WO2002035564A1 - Condensateur electrochimique - Google Patents
Condensateur electrochimique Download PDFInfo
- Publication number
- WO2002035564A1 WO2002035564A1 PCT/DE2001/003969 DE0103969W WO0235564A1 WO 2002035564 A1 WO2002035564 A1 WO 2002035564A1 DE 0103969 W DE0103969 W DE 0103969W WO 0235564 A1 WO0235564 A1 WO 0235564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- electrolyte
- electrochemical capacitor
- capacitor according
- nanostructured
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 40
- 239000003792 electrolyte Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000010409 thin film Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000002120 nanofilm Substances 0.000 claims abstract description 3
- 229920000867 polyelectrolyte Polymers 0.000 claims description 12
- 125000002091 cationic group Chemical group 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000002800 charge carrier Substances 0.000 claims description 3
- 230000001427 coherent effect Effects 0.000 claims description 3
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000010416 ion conductor Substances 0.000 claims 2
- 239000010410 layer Substances 0.000 description 26
- 239000010408 film Substances 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 239000011148 porous material Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000013545 self-assembled monolayer Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009881 electrostatic interaction Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- ZQXIMYREBUZLPM-UHFFFAOYSA-N 1-aminoethanethiol Chemical compound CC(N)S ZQXIMYREBUZLPM-UHFFFAOYSA-N 0.000 description 1
- 229920001448 anionic polyelectrolyte Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000454 electroless metal deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention relates to an electrochemical capacitor according to the preamble of patent claim 1.
- Electrochemical capacitors also referred to in the literature as double-layer capacitors or supercapacitors, are electrochemical energy stores which are distinguished by a significantly higher power density compared to batteries and by an order of magnitude higher energy density than conventional capacitors. They are based on the potential-controlled formation of Helmholtz double layers and / or electrochemical redox reactions with high charge capacity and reversibility on electrically conductive electrode surfaces in suitable electrolytes. Priority potential areas of application with particular economic importance lie, for example, in the areas of electrical traction (motor vehicles) and telecommunications. By intercepting power peaks, the nominal power of the primary energy source can be reduced, the service life and range can be extended and the economy of the overall system can thus be significantly improved.
- the material concepts based on active carbon have prevailed (BET surfaces up to 2000m 2 / g), which, in combination with organic electrolytes, currently have the greatest market potential in terms of performance data and costs.
- BET surfaces up to 2000m 2 / g There are first products in the small series stage that achieve energy densities of about 3 Wh / kg, for example WO 98/15962 A1.
- concepts for producing these activated carbon supercapacitors or their electrodes for example EP 0 712 143 A2, DE 197 24 712 A1.
- a maximum of 50 to 100 farads capacity per gram of the active electrode material can be achieved here.
- the ratio of useful energy and storage weight is often still too small for use as peak load storage in order to be used economically in real applications.
- the optimization the performance data can take place via the capacitor structure (stack design) as well as the actual capacitor electrodes (surface structures and materials).
- 1 shows the basic structure of such a supercapacitor according to the prior art with the activated carbon electrodes 1, 2, the porous separator 3 and the electronic contacts 4, 5.
- the entire system is filled with a liquid electrolyte.
- 2 shows the associated equivalent circuit diagram. It utilizes the formation of Helmholtz capacity at a large geometric surface area of the two activated carbon electrodes (up to 2000m 2 / g), so the total capacitance Cg that it consists of the series connection of the individual electrode capacitances C ⁇ and C 2 is obtained.
- the cutoff frequency of the capacitor is substantially saturated by the product of C and determines the sum of the design-dependent ohmic resistance loss.
- the contact resistance of the electrodes to the current collector of the capacitor housing is given by R c , the electronic conductivity of the electrode itself by R E
- the electrolyte resistance R E s is determined by the conductivity of the electrolyte in the pores of the electrodes, while the separator resistance R SE P represents the electrolyte conductivity in the separator area and is essentially a function of the porosity and the thickness of the separator.
- an electrode material with good electronic conductivity and connectivity, an electrolyte with good ionic conductivity and a thin separator with high porosity are required.
- Activated carbon materials have an extremely high porous surface, but the distribution of pore sizes is very wide and extends down to the range of «1 nm. Since typical Helmholtz layer thicknesses are even up to 2 nm, the Helmholtz storage layer can be used with this electrode material are not completely formed on the surface actually present.
- the typically rather sponge-like geometry of activated carbon materials also has a disadvantageous effect on the frequency behavior of the capacitance. Because for the electrolyte it is synonymous with relatively long and narrow paths and therefore inevitably linked to a relatively high electrolyte resistance R E L. This leads to a reduction in the cutoff frequency of the overall component, ie even at moderate frequencies (typically around 1 Hz), only a fraction of the electrode capacity available with direct voltage can be used.
- the object of the invention is to provide an electrochemical capacitor which enables a significant reduction in the totality of the loss resistances.
- the electrochemical capacitor according to the invention has an electrically conductive or semiconducting electrode which is formed from a nanostructured film in which nanostructured discrete, needle-shaped elements are anchored in an electrically conductive manner on a surface.
- Nanostructured element in the sense of the present invention refers to a material structure with dimensions of at least one structural dimension in the nanometer range ( ⁇ 1 ⁇ m).
- the electrolyte is in the form of a thin-film electrolyte which coats the surface of the nanostructured electrode, in particular the surface of the needle-shaped elements.
- the discrete, needle-shaped elements coated with the electrolyte are embedded in the counter electrode.
- the capacitor according to the invention thus has an interdigital structure. Electrode and counter electrode interlock.
- the thin film electrolyte fills the entire space between the electrode and the counter electrode. A supercapacitor with geometrically significantly shorter charging paths and reduced ohmic loss resistances is thus made possible.
- the electrolyte acts as a geometric separator and at the same time prevents electronic contact between the electrode and the counter electrode.
- the mechanical porous separator according to the known capacitors mentioned above can thus be dispensed with.
- the electrolyte is preferably designed as a gel-like or solid thin film.
- the layer thickness of the electrolyte is not greater than 1 ⁇ m, preferably not greater than 100 nm, in particular not greater than 50 nm.
- the thin-film electrolyte must on the one hand electronically separate the two capacitor electrodes from one another (electronic insulator) on the other hand must have a high ionic conductivity and be doped with suitable mobile ionic charge carriers which are required to form Helmholtz double layers on the electrode surfaces.
- Monolayers SAMs are used, which means that these monolayers are applied by simply immersing the substrate in the corresponding solution.
- the layers are characterized by an extremely low defect density, and the layer thicknesses in the range of a few nanometers can be easily controlled via concentration, chain lengths or activities of the end groups.
- the layer system can be applied by simply immersing it in corresponding aqueous solutions and is therefore a preferred exemplary embodiment of a thin-film electrolyte in the electrochemical capacitor according to the invention.
- the polyelectrolyte layer system described above does not play the role of an electronically insulating dielectric cum in the dielectric capacitor, but the role of an ionically doped thin film electrolyte in an electrochemical capacitor.
- the nanostructured electrode according to the invention made of a film with needle-shaped elements has a large effective surface for forming the Helmholtz storage layer.
- Their size on a flat metallic surface is typically about 40 ⁇ F / cm 2 in the aqueous electrolyte.
- the areal density of the nanostructured needle-shaped elements is preferably in the range of 1-500 per ⁇ m 2 , the diameter of which is preferably in the range of 15-500nm. B. the necessary material stability is guaranteed for metallic structures.
- the aspect ratio (ratio between height and average diameter) of the nanostructured needle-shaped elements is advantageously larger than 20.
- the nanostructured discrete needle-shaped elements can either be a solid cylinder, a hollow cylinder (tube) or a solid cylinder with an inner sponge-like porosity for an additional surface enlargement available.
- a further advantage of the supercapacitor according to the invention is that the nanostructured electrode film can be produced from any semiconducting or conductive materials such as metals, noble metals, galvanomains (galvanically depositable metals), in particular nickel, gold or conductive polymers, using suitable manufacturing processes.
- any semiconducting or conductive materials such as metals, noble metals, galvanomains (galvanically depositable metals), in particular nickel, gold or conductive polymers, using suitable manufacturing processes.
- the production of the carrier foil of the electrode and the growth of the nanostructured elements thereupon can be carried out in one work step when using electrochemical deposition.
- the thickness of the carrier film is advantageously set between 1 and 20 ⁇ m. This guarantees the electrical conductivity, contactability and also the mechanical stability for the construction of a supercapacitor single cell or stack.
- the discrete - preferably regular - arrangement of the nanostructured elements of the electrode allows the Helmholtz layers to be formed more quickly and completely on the existing surface and thus a significant improvement in the performance characteristics.
- Some metal oxides (e.g. Ru0 2 ) or conductive polymers allow energy storage in suitable electrolytes through surface redox reactions. The recharging of such redox systems on the electrode surface leads to the formation of the Helmholtz double layer and an additional electrode capacity (pseudo capacity).
- This property can be achieved in the electrode of the present invention either by a thin ( ⁇ 10 nm) coating with an appropriate redox system (eg Ru0 2 ) or by direct formation of the nanostructured elements from precisely this material.
- the individual cells are stacked on top of one another. This creates a series connection of individual capacitor elements via the conductive electrode films without additional contacting steps.
- Fig. 3 shows an electrode as it is used in the supercapacitor according to the invention.
- it consists of a self-supporting film 11 and nanostructured, discrete elements 12 anchored thereon, which are needle-shaped.
- Discrete in the sense of the present invention means that they are separate elements, each with its own structure, ie not around interconnected elements, as is the case, for example, with a sponge-like structure.
- FIG. 4 shows the SEM image of an electrode for the supercapacitor according to the invention. It consists of a self-supporting metal foil 11 and nanostructured metallic elements 12 anchored thereon. The nanostructured needle-shaped elements are oriented in this embodiment essentially perpendicular to the surface of the foil and evenly distributed over the surface of the foil.
- FIG. 5 shows a schematic representation of the production of a supercapacitor according to the invention with an interdigital structure.
- the starting point is a nanostructured, in particular metallic, electrode 10 with discrete, needle-shaped elements 12, which are preferably arranged regularly.
- the thin-film electrolyte 13 is applied to the surface of the electrode 10, in particular to the needle-shaped elements 12, by means of dip coating.
- electrolyte 13 e.g. a polyelectrolyte can be used.
- the distance between the needle-shaped, nanostructured elements 12 is set such that after the polyelectrolyte coating, the remaining spaces can be filled with a metal, so that a conductive, coherent counterelectrode 20 results.
- the counter electrode thus completely fills the spaces between the needle-shaped elements 12.
- the needle-shaped elements 12 extend into the material of the counterelectrode and are surrounded on all sides (with the exception of its base surface). Electrode 10 and counter electrode 20 are contacted via corresponding current-conducting contacts 15, 16. 5, the electrolyte layer 13 occupies the entire space between the electrode and the counter electrode. Compared to the capacitors according to the prior art, there are significantly reduced charging paths. An additional mechanical separator is not required.
- the anodic oxidation of an aluminum substrate creates a nanoporous oxide film with parallel, continuously cylindrical pores aligned perpendicular to the substrate surface.
- the pore diameter can be set in the range of 15-500 nm, the surface density of the pores from approx. 1 to 500 per ⁇ m 2 , and the pore length up to 100 ⁇ m.
- the oxide film is detached from the aluminum substrate, so that a ceramic nanoporous filter membrane is created. This membrane is vapor-coated on one side with a metallic film as a contact electrode. The film thickness is chosen so that the oxide pores are closed.
- the vapor-deposited membrane is contacted and placed in a galvanic gold bath.
- the oxide pores are filled from the vapor-deposited base electrode with the desired nanostructured elements
- the base electrode is thickened to a metallic film in the micrometer range.
- the oxide ceramic can then be selectively pickled using wet chemistry, so that the desired electrode film with conductively bonded nanostructured gold elements is produced.
- the gold electrode is cleaned in hot ethanol / chloroform (1: 1), rinsed in water and dried and then coated by immersion in an aminoethanethiol / ethanol solution with a SAM, which carries a positive surface charge in neutral and aqueous solutions [Han et al, Electrochimica Acta 45, 845 (1999)]. Then, by alternately immersing in an aqueous Na-PSS solution (+ NaCI) rinsing and immersing in an aqueous PAH solution (+ NaCI), a polyelectrolyte layer system consisting of anionic and cationic polyelectrolyte layers is applied. The layer thickness can be adjusted to approx. 10 nm by the number of layers. For the further coating it is advantageous to finish with a cationic polyelectrolyte layer.
- the thin film electrolyte thus formed is doped by electrostatic incorporation of suitable ions which can diffuse into the electrolyte layer from aqueous solution, e.g. B. Fe (CN) 6 4 (Han et al, see above)
- suitable ions e.g. B. Fe (CN) 6 4 (Han et al, see above)
- To form the counterelectrode it is advisable to apply negatively charge-stabilized gold colloids (see above) to the last cationic polyelectrolyte layer.
- These colloids with a sufficiently small diameter ( ⁇ 10 nm) then serve as germ cells for the subsequent electroless metal deposition on the thin film electrolytes.
- the remaining space is filled with gold so that a coherent metallic counter electrode is created.
- the example described in this way uses gold as the electrode material, but analogous methods are also possible for nickel and other metals that can be electrolessly deposited.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
L'invention concerne un condensateur électrochimique constitué d'une cellule individuelle et d'un empilement de cellules individuelles, chaque cellule individuelle comportant une électrode (10) et une contre-électrode (20) en matériau électriquement conducteur ou semi-conducteur, ainsi qu'un électrolyte (13). Le condensateur faisant l'objet de l'invention présente les caractéristiques suivantes : - l'électode (10) est constituée d'un film à nanostructure, dans lequel sont ancrés sur une surface (11) de manière électriquement conductrice des éléments (12) aciculaires discrets à nanostructure; - l'électrolyte (13) est un électrolyte à film fin, qui recouvre l'électrode (10) en formant une couche et empêche qu'un contact électronique ne s'établisse entre l'électrode (10) et la contre-électrode (20) ; - les éléments (12) aciculaires discrets recouverts de l'électrolyte (13) sont insérés dans la contre-électrode (20). La présente invention porte également sur un procédé pour fabriquer ledit condensateur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10053276A DE10053276C1 (de) | 2000-10-27 | 2000-10-27 | Elektrochemischer Kondensator |
DE10053276.4 | 2000-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002035564A1 true WO2002035564A1 (fr) | 2002-05-02 |
Family
ID=7661246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/003969 WO2002035564A1 (fr) | 2000-10-27 | 2001-10-17 | Condensateur electrochimique |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10053276C1 (fr) |
WO (1) | WO2002035564A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3011671A1 (fr) * | 2013-10-04 | 2015-04-10 | Thales Sa | Collecteur de courant pour supercapacite |
US10510494B2 (en) | 2015-05-20 | 2019-12-17 | Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. | Supercapacitors with oriented carbon nanotubes and method of producing them |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10331885A1 (de) * | 2003-07-14 | 2005-02-10 | Aesculap Ag & Co. Kg | Markierelement für ein chirurgisches Navigationssystem |
US7057881B2 (en) | 2004-03-18 | 2006-06-06 | Nanosys, Inc | Nanofiber surface based capacitors |
MX2011007202A (es) | 2009-01-16 | 2011-07-28 | Univ The Board Of Trustees Of The Leland Stanford Junio R | Ultracapacitor de punto cuantico y bateria de electrones. |
JP2012523117A (ja) * | 2009-04-01 | 2012-09-27 | ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ | 面積を増大させた電極を有する全電子バッテリー |
DE102013104396A1 (de) * | 2013-04-30 | 2014-10-30 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Elektrochemische Speichervorrichtung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062025A (en) * | 1990-05-25 | 1991-10-29 | Iowa State University Research Foundation | Electrolytic capacitor and large surface area electrode element therefor |
US5747180A (en) * | 1995-05-19 | 1998-05-05 | University Of Notre Dame Du Lac | Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays |
WO1999035312A1 (fr) * | 1998-01-09 | 1999-07-15 | Lionel Vayssieres | Procede de production de couches minces d'oxyde metallique nanostructurees sur des substrats, et substrats et couches correspondantes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5862035A (en) * | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
JPH08138978A (ja) * | 1994-11-02 | 1996-05-31 | Japan Gore Tex Inc | 電気二重層コンデンサとその電極の製造方法 |
DE19724712A1 (de) * | 1997-06-11 | 1998-12-17 | Siemens Ag | Doppelschichtkondensator |
-
2000
- 2000-10-27 DE DE10053276A patent/DE10053276C1/de not_active Expired - Fee Related
-
2001
- 2001-10-17 WO PCT/DE2001/003969 patent/WO2002035564A1/fr not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062025A (en) * | 1990-05-25 | 1991-10-29 | Iowa State University Research Foundation | Electrolytic capacitor and large surface area electrode element therefor |
US5747180A (en) * | 1995-05-19 | 1998-05-05 | University Of Notre Dame Du Lac | Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays |
WO1999035312A1 (fr) * | 1998-01-09 | 1999-07-15 | Lionel Vayssieres | Procede de production de couches minces d'oxyde metallique nanostructurees sur des substrats, et substrats et couches correspondantes |
Non-Patent Citations (1)
Title |
---|
SHUI X ET AL: "Electrochemical behavior of hairy carbons", CARBON, ELSEVIER SCIENCE PUBLISHING, NEW YORK, NY, US, vol. 35, no. 10-11, 1997, pages 1439 - 1455, XP004098165, ISSN: 0008-6223 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3011671A1 (fr) * | 2013-10-04 | 2015-04-10 | Thales Sa | Collecteur de courant pour supercapacite |
US10510494B2 (en) | 2015-05-20 | 2019-12-17 | Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. | Supercapacitors with oriented carbon nanotubes and method of producing them |
Also Published As
Publication number | Publication date |
---|---|
DE10053276C1 (de) | 2002-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69832537T2 (de) | Fibrilkompositelektrode für elektrochemische kondensatoren | |
DE112010002700B4 (de) | Verfahren zur herstellung von nanostrukturierten flexiblen elektroden und energiespeichereinrichtungen, welche diese verwenden | |
KR101031019B1 (ko) | 전이금속산화물 코팅층을 가지는 금속 전극의 제조 방법 및그에 의해 제조된 금속 전극 | |
TWI601330B (zh) | 電極材料及能量儲存設備 | |
DE112011102970T5 (de) | Nanostrukturierte Elektrode zur pseudokapazitiven Energiespeicherung | |
WO2010092059A1 (fr) | Electrodes planes à densités de puissance et d'énergie optimisées pour accumulateur d'énergie électrochimique | |
DE102010029282A1 (de) | Verfahren und Vorrichtung zur Herstellung einer Dünnschichtbatterie | |
DE19525143A1 (de) | Elektrolytkondensator, insbesondere Tantal-Elektrolytkondensator | |
DE102015120879A1 (de) | Verfahren zum Herstellen einer Silizium-basierten porösen Elektrode für eine Batterie, insbesondere Lithium-Ionen-Batterie | |
DE19948742C1 (de) | Elektrochemischer Kondensator, insb. Doppelschichtkondensator oder Superkondensator | |
EP1586100A1 (fr) | Electrode d'une cellule electrochimique, bobine d'electrodes, cellule electrochimique et leur procede de production | |
DE10053276C1 (de) | Elektrochemischer Kondensator | |
EP1552538B1 (fr) | Condensateur a double couche, son utilisation et un procede permettant d'augmenter les charges maximales d'electrodes du condensateur a double couche | |
WO2003096362A2 (fr) | Condensateurs a densite de flux d'energie elevee | |
EP3298617A1 (fr) | Supercondensateurs à nanotubes de carbone alignés et procédé de production desdits supercondensateurs | |
WO2006012890A1 (fr) | Solution electrolytique pour des condensateurs a double couche et condensateur a double couche contenant cette solution electrolytique | |
DE102010022831A1 (de) | Doppelschichtkondensator | |
DE102012213528A1 (de) | Energiespeicher mit Separator | |
DE10312999A1 (de) | Verfahren zur Herstellung von Elektroden für Superkondensatoren | |
EP2638551B1 (fr) | Procédé de fabrication d'un élément mémoire capacitif | |
DE102013104396A1 (de) | Elektrochemische Speichervorrichtung | |
WO2019025419A1 (fr) | Élément de batterie comprenant une partie saillante de couche d'anode et/ou une partie saillante de couche de cathode mise en contact côté séparation et/ou côté frontal | |
DE102022104622A1 (de) | Hybrid-Polymer-Kondensator | |
WO2022167111A1 (fr) | Procédé de fabrication de condensateurs haute intensité par technique laser | |
DE112023002968T5 (de) | Elektrochemische Zelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001988938 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001988938 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |