+

WO2002032813A1 - Procede et installation de dessalement eclair d'eau - Google Patents

Procede et installation de dessalement eclair d'eau Download PDF

Info

Publication number
WO2002032813A1
WO2002032813A1 PCT/GB2001/003234 GB0103234W WO0232813A1 WO 2002032813 A1 WO2002032813 A1 WO 2002032813A1 GB 0103234 W GB0103234 W GB 0103234W WO 0232813 A1 WO0232813 A1 WO 0232813A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
desalination
feed stream
supplying
zone
Prior art date
Application number
PCT/GB2001/003234
Other languages
English (en)
Inventor
Paul Michael Willson
George Andrew Atkinson
Original Assignee
Pb Power Ltd.
Pbc International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0025833A external-priority patent/GB0025833D0/en
Priority claimed from GB0107379A external-priority patent/GB0107379D0/en
Priority claimed from GB0112578A external-priority patent/GB0112578D0/en
Application filed by Pb Power Ltd., Pbc International, Inc. filed Critical Pb Power Ltd.
Priority to EA200300493A priority Critical patent/EA004968B1/ru
Priority to DZ013474A priority patent/DZ3474A1/fr
Priority to KR1020027010134A priority patent/KR100783686B1/ko
Priority to AU2001270867A priority patent/AU2001270867A1/en
Publication of WO2002032813A1 publication Critical patent/WO2002032813A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a process and plant for the desalination of salt
  • water particularly sea water.
  • Water may be
  • water supply is sequentially fed to a number of flashing zones and a substantially
  • one desalination zone evaporating at least a portion of the heated feed stream in the desalination zone to provide an evaporate comprising water vapor and condensing
  • the process of the invention improves the thermal efficiency of the
  • the thermal recycle can be any thermo recycle.
  • the feed stream is provided by the depleted feed stream rather than the product stream.
  • one desalination zone evaporating at least a portion of the heated feed stream in the
  • the thermal recycle stream may be taken from the
  • supplying a second heating stream optionally comprising at least a
  • step j if more than one desalination zone is present the desalination zone
  • the desalination process of the invention represents a significant
  • a plurality of desalination zones are provided, arranged in series so that
  • the heated salt water can flash down progressively through a series of desalination
  • the condensed on the condenser and the condensate is collected.
  • the condensate is collected.
  • condenser comprises at least one pipe carrying a coolant and the collecting means
  • the product water trough links each desalination zone and the product water cascades
  • the first heating stream supplied to the brine heater comprises
  • steam This may be supplied from associated steam-raising plant.
  • the process of the invention may utilise a single heat exchanger to heat the
  • thermal recycle stream Alternatively, a plurality of heat exchangers may be used.
  • the plurality of the heat exchangers may be connected in series, or in
  • the coolant for the condenser tubes is unheated feed stream.
  • feed stream itself may comprise make-up feed from, say, sea water, and a recycle
  • zone section are cooled by recirculating and/or make-up feed stream which flows
  • recirculated feed stream is thus progressively preheated prior to the brine heater.
  • control valve preferably maintains the
  • MSF unit product water in case of a brine heater tube leak MSF unit product water in case of a brine heater tube leak.
  • MSF unit the heat rejection section
  • Each stage of flashing of the feed stream may result in some non-condensible
  • gases being released may be extracted by a system of vents and vacuum
  • the product water and the second heating stream have a very low level of dissolved
  • the design of the MSF desalination units includes many alternative
  • make-up feed stream the so called long tube design, or may it may be perpendicular
  • the processes of the invention may include the use of up to about 20 or more desalination zones, with the condensers of earlier zones in the series
  • the heat exchange tubes may be of any suitable material, such as cupro-
  • the heat transfer surface is preferably kept as free as
  • each stage and the number of stages determines the amount of steam required per unit
  • the first heating stream may comprise steam
  • the process of invention therefore provides a process for improving the
  • the process of the invention provides a power and desalination
  • the invention reduces the steam demand of the MSF desalination unit
  • the thermal recycle stream is product water, can be constructed of cheaper, easier to
  • the invention introduces a thermal recycle stream which does not affect operation of the associated MSF unit except in
  • the heat exchanger may be located externally to the brine heater with any combination
  • recovered first heating stream (which may be condensate ) draining or being pumped
  • heating stream may comprise hot water from other sources or from elsewhere in the
  • the heat exchanger may be integrated with the brine heater
  • the ratio of these flows is preferably in the range of from about 0.5 to about 1.15, more preferably in the range
  • stage of abstraction of the stream from the zone determines the lowest temperature
  • MSF unit affects the effectiveness of the heat transfer to the desalination zone.
  • the heat exchanger ensures this segregation under normal conditions. The segregation can be maintained even if there is a leakage in the heat
  • This device may be
  • control valve and associated measuring control means may be a weir in a vessel
  • Figure 1 shows a flow diagram of a conventional multi-stage flash
  • Figure 2 shows a first cross section of a conventional cross-flow MSF unit
  • Figure 2a shows a second cross-section through a-a of Figure 2;
  • Figure 3 shows a flow diagram of a multi-stage flash desalination plant
  • Figure 4 shows a cross-section illustrating one arrangement for extraction of
  • FIG. 5 illustrates one external arrangement for the heat exchanger
  • FIG. 6 illustrates an alternative heat exchanger arrangement within the brine
  • Figure 8 shows a flow diagram of a multi-stage flash desalination plant
  • FIG. 9 illustrates alternative connections for the abstraction of depleted feed
  • Figure 10 shows the external arrangement of the heat exchanger when feed
  • Figure 11 illustrates the arrangement for return of hot recirculated feed sfream
  • the product water is collected in the product water trough 6 and flashes
  • Non-condensible gases are extracted and cascaded down the stages and extracted by
  • condensing sections of the heat rejection stages are cooled by sea water 11.
  • the warm sea water return is used to provide make up for the cycle via the deaerator 12
  • Figures 2 and 2a illustrate the physical arrangement of a desalination stage of
  • the feed stream enters the stage via a weir 14.
  • feed stream are extracted via the vent line 19 to the ejector system.
  • FIG 3 shows how the MSF cycle is modified by the invention when
  • heater 1' flows through heat exchanger 147 before being returned to the steam raising
  • a partial recirculation of the product water is drawn from the product water
  • valve 150 or weir device 151, where alternative piping connections are shown with
  • FIG. 4 illustrates the connection to the product water channel 18 by means
  • Figure 5 shows the arrangement of the brine heater 126 elevated above ground level and adjacent to the desalination section of the MSF unit 120.
  • FIG. 6 illustrates the arrangement of the brine heater 126 enclosing the heat
  • the tube bundle is within the outer shroud tube which guides the
  • thermal recycle stream is pumped into the heat exchanger at the second heating
  • FIG. 7 shows the connection returning the hot water product to the feed
  • product water is delivered by the external connecting pipe 154 to a distribution box
  • Figure 8 shows how the MSF cycle is modified by the invention when feed stream is recirculated.
  • stream from the desalination stage 3' is drawn either from the feed stream channel of
  • FIG. 9 shows the alternative arrangements to abstract feed stream from the
  • Feed stream is extracted from the feed stream
  • the feed stream is extracted from the main
  • FIG. 10 illustrates the arrangement of the brine heater 29 elevated above
  • tubed heat exchanger 31 is located at ground level adjacent to the brine heater and
  • the cool recirculated feed stream is piped to the tube side of the first pass of the heat exchanger adjacent to the condensate outlet 33 and the
  • outlet of the final pass of the tube side of the heat exchanger 34 is piped to the return
  • connection to the feed stream channel
  • FIG 11 shows the return connection for the feed stream to the feed stream
  • a sparge pipe or distributor box 36 returns the hot feed stream to the
  • Example 1 is of a process in accordance with the invention in
  • a sea water feed stream is supplied in line 100 at a rate
  • ejector/condenser 102 is supplied in line 103 with a mixture of water vapor and non-
  • condensible materials are discharged from air ejector/condensor 102 in line 106.
  • the flow rate of sea water in line 101 is 250 kg/s.
  • the remaining sea water from line 100 (at a flow rate of 6388.9 kg/s)
  • inline 107 is heated through heat rejection stage 105 to atemperature of42.68°C and
  • the remaining sea water in line 107 is discharged from the plant in line 109.
  • De-aerated make-up sea water passes on from de-aerator 110 in line 114 and
  • stream in line 117 flows at a rate of 6194.4 kg/s and has atemperature of 42.057°C
  • the feed stream in line 117 passes on as coolant to the condenser tubes 118
  • Desalination zone 119 is the last in a series of
  • the second desalination zone in the series is shown as 121 and split lines 122
  • the pre-heated feed stream passes on in line 125 at a
  • Brine heater 126 is supplied in line
  • controller 129 at a temperature of 110 °C and a pressure of 2 bar.
  • the heated feed stream in line 128 passes on to first desalination zone 120.
  • First desalination zone 120 comprises a bottom zone 130 for receiving the
  • heat rejection stage 105 may comprise a series
  • sea water supplied in line 107 is used as the
  • thermal recycle stream is maintained at pressure by a pressure sustaining valve 150 in this example.
  • a weir device 151 may be used to sustain the pressure of the heated thermal recycle stream.
  • Heat exchanger 147 is supplied with a heating stream from the bottom of brine heater 126 in lines 152 and 153. Alternatively, or as well, a heating stream from an external source (for example associated steam raising plant) may be supplied in the line 154. Steam or hot water is removed from the system in line 155.
  • an external source for example associated steam raising plant
  • Table 1 shows a number of parameters of this Example 1 in each of 20 stages of a process according to the invention.
  • the 20 stages comprise the brine heater, 16 desalination zones and 3 heat rejection stages. The measured
  • A is the feed stream temperature (in °C) at the inlet to each stage
  • B is the feed stream temperature (in °C) at the outlet of each stage
  • C is the feed stream flow though each stage (kg/s)
  • D is the flow rate (in kg/s) of the flashing brine flowing out of each stage
  • P is the pressure (in bar absolute) in each stage
  • m is the production rate (kg/s) of product water in each stage
  • M is the additive production rate (kg/s) in total of product water at the end of
  • a sea water feed stream is supplied in line 100' at a rate
  • ejector/condenser 102' is supplied in line 103' with a mixture of water vapor and non-
  • condensible materials are discharged from air ejector/condensor 102' in line 106'.
  • the flow rate of sea water in line 101' is 250 kg/s.
  • De-aerated make-up sea water passes on from de-aerator 110' in line 114' and is pumped through pump 115' into line 116' and is joined in line 117' by a recycle
  • stream in line 117' flows at a rate of 6194.4 kg/s and has a temperature of42.057°C
  • Desalination zone 119' is the last in a series of
  • the second desalination zone in the series is shown as 121' and split lines 122'
  • the pre-heated feed stream passes on in line 125' at a
  • Brine heater 126' is supplied in line
  • controller 129' at a temperature of 110°C and a pressure of 2 bar.
  • First desalination zone 120' comprises a bottom zone 130' for receiving the
  • the flashing brine passes in line 135' to heat rejection stage 105'.
  • the product water passes in line 136' to the product water trough 137' of heat rejection stage 105'.
  • sea water supplied in line 107' is used as the
  • line 146' passes through line 146a' into the tubes of heat exchanger 147' and passes
  • recycle stream is maintained at pressure by a pressure sustaining valve 150' in this
  • Heat exchanger 147' is supplied with a heating stream from the bottom of
  • brine heater 126' in lines 152' and 153'.
  • a heating stream Alternatively, or as well, a heating stream
  • stages comprise the brine heater, 16 desalination zones and 3 heat rejection stages.
  • the measured parameters are as follows:
  • A is the feed stream temperature (in °C) at the inlet to each stage
  • B is the feed stream temperature (in °C) at the outlet of each stage
  • C is the feed stream flow though each stage (kg/s)
  • D is the flow rate (in kg/s) of the flashing brine flowing out of each stage
  • P is the pressure (in bar absolute) in each stage
  • m is the production rate (kg/s) of product water in each stage
  • M is the additive production rate (kg/s) in total of product water at the end of
  • Example 3 was conducted similarly to Example 2. However, with reference to Figure
  • the thermal recycle sfream is taken in line 144" (shown as a dotted line in Figure 8
  • Table 3 shows a number of parameters of this Example 3 in each of 20 stages
  • the 20 stages comprise the
  • A is the feed sfream temperature (in °C) at the inlet to each stage
  • B is the feed stream temperature (in °C) at the outlet of each stage
  • C is the feed stream flow though each stage (kg/s)
  • D is the flow rate (in kg/s) of the flashing brine flowing out of each stage
  • P is the pressure (in bar absolute) in each stage
  • m is the production rate (kg/s) of product water in each stage
  • M is the additive production rate (kg/s) in total of product water at the end of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

La présente invention concerne, d'une part, un procédé de dessalement d'eau salée et, d'autre part, une installation permettant de mettre en oeuvre ce procédé. Le procédé décrit dans cette invention consiste à utiliser un dispositif de chauffage de la saumure; au moins une zone de dessalement comprenant un condenseur et un moyen permettant de recueillir le condensat provenant du condenseur; un échangeur de chaleur. Ce procédé consiste également à fournir au condenseur un flux d'alimentation contenant de l'eau salée tel un liquide de refroidissement de manière à préchauffer le flux d'alimentation; à fournir le flux d'alimentation ainsi préchauffé au dispositif de chauffage de la saumure; à fournir un premier flux de chauffage contenant de la vapeur d'eau au dispositif de chauffage de la saumure de manière à réchauffer un peu plus le flux d'alimentation préchauffé; à acheminer le flux d'alimentation chauffé depuis le dispositif de chauffage de la saumure vers la ou les zone(s) de dessalement pour obtenir une évaporite contenant de la vapeur d'eau, puis à condenser l'évaporite dans la zone de dessalement.
PCT/GB2001/003234 2000-10-21 2001-07-18 Procede et installation de dessalement eclair d'eau WO2002032813A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EA200300493A EA004968B1 (ru) 2000-10-21 2001-07-18 Способ и устройство для опреснения воды путем многоступенчатого мгновенного испарения
DZ013474A DZ3474A1 (fr) 2000-10-21 2001-07-18 Procede et materiel pour le dessalement de l eau base sur la methode de plateau de fractionnement.
KR1020027010134A KR100783686B1 (ko) 2000-10-21 2001-07-18 다단계 플래시 담수화 방법 및 플랜트
AU2001270867A AU2001270867A1 (en) 2000-10-21 2001-07-18 Process and plant for multi-stage flash desalination of water

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB0025833A GB0025833D0 (en) 2000-10-21 2000-10-21 Process and apparatus
GB0025833.5 2000-10-21
GB0107379.0 2001-03-23
GB0107379A GB0107379D0 (en) 2001-03-23 2001-03-23 Process and apparatus
GB0112578.0 2001-05-24
GB0112578A GB0112578D0 (en) 2001-05-24 2001-05-24 Process and apparatus

Publications (1)

Publication Number Publication Date
WO2002032813A1 true WO2002032813A1 (fr) 2002-04-25

Family

ID=27255947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/003234 WO2002032813A1 (fr) 2000-10-21 2001-07-18 Procede et installation de dessalement eclair d'eau

Country Status (9)

Country Link
KR (1) KR100783686B1 (fr)
AU (1) AU2001270867A1 (fr)
DZ (1) DZ3474A1 (fr)
EA (1) EA004968B1 (fr)
EG (1) EG22839A (fr)
GB (1) GB2369783B (fr)
JO (1) JO2223B1 (fr)
MA (1) MA25954A1 (fr)
WO (1) WO2002032813A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413321A (en) * 2004-04-23 2005-10-26 Parsons Brinckerhoff Ltd Process and plant for multi-stage flash desalination of water
WO2006029464A1 (fr) * 2004-09-14 2006-03-23 Aqua Dyne, Inc. Systeme de distillation de l'eau
WO2007030851A1 (fr) * 2005-09-15 2007-03-22 Martin Hadlauer Apport de chaleur solaire de chauffage destine au dessalage de l'eau de mer
WO2009087234A1 (fr) 2008-01-11 2009-07-16 Babcock Borsig Service Gmbh Procédé et usine de dessalement de l'eau salée au moyen d'unités de dessalement par détentes sucessives pourvues d'un système amélioré de recyclage de la saumure
WO2009087235A1 (fr) 2008-01-11 2009-07-16 Babcock Borsig Service Gmbh Procédé et usine de dessalement de l'eau de mer utilisant des unités de dessalement par détentes successives pourvues d'un système de recyclage de la vapeur
AU2005284685B2 (en) * 2004-09-14 2009-12-10 Eestech, Inc. Water distillation system
WO2017147113A1 (fr) * 2016-02-22 2017-08-31 Gradiant Corporation Systèmes de dessalement hybrides et procédés associés
US9969638B2 (en) 2013-08-05 2018-05-15 Gradiant Corporation Water treatment systems and associated methods
US9981860B2 (en) 2015-05-21 2018-05-29 Gradiant Corporation Production of ultra-high-density brines using transiently-operated desalination systems
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10179296B2 (en) 2015-05-21 2019-01-15 Gradiant Corporation Transiently-operated desalination systems and associated methods
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
US10308537B2 (en) 2013-09-23 2019-06-04 Gradiant Corporation Desalination systems and associated methods
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery
US12023608B2 (en) 2016-01-22 2024-07-02 Gradiant Corporation Hybrid desalination systems and associated methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005002873A5 (de) * 2004-09-17 2007-08-30 Peter Szynalski Meerwasserentsalzungsanlage
KR100774546B1 (ko) 2006-11-13 2007-11-08 두산중공업 주식회사 배열회수 증기발생기의 방출수를 이용한 해수 담수화기
DE102012201869B4 (de) * 2012-02-08 2021-07-29 GD German Desalination GmbH Mehrstufige Röhrenwärmetauschervorrichtung, insbesondere zur Entsalzung von Meerwasser
JP5924584B2 (ja) * 2012-07-18 2016-05-25 三浦工業株式会社 造水装置
CN104944664B (zh) * 2015-06-02 2019-06-04 张亮 逆流多效蒸发耦合浸管闪蒸复合蒸馏海水淡化装置及方法
TWI757508B (zh) * 2017-08-02 2022-03-11 日商笹倉機械工程股份有限公司 造水裝置
JP6982849B2 (ja) * 2017-08-02 2021-12-17 株式会社ササクラ 造水装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
JPS58112082A (ja) * 1981-12-24 1983-07-04 Sasakura Eng Co Ltd 蒸発法
JPS60172386A (ja) * 1984-02-20 1985-09-05 Ishikawajima Harima Heavy Ind Co Ltd Msf(多段蒸発)−vte(竪型造水)複合海水淡水化装置
US5133837A (en) * 1990-09-10 1992-07-28 Kamyr, Inc. Dimpled plate multi-stage flash evaporator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707442A (en) * 1970-02-27 1972-12-26 Hitachi Ltd Multistaged flash evaporator and a method of operating the same with sponge ball descaling treatment
DE3219387A1 (de) * 1982-05-24 1983-12-01 D.V.T. Büro für Anwendung Deutscher Verfahrenstechnik H. Morsy, 4000 Düsseldorf Anordnung zum entsalzen von meerwasser nach dem multieffekt-verdampfungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
JPS58112082A (ja) * 1981-12-24 1983-07-04 Sasakura Eng Co Ltd 蒸発法
JPS60172386A (ja) * 1984-02-20 1985-09-05 Ishikawajima Harima Heavy Ind Co Ltd Msf(多段蒸発)−vte(竪型造水)複合海水淡水化装置
US5133837A (en) * 1990-09-10 1992-07-28 Kamyr, Inc. Dimpled plate multi-stage flash evaporator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 213 (C - 187) 20 September 1983 (1983-09-20) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 017 (C - 324) 23 January 1986 (1986-01-23) *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413321B (en) * 2004-04-23 2008-11-19 Parsons Brinckerhoff Ltd Process and plant for multi-stage flash desalination of water
GB2413321A (en) * 2004-04-23 2005-10-26 Parsons Brinckerhoff Ltd Process and plant for multi-stage flash desalination of water
US8021519B2 (en) 2004-09-14 2011-09-20 Gregory Mark Paxton Water distillation system
AU2005284685B2 (en) * 2004-09-14 2009-12-10 Eestech, Inc. Water distillation system
WO2006029464A1 (fr) * 2004-09-14 2006-03-23 Aqua Dyne, Inc. Systeme de distillation de l'eau
WO2007030851A1 (fr) * 2005-09-15 2007-03-22 Martin Hadlauer Apport de chaleur solaire de chauffage destine au dessalage de l'eau de mer
WO2009087234A1 (fr) 2008-01-11 2009-07-16 Babcock Borsig Service Gmbh Procédé et usine de dessalement de l'eau salée au moyen d'unités de dessalement par détentes sucessives pourvues d'un système amélioré de recyclage de la saumure
WO2009087235A1 (fr) 2008-01-11 2009-07-16 Babcock Borsig Service Gmbh Procédé et usine de dessalement de l'eau de mer utilisant des unités de dessalement par détentes successives pourvues d'un système de recyclage de la vapeur
DE102008004106A1 (de) 2008-01-11 2009-09-10 Babcock Borsig Service Gmbh Verfahren und Anlage zur Entsalzung von Salzwasser unter Verwendung von MSF-Entsalzungseinheiten mit einem verbesserten Soleumlaufsystem
DE102008004106A9 (de) 2008-01-11 2009-12-17 Babcock Borsig Service Gmbh Verfahren und Anlage zur Entsalzung von Salzwasser unter Verwendung von MSF-Entsalzungseinheiten mit einem verbesserten Soleumlaufsystem
US9969638B2 (en) 2013-08-05 2018-05-15 Gradiant Corporation Water treatment systems and associated methods
US10308537B2 (en) 2013-09-23 2019-06-04 Gradiant Corporation Desalination systems and associated methods
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10179296B2 (en) 2015-05-21 2019-01-15 Gradiant Corporation Transiently-operated desalination systems and associated methods
US9981860B2 (en) 2015-05-21 2018-05-29 Gradiant Corporation Production of ultra-high-density brines using transiently-operated desalination systems
US11084736B2 (en) 2015-05-21 2021-08-10 Gradiant Corporation Production of ultra-high-density brines using transiently-operated desalination systems
US10479701B2 (en) 2015-05-21 2019-11-19 Gradiant Corporation Production of ultra-high-density brines using transiently-operated desalination systems
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
US11400416B2 (en) 2015-07-29 2022-08-02 Gradiant Corporation Osmotic desalination methods and associated systems
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US12023608B2 (en) 2016-01-22 2024-07-02 Gradiant Corporation Hybrid desalination systems and associated methods
WO2017147113A1 (fr) * 2016-02-22 2017-08-31 Gradiant Corporation Systèmes de dessalement hybrides et procédés associés
US10689264B2 (en) 2016-02-22 2020-06-23 Gradiant Corporation Hybrid desalination systems and associated methods
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery

Also Published As

Publication number Publication date
EA004968B1 (ru) 2004-10-28
GB2369783A (en) 2002-06-12
DZ3474A1 (fr) 2002-04-25
EA200300493A1 (ru) 2003-10-30
MA25954A1 (fr) 2003-12-31
KR20030041854A (ko) 2003-05-27
AU2001270867A1 (en) 2002-04-29
JO2223B1 (en) 2004-10-07
GB0117455D0 (en) 2001-09-12
GB2369783B (en) 2003-07-09
KR100783686B1 (ko) 2007-12-10
EG22839A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
WO2002032813A1 (fr) Procede et installation de dessalement eclair d'eau
US10850210B2 (en) Production water desalinization via a reciprocal heat transfer and recovery
US5346592A (en) Combined water purification and power of generating plant
US9393502B1 (en) Desalination system
US20020166758A1 (en) Evaporation process for producing high-quality drinking water and high-grade brine from any-grade salt water
US20120067046A1 (en) Power plant with co2 capture and water treatment plant
US3399118A (en) Multistage flash distillation apparatus
CN112978829B (zh) 一种低温多效蒸馏海水淡化系统及其工艺方法
CN201587871U (zh) 多级真空蒸馏海水淡化装置
JP4139597B2 (ja) 淡水化装置
CN102079552B (zh) 采用降膜式冷凝器的低温多效蒸馏海水淡化系统
CN107899261A (zh) 标准化低温蒸发设备
US3468761A (en) Staged vapor-liquid operated ejector arrangement for multi-stage evaporator system
US20080017498A1 (en) Seawater Desalination Plant
US3824155A (en) Multiple effect evaporating apparatus
Standiford Evaporation
CN103739026A (zh) 一种热水为热源方式的小型海水淡化装置
GB2413321A (en) Process and plant for multi-stage flash desalination of water
WO2013166882A1 (fr) Système de dessalement d'eau de mer par l'utilisation des rejets thermiques d'une centrale électrique
WO2020012273A1 (fr) Système et procédé d'inversion de flash à étages multiples (msf)
JP2001047032A (ja) 竪型多段フラッシュ造水装置
US3420747A (en) Multistage multieffect distillation system
CN1791556B (zh) 水处理的方法和设备
Cohen et al. Power plant residual heat for seawater desalination
JP4261438B2 (ja) 発電及び海水淡水化システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020027010134

Country of ref document: KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: DZP2003000078

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 200300493

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020027010134

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载