NO:Y, and/or a deposited cDNA (cDNA Clone ED).
- the corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
- allelic variants, orthologs, and/or species homologs are also provided in the present invention. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ED NO:X and SEQ ED NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC.
- allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
- the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ED NO:X and or a cDNA contained in ATCC Deposit No.Z.
- the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ TD NO:Y, a polypeptide encoded by SEQ ED NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z.
- Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ED NO:Y, a polypeptide encoded by SEQ ED NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention.
- the present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ED NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
- the first column in Table IB.l and Table 1B.2 provides the gene number in the application corresponding to the clone identifier.
- the second column in Table IB.l and Table 1B.2 provides a unique "Clone ID:" for the cDNA clone related to each contig sequence disclosed in Table IB.l and Table IB.2.
- This clone ID references the cDNA clone which contains at least the 5' most sequence of the assembled contig and at least a portion of SEQ ID NO:X as determined by directly sequencing the referenced clone.
- the referenced clone may have more sequence than described in the sequence listing or the clone may have less.
- a full-length cDNA can be obtained by methods described elsewhere herein.
- the third column in Table IB.l and Table 1B.2 provides a unique "Contig ID” identification for each contig sequence.
- the fourth column in Table IB.l and Table 1B.2 provides the "SEQ ID NO:" identifier for each of the contig polynucleotide sequences disclosed in Table IB.
- Table IB.l The fifth column in Table IB.l, "ORF (From-To)", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence "SEQ ID NO:X” that delineate the preferred open reading frame (ORF) shown in the sequence listing and referenced in Table IB.l, column 6, as SEQ ID NO:Y. Where the nucleotide position number "To" is lower than the nucleotide position number "From", the preferred ORF is the reverse complement of the referenced polynucleotide sequence.
- the sixth column in Table IB.l provides the corresponding SEQ K) NO:Y for the polypeptide sequence encoded by the preferred ORF delineated in column 5.
- the invention provides an amino acid sequence comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by "ORF (From- To)". Also provided are polynucleotides encoding such amino acid sequences and the complementary strand thereto.
- Column 7 in Table IB.l lists residues comprising epitopes contained in the polypeptides encoded by the preferred ORF (SEQ ID NO:Y), as predicted using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4: 181-186.
- polypeptides of the invention comprise, or alternatively consist of, at least one, two, three, four, five or more of the predicted epitopes as described in Table IB. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
- Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Each sequence in the UniGene database is assigned to a "cluster"; all of the ESTs, cDNAs, and STSs in a cluster are believed to be derived from a single gene. Chromosomal mapping data is often available for one or more sequence(s) in a UniGene cluster; this data (if consistent) is then applied to the cluster as a whole. Thus, it is possible to infer the chromosomal location of a new polynucleotide sequence by determining its identity with a mapped UniGene cluster.
- a modified version of the computer program BLASTN (Altshul, et al., J. Mol. Biol. 215:403-410 (1990), and Gish, and States, Nat. Genet. 3:266-272) (1993) was used to search the UniGene database for EST or cDNA sequences that contain exact or near-exact matches to a polynucleotide sequence of the invention (the 'Query').
- a sequence from the UniGene database (the 'Subject') was said to be an exact match if it contained a segment of 50 nucleotides in length such that 48 of those nucleotides were in the same order as found in the Query sequence.
- a presumptive chromosomal location was determined for a polynucleotide of the invention, an associated disease locus was identified by comparison with a database of diseases which have been experimentally associated with genetic loci.
- the database used was the Morbid Map, derived from OMIMTM and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD) 2000;. If the putative chromosomal location of a polynucleotide of the invention (Query sequence) was associated with a disease in the Morbid Map database, an OMIM reference identification number was noted in column 9, Table IB.l, labelled "OMIM Disease Reference(s).
- Table 5 is a key to the OMIM reference identification numbers (column 1), and provides a description of the associated disease in Column 2.
- the first number in Table 1B.2, column 5 (preceding the colon), represents the tissue/cell source identifier code corresponding to the code and description provided in Table 4.
- the second number in column 5 represents the number of times a sequence corresponding to the reference polynucleotide sequence was identified in the corresponding tissue/cell source.
- tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology.
- cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array.
- cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo (dT) to prime reverse transcription.
- H058L1 H0327:l, H0545:l, H0373:l, H0622:l, L0770:l, L076 1, L0644:l, L0803:l, L0774:l, L0805:l, L0655:l, H0539:l, H052 1, H0555:l, L0779:l and S0031:l.
- AR269 5 AR060:5 AR16 5, AR162:5 AR055:5 AR163 5, AR176 5, AR225 5, AR267:4 AR266:4, AR263:4 AR228:4 AR233:4, AR178:4 AR214:4 AR3094, AR2214,AR1824,AR181:4 AR257:4, AR179:4 AR264:4 AR165:4, AR183:4 AR231.4 AR2394, AR2374, AR2363,AR164:3 AR262:3, AR300:3 AR177:3 AR27L3, AR294:3 AR229:3 AR1663, AR2723, AR2553, AR299:3 AR275:3, AR172:3 AR234:3 AR195:3, AR215:3 AR173:3 AR2403, AR1963, AR1693,AR168:3 AR213:3, AR185:3 AR268:3 AR29L3, AR31L3 AR270:3 AR2013, AR1753, AR2883,AR261
- AR308 42 .,, AR192:7, AR205:. ,AR161:: i, AR198:3, AR178:3, AR162:3, AR163:3, AR193:3, AR216:3,
- AR254 2 AR215:2, AR053:2 AR257:2 AR17 2, AR195:2, AR27 2, AR20L2, AR277:2, AR266:2,
- Table 1C summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ TD NO:B).
- the first column provides a unique clone identifier, "Clone ED:”, for a cDNA clone related to each contig sequence.
- the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
- the third column provides a unique contig identifier, "Contig ID:” for each contig sequence.
- the fourth column provides a BAC identifier "BAC ID NO:A” for the BAC clone referenced in the corresponding row of the table.
- the fifth column provides the nucleotide sequence identifier, "SEQ TD NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table.
- the sixth column "Exon From- To" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
- the polynucleotides or polypeptides, or agonists or antagonists of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these * molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists could be used to treat the associated disease.
- the present invention encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating a disease or disorder.
- the present invention encompasses a method of treating an immune disease or disorder comprising administering to a patient in which such detection, treatment, prevention, and/or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the immune disease or disorder.
- the present invention also encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating an immune disease or disorder; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in Column 3 of Table ID.
- Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities.
- the first column (“Gene No.") provides the gene number in the application for each clone identifier.
- the second column (“cDNA Clone ID:”) provides the unique clone identifier for each clone as previously described and indicated in Table 1A through Table ID.
- the third column (“AA SEQ ID NO:Y”) indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables 1A, Table IB, and Table 2).
- the fourth column (“Biological Activity”) indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides).
- the fifth column (“Exemplary Activity Assay”) further describes the corresponding biological activity and also provides information pertaining to the various types of assays which may be performed to test, demonstrate, or quantify the corresponding biological activity.
- Fluorometric microvolume assay technology is a fluorescence-based system which provides a means to perform nonradioactive cell- and bead- based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays.
- FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead- based immunocapture assays. See, Miraglia S et. al., "Homogeneous cell and bead based assays for highthroughput screening using flourometric microvolume assay technology," Journal of Biomolecular Screening; 4:193-204 (1999).
- FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways.
- FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
- immunomodulatory proteins such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
- Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity.
- the phosphorylation and de-phosphorylation of specific amino acid residues e.g. Tyrosine, Serine, Threonine
- cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways.
- cell signal transduction via phosphorylation/de-phosphorylation is crucial to the regulation of a wide variety of cellular processes (e.g. proliferation, differentiation, migration, apoptosis, etc.).
- kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998). Table ID
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Diabetes (AREA)
- Pulmonology (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Genetics & Genomics (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Emergency Medicine (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002441832A CA2441832A1 (fr) | 2001-03-21 | 2002-03-19 | Proteines secretees humaines |
EP02760994A EP1379132A4 (fr) | 2001-03-21 | 2002-03-19 | Proteines secretees humaines |
AU2002326293A AU2002326293A1 (en) | 2001-03-21 | 2002-03-19 | Human secreted proteins |
US11/346,470 US20060223088A1 (en) | 1997-03-07 | 2006-02-03 | Human secreted proteins |
US12/198,817 US7968689B2 (en) | 1997-03-07 | 2008-08-26 | Antibodies to HSDEK49 polypeptides |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27734001P | 2001-03-21 | 2001-03-21 | |
US60/277,340 | 2001-03-21 | ||
US30617101P | 2001-07-19 | 2001-07-19 | |
US60/306,171 | 2001-07-19 | ||
US33128701P | 2001-11-13 | 2001-11-13 | |
US60/331,287 | 2001-11-13 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/981,876 Continuation-In-Part US7053190B2 (en) | 1997-03-07 | 2001-10-19 | Secreted protein HRGDF73 |
US10/100,683 Continuation-In-Part US7368531B2 (en) | 1997-03-07 | 2002-03-19 | Human secreted proteins |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10472532 A-371-Of-International | 2002-03-19 | ||
US11/346,470 Continuation-In-Part US20060223088A1 (en) | 1997-03-07 | 2006-02-03 | Human secreted proteins |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002102994A2 true WO2002102994A2 (fr) | 2002-12-27 |
WO2002102994A3 WO2002102994A3 (fr) | 2003-07-24 |
Family
ID=27402891
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/008123 WO2002102993A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees par l'homme |
PCT/US2002/008124 WO2003004622A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines humaines secretees |
PCT/US2002/008278 WO2002102994A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees humaines |
PCT/US2002/008277 WO2003038063A2 (fr) | 2001-03-21 | 2002-03-19 | Proteines secretees humaines |
PCT/US2002/009785 WO2002095010A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees humaines |
PCT/US2002/008276 WO2002076488A1 (fr) | 1997-03-07 | 2002-03-19 | Proteines humaines secretees |
PCT/US2002/008279 WO2002090526A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees par les humains |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/008123 WO2002102993A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees par l'homme |
PCT/US2002/008124 WO2003004622A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines humaines secretees |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/008277 WO2003038063A2 (fr) | 2001-03-21 | 2002-03-19 | Proteines secretees humaines |
PCT/US2002/009785 WO2002095010A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees humaines |
PCT/US2002/008276 WO2002076488A1 (fr) | 1997-03-07 | 2002-03-19 | Proteines humaines secretees |
PCT/US2002/008279 WO2002090526A2 (fr) | 1997-03-07 | 2002-03-19 | Proteines secretees par les humains |
Country Status (4)
Country | Link |
---|---|
EP (7) | EP1404702A4 (fr) |
AU (6) | AU2002363296A1 (fr) |
CA (7) | CA2441416A1 (fr) |
WO (7) | WO2002102993A2 (fr) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1341803A4 (fr) * | 2000-11-30 | 2005-01-05 | Nuvelo Inc | Nouveaux acides nucleiques et polypeptides |
US6887975B2 (en) | 1998-06-01 | 2005-05-03 | Agensys, Inc. | Peptides derived from STEAP1 |
US7097990B2 (en) | 2001-10-12 | 2006-08-29 | Astellas Pharma Inc. | Method of screening cell death inhibitor |
US7105644B2 (en) | 1997-07-08 | 2006-09-12 | Human Genome Sciences, Inc. | Secreted protein HHTLF25 antibodies |
WO2006138219A2 (fr) * | 2005-06-13 | 2006-12-28 | Biogen Idec Ma Inc. | Procedes d'evaluation de patients |
US7196164B2 (en) | 1997-07-08 | 2007-03-27 | Human Genome Sciences, Inc. | Secreted protein HHTLF25 |
US7361475B2 (en) | 2000-10-31 | 2008-04-22 | Diadexus, Inc. | Compositions and methods relating to colon specific genes and proteins |
EP1670947A4 (fr) * | 2003-09-23 | 2008-11-05 | Univ North Carolina | Technique et composition de correlation de polymorphisme nucleotidique simple dans le gene vitamine k epoxyde reductase et le dosage de warfarine |
US7455991B2 (en) | 1999-06-01 | 2008-11-25 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
US7494646B2 (en) | 2001-09-06 | 2009-02-24 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US20090054307A1 (en) * | 2005-09-01 | 2009-02-26 | Howard Florey Institute Of Experimental Physiology And Medicine | Prophylactic and therapeutic agents and uses therefor |
US7622569B2 (en) | 1998-06-01 | 2009-11-24 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer |
US7645602B2 (en) | 2003-09-23 | 2010-01-12 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing vitamin K dependent proteins |
US7709610B2 (en) | 2003-05-08 | 2010-05-04 | Facet Biotech Corporation | Therapeutic use of anti-CS1 antibodies |
US7884179B2 (en) | 2001-09-06 | 2011-02-08 | Agensys, Inc. | Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer |
US7947459B2 (en) | 1998-06-01 | 2011-05-24 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
EP2333112A2 (fr) | 2004-02-20 | 2011-06-15 | Veridex, LLC | Pronostics de cancer du sein |
US8008450B2 (en) | 2003-05-08 | 2011-08-30 | Abbott Biotherapeutics Corp. | Therapeutic use of anti-CS1 antibodies |
US8008442B2 (en) | 2004-04-22 | 2011-08-30 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US8012937B2 (en) | 1998-06-01 | 2011-09-06 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer |
US8030457B2 (en) | 2007-08-23 | 2011-10-04 | Amgen, Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US8093222B2 (en) * | 2006-11-27 | 2012-01-10 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US8188233B2 (en) | 2008-02-07 | 2012-05-29 | Merck Sharp & Dohme Corp. | 1B20 PCSK9 antagonists |
US8188234B2 (en) | 2008-02-07 | 2012-05-29 | Merck Sharp & Dohme Corp. | 1D05 PCSK9 antagonists |
US8263353B2 (en) | 2007-03-27 | 2012-09-11 | Merck Sharp & Dohme Corp. | Method for detecting autoprocessed, secreted PCSK9 |
US8344114B2 (en) | 2006-11-07 | 2013-01-01 | Merck Sharp & Dohme Corp. | Antagonists of PCSK9 |
US8436147B2 (en) | 2006-10-27 | 2013-05-07 | Genentech, Inc. | Antibodies and immunoconjugates and uses therefor |
US8440189B2 (en) | 1999-01-15 | 2013-05-14 | Biogen Idec Ma Inc. | Antagonists of TWEAK and of TWEAK receptor and their use to treat immunological disorders |
US20130318640A1 (en) * | 2003-10-14 | 2013-11-28 | Baxter International Inc. | Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives |
US8728475B2 (en) | 2005-05-10 | 2014-05-20 | Biogen Idec Ma Inc. | Methods for treating inflammatory bowel disease |
US8748115B2 (en) | 2008-12-12 | 2014-06-10 | Merck Sharp & Dohme Corp. | PCSK9 immunoassay |
US8802827B2 (en) | 2009-10-30 | 2014-08-12 | Merck Sharp & Dohme Corp. | AX1 PCSK9 antagonists |
US8877900B2 (en) | 2009-10-30 | 2014-11-04 | Merck Sharp & Dohme Corp. | AX132 PCSK9 antagonists |
US8883157B1 (en) | 2013-12-17 | 2014-11-11 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US9011859B2 (en) | 2002-04-09 | 2015-04-21 | Biogen Idec Ma Inc. | Methods for treating TWEAK-related conditions |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US9045548B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US9051378B1 (en) | 2014-07-15 | 2015-06-09 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
US9068012B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US9617523B2 (en) | 2005-02-28 | 2017-04-11 | Baxalta GmbH | Nucleic acids encoding vitamin K expoxide reductase subunit 1 and vitamin K dependent protein expression and methods of using same |
US9631002B2 (en) | 2010-12-21 | 2017-04-25 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing active vitamin K-dependent proteins |
US9682218B2 (en) | 2013-12-23 | 2017-06-20 | Carefusion 2200, Inc. | Pleurodesis device and method |
US9775899B2 (en) | 2005-02-17 | 2017-10-03 | Biogen Ma Inc. | Treating neurological disorders |
US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
WO2018119354A1 (fr) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Édition génique de pcsk9 |
US10618955B2 (en) | 2014-07-15 | 2020-04-14 | Kymab Limited | Methods for treating neurodegenerative disease using anti-PD-1 antibodies |
US11180571B2 (en) | 2017-04-03 | 2021-11-23 | Hoffmann-La Roche Inc. | Antibodies binding to STEAP-1 |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
US12029795B2 (en) | 2020-04-09 | 2024-07-09 | Verve Therapeutics, Inc. | Base editing of PCSK9 and methods of using same for treatment of disease |
US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7335731B2 (en) | 2000-07-25 | 2008-02-26 | Genentech, Inc. | PRO4332 polypeptides |
EP1666490A3 (fr) * | 2000-07-25 | 2006-11-02 | Genentech, Inc. | Polypeptides sécrétés et transmembranaires ainsi que les acides nucléiques codant pour ceux-ci |
AU2002318112B2 (en) | 2001-04-10 | 2007-12-06 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
US20030119112A1 (en) | 2001-06-20 | 2003-06-26 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis |
AU2003900747A0 (en) * | 2003-02-18 | 2003-03-06 | Garvan Institute Of Medical Research | Diagnosis and treatment of pancreatic cancer |
WO2005019258A2 (fr) * | 2003-08-11 | 2005-03-03 | Genentech, Inc. | Compositions et methodes de traitement de maladies relatives au systeme immunitaire |
EP1714154A2 (fr) * | 2004-02-03 | 2006-10-25 | Bayer HealthCare AG | Agents diagnostiques et therapeutiques pour des maladies associes a la glutamate carboxypeptidase (pgcp) plasmatique |
AU2005282889B2 (en) | 2004-09-01 | 2012-03-15 | Dynavax Technologies Corporation | Methods and conpositions for inhibition of innate immune responses and autoimmunity |
CA2579705A1 (fr) * | 2004-09-07 | 2006-03-16 | Telethon Institute For Child Health Research | Methode de diagnostic et/ou de prediction du developpement d'une affection allergique |
EP2093297A3 (fr) * | 2004-09-07 | 2009-11-18 | Telethon Institute for Child Health Research | Agents de traitement ou de prévention d'un trouble allergique |
GB0521488D0 (en) * | 2005-10-21 | 2005-11-30 | Ares Trading Sa | Integral membrane protein |
US7572618B2 (en) | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
AU2008317261B2 (en) | 2007-10-26 | 2015-04-09 | Dynavax Technologies Corporation | Methods and compositions for inhibition of immune responses and autoimmunity |
EP3536336A1 (fr) * | 2007-11-30 | 2019-09-11 | Siemens Healthcare Diagnostics Inc. | Fragments de récepteur de l'adiponectine et procédés d'utilisation |
EA201291357A1 (ru) | 2010-06-16 | 2013-11-29 | Дайнэвокс Текнолоджиз Корпорейшн | Способы лечения с применением ингибиторов tlr7 и/или tlr9 |
PE20171640A1 (es) | 2010-09-22 | 2017-11-09 | Alios Biopharma Inc | Analogos de nucleotidos sustituidos |
EP2794630A4 (fr) | 2011-12-22 | 2015-04-01 | Alios Biopharma Inc | Analogues de nucléotide phosphorothioate substitués |
CN104321333A (zh) | 2012-03-21 | 2015-01-28 | 沃泰克斯药物股份有限公司 | 硫代氨基磷酸酯核苷酸前药的固体形式 |
WO2013142157A1 (fr) | 2012-03-22 | 2013-09-26 | Alios Biopharma, Inc. | Combinaisons pharmaceutiques comprenant un analogue thionucléotidique |
US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
US9017678B1 (en) | 2014-07-15 | 2015-04-28 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
US8986691B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
US8945560B1 (en) | 2014-07-15 | 2015-02-03 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
US8980273B1 (en) | 2014-07-15 | 2015-03-17 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
US9034332B1 (en) | 2014-07-15 | 2015-05-19 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US9150660B1 (en) | 2014-07-15 | 2015-10-06 | Kymab Limited | Precision Medicine by targeting human NAV1.8 variants for treatment of pain |
ES2963042T3 (es) | 2017-06-22 | 2024-03-25 | Procter & Gamble | Películas que incluyen una capa soluble en agua y un recubrimiento orgánico depositado por vapor |
CN110719968A (zh) | 2017-06-22 | 2020-01-21 | 宝洁公司 | 包括水溶性层和气相沉积无机涂层的膜 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100236393B1 (ko) * | 1996-02-02 | 1999-12-15 | 나까니시 히로유끼 | 사람성장호르몬을 함유하는 의약제제 |
WO2000004140A1 (fr) * | 1998-07-15 | 2000-01-27 | Human Genome Sciences, Inc. | 71 proteines humaines secretees |
WO2002026931A2 (fr) * | 2000-09-25 | 2002-04-04 | Human Genome Sciences, Inc. | 71 proteines humaines secretees |
US5858716A (en) * | 1997-05-30 | 1999-01-12 | Smithkline Beecham Corporation | H2CAA71 polynucleotides |
-
2002
- 2002-03-19 AU AU2002363296A patent/AU2002363296A1/en not_active Abandoned
- 2002-03-19 AU AU2002320013A patent/AU2002320013A1/en not_active Abandoned
- 2002-03-19 EP EP02759068A patent/EP1404702A4/fr not_active Withdrawn
- 2002-03-19 WO PCT/US2002/008123 patent/WO2002102993A2/fr not_active Application Discontinuation
- 2002-03-19 CA CA002441416A patent/CA2441416A1/fr not_active Abandoned
- 2002-03-19 CA CA002441755A patent/CA2441755A1/fr not_active Abandoned
- 2002-03-19 WO PCT/US2002/008124 patent/WO2003004622A2/fr not_active Application Discontinuation
- 2002-03-19 WO PCT/US2002/008278 patent/WO2002102994A2/fr not_active Application Discontinuation
- 2002-03-19 WO PCT/US2002/008277 patent/WO2003038063A2/fr not_active Application Discontinuation
- 2002-03-19 AU AU2002354719A patent/AU2002354719A1/en not_active Abandoned
- 2002-03-19 AU AU2002326293A patent/AU2002326293A1/en not_active Abandoned
- 2002-03-19 CA CA002441832A patent/CA2441832A1/fr not_active Abandoned
- 2002-03-19 EP EP02799146A patent/EP1390390A4/fr not_active Withdrawn
- 2002-03-19 EP EP02760994A patent/EP1379132A4/fr not_active Withdrawn
- 2002-03-19 EP EP02749512A patent/EP1381622A2/fr not_active Withdrawn
- 2002-03-19 EP EP02780789A patent/EP1423134A2/fr not_active Withdrawn
- 2002-03-19 WO PCT/US2002/009785 patent/WO2002095010A2/fr not_active Application Discontinuation
- 2002-03-19 EP EP02782476A patent/EP1414845A4/fr not_active Withdrawn
- 2002-03-19 WO PCT/US2002/008276 patent/WO2002076488A1/fr not_active Application Discontinuation
- 2002-03-19 AU AU2002332391A patent/AU2002332391A1/en not_active Abandoned
- 2002-03-19 CA CA002441417A patent/CA2441417A1/fr not_active Abandoned
- 2002-03-19 EP EP02723499A patent/EP1379264A4/fr not_active Withdrawn
- 2002-03-19 AU AU2002324424A patent/AU2002324424A1/en not_active Abandoned
- 2002-03-19 WO PCT/US2002/008279 patent/WO2002090526A2/fr not_active Application Discontinuation
- 2002-03-19 CA CA002441702A patent/CA2441702A1/fr not_active Abandoned
- 2002-03-19 CA CA002441397A patent/CA2441397A1/fr not_active Abandoned
- 2002-03-19 CA CA002441840A patent/CA2441840A1/fr not_active Abandoned
Non-Patent Citations (2)
Title |
---|
DATABASE GENBANK [Online] SANGER CENTRE, HINXTON, UK 27 November 2000 PEARCE A.: 'Human DNA sequence from clone RP11-50D16 on chromosome 13, complete sequence', XP002963946 Retrieved from EMBL Database accession no. (AL445590) * |
See also references of EP1379132A2 * |
Cited By (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7105644B2 (en) | 1997-07-08 | 2006-09-12 | Human Genome Sciences, Inc. | Secreted protein HHTLF25 antibodies |
US7196164B2 (en) | 1997-07-08 | 2007-03-27 | Human Genome Sciences, Inc. | Secreted protein HHTLF25 |
US7575749B2 (en) | 1998-06-01 | 2009-08-18 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
US6887975B2 (en) | 1998-06-01 | 2005-05-03 | Agensys, Inc. | Peptides derived from STEAP1 |
US8012937B2 (en) | 1998-06-01 | 2011-09-06 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer |
US7947459B2 (en) | 1998-06-01 | 2011-05-24 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
US7622569B2 (en) | 1998-06-01 | 2009-11-24 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer |
US8440189B2 (en) | 1999-01-15 | 2013-05-14 | Biogen Idec Ma Inc. | Antagonists of TWEAK and of TWEAK receptor and their use to treat immunological disorders |
US8241626B2 (en) | 1999-06-01 | 2012-08-14 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
US7455991B2 (en) | 1999-06-01 | 2008-11-25 | Agensys, Inc. | Serpentine transmembrane antigens expressed in human cancers and uses thereof |
US7361475B2 (en) | 2000-10-31 | 2008-04-22 | Diadexus, Inc. | Compositions and methods relating to colon specific genes and proteins |
EP1341803A4 (fr) * | 2000-11-30 | 2005-01-05 | Nuvelo Inc | Nouveaux acides nucleiques et polypeptides |
US8013135B2 (en) | 2001-09-06 | 2011-09-06 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US7494646B2 (en) | 2001-09-06 | 2009-02-24 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US7947276B2 (en) | 2001-09-06 | 2011-05-24 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US9029516B2 (en) | 2001-09-06 | 2015-05-12 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US7939503B2 (en) | 2001-09-06 | 2011-05-10 | Agensys, Inc. | Reduction of cell-cell communication in prostate cancer using STEAP-1 siRNA |
US7884179B2 (en) | 2001-09-06 | 2011-02-08 | Agensys, Inc. | Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer |
US7097990B2 (en) | 2001-10-12 | 2006-08-29 | Astellas Pharma Inc. | Method of screening cell death inhibitor |
US9011859B2 (en) | 2002-04-09 | 2015-04-21 | Biogen Idec Ma Inc. | Methods for treating TWEAK-related conditions |
US9175081B2 (en) | 2003-05-08 | 2015-11-03 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US8088898B2 (en) | 2003-05-08 | 2012-01-03 | Abbott Biotherapeutics Corp. | Therapeutic use of anti-CS1 antibodies |
US7709610B2 (en) | 2003-05-08 | 2010-05-04 | Facet Biotech Corporation | Therapeutic use of anti-CS1 antibodies |
US8436146B2 (en) | 2003-05-08 | 2013-05-07 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US8008450B2 (en) | 2003-05-08 | 2011-08-30 | Abbott Biotherapeutics Corp. | Therapeutic use of anti-CS1 antibodies |
US8349330B2 (en) | 2003-05-08 | 2013-01-08 | Abbott Biotherapeutics Corp. | Therapeutic use of anti-CS1 antibodies |
US8461306B2 (en) | 2003-05-08 | 2013-06-11 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US8445646B2 (en) | 2003-05-08 | 2013-05-21 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US8444980B2 (en) | 2003-05-08 | 2013-05-21 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US10442859B2 (en) | 2003-05-08 | 2019-10-15 | Abbvie Biotherapeutics Inc. | Therapeutic use of anti-CS1 antibodies |
US8133981B2 (en) | 2003-05-08 | 2012-03-13 | Abbott Biotherapeutics Corp. | Therapeutic use of anti-CS1 antibodies |
US7645602B2 (en) | 2003-09-23 | 2010-01-12 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing vitamin K dependent proteins |
EP1670947A4 (fr) * | 2003-09-23 | 2008-11-05 | Univ North Carolina | Technique et composition de correlation de polymorphisme nucleotidique simple dans le gene vitamine k epoxyde reductase et le dosage de warfarine |
US8097410B2 (en) | 2003-09-23 | 2012-01-17 | University Of North Carolina At Chapel Hill | Methods and compositions for vitamin K epoxide reductase |
US7524665B2 (en) | 2003-09-23 | 2009-04-28 | University Of North Carolina At Chapel Hill | Methods and compositions for vitamin K epoxide reductase |
EP2380985A1 (fr) * | 2003-09-23 | 2011-10-26 | University of North Carolina at Chapel Hill | Cellules exprimantes la vitamine K epoxyde réductase et utilisation des-dites. |
US7687233B2 (en) | 2003-09-23 | 2010-03-30 | The University Of North Carolina At Chapel Hill | Methods and compositions for the correlation of single nucleotide polymorphisms in the vitamin K epoxide reductase gene and warfarin dosage |
US7858318B2 (en) | 2003-09-23 | 2010-12-28 | The University Of North Carolina At Chapel Hill | Methods and compositions for vitamin K epoxide reductase |
US8426128B2 (en) | 2003-09-23 | 2013-04-23 | The University Of North Carolina At Chapel Hill | Methods and compositions for vitamin K epoxide reductase |
US9441208B2 (en) | 2003-09-23 | 2016-09-13 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing vitamin K dependent proteins |
US20130318640A1 (en) * | 2003-10-14 | 2013-11-28 | Baxter International Inc. | Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives |
EP2333112A2 (fr) | 2004-02-20 | 2011-06-15 | Veridex, LLC | Pronostics de cancer du sein |
US8008442B2 (en) | 2004-04-22 | 2011-08-30 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US11401347B2 (en) | 2004-04-22 | 2022-08-02 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US10597463B2 (en) | 2004-04-22 | 2020-03-24 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US9617346B2 (en) | 2004-04-22 | 2017-04-11 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US9023605B2 (en) | 2004-04-22 | 2015-05-05 | Agensys, Inc. | Antibodies and molecules derived therefrom that bind to STEAP-1 proteins |
US9775899B2 (en) | 2005-02-17 | 2017-10-03 | Biogen Ma Inc. | Treating neurological disorders |
US9617523B2 (en) | 2005-02-28 | 2017-04-11 | Baxalta GmbH | Nucleic acids encoding vitamin K expoxide reductase subunit 1 and vitamin K dependent protein expression and methods of using same |
US9828588B2 (en) | 2005-03-15 | 2017-11-28 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing active vitamin K-dependent proteins |
US8603823B2 (en) | 2005-03-15 | 2013-12-10 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing vitamin K dependent proteins |
US8728475B2 (en) | 2005-05-10 | 2014-05-20 | Biogen Idec Ma Inc. | Methods for treating inflammatory bowel disease |
US9730947B2 (en) | 2005-06-13 | 2017-08-15 | Biogen Ma Inc. | Method of treating lupus nephritis |
WO2006138219A3 (fr) * | 2005-06-13 | 2007-04-12 | Biogen Idec Inc | Procedes d'evaluation de patients |
WO2006138219A2 (fr) * | 2005-06-13 | 2006-12-28 | Biogen Idec Ma Inc. | Procedes d'evaluation de patients |
US8048635B2 (en) | 2005-06-13 | 2011-11-01 | Biogen Idec Ma Inc. | Measurement of soluble Tweak levels for evaluation of lupus patients |
US20090054307A1 (en) * | 2005-09-01 | 2009-02-26 | Howard Florey Institute Of Experimental Physiology And Medicine | Prophylactic and therapeutic agents and uses therefor |
US8436147B2 (en) | 2006-10-27 | 2013-05-07 | Genentech, Inc. | Antibodies and immunoconjugates and uses therefor |
US9593167B2 (en) | 2006-10-27 | 2017-03-14 | Genentech, Inc. | Antibodies and immunoconjugates and uses therefor |
US8889847B2 (en) | 2006-10-27 | 2014-11-18 | Genentech, Inc. | Antibodies and immunoconjugates and uses therefor |
US8344114B2 (en) | 2006-11-07 | 2013-01-01 | Merck Sharp & Dohme Corp. | Antagonists of PCSK9 |
US8664190B2 (en) | 2006-11-27 | 2014-03-04 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US8912160B2 (en) | 2006-11-27 | 2014-12-16 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US11530410B2 (en) | 2006-11-27 | 2022-12-20 | Ionis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US9650636B2 (en) | 2006-11-27 | 2017-05-16 | Ionis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US8093222B2 (en) * | 2006-11-27 | 2012-01-10 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
US8263353B2 (en) | 2007-03-27 | 2012-09-11 | Merck Sharp & Dohme Corp. | Method for detecting autoprocessed, secreted PCSK9 |
US9920134B2 (en) | 2007-08-23 | 2018-03-20 | Amgen Inc. | Monoclonal antibodies to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US8168762B2 (en) | 2007-08-23 | 2012-05-01 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US9056915B2 (en) | 2007-08-23 | 2015-06-16 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US9045547B2 (en) | 2007-08-23 | 2015-06-02 | Amgen Inc. | Methods of using antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US8030457B2 (en) | 2007-08-23 | 2011-10-04 | Amgen, Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
US8188233B2 (en) | 2008-02-07 | 2012-05-29 | Merck Sharp & Dohme Corp. | 1B20 PCSK9 antagonists |
US8957194B2 (en) | 2008-02-07 | 2015-02-17 | Merck Sharpe & Dohme Corp. | 1B20 PCSK9 antagonists |
US8697070B2 (en) | 2008-02-07 | 2014-04-15 | Merck Sharp & Dohme Corp. | 1D05 PCSK9 antagonists |
US8188234B2 (en) | 2008-02-07 | 2012-05-29 | Merck Sharp & Dohme Corp. | 1D05 PCSK9 antagonists |
US8748115B2 (en) | 2008-12-12 | 2014-06-10 | Merck Sharp & Dohme Corp. | PCSK9 immunoassay |
US8877900B2 (en) | 2009-10-30 | 2014-11-04 | Merck Sharp & Dohme Corp. | AX132 PCSK9 antagonists |
US8802827B2 (en) | 2009-10-30 | 2014-08-12 | Merck Sharp & Dohme Corp. | AX1 PCSK9 antagonists |
US9631002B2 (en) | 2010-12-21 | 2017-04-25 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing active vitamin K-dependent proteins |
US8883157B1 (en) | 2013-12-17 | 2014-11-11 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US10611849B2 (en) | 2013-12-17 | 2020-04-07 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US9040052B1 (en) | 2013-12-17 | 2015-05-26 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US11434305B2 (en) | 2013-12-17 | 2022-09-06 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US10618971B2 (en) | 2013-12-17 | 2020-04-14 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US9682218B2 (en) | 2013-12-23 | 2017-06-20 | Carefusion 2200, Inc. | Pleurodesis device and method |
US11273292B2 (en) | 2013-12-23 | 2022-03-15 | Carefusion 2200, Inc. | Autologous pleurodesis methods and devices |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
US11773175B2 (en) | 2014-03-04 | 2023-10-03 | Kymab Limited | Antibodies, uses and methods |
US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
US9051378B1 (en) | 2014-07-15 | 2015-06-09 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US10711059B2 (en) | 2014-07-15 | 2020-07-14 | Kymab Limited | Methods for treating neurodegenerative diseases using anti-PD-L1 antibodies |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US10618955B2 (en) | 2014-07-15 | 2020-04-14 | Kymab Limited | Methods for treating neurodegenerative disease using anti-PD-1 antibodies |
US11555066B2 (en) | 2014-07-15 | 2023-01-17 | Kymab Limited | Precision medicine for cholesterol treatment |
US9045548B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
US9068012B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
WO2018119354A1 (fr) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Édition génique de pcsk9 |
US11685790B2 (en) | 2017-04-03 | 2023-06-27 | Hoffmann-La Roche Inc. | Antibodies binding to STEAP-1 |
US12129306B2 (en) | 2017-04-03 | 2024-10-29 | Hoffman-La Roche Inc. | Antibodies binding to STEAP-1 |
US11180571B2 (en) | 2017-04-03 | 2021-11-23 | Hoffmann-La Roche Inc. | Antibodies binding to STEAP-1 |
US12029795B2 (en) | 2020-04-09 | 2024-07-09 | Verve Therapeutics, Inc. | Base editing of PCSK9 and methods of using same for treatment of disease |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030224461A1 (en) | Nucleic acids, proteins, and antibodies | |
WO2002102994A2 (fr) | Proteines secretees humaines | |
WO2001055318A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2002000677A1 (fr) | Acides nucleiques, proteines et anticorps | |
WO2001090304A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2001059063A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2001055317A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2002077186A2 (fr) | Proteines secretees par l'etre humain | |
WO2001055441A2 (fr) | Acides nucléiques, protéines et anticorps | |
US20050208602A1 (en) | 89 human secreted proteins | |
WO2002068628A1 (fr) | 70 proteines humaines secretees | |
EP1259526A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2002057420A2 (fr) | 50 proteines secretees humaines | |
EP1252337A2 (fr) | Acides nucleiques, proteines et anticorps | |
WO2001055329A2 (fr) | Acides nucleiques, proteines et anticorps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2441832 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002760994 Country of ref document: EP |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 2002760994 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |