WO2002034324A2 - Fil-guide composite - Google Patents
Fil-guide composite Download PDFInfo
- Publication number
- WO2002034324A2 WO2002034324A2 PCT/US2001/032443 US0132443W WO0234324A2 WO 2002034324 A2 WO2002034324 A2 WO 2002034324A2 US 0132443 W US0132443 W US 0132443W WO 0234324 A2 WO0234324 A2 WO 0234324A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- guidewire
- coil
- distal end
- super elastic
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 230000008878 coupling Effects 0.000 claims abstract description 47
- 238000010168 coupling process Methods 0.000 claims abstract description 47
- 238000005859 coupling reaction Methods 0.000 claims abstract description 47
- 239000013013 elastic material Substances 0.000 claims abstract description 29
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 3
- 101100172879 Caenorhabditis elegans sec-5 gene Proteins 0.000 claims 1
- 238000003466 welding Methods 0.000 abstract description 15
- 239000000853 adhesive Substances 0.000 abstract description 13
- 230000001070 adhesive effect Effects 0.000 abstract description 13
- 238000005219 brazing Methods 0.000 abstract description 13
- 238000005476 soldering Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09058—Basic structures of guide wires
- A61M2025/09083—Basic structures of guide wires having a coil around a core
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09058—Basic structures of guide wires
- A61M2025/09083—Basic structures of guide wires having a coil around a core
- A61M2025/09091—Basic structures of guide wires having a coil around a core where a sheath surrounds the coil at the distal part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09133—Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
- A61M2025/09141—Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque made of shape memory alloys which take a particular shape at a certain temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M25/09016—Guide wires with mandrils
- A61M25/09033—Guide wires with mandrils with fixed mandrils, e.g. mandrils fixed to tip; Tensionable wires
Definitions
- the invention relates generally to guidewires for directing catheters or other medical instruments through the cardiovascular system.
- PTCA percutaneous transluminal coronary artery angioplasty
- Stainless steel guidewires are inherently stiff and offer excellent support along the proximal shaft portion of the guidewire.
- the distal ends of these wires may also be deliberately bent or shaped to aid in steering the guidewire into a particular vessel or lumen.
- the material is susceptible to further plastic deformation during use and has been known to permanently deform and kink. The deformation is particularly noticeable when the guidewire is manipulated through a tortuous anatomy.
- guidewires have been made from "super elastic" materials such as Nitinol, with coils added for radiopacity and coatings for lubricity, as mentioned above.
- the super elastic guidewires offer excellent kink resistance, and provide exceptional torque control when placed within tortuous anatomies.
- the super elastic mate- rial is significantly less stiff than stainless steel and therefore does not provide a high level of support along the proximal portion of the guidewire.
- the super elastic material cannot be easily shaped or reshaped at the distal tip to aid in steering the guidewire.
- Composite construction guidewires combine a proximal portion of stainless steel with a distal portion of super elastic material, to take advantage of the best performance characteristics of both materials.
- the joint cannot, for example, be held together by braising or welding. Accordingly, a special coupling must be used to lock the materials together.
- the ends of the two guidewire portions that is, the ends of the two materials
- a sleeve which made of non- super elastic material
- the guidewire portions are then held together by crimping, spot welding or gluing the sleeve in place.
- the coupling relies mainly on the mechanical interface between the two portions of the guidewire. If a mismatch in the cross-sectional dimensions exists, the distal and proximal portions may separate. Further, the repeated torqueing and bending that occurs when the guidewire is manipulated through the cardiovascular system may fatigue the coupling and result in the separation of the distal and proximal portions of the guidewire within the pa- tient's body.
- a composite guidewire constructed in accordance with the invention includes a solid central core that is made out of super elastic material.
- a coupling tube which is usually of a non-super elastic material fits over the proximal end of the central core, and a coil, which may be radiopaque, fits over the distal end of the super elastic central core and attaches to a distal end of the coupling tube.
- a flat safety wire or ribbon of a non-super elastic material that is positioned between the distal portion of the coupling tube and the central core also attaches to the distal end of the coupling tube.
- the safety wire extends the length of the coil and attaches to both the distal and the proximal ends of the coil.
- the coil, the coupling tube and the safety wire attach to one another by soldering, brazing, welding or adhesives, which ensures that the joints are strong and the various components of the guidewire do not pull apart.
- the tube may also be crimped at various locations along its length, to prevent rotational and axial movement between the non-super elastic tube and the super elastic core.
- An atraumatic tip fits over the end of the guidewire and attaches to the coil and the safety wire by brazing welding or adhesive, to provide a cushioned end.
- the coil and the safety wire may extend beyond the distal end of the central core, such that the distal end of the guidewire can be readily shaped for steering.
- the guidewire may also be formed with a composite core that includes the super elastic core and a non-super elastic core extension, which is shaped at its distal end to overlap and mechanically inter-lock with a proximal end of the super elastic core.
- the coupling tube then extends partially over a portion of the non-super elastic core extension and partially over a portion of the super elastic core, with the proximal end of the coupling tube attaching to the core extension by brazing, welding or adhesives.
- the coil that fits over the distal end of the super elastic core mates at its proximal end with the distal end of the coupling tube.
- the safety wire runs from the end of the core extension to distal end of the guidewire, and attaches to the core extension, the coupling tube, the coil and the tip.
- those ends instead of interlocking the opposing ends of the super elastic core and the non-super elastic core extension, those ends may be butted and the core and core extension provided with longitudinal flats so that the safety wire can extend lengthwise between those elements and the coupling tube. Then the remaining radial space between the core-core extension and the coupling tube is filled with epoxy resin.
- the epoxy coupled with the irregular cross-sections of the core-to-core extension assembly creates a strong joint able to transmit considerable torque without failure.
- the various components of the composite guidewire embodiments attach to components of like or similar materials, such that the joints between the components can be formed by brazing, welding or adhesives.
- the joints are thus strong, and do not fatigue as readily as joints between the dissimilar non-super elastic and super elastic materials that occur in known prior composite guide wires.
- the guidewire, with its super elastic core takes advantage of the associated resistance to kinking and torque control.
- the coupling tube overlaid on the super elastic core provides both support for the proximal portion of the guidewire and the ability to shape the distal end of the guidewire.
- FIG. 1 is a cross-sectional view of a guidewire constructed in accordance with the invention
- FIG. 2 depicts the guidewire of FIG. 1 with an additional radiopaque coil
- FIG. 3 depicts the guidewire of FIG. 1 with a radiopaque cover
- FIG. 4 is a cross-sectional view of an alternative guidewire
- FIG. 5 is a similar view of another alternative guidewire
- FIG 6 is a similar view of yet another guidewire embodiment.
- a composite guidewire 100 includes a central core 12 that is made of super elastic material such as, for example, Nitinol.
- a coupling tube 16 of a non-super elastic material fits over a proximal portion 13 of the core 12 and attaches at a distal end 22 to a proximal end 19 of a coil 18 that fits over the distal end 14 of the core 12.
- the coupling tube 16, coil 18 and the safety wire 20 are all of non-super elastic materials, e.g.
- the tube 16 may also be attached to the super elastic core 12 by crimping at various locations 17, to prevent relative rotational or axial movement.
- An atraumatic tip 26 that attaches to the distal ends 24 and 28 of the coil 18 and the safety wire 20 may be included, to cushion the distal end 101 of the guidewire 100.
- the distal end 14 of the core 12 may be tapered for added flexibility at the distal end 101 of the guidewire. Further, the windings 19 of the coil 18 may be slightly spread apart to provide even greater flexibility.
- the coil 18 may be radiopaque and thus visible to x-rays.
- the coil 18 may be non-radiopaque and a second shorter coil 30 may be fit over the coil 18 to provide the visibility, as shown in FIG. 2.
- the coil 18 may be tapered such that the guidewire has a uniform diameter over its length.
- the radiopacity may instead be provided by a radiopaque plastic cover 32 (FIG.
- the cover 32 may fit over the tip 26 or may incorporate a cushion and thus replace the tip.
- the flexibility of the distal end 101 of the guidewire 100 may be further increased by extending the coil 18 and safety wire 20 beyond the distal end 14 of the super elastic core 12.
- the distal end 101 of the guidewire 100 can thus be readily shaped or bent, to aid in the steering of the guidewire through the body.
- the proximal end 22 of the central core 12 may be extended beyond the proximal end 15 of the coupling tube 16, such that removable guidewire extensions (not shown) can be fit over the end of the core.
- the proximal end 22 of the core 12 may be shaped as a stop 23 that further secures the coupling tube 16 against axial movement relative to the core.
- the guidewire may have a composite core 60 that includes the super elastic core 12 and a core extension 50 of a non-super elastic material, e.g. stainless steel, that fixedly attaches to the super elastic core 12.
- the extension 50 is shaped at its distal end 52 to mate with a shaped proximal end 54 of the super elastic core 12, such that the core and core extension inter-lock.
- the outer surface 56 of the distal end 52 of the core extension 50 tapers slightly, to meet the proximal end 15 of the coupling tube 16.
- Surface 56 tapers to approximately one-half the diameter of the core extension and includes a recess 62 for receiving a tab 64 that extends from an inner surface 66 of the s super elastic core 12.
- the inner surface 66 of the core 12 tapers to approximately one- half the diameter of the core and includes a recess 68 for receiving a tab 70 that extends from the core extension 50.
- the tapered ends of the core 12 and the extension 50 thus overlap and inter-lock to produce a composite core 60 of essentially uniform diameter with a mechanically tight joint.
- the coupling tube 16 extends from the proximal end of the core 12 to meet the proximal end of the coil 18.
- the coupling tube thus also extends over and attaches to the tapered outer surface 56 of the distal portion 52 of the core extension 50.
- the safety wire 20 attaches to and extends from a distal end wall 53 of the non-super elastic core extension 50 to the distal end 24 of the coil 18.
- the safety s wire 201, the coil 18 and the core extension 50 all being of non-super elastic compatible materials may be attached to one another by brazing, welding or adhesives.
- the coupling tube 20 which overlaps both the core 12 and the extension 50 may be made of super elastic material or non-super elastic material.
- the coupling tube then attaches to the similar material coil or coil extension by brazing, welding, or adhesives. 0
- the selection of material for the coupling tube depends on the desired flexibility of the joint portion of the tube.
- FIG. 6 shows a guidewire with a somewhat different connection between the super elastic core 12 and the non-super elastic core extension 50. Instead of interlocking the opposing ends of those members, they are provided with 5 squared off ends which are butted more or less midway along within the coupling tube 16.
- the core and core extension are provided with longitudinal flats 12a and 50a, respectively, to provide clearance for the safety wire 20.
- Wire 20 extends from a point just beyond the proximal end of coupling tube 16 to the distal end of coil 18. 0 Then, the entire remaining space within coupling tube 16 is filled with epoxy resin 80 as shown by the stippling in FIG. 6. Since the core 12 and core extension 50, with their flats, have irregular shapes, the epoxy creates a strong joint between the core and core extension that is able to transmit substantial torque without failure.
- the non-super elastic components of the guidewire i.e., coil 18, safety wire 20 and tube extension 50 may be connected by welding, brazing, adhesives or the like.
- the coupling tube 16 which may be made from either super elastic material or non-super elastic material, attaches to the core or the core extension, as appropriate, by welding, brazing, adhesives or the like.
- the composite guidewire includes a super elastic core and various non-super elastic components.
- the non-super elastic components which overlay the super elastic core, attach to one another by brazing, welding or adhesives and thus form strong joints between a distal coil, a ribbon wire and a proximal end of the guidewire, and as appropriate, a non-super elastic coupling tube that extends over the proximal end of the super elastic core.
- the coupling tube and/or the non-super elastic core extension provides support for the proximal end of the guidewire, while the safety wire and coil provide a flexible and shapeable distal end. Accordingly, the guidewire combines the best qualities of non-super elastic and super elastic materials without sacrificing joint strength.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002224407A AU2002224407A1 (en) | 2000-10-20 | 2001-10-18 | Composite guidewire |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69354700A | 2000-10-20 | 2000-10-20 | |
US09/693,547 | 2000-10-20 | ||
US09/778,566 US6544197B2 (en) | 2000-10-20 | 2001-02-07 | Composite guidewire |
US09/778,566 | 2001-02-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002034324A2 true WO2002034324A2 (fr) | 2002-05-02 |
WO2002034324A3 WO2002034324A3 (fr) | 2002-08-08 |
Family
ID=27105198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/032443 WO2002034324A2 (fr) | 2000-10-20 | 2001-10-18 | Fil-guide composite |
Country Status (3)
Country | Link |
---|---|
US (1) | US6544197B2 (fr) |
AU (1) | AU2002224407A1 (fr) |
WO (1) | WO2002034324A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004075963A1 (fr) * | 2003-02-26 | 2004-09-10 | Boston Scientific Limited | Instrument medical intracorporel allonge |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9901032D0 (sv) * | 1999-03-22 | 1999-03-22 | Pacesetter Ab | Medical electrode lead |
US6740050B2 (en) * | 2001-11-27 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Intracorporeal member with improved transition section |
US6702762B2 (en) * | 2001-12-27 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for joining two guide wire core materials without a hypotube |
US20070213689A1 (en) * | 2002-03-22 | 2007-09-13 | Grewe David D | Deflectable tip infusion guidewire |
US7351214B2 (en) * | 2002-03-22 | 2008-04-01 | Cordis Corporation | Steerable balloon catheter |
US7128718B2 (en) * | 2002-03-22 | 2006-10-31 | Cordis Corporation | Guidewire with deflectable tip |
US7520863B2 (en) | 2002-03-22 | 2009-04-21 | Cordis Corporation | Guidewire with deflectable tip having improved torque characteristics |
US20070219464A1 (en) * | 2002-03-22 | 2007-09-20 | Stephen Davis | Guidewire with deflectable re-entry tip |
WO2008088766A1 (fr) * | 2002-03-22 | 2008-07-24 | Cordis Corporation | Tige de cathéter à ballonnet à échange rapide et procédé correspondant |
US7481778B2 (en) * | 2002-03-22 | 2009-01-27 | Cordis Corporation | Guidewire with deflectable tip having improved flexibility |
JP4203358B2 (ja) * | 2002-08-08 | 2008-12-24 | テルモ株式会社 | ガイドワイヤ |
US7722551B2 (en) * | 2002-08-09 | 2010-05-25 | Terumo Kabushiki Kaisha | Guide wire |
US8317821B1 (en) * | 2002-11-04 | 2012-11-27 | Boston Scientific Scimed, Inc. | Release mechanism |
US6866642B2 (en) * | 2002-11-25 | 2005-03-15 | Advanced Cardiovascular Systems, Inc. | Enhanced method for joining two core wires |
US8377035B2 (en) | 2003-01-17 | 2013-02-19 | Boston Scientific Scimed, Inc. | Unbalanced reinforcement members for medical device |
US7780611B2 (en) * | 2003-05-01 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
US7641621B2 (en) | 2003-08-25 | 2010-01-05 | Boston Scientific Scimed, Inc. | Elongated intra-lumenal medical device |
US7540845B2 (en) * | 2003-09-05 | 2009-06-02 | Boston Scientific Scimed, Inc | Medical device coil |
US7833175B2 (en) * | 2003-09-05 | 2010-11-16 | Boston Scientific Scimed, Inc. | Medical device coil |
US20050054952A1 (en) * | 2003-09-05 | 2005-03-10 | Scimed Life Systems, Inc. | Elongated medical device for intracorporal use |
US7553287B2 (en) * | 2003-10-30 | 2009-06-30 | Boston Scientific Scimed, Inc. | Guidewire having an embedded matrix polymer |
US20050096665A1 (en) * | 2003-10-30 | 2005-05-05 | Scimed Life Systems, Inc. | Guidewire having a helically contoured portion |
WO2005051176A2 (fr) * | 2003-11-25 | 2005-06-09 | Boston Scientific Limited | Manchon de pression hemostatique |
US7901367B2 (en) * | 2005-06-30 | 2011-03-08 | Cook Incorporated | Wire guide advancement system |
US9089404B2 (en) * | 2006-03-31 | 2015-07-28 | Covidien Lp | Embolic protection devices having radiopaque elements |
US7731669B2 (en) * | 2006-05-12 | 2010-06-08 | Concert Medical, Llc | Guidewire formed with composite construction and method for making the same |
DE102006035191B4 (de) * | 2006-07-29 | 2009-05-14 | Osypka, Peter, Dr. Ing. | Medizinische Vorrichtung |
US7896820B2 (en) * | 2006-12-26 | 2011-03-01 | Terumo Kabushiki Kaisha | Guide wire |
EP2146769A1 (fr) * | 2007-04-23 | 2010-01-27 | Interventional & Surgical Innovations, LLC | Fil de guidage à rigidité ajustable |
US9387308B2 (en) | 2007-04-23 | 2016-07-12 | Cardioguidance Biomedical, Llc | Guidewire with adjustable stiffness |
WO2009039063A1 (fr) * | 2007-09-18 | 2009-03-26 | Cook Incorporated | Guide-fil |
US7841994B2 (en) * | 2007-11-02 | 2010-11-30 | Boston Scientific Scimed, Inc. | Medical device for crossing an occlusion in a vessel |
GB0803656D0 (en) * | 2008-02-28 | 2008-04-02 | Ovalum Ltd | Method and universal connector for coupling an extension wire to a guide wire |
US8002715B2 (en) * | 2008-05-30 | 2011-08-23 | Boston Scientific Scimed, Inc. | Medical device including a polymer sleeve and a coil wound into the polymer sleeve |
US20100087780A1 (en) * | 2008-10-03 | 2010-04-08 | Cook Incorporated | Wire Guide having Variable Flexibility and Method of Use Thereof |
US11406791B2 (en) | 2009-04-03 | 2022-08-09 | Scientia Vascular, Inc. | Micro-fabricated guidewire devices having varying diameters |
US10363389B2 (en) | 2009-04-03 | 2019-07-30 | Scientia Vascular, Llc | Micro-fabricated guidewire devices having varying diameters |
US8468919B2 (en) | 2008-12-08 | 2013-06-25 | Next Vascular, Llc | Micro-cutting machine for forming cuts in products |
US12220538B2 (en) | 2008-12-08 | 2025-02-11 | Scientia Vascular, Inc. | Micro-fabricated intravascular devices having varying diameters |
JP4993632B2 (ja) * | 2009-06-16 | 2012-08-08 | 朝日インテック株式会社 | 医療用ガイドワイヤ |
US20110190831A1 (en) * | 2010-01-29 | 2011-08-04 | Kyphon Sarl | Steerable balloon catheter |
SE535022C2 (sv) | 2010-06-30 | 2012-03-20 | St Jude Medical Systems Ab | Sensorguidewire innefattande en sensorkapsel med multipla hål |
US8864685B2 (en) | 2010-10-22 | 2014-10-21 | Cook Medical Technologies Llc | Wire guide having two safety wires |
US8961435B2 (en) | 2011-08-18 | 2015-02-24 | Radius Medical LLC | Coaxial guidewire for small vessel access |
US10226185B2 (en) * | 2012-05-03 | 2019-03-12 | St. Jude Medical Coordination Center Bvba | Tube and sensor guide wire comprising tube |
JP6395826B2 (ja) | 2013-10-25 | 2018-09-26 | セント ジュード メディカル コーディネイション センター ベーファウベーアー | センサ・ガイド・ワイヤ装置及びセンサ・ガイド・ワイヤ装置を備えたシステム |
JP6302754B2 (ja) * | 2014-06-04 | 2018-03-28 | オリンパス株式会社 | 接合構造及び生検針 |
WO2016138226A1 (fr) | 2015-02-26 | 2016-09-01 | St. Jude Medical Coordination Center Bvba | Capteur de pression et fil-guide avec tube à humidification automatique |
US11052228B2 (en) | 2016-07-18 | 2021-07-06 | Scientia Vascular, Llc | Guidewire devices having shapeable tips and bypass cuts |
US11207502B2 (en) | 2016-07-18 | 2021-12-28 | Scientia Vascular, Llc | Guidewire devices having shapeable tips and bypass cuts |
DE102016009871A1 (de) * | 2016-08-12 | 2018-02-15 | Häberle Laser- und Feinwerktechnik GmbH & Co. KG | Führungsdraht zum Einsatz in schlauchförmigen medizinischen Sonden, insbesondere zur Ernährungstherapie |
US10821268B2 (en) | 2016-09-14 | 2020-11-03 | Scientia Vascular, Llc | Integrated coil vascular devices |
US11452541B2 (en) | 2016-12-22 | 2022-09-27 | Scientia Vascular, Inc. | Intravascular device having a selectively deflectable tip |
ES2869148T3 (es) | 2017-05-26 | 2021-10-25 | Scientia Vascular Llc | Dispositivo médico microfabricado con una disposición de corte no helicoidal |
WO2018218191A1 (fr) * | 2017-05-26 | 2018-11-29 | Scientia Vascular, Llc | Articulation de fil central dotée de dispositifs médicaux micro-fabriqués |
US11672957B2 (en) | 2017-07-26 | 2023-06-13 | Heraeus Medical Components Llc | Resilient tip and method |
US11305095B2 (en) | 2018-02-22 | 2022-04-19 | Scientia Vascular, Llc | Microfabricated catheter having an intermediate preferred bending section |
JP7269934B2 (ja) * | 2018-07-19 | 2023-05-09 | 朝日インテック株式会社 | ガイドワイヤ |
US12011555B2 (en) | 2019-01-15 | 2024-06-18 | Scientia Vascular, Inc. | Guidewire with core centering mechanism |
US12178975B2 (en) | 2020-01-23 | 2024-12-31 | Scientia Vascular, Inc. | Guidewire having enlarged, micro-fabricated distal section |
JP7300062B2 (ja) * | 2020-05-08 | 2023-06-28 | 朝日インテック株式会社 | ガイドワイヤ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
US4873983A (en) | 1988-01-27 | 1989-10-17 | Advanced Biomedical Devices, Inc. | Steerable guidewire for vascular system |
US5067489A (en) | 1988-08-16 | 1991-11-26 | Flexmedics Corporation | Flexible guide with safety tip |
US4984581A (en) * | 1988-10-12 | 1991-01-15 | Flexmedics Corporation | Flexible guide having two-way shape memory alloy |
US5769796A (en) | 1993-05-11 | 1998-06-23 | Target Therapeutics, Inc. | Super-elastic composite guidewire |
US5546958A (en) * | 1994-03-31 | 1996-08-20 | Lake Region Manufacturing Company, Inc. | Guidewire extension system with tactile connection indication |
US6488637B1 (en) | 1996-04-30 | 2002-12-03 | Target Therapeutics, Inc. | Composite endovascular guidewire |
US6001068A (en) | 1996-10-22 | 1999-12-14 | Terumo Kabushiki Kaisha | Guide wire having tubular connector with helical slits |
US5876356A (en) | 1997-04-02 | 1999-03-02 | Cordis Corporation | Superelastic guidewire with a shapeable tip |
JP4312875B2 (ja) | 1998-08-28 | 2009-08-12 | 株式会社パイオラックス | 医療用ガイドワイヤ及びその製造方法 |
-
2001
- 2001-02-07 US US09/778,566 patent/US6544197B2/en not_active Expired - Lifetime
- 2001-10-18 AU AU2002224407A patent/AU2002224407A1/en not_active Abandoned
- 2001-10-18 WO PCT/US2001/032443 patent/WO2002034324A2/fr active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004075963A1 (fr) * | 2003-02-26 | 2004-09-10 | Boston Scientific Limited | Instrument medical intracorporel allonge |
WO2004075967A1 (fr) * | 2003-02-26 | 2004-09-10 | Boston Scientific Limited | Dispositif medical intracorporel de forme allongee |
WO2004075968A1 (fr) * | 2003-02-26 | 2004-09-10 | Boston Scientific Limited | Dispositif mediccal intracorporel allonge |
JP2006519072A (ja) * | 2003-02-26 | 2006-08-24 | ボストン サイエンティフィック リミテッド | 長尺状体内医療器具 |
US7182735B2 (en) | 2003-02-26 | 2007-02-27 | Scimed Life Systems, Inc. | Elongated intracorporal medical device |
US7316656B2 (en) | 2003-02-26 | 2008-01-08 | Boston Scientific Scimed, Inc. | Elongated intracorporal medical device |
JP4808611B2 (ja) * | 2003-02-26 | 2011-11-02 | ボストン サイエンティフィック リミテッド | 長尺状体内医療器具 |
US8222566B2 (en) | 2003-02-26 | 2012-07-17 | Boston Scientific Scimed, Inc. | Elongated intracorporal medical device |
Also Published As
Publication number | Publication date |
---|---|
US6544197B2 (en) | 2003-04-08 |
AU2002224407A1 (en) | 2002-05-06 |
WO2002034324A3 (fr) | 2002-08-08 |
US20020049392A1 (en) | 2002-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6544197B2 (en) | Composite guidewire | |
EP1464358A1 (fr) | Fil-guide composite avec une partie distale linéaire élastique | |
US5640970A (en) | Guidewire having a controlled radiopacity tip | |
US5682894A (en) | Guide wire | |
US5377690A (en) | Guidewire with round forming wire | |
US5402799A (en) | Guidewire having flexible floppy tip | |
US6039699A (en) | Stiff catheter guidewire with flexible distal portion | |
US5885227A (en) | Flexible guidewire with radiopaque plastic tip | |
US5797856A (en) | Intravascular guide wire and method | |
CA2424721C (fr) | Fil-guide a torsion compensee | |
US5666969A (en) | Guidewire having multiple radioscopic coils | |
US8043232B2 (en) | High performance wire guide | |
JP4370354B2 (ja) | ガイドワイヤの先端 | |
JP4593288B2 (ja) | ガイドワイヤのチップ構造 | |
CA2462335C (fr) | Fils-guides composites | |
AU659650B2 (en) | Catheter guide wire | |
US5865768A (en) | Guide wire | |
EP1468707B1 (fr) | Fil guide | |
US8403867B2 (en) | Concentric guidewire assembly | |
EP1337293B1 (fr) | Fil-guide composite | |
JP2025505224A (ja) | コア位置合わせ機構を有するガイドワイヤデバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |