WO2002033767A1 - Flat square battery - Google Patents
Flat square battery Download PDFInfo
- Publication number
- WO2002033767A1 WO2002033767A1 PCT/JP2001/008772 JP0108772W WO0233767A1 WO 2002033767 A1 WO2002033767 A1 WO 2002033767A1 JP 0108772 W JP0108772 W JP 0108772W WO 0233767 A1 WO0233767 A1 WO 0233767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- case
- sealing
- peripheral surface
- side peripheral
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims abstract description 158
- 230000002093 peripheral effect Effects 0.000 claims abstract description 82
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 238000010248 power generation Methods 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003811 curling process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/171—Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/15—Lids or covers characterised by their shape for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/167—Lids or covers characterised by the methods of assembling casings with lids by crimping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/559—Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
- H01M50/56—Cup shaped terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a flat primary battery or a secondary battery, and more particularly to a rectangular flat battery.
- flat batteries such as button batteries and coin batteries are small and thin, they are widely used in devices that require miniaturization, such as watches and hearing aids, and devices that require thinning, such as IC cards.
- FIGS. 17A and 17B show the appearance of a conventional coin-type battery.
- this coin-type battery 40 has a disc-shaped positive and negative pellets 42 and 43 in a sealing case 45 formed in a circular half-shell.
- the gasket 46 is attached to the opening of the sealing case 45, the battery case 41 is covered, and the open end of the battery case 41 is inside. It is created by closing the opening of the sealing location 45 by crimping.
- the reason why the planar shape is circular is that the circular shape is suitable for making the force-sealing closure uniform over the entire periphery of the opening of the battery case 41 and the sealing location 45.
- the flat shape of the flat battery is rectangular, the space efficiency of the battery housing of the battery-using equipment can be improved, and it is easy to apply the wound electrode group. This leads to an increase in the volume and, consequently, an application range.
- a flat battery having a square planar shape is disclosed in Japanese Patent Application Laid-Open No. 2000-164592. As shown in FIGS. 19A and 19B, this flat prismatic battery has a sealed location 53 and a battery case 52 formed in a half-shell having a rounded rectangular shape in plan view.
- the electrode group having the winding structure is housed in the internal space in which the openings of the battery case 52 are opposed to each other, It is formed by sealing the space between the battery case 52 and the sealing case 53 by caulking processing to close the gap.
- the square sealing location 53 does not connect the radius forming portion of the corner and each corner, and there is a difference in strength between the straight portion and the caulking process.
- this flat prismatic battery 60 accommodates a group of electrode plates 64 having a wound structure in a battery can 61, and a sealing plate 62 in an opening of the battery can 61. Are arranged, and the periphery thereof is double-wrapped via a gasket 63 to improve the liquid leakage resistance and to electrically insulate the positive electrode and the negative electrode of the battery.
- the above-mentioned double-sealing method has a problem that the size of the battery increases due to a large extent of the wound portion 65 protruding around the battery body as shown in the figure. The purpose of achieving is not achieved.
- An object of the present invention is to provide a flat prismatic battery having a square shape with good space efficiency and a reliable sealing structure. Disclosure of the invention
- the first invention of the present application is directed to a metal battery case in which a battery case side peripheral surface is raised from the periphery of a polygonal bottom surface having a corner portion provided with a predetermined radius of a corner. It is formed in a rectangular half-shell body, and a metal sealing location is provided with a rising height of the battery case side peripheral surface from the periphery of a polygonal bottom surface having a corner portion provided with a radius of a predetermined radius.
- the sealing case side peripheral surface provided with a stepped portion at a position corresponding to the above is raised into a shape and dimensions spaced evenly from the inner surface of the battery case side peripheral surface, and is formed into a polygonal half shell.
- each periphery of the bottom surface of the sealing case a plurality of recesses protruding in the inner angle direction of the sealing case are formed at predetermined intervals on each of these periphery, and the opening portions of the battery case and the sealing location are gaskets. Opposed via A battery element is housed in the internal space formed by the gasket, and the gasket is sealed so as to be compressed and deformed between the opening end side of the battery case and the step portion of the sealing case. It is a flat prismatic battery.
- a metal battery case is formed in a polygonal half-shell with a battery case side peripheral surface
- the metal sealing case is Formed in a polygonal half-shell body with a sealing location side peripheral surface having a step portion narrowed at a position corresponding to the height of the battery case side peripheral surface at a predetermined distance from the battery case side peripheral surface
- a power generation element is accommodated in an internal space formed by the opening of each of the battery case and the sealing case facing each other via a gasket, and the gasket is provided on the battery case side peripheral surface.
- the sealing case is sealed so as to be compressed between the opening end side of the sealing case and the upper part of the stepped part, and the sealing case side peripheral surface from the sealing case bottom surface of the sealing case to the stepped part and the stepped part are the sealing case.
- Bottom plate thickness A flat prismatic battery characterized by being formed to a thickness of 1.2 times or more.
- the metal battery case is formed in a polygonal half-shell body having a battery case side peripheral surface
- the metal sealing case is a sealing case. It is formed in a polygonal half-shell body with a side peripheral surface, and the opening of each of the battery case and the sealing location is opposed to each other via a gasket in an internal space formed.
- the power generation element is accommodated, and the gasket is sealed so as to be compressed between the opening end side of the battery case side peripheral surface and the sealing case bottom surface of the sealing case, and the sealing location side peripheral surface is It is characterized by being formed to a thickness of at least 1.2 times the thickness of the bottom surface of the sealing case.
- FIG. 1 is a plan view of a flat prismatic battery according to the first embodiment of the present invention
- FIG. 2 is a cross-sectional view showing the configuration of the flat prismatic battery according to the embodiment
- FIG. 3 is a perspective view showing the configuration of the battery case.
- FIG. 4 is a perspective view showing the configuration of the sealing case
- FIG. 5 is a perspective view showing the configuration of the electrode group having a wound structure.
- FIG. 6 is a perspective view showing another embodiment of the flat prismatic battery,
- FIG. 7 is a cross-sectional view showing a state in which a V-shaped groove for preventing deformation of the battery case is formed
- FIG. 8 is a cross-sectional view showing a state in which a pre-force is applied to the battery case.
- FIG. 9 is a cross-sectional view showing another embodiment of the battery case deformation prevention structure.
- FIG. 10 is a perspective view of a flat prismatic battery according to a second embodiment of the present invention
- FIG. 11 is a perspective view showing a configuration of a battery case.
- FIG. 12 is a perspective view showing the configuration of the sealed location
- FIG. 13A is a cross-sectional view showing an assembled state of a flat prismatic battery
- FIG. 13B is a cross-sectional view showing a sealed state.
- FIG. 14 is a cross-sectional view showing another embodiment of the flat prismatic battery
- FIG. 15A is a partial cross-sectional view showing a state before caulking of the flat battery according to the third embodiment of the present invention
- FIG. 15B shows a completed state of the flat battery according to the third embodiment.
- FIG. 16 is a partial sectional view showing a configuration for improving the connectivity of the battery connection.
- FIG. 17A is a side view showing the configuration of a conventional circular flat battery
- FIG. 17B is a plan view.
- FIG. 18 is a cross-sectional view showing the configuration of a conventional circular flat battery
- FIG. 19A is a side view showing a configuration of a conventional flat prismatic battery
- FIG. 19B is a plan view
- FIG. 2OA is a cross-sectional view showing an assembled state of the conventional flat prismatic battery. Is a cross-sectional view of a corner portion at the time of caulking
- FIG. 20C is a cross-sectional view showing a buckled state of a straight portion at the time of sealing.
- FIG. 21 is a plan view showing a configuration of a conventional flat prismatic battery.
- FIG. 22 is a cross-sectional view showing the configuration of a conventional flat prismatic battery.
- the flat prismatic battery 1 according to the first embodiment of the present invention is configured as a substantially rectangular flat battery having a small radius formed at a corner of a square, and serves as an exterior body.
- a flat rectangular lithium ion secondary battery is formed in a rounded square with a diagonal dimension of 30 mm, which accommodates a wound electrode group.
- the battery case 2 is formed in a half-shell having a square shape in which a stainless steel plate having a thickness of 0.2 mm is metal-press-formed.
- the bottom surface 2 1 of the battery case 2 is a square having a rounded corner R at a corner 23 with a predetermined radius R, and the battery case side peripheral surface 2 2 extends from a bent portion 23 around the bottom surface 2 1. It is formed to stand up.
- the relationship between the radius R of the corner portion 23 and the material thickness t1 of the battery case 2 is formed such that 2ti ⁇ R ⁇ 20ti.
- the sealing location 3 is formed by pressing a 0.2 mm thick stainless steel plate into a half-shell having a square planar shape by metal press molding.
- the bottom surface 3 1 is a rounded rectangle with a radius at the corner 3 3, and the sealing location side peripheral surface 3 2 rising from the bent portion 3 4 around the bottom surface 3 1 at a predetermined height.
- a step 35 is formed at the bottom. It is desirable that the step width of the step portion 35 is formed so as to be 0.5 to 5 times the material thickness of the sealing location 3.
- the relationship between the radius R of the corner portion 33 and the material thickness t2 of the sealing location 3 is 2t2, and R ⁇ 210.
- V-shaped notches (recesses) 36 are provided at predetermined intervals in the bent portion 34 around the bottom surface 31 where the sealing location side peripheral surface 32 rises from the bottom surface 31 of the sealing case 3. It is formed so as to protrude toward the inside of the sealing case 3 at a distance.
- the electrode group 5 cuts a positive electrode plate obtained by applying a positive electrode material to a positive electrode current collector and a negative electrode plate obtained by applying a negative electrode material to a negative electrode current collector into strips.
- the electrode plate and the negative electrode plate are wound flat through a separator as shown in FIG. 5, and the positive electrode lead 15 from the positive electrode current collector of the positive electrode plate located on one plane, and the other Negative electrode positioned on the plane of The negative electrode lead 16 is formed so as to extend from the negative electrode current collector of the plate.
- a resin gasket 4 is attached to the opening end of the sealing location side peripheral surface 3 2 of the sealing location 3 having the above configuration, and the electrode group 5 is placed in the sealing case 3.
- the negative electrode lead 16 that is housed and pulled out from the electrode plate group 5 is welded to the inner surface of the sealing case 3 and the positive electrode lead 15 is connected to the inner surface of the battery case 2 by welding.
- the battery case 2 is covered with the sealing case 3 and sealed, so that the flat prismatic battery 1 is in the state shown in FIGS. 1 and 2. It is formed.
- the sealing is carried out by pressing the battery case 2 with a pressure press using a sealing mold.
- the open end side of the battery case 2 peripheral surface 22 is bent toward the sealing case 3 side, and the stepped portion of the sealing location side peripheral surface 3 2 is formed. This is done by compressing the gasket 4 on 3 5.
- the rigidity of the linear portion is increased. Deformation is suppressed, and the difference in strength with respect to deformation between the corner part 33 and the straight part connecting each corner part 33 is reduced, and even if it is square, the seal is securely made to prevent liquid leakage be able to.
- the structure for increasing the deformation strength of the sealing location side peripheral surface 32 of the sealing case 3 is formed by forming concave portions facing inward of the sealing case at a plurality of portions of the straight portion of the bent portion 34.
- the same effect can be obtained by forming 38.
- a V-shaped groove 25 having a V-shaped cross section is formed on the inner surface of the battery case-side peripheral surface 22 at the bending height position.
- the V-shaped groove 25 is preferably formed to a depth of 0.05 mm, including the four straight portions 26 or the corner portions 23. Formed over the entire circumference. Due to the formation of the V-shaped groove 25, the opening end side 22a of the battery case side peripheral surface 22 is easily bent toward the inside of the case from the V-shaped groove 25 at the time of sealing, so that the battery case is closed. Excessive bending stress is not applied to the side peripheral surface 22, and particularly, the swelling of the straight portion 26 to the outside of the case is suppressed. .
- the open end side 22 a of the battery case side peripheral surface 22 above the position where the V-shaped groove 25 is formed is directed inward of the case.
- the opening end side 22 a of the battery case side peripheral surface 22 can be easily bent at the time of sealing, so that excessive deformation stress is not applied to the battery case side peripheral surface 22.
- a secure seal with the sealing location 3 is implemented.
- the battery case side peripheral surface 22 is inclined by a small angle 0 from a vertical line to the bottom surface 21. After that, a pre-curling process is performed to bend the opening end side 22 a of the battery case side peripheral surface 22 at a predetermined angle toward the inside of the case. As a result, the battery case 2 can be comfortably covered over the sealing case 3 on which the gasket 4 is mounted, and the open end side 22 a of the battery case side peripheral surface 22 can be easily bent by the pre-curl. No unreasonable deformation stress is applied to the side peripheral surface 22, and a reliable sealing is performed.
- the base material is formed by providing a single layer of nickel or aluminum or an alloy thereof to a thickness of 0.05 mm or more as a protective layer on the inner surface of the battery case 2 on the positive electrode side of the flat prismatic battery 1.
- Metal here, stainless steel
- the formation of the protective layer can be performed by means such as cladding, plating, and vapor deposition.
- copper or an alloy thereof is provided with a thickness of 0.05 mm or more as a protective layer on the inner surface of the sealed case 3 on the negative electrode side of the flat battery 1 so that the base metal (here, (Stainless steel) can be prevented from melting due to the potential difference.
- the battery case 2 is used as a positive electrode
- the sealing case 3 is used as a negative electrode.
- the wound capacity is applied to the electrode plate group 5 to increase the battery capacity.
- the positive electrode formed in a rounded square corresponding to the shape of the battery internal space is shown. It is also possible to apply an electrode structure in which a let and a negative electrode pellet are opposed to each other via a separator.
- the planar shape of the flat prismatic battery 1 is a rounded square, but it may be formed in a rectangular shape in which the difference in length between the long side and the short side is not excessive. Also, it can be formed in a polygonal shape of a quadrangle or more.
- the flat prismatic battery 100 according to the present embodiment was formed into a square flat battery having a square corner with a small radius formed on a part thereof. It can be applied to a primary battery and a secondary battery depending on a power generation element housed in a battery case 102 and a sealed location 103 serving as an external body.
- a specific example is shown in which a flat rectangular lithium ion secondary battery having a rounded square shape with a diagonal dimension of 30 mm and containing a wound electrode group 5 is configured.
- the battery case 102 is formed by pressing a stainless steel plate having a thickness of 0.2 to 0.25 mm into a half-shell having a square planar shape.
- the bottom surface 121 is a quadrangular shape having a rounded corner R at a corner portion 123 with a predetermined radius R, and is formed so that the battery case side peripheral surface 122 rises from the periphery of the bottom surface 121.
- the relationship between the radius R of the corner portion 123 and the material thickness t1 of the battery case 102 is such that 2ti ⁇ R ⁇ 20t1.
- the sealing case 103 has a thickness of 2 to 0.25 m as shown in FIG.
- the m stainless steel plate is formed into a square half-shell by metal press molding.
- the bottom surface 1 3 1 is a square with a radius at the corner 1 3 3, and the sealing case side peripheral surface 1 3 2 rising from the bottom 1 3 1 is formed with a step 1 3 5 at a predetermined height position Is done.
- the step width of the step portion 135 is desirably formed to be 5 to 10 times the material thickness of the sealing case 103.
- the radius R of the corner portion 133 and the material thickness t2 of the sealing case 103 are formed so as to have a relationship of 2t2 ⁇ R ⁇ 20t2.
- the sealing case 103 has a sealing case side peripheral surface 132 extending from the bottom surface 131 to the stepped portion 1335, and a stepped portion. 13 5 is formed to be 1.2 times or more the thickness of the bottom surface 13 1.
- the electrode group 5 cuts a positive electrode plate obtained by coating a positive electrode current collector with a positive electrode material and a negative electrode plate obtained by coating a negative electrode current collector with a negative electrode material into strips.
- the electrode plate and the negative electrode plate are wound flat via a separator so that the positive electrode lead 15 is located on one flat side and the negative electrode lead 16 is located on the other side as shown in Fig. 5. Finished.
- a resin gasket 10.4 is attached to the opening end side of the sealing location side peripheral surface 13 2 of the sealing case 103 having the above configuration as shown in FIG.
- the negative electrode lead 16 pulled out of the positive electrode group 5 is connected to the inner surface of the sealing case 103, and the positive electrode lead 15 is connected to the inner surface of the battery case 102 by welding.
- a predetermined amount of the electrolytic solution is dropped into the sealing case 103, and after the impregnation time for the electrode group 5 has elapsed, the battery case 102 is covered with the sealing case 103 and sealed.
- the flat prismatic battery 100 shown in FIG. 10 is formed.
- the opening end of the battery case-side peripheral surface 12-2 of the battery case 102 is sealed by a pressure press using a sealing mold. This is done by compressing the gasket 104 on the step portion 135 of the peripheral surface 132 on the sealing location side.
- the concave portion 13 6 may be formed over the entire circumference of the bottom surface 13 1 having a square flat shape, It may be formed along only one of the corners, and it is possible to reinforce the straight portions of the four sides, which are weaker than the corner portions 133.
- the sealing portion 103 When a rectangular battery as shown in the present embodiment is sealed, when the sealing case 103 is closed, the sealing portion 103 is located between the corner portion 1 3 3 of the outer peripheral surface 13 2 and the straight portion connecting each corner portion. Since there is a difference in the deformation strength, the straight portion of the peripheral surface 13 2 on the sealing location side is easily buckled and deformed inward when the sealing is pressed. As a result, the sealing at the straight portion is not sufficiently performed, and the liquid is easily leaked.
- the sealing case 103 according to the present embodiment as described above, the stepped portion 13 5, the rigidity of the linear portion is increased and deformation is suppressed, and the difference in the strength between the corner portion 133 and the linear portion with respect to the deformation is reduced. The closure is securely made and liquid leakage can be prevented.
- the case structure for preventing buckling from occurring in the linear portion due to the pressurization of the sealing by caulking is used.
- FIG. The case structure of the third embodiment as shown in FIGS. 5A and 15B can be adopted.
- the battery case 202 formed in a rectangular half-shell and the sealing case 203 formed in the same rectangular half-shell are connected to the battery case side peripheral surface 222 and the sealing case side.
- a gasket 204 is arranged between the outer peripheral surface 2 32 and the outer peripheral surface 2 32. As shown in FIG. Fold the open end of 2 2 2 inward. Due to this pressurization, the open end of the battery case side peripheral surface 222 compresses the gasket 204 onto the sealing case bottom surface 231 of the sealing case 203 as shown in FIG.
- the gasket 204 Since the gasket 204 is compressed inside the bottom surface 221 of the battery case 202 at the open end side of the battery side peripheral surface 232, the connection between the battery case 202 and the sealing The gap is sealed, so that the electrolyte contained in the internal space can be prevented from leaking to the outside.
- the sealing is performed by applying pressure in the extending direction of the sealing location side peripheral surface 232, buckling of the sealing location side peripheral surface 232 due to the pressurization can be suppressed.
- the thickness of the peripheral surface 232 on the sealing location side is 1.2 times or more the thickness of the bottom surface 231. This configuration is more effective in suppressing buckling.
- a projecting portion 238 formed toward the outside of the case can be formed at the center of the bottom surface 231.
- nickel or aluminum alone or an alloy thereof is provided as a protective layer to a thickness of 0.05 mm or more on the inner surface of the battery case 102 on the positive electrode side of the flat prismatic battery 100.
- the formation of the protective layer can be performed by means such as cladding, plating, and vapor deposition.
- the battery case 102 is used as a positive electrode
- the sealing case 103 is used as a negative electrode.
- a positive electrode and a negative electrode may be set.
- the outer surfaces of the battery case 102 and the sealing location 103 are formed in a satin finish, the contact resistance when welding the lead plate increases, and welding is facilitated.
- an example is shown in which a wound structure is applied to the electrode group 5 to increase the battery capacity.
- the positive electrode base formed into a rounded square corresponding to the shape of the battery internal space is shown. It is also possible to apply an electrode structure in which a let and a negative electrode pellet are opposed to each other with a separator interposed therebetween.
- the flat prismatic battery 100 has a square shape with rounded corners in plan view, but it may be formed in a rectangular shape in which the difference in length between the long side and the short side is not excessive. Wear. Also, it can be formed in a polygonal shape of a quadrangle or more. Industrial applicability
- the flat battery of this invention although it is a square shape, a reliable sealing can be performed, and the discharge capacity can be obtained by efficiently enclosing the electrode group of a winding structure with respect to the accommodation space inside a battery. It can be used as a battery power source when a large battery capacity is required, even though it is small, such as a portable device, because the amount can be increased.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01972697A EP1282176A4 (en) | 2000-10-13 | 2001-10-04 | SQUARE FLAT BATTERY |
US10/149,731 US6893773B2 (en) | 2000-10-13 | 2001-10-04 | Flat square battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000312908A JP4020580B2 (ja) | 2000-10-13 | 2000-10-13 | 偏平角形電池 |
JP2000-312908 | 2000-10-13 | ||
JP2000330916A JP4037046B2 (ja) | 2000-10-30 | 2000-10-30 | 偏平角形電池 |
JP2000-330916 | 2000-10-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/936,305 Division US7348098B2 (en) | 2000-10-13 | 2004-09-08 | Flat prismatic battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002033767A1 true WO2002033767A1 (en) | 2002-04-25 |
Family
ID=26602014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/008772 WO2002033767A1 (en) | 2000-10-13 | 2001-10-04 | Flat square battery |
Country Status (6)
Country | Link |
---|---|
US (2) | US6893773B2 (ja) |
EP (1) | EP1282176A4 (ja) |
KR (1) | KR100452230B1 (ja) |
CN (2) | CN1295799C (ja) |
TW (1) | TW522595B (ja) |
WO (1) | WO2002033767A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111640884A (zh) * | 2020-06-05 | 2020-09-08 | 珠海冠宇电池股份有限公司 | 一种壳体结构、电池结构和电子设备 |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100452230B1 (ko) * | 2000-10-13 | 2004-10-12 | 마츠시타 덴끼 산교 가부시키가이샤 | 편평 각형 전지 |
US20060121343A1 (en) * | 2004-12-06 | 2006-06-08 | Chia-Hsien Shu | Battery protective packaging structure |
KR100778980B1 (ko) * | 2005-12-29 | 2007-11-22 | 삼성에스디아이 주식회사 | 리튬 이차전지 |
KR100863730B1 (ko) | 2006-09-04 | 2008-10-16 | 주식회사 엘지화학 | 외면에 미세 그루브가 형성되어 있는 전지셀 및 이를포함하고 있는 전지팩 |
JP2008071612A (ja) * | 2006-09-14 | 2008-03-27 | Hitachi Maxell Ltd | 扁平形非水電解液二次電池 |
KR100823193B1 (ko) * | 2006-11-02 | 2008-04-18 | 삼성에스디아이 주식회사 | 이차 전지 |
KR100922441B1 (ko) * | 2006-11-06 | 2009-10-16 | 주식회사 엘지화학 | 전지케이스의 전극조립체 수납부 변형에 의해 안전성이향상된 이차전지 |
JP5294248B2 (ja) * | 2007-03-20 | 2013-09-18 | 日立マクセル株式会社 | 扁平形電池 |
KR100876266B1 (ko) * | 2007-09-28 | 2008-12-26 | 삼성에스디아이 주식회사 | 이차전지 |
KR100943570B1 (ko) * | 2007-10-30 | 2010-02-23 | 삼성에스디아이 주식회사 | 배터리 팩 |
DE102009035489A1 (de) * | 2009-07-31 | 2011-02-03 | Daimler Ag | Einzelzelle für eine Batterie |
KR101101093B1 (ko) * | 2009-11-26 | 2012-01-03 | 삼성에스디아이 주식회사 | 이차전지용 케이스 및 이를 이용한 리튬 이차전지 |
JP2011210662A (ja) * | 2010-03-30 | 2011-10-20 | Sanyo Electric Co Ltd | 積層式電池 |
JP5589534B2 (ja) * | 2010-04-28 | 2014-09-17 | 日産自動車株式会社 | 扁平型電池 |
KR101132115B1 (ko) * | 2010-05-31 | 2012-04-05 | 삼성에스디아이 주식회사 | 이차전지 케이스 및이를 구비한 이차전지 |
FR2961637B1 (fr) | 2010-06-16 | 2012-07-27 | Commissariat Energie Atomique | Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur |
US20120028094A1 (en) * | 2010-07-27 | 2012-02-02 | Yongsam Kim | Battery pack |
FR2964256B1 (fr) | 2010-08-24 | 2012-09-28 | Commissariat Energie Atomique | Accumulateur electrochimique bipolaire a emballage ameliore |
KR101222369B1 (ko) | 2011-01-05 | 2013-01-15 | 로베르트 보쉬 게엠베하 | 배터리 및 이를 포함한 배터리 팩 |
US20130344372A1 (en) * | 2011-03-08 | 2013-12-26 | Steve Carkner | Stress relief body to prevent cell seal failure during assembly |
FR2974674B1 (fr) | 2011-04-26 | 2013-06-28 | Commissariat Energie Atomique | Accumulateur electrochimique li-ion de type bipolaire a capacite augmentee |
KR101279408B1 (ko) * | 2011-08-18 | 2013-06-27 | 주식회사 엘지화학 | 이차 전지 제조 방법 |
JP5664565B2 (ja) * | 2012-01-26 | 2015-02-04 | 豊田合成株式会社 | 扁平型電池 |
FR2993099B1 (fr) | 2012-07-03 | 2014-08-01 | Commissariat Energie Atomique | Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur |
FR2993710B1 (fr) | 2012-07-17 | 2014-08-15 | Commissariat Energie Atomique | Batterie li-ion bipolaire a etancheite amelioree et procede de realisation associe |
FR2996360B1 (fr) | 2012-10-01 | 2014-10-17 | Commissariat Energie Atomique | Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur, procede de realisation d'une telle batterie. |
FR3003093B1 (fr) | 2013-03-11 | 2015-06-26 | Commissariat Energie Atomique | Batterie li-ion bipolaire a etancheite amelioree et procede de realisation associe |
FR3004292B1 (fr) | 2013-04-09 | 2016-06-24 | Commissariat Energie Atomique | Accumulateur electrochimique au lithium avec boitier a dissipation thermique amelioree, pack-batterie et procedes de realisation associes. |
FR3006116B1 (fr) | 2013-05-21 | 2015-06-26 | Commissariat Energie Atomique | Batterie li-on bipolaire a etancheite amelioree et procede de realisation associe. |
FR3011128B1 (fr) | 2013-09-25 | 2015-10-30 | Commissariat Energie Atomique | Procede de realisation d'un faisceau electrochimique d'un accumulateur au lithium |
FR3013513B1 (fr) | 2013-11-20 | 2016-01-15 | Commissariat Energie Atomique | Copolymere pour batterie bipolaire |
US20150200384A1 (en) * | 2014-01-14 | 2015-07-16 | Ford Global Technologies, Llc | Electric vehicle battery cell having conductive case |
FR3016478B1 (fr) | 2014-01-16 | 2017-09-08 | Commissariat Energie Atomique | Accumulateur electrochimique avec boitier et borne de sortie en alliage d'aluminium, pack-batterie et procede de realisation associes |
FR3017248B1 (fr) | 2014-01-31 | 2016-03-04 | Commissariat Energie Atomique | Procede de regeneration de la capacite d'un accumulateur electrochimique au lithium, boitier d'accumulateur et accumulateur associes |
EP3114716A4 (en) * | 2014-03-06 | 2017-07-26 | UniCell LLC | Battery cells and arrangements |
USD742124S1 (en) | 2014-03-06 | 2015-11-03 | 3M Innovative Properties Company | Decorative display |
FR3018911B1 (fr) | 2014-03-19 | 2016-05-06 | Commissariat Energie Atomique | Structure souple avec jauge de deformation, application aux accumulateurs au lithium a emballages souples |
FR3019686B1 (fr) | 2014-04-08 | 2016-05-06 | Commissariat Energie Atomique | Accumulateur electrochimique au lithium avec borne en liaison directe avec le faisceau electrochimique, procedes de realisation associes. |
FR3022693B1 (fr) | 2014-06-24 | 2021-04-09 | Commissariat Energie Atomique | Accumulateur electrochimique avec boitier a assemblage par soudure amelioree. |
FR3034260B1 (fr) | 2015-03-23 | 2019-07-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de determination d'au moins un etat de securite d'un accumulateur electrochimique au lithium au moyen de jauge(s) de contrainte |
FR3037724B1 (fr) | 2015-06-22 | 2017-07-21 | Commissariat Energie Atomique | Procede de realisation d'un faisceau electrochimique d'accumulateur au lithium avec pliage ou enroulement des extremites de feuillard sur elles-memes |
FR3037725B1 (fr) | 2015-06-22 | 2021-12-31 | Commissariat Energie Atomique | Procede de realisation d'un faisceau electrochimique d'accumulateur au lithium avec mousse metallique aux extremites de feuillards |
FR3044831B1 (fr) | 2015-12-02 | 2023-01-20 | Commissariat Energie Atomique | Procede de regeneration de capacite d'un accumulateur electrochimique metal-ion, accumulateur associe |
FR3044659B1 (fr) | 2015-12-07 | 2020-02-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Traversee etanche de type verre-metal, utilisation en tant que borne pour accumulateur electrochimique au lithium, procede de realisation associe |
FR3052917B1 (fr) | 2016-06-15 | 2022-03-25 | Commissariat Energie Atomique | Electrode pour faisceau electrochimique d'un accumulateur metal-ion ou d'un supercondensateur, procede de realisation du faisceau et de l'accumulateur associes |
FR3053842B1 (fr) | 2016-07-07 | 2020-02-07 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Accumulateur electrochimique metal-ion, a capacite elevee et dont la souplesse permet une grande conformabilite |
CN106159128B (zh) * | 2016-08-31 | 2019-01-18 | 山东超威磁窑电源有限公司 | 方形卷绕结构铅酸蓄电池及其制造方法 |
CN106684399A (zh) * | 2017-01-20 | 2017-05-17 | 中天储能科技有限公司 | 一种反式纽扣电池的制备方法 |
FR3068831B1 (fr) | 2017-07-04 | 2021-11-26 | Commissariat Energie Atomique | Procedes de realisation d'un faisceau electrochimique d'un accumulateur metal-ion au moyen d'une membrane a electrolyte polymere gelifie, accumulateurs associes |
FR3085793B1 (fr) | 2018-09-12 | 2020-10-09 | Commissariat Energie Atomique | Procede d'assemblage d'un pack-batterie d'accumulateurs electrochimiques a des busbars par verrouillage magnetique |
FR3085794B1 (fr) | 2018-09-12 | 2020-11-13 | Commissariat Energie Atomique | Pack-batterie d'accumulateurs electrochimiques comprenant des dispositifs de deconnexion magnetique passive entre les accumulateurs et des busbars, et le cas echeant de shunt passif d'un ou plusieurs accumulateurs en cas de defaillance d'un de ceux-ci |
FR3085797B1 (fr) | 2018-09-12 | 2021-04-23 | Commissariat Energie Atomique | Borne de sortie d'un accumulateur electrochimique integrant un verrou magnetique pour fixation magnetique avec conduction electrique avec un busbar |
FR3085790B1 (fr) | 2018-09-12 | 2020-10-09 | Commissariat Energie Atomique | Dispositif d'extinction magnetique d'arc electrique lors d'une connexion/deconnexion entre une borne de sortie d'accumulateur electrochimique et un busbar |
FR3085796B1 (fr) | 2018-09-12 | 2021-02-12 | Commissariat Energie Atomique | Dispositif de connexion/deconnexion magnetique entre un accumulateur electrochimique et des busbars, et de shunt magnetique passif de l'accumulateur apres sa chute par gravite |
FR3085803B1 (fr) | 2018-09-12 | 2020-10-09 | Commissariat Energie Atomique | Pack-batterie d'accumulateurs, comprenant des shunts magnetiques actionnables sur demande pour la commutation electrique d'un ou plusieurs des accumulateurs |
FR3085804B1 (fr) | 2018-09-12 | 2021-09-10 | Commissariat Energie Atomique | Adaptateur d'interface a fixer autour d'une borne d'accumulateur electrochimique, integrant au moins un verrou magnetique pour fixation magnetique avec conduction electrique de la borne a un busbar |
FR3085798B1 (fr) | 2018-09-12 | 2021-04-23 | Commissariat Energie Atomique | Adaptateur d'interface integrant au moins un verrou magnetique pour fixation magnetique avec conduction electrique d'un accumulateur electrochimique a un busbar |
FR3085789B1 (fr) | 2018-09-12 | 2020-10-09 | Commissariat Energie Atomique | Dispositif de soufflage d'arc electrique par gaz sous pression lors d'une connexion/deconnexion entre une borne de sortie d'accumulateur electrochimique et un busbar |
CN109346775A (zh) * | 2018-10-26 | 2019-02-15 | 大连中比动力电池有限公司 | 锂电池封口结构及锂电池 |
FR3091789A1 (fr) | 2019-01-16 | 2020-07-17 | Commissariat A L' Energie Atomique Et Aux Energies Alternatives | Pack-batterie comprenant une pluralite d’accumulateurs relies electriquement entre eux et un systeme de circulation de fluide dielectrique assurant a la fois le refroidissement des accumulateurs et leur serrage |
FR3097376B1 (fr) | 2019-06-11 | 2021-06-11 | Commissariat Energie Atomique | Entretoise pour pack-batterie, destinée à séparer deux accumulateurs adjacents du pack et à permettre une circulation d’un fluide caloporteur avec contact direct avec les accumulateurs pour leur refroidissement optimal |
FR3098648B1 (fr) | 2019-07-08 | 2023-04-21 | Commissariat Energie Atomique | Busbar pour pack-batterie, destinée à connecter électriquement au moins un accumulateur du pack et à permettre une circulation d’un fluide caloporteur en son sein pour le refroidissement optimal de l’accumulateur et du pack, notamment en cas d’emballement thermique |
FR3104829B1 (fr) | 2019-12-17 | 2024-04-26 | Commissariat Energie Atomique | Accumulateur électrochimique, notamment un accumulateur métal-ion, à emballage souple ou rigide intégrant des canaux de refroidissement, module et procédé de fabrication associés. |
FR3104823B1 (fr) | 2019-12-17 | 2022-09-23 | Commissariat Energie Atomique | Accumulateur électrochimique, notamment un accumulateur métal-ion, à emballage souple intégrant un ou plusieurs orifices de passage de fluide de refroidissement, module et procédé de fabrication associés. |
FR3106021B1 (fr) | 2020-01-03 | 2021-12-31 | Commissariat A L Energie Atomique Et Aux Energies Alternatives | Dispositif de déclenchement d’emballement thermique d’un accumulateur électrochimique, notamment d’un accumulateur métal-ion, Procédé associé. |
FR3108207B1 (fr) | 2020-03-12 | 2022-03-18 | Commissariat A L Energie Atomique Et Aux Energies Alternatives | Adaptateur d’interface intégrant un verrou magnétique logeant logeant au moins un accumulateur ou formé par ce dernier et assurant la fixation magnétique de ce dernier avec conduction électrique à un busbar. |
FR3115401B1 (fr) | 2020-10-15 | 2022-10-07 | Commissariat A L’Energie Atomique Et Aux Energies Alternatives | Module de batterie à empilement d’accumulateurs à emballage souple logés dans des supports fixés entre eux par encliquetage ou clipsage et supportant des cosses en contact avec pression avec les bornes des accumulateurs |
FR3115724A1 (fr) | 2020-11-02 | 2022-05-06 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Film multicouches dont une couche de gel aqueux pour le refroidissement d’au moins un accumulateur au sein d’un module de batterie, notamment en cas d’emballement thermique, Module associé. |
FR3116657A1 (fr) | 2020-11-23 | 2022-05-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Accumulateur métal-ion muni d’un conduit de dégazage, Module de batterie ou Pack-batterie associé à refroidissement liquide. |
FR3117273A1 (fr) | 2020-12-08 | 2022-06-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Module de batterie à pluralité d’accumulateurs électrochimique, comprenant un dispositif nébuliseur pour projeter des microgouttelettes en cas d’emballement thermique d’au moins un des accumulateurs. |
FR3127334B1 (fr) | 2021-09-23 | 2024-03-01 | Commissariat Energie Atomique | Busbar pour module de batterie ou pack-batterie à empilement d’accumulateurs à emballage souple, destinée à connecter électriquement au moins un accumulateur du module ou pack, Procédé de réalisation d’un module ou pack-batterie associé. |
FR3128585B1 (fr) | 2021-10-26 | 2023-10-27 | Commissariat Energie Atomique | Accumulateur électrochimique métal-ion intégrant un collecteur de courant formé par un disque en polymère thermoplastique chargé en particules et/ou fibres électriquement conductrices |
FR3128584B1 (fr) | 2021-10-26 | 2023-10-27 | Commissariat Energie Atomique | Collecteur de courant d’un élément d’instrumentation d’un système électrochimique avec jonction obtenue par scellage thermique d’un polymère thermofusible à une bande électriquement conductrice supportée par le séparateur électriquement isolant du système. |
FR3129530B1 (fr) | 2021-11-23 | 2024-02-02 | Commissariat Energie Atomique | Enveloppe pour module de batterie ou pack-batterie, à membrane étanche destinée à permettre une circulation d’un fluide caloporteur en son sein pour le refroidissement optimal des accumulateurs du module ou du pack, en laissant dégagées les bornes de sortie. |
FR3129528B1 (fr) | 2021-11-25 | 2023-11-10 | Commissariat Energie Atomique | Procédé de réalisation d’une batterie tout-solide à partir d’un accumulateur électrochimique métal-ion à électrolyte liquide, à des fins d’essais abusifs thermiques. |
FR3129781B1 (fr) | 2021-11-26 | 2024-02-09 | Commissariat Energie Atomique | Module de batterie à empilement d’accumulateurs à emballage souple logés dans des supports fixés entre eux par liaison par complémentarité de formes et supportant des busbars imbriqués les uns dans les autres lors de la liaison. |
FR3129783B1 (fr) | 2021-11-26 | 2023-11-17 | Commissariat Energie Atomique | Module de batterie ou pack-batterie à empilement d’accumulateurs intégrant des liens souples avec formes complémentaires de blocage en tant que moyens de compression, Procédé de réalisation d’un module ou pack-batterie associé. |
FR3129784B1 (fr) | 2021-11-26 | 2024-02-02 | Commissariat Energie Atomique | Module de batterie à empilement d’accumulateurs à emballage souple logés dans des supports empilés et fixés entre eux, comprenant des busbars liés par complémentarités de formes avec des cosses reliés aux bornes des accumulateurs. |
FR3129782B1 (fr) | 2021-11-26 | 2023-11-17 | Commissariat Energie Atomique | Module de batterie ou pack-batterie à empilement d’accumulateurs à boitier intégrant des liens souples avec formes complémentaires de blocage en tant que moyens de maintien mécanique du boitier, Procédé de réalisation d’un module ou pack-batterie associé. |
FR3133485A1 (fr) | 2022-03-09 | 2023-09-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Collecteur de courant poreux avec jonction obtenue par scellage thermique d’un polymère thermofusible à une languette de connexion électrique dense pour système électrochimique étanche. |
FR3134926B1 (fr) | 2022-04-26 | 2024-04-12 | Commissariat Energie Atomique | Pack-batterie à modules d’accumulateurs logés individuellement dans des enveloppes étanches, à tenue mécanique en cas de surpression et empilées les unes sur les autres en connectant électriquement les modules entre eux. |
FR3141801B1 (fr) | 2022-11-04 | 2024-11-08 | Commissariat Energie Atomique | Accumulateur électrochimique à électrolyte solide présentant des zones à propriétés de stabilité thermique différenciées. |
FR3141802A1 (fr) | 2022-11-04 | 2024-05-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Accumulateur électrochimique dont le séparateur imprégné d’électrolyte liquide présente des zones à propriétés de stabilité thermique différenciées. |
FR3143216B1 (fr) | 2022-12-07 | 2024-11-08 | Commissariat Energie Atomique | Module de batterie à empilement d’accumulateurs à emballage souple logés dans des supports fixés entre eux par liaison par complémentarité de formes et supportant des busbars à lignes de rupture à fonction d’interrupteur de courant (CID). |
FR3143214B1 (fr) | 2022-12-08 | 2024-11-08 | Commissariat Energie Atomique | Module de batterie ou pack-batterie, comprenant une matrice à accumulateurs de format cylindrique, logée et bridée dans un boitier périphérique. |
FR3143215A1 (fr) | 2022-12-13 | 2024-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Module de batterie ou pack-batterie, comprenant une pluralité d’accumulateurs de format cylindrique agencés en parallèles les uns aux autres, assemblés par emmanchement dans un flasque de bridage supportant les busbars des bornes de sortie des accumulateurs. |
EP4443529A1 (en) | 2023-04-07 | 2024-10-09 | Institut Mines-Télécom | A metal-ion electrochemical accumulator, with electrodes with electrically conductive substrates forming the collectors which are wound in a helix around each other, separated by a separator also wound in a helix and encapsulated in a sheath |
EP4456234A1 (en) | 2023-04-27 | 2024-10-30 | Institut Mines Telecom | A na-ion bioresorbable and flexible electrochemical micro-battery |
FR3149138A1 (fr) | 2023-05-26 | 2024-11-29 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Module de batterie ou pack-batterie à empilement d’accumulateurs à boitier intégrant une cloison amovible coulissante en tant que moyen de maintien mécanique du boitier, Procédé de réalisation d’un module ou pack-batterie associé |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386433A (en) | 1976-12-24 | 1978-07-29 | Citizen Watch Co Ltd | Structure of small size battery |
JPS5788665A (en) | 1980-11-21 | 1982-06-02 | Citizen Watch Co Ltd | Small sealed battery |
US4419420A (en) | 1980-03-08 | 1983-12-06 | Ishizaki Press Kogyo Co., Ltd. | Battery container and lid |
JPS5933661U (ja) * | 1982-08-27 | 1984-03-01 | 日本電気ホームエレクトロニクス株式会社 | 電池 |
JPH06260172A (ja) * | 1993-03-02 | 1994-09-16 | Japan Storage Battery Co Ltd | 角形リチウム電池 |
JPH10255733A (ja) | 1997-03-07 | 1998-09-25 | Toshiba Battery Co Ltd | 小型電池 |
JP2000164259A (ja) * | 1998-11-30 | 2000-06-16 | Matsushita Electric Ind Co Ltd | 扁平形非水電解液電池とその製造法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1484926A (en) * | 1924-02-26 | Dry cell | ||
JPS5933661A (ja) | 1982-08-20 | 1984-02-23 | Fujitsu Ltd | 物品搬送装置 |
JP3863351B2 (ja) * | 2000-02-18 | 2006-12-27 | 松下電器産業株式会社 | 角形電池および角形電池の安全機構の製造方法 |
KR100452230B1 (ko) * | 2000-10-13 | 2004-10-12 | 마츠시타 덴끼 산교 가부시키가이샤 | 편평 각형 전지 |
-
2001
- 2001-10-04 KR KR10-2002-7007489A patent/KR100452230B1/ko not_active Expired - Fee Related
- 2001-10-04 WO PCT/JP2001/008772 patent/WO2002033767A1/ja active IP Right Grant
- 2001-10-04 CN CNB018030661A patent/CN1295799C/zh not_active Expired - Fee Related
- 2001-10-04 US US10/149,731 patent/US6893773B2/en not_active Expired - Fee Related
- 2001-10-04 CN CNB2005100081620A patent/CN1286192C/zh not_active Expired - Fee Related
- 2001-10-04 EP EP01972697A patent/EP1282176A4/en not_active Withdrawn
- 2001-10-12 TW TW090125202A patent/TW522595B/zh not_active IP Right Cessation
-
2004
- 2004-09-08 US US10/936,305 patent/US7348098B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386433A (en) | 1976-12-24 | 1978-07-29 | Citizen Watch Co Ltd | Structure of small size battery |
US4419420A (en) | 1980-03-08 | 1983-12-06 | Ishizaki Press Kogyo Co., Ltd. | Battery container and lid |
JPS5788665A (en) | 1980-11-21 | 1982-06-02 | Citizen Watch Co Ltd | Small sealed battery |
JPS5933661U (ja) * | 1982-08-27 | 1984-03-01 | 日本電気ホームエレクトロニクス株式会社 | 電池 |
JPH06260172A (ja) * | 1993-03-02 | 1994-09-16 | Japan Storage Battery Co Ltd | 角形リチウム電池 |
JPH10255733A (ja) | 1997-03-07 | 1998-09-25 | Toshiba Battery Co Ltd | 小型電池 |
JP2000164259A (ja) * | 1998-11-30 | 2000-06-16 | Matsushita Electric Ind Co Ltd | 扁平形非水電解液電池とその製造法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1282176A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111640884A (zh) * | 2020-06-05 | 2020-09-08 | 珠海冠宇电池股份有限公司 | 一种壳体结构、电池结构和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN1295799C (zh) | 2007-01-17 |
US20020182494A1 (en) | 2002-12-05 |
EP1282176A4 (en) | 2009-02-25 |
US6893773B2 (en) | 2005-05-17 |
US20050031952A1 (en) | 2005-02-10 |
KR100452230B1 (ko) | 2004-10-12 |
CN1393038A (zh) | 2003-01-22 |
CN1286192C (zh) | 2006-11-22 |
EP1282176A1 (en) | 2003-02-05 |
KR20020062753A (ko) | 2002-07-29 |
US7348098B2 (en) | 2008-03-25 |
CN1645644A (zh) | 2005-07-27 |
TW522595B (en) | 2003-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002033767A1 (en) | Flat square battery | |
JP4037046B2 (ja) | 偏平角形電池 | |
CN214477667U (zh) | 电池壳及电池 | |
EP1705732B1 (en) | Lithium secondary battery | |
US6143442A (en) | Prismatic battery | |
CN100474656C (zh) | 电池 | |
JP7493010B2 (ja) | 電池用電池缶 | |
KR100300405B1 (ko) | 이차전지의캡어셈블리 | |
JP4020580B2 (ja) | 偏平角形電池 | |
JP2001250517A (ja) | 電 池 | |
US7455930B2 (en) | Battery and method for manufacturing the same | |
JP2002134096A (ja) | コイン形電池 | |
WO1999035699A1 (fr) | Batterie sans entretien et son procede de production | |
JPH0696748A (ja) | 長円形密閉電池 | |
JP2003051293A (ja) | コイン形電池 | |
CN100440581C (zh) | 电池及其制造方法 | |
JP2002117900A (ja) | コイン形電池 | |
WO2001047046A1 (en) | A thin battery | |
US20240429571A1 (en) | Secondary battery | |
CN220821665U (zh) | 一种电池 | |
KR20030053601A (ko) | 이차전지 | |
JPH0745883Y2 (ja) | 角形密閉式電池 | |
JP2003045381A (ja) | コイン形電池 | |
JP2002093383A (ja) | 電池と電池の製造方法 | |
JPH04106864A (ja) | 角型密閉2次電池の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018030661 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027007489 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10149731 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001972697 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027007489 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 2001972697 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020027007489 Country of ref document: KR |