+

WO2002032002A1 - Module de commutation composite haute frequence - Google Patents

Module de commutation composite haute frequence Download PDF

Info

Publication number
WO2002032002A1
WO2002032002A1 PCT/JP2001/008793 JP0108793W WO0232002A1 WO 2002032002 A1 WO2002032002 A1 WO 2002032002A1 JP 0108793 W JP0108793 W JP 0108793W WO 0232002 A1 WO0232002 A1 WO 0232002A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency
acoustic wave
surface acoustic
laminate
Prior art date
Application number
PCT/JP2001/008793
Other languages
English (en)
French (fr)
Inventor
Tetsuya Tsurunari
Yuki Sato
Yoshiharu Omori
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/148,699 priority Critical patent/US6856213B2/en
Priority to EP01974707A priority patent/EP1235357A4/en
Publication of WO2002032002A1 publication Critical patent/WO2002032002A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • H03H7/465Duplexers having variable circuit topology, e.g. including switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02952Means for compensation or elimination of undesirable effects of parasitic capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2250/00Indexing scheme relating to dual- or multi-band filters

Definitions

  • the present invention relates to a high-frequency composite switch module used for a mobile communication device such as a mobile phone.
  • Figure 11 shows the conventional circuit block for these high-frequency components.
  • Figure 11 shows an antenna switch duplexer in a combined terminal of a 900 MHz band GSM system and a 1.8 GHz band DCS system for mobile phones being serviced in a mobile phone.
  • the high-frequency components include an antenna port 61, transmission ports 62 and 64, reception ports 63 and 65, control terminals 66 and 67, a demultiplexing / multiplexing circuit 68, It comprises switch circuits 69, 70 and low-pass filters 71, 72.
  • the demultiplexing / combining circuit 68 is generally formed by a combination of a low-pass filter and a high-pass filter, and distributes an input signal into a GSM band and a DCS band.
  • the switch circuits 69 and 70 switch between a transmission signal and a reception signal in each band.
  • the receiving ports are connected to bandpass filters for limiting the receiving band, for example, elastic surface wave (SAW) filters 73 and 74, respectively. Therefore, as shown in FIG. 12, on the motherboard 75 of the mobile phone, the antenna switch The mounting device 76 and the SAW filter 77 are mounted separately as individual components, and the mounting area is large.
  • SAW elastic surface wave
  • the antenna switch duplexer and the band-pass filter are separate, and lands and component spacing are required to connect them on a single mother board. Therefore, it is difficult to reduce the size of communication equipment having this duplexer. Furthermore, since the signal passes through the mother board once to connect the components, the loss of the signal is large, and the receiving sensitivity of the communication device is degraded. Also, the SAW filter used as a band-pass filter for limiting the reception band has a lower attenuation with respect to the pass band of the SAW filter due to the effect of the parasitic inductance generated between the SAW resonator connected to the ground and the ground. The frequency at the poles of the band will be lower and the attenuation there will be reduced.
  • the ground terminal of the S AW filter is connected to the ground terminal via the via in the laminated body and the routing line. For this reason, the lower attenuation of the S AW filter is degraded by the influence of the parasitic inductance due to the routing line. Disclosure of the invention
  • the high-frequency composite switch module includes a branching / combining circuit, a switch circuit, a low-pass filter, and an electrode pattern forming at least a part of each of the branching / combining circuit, the switch circuit, and the low-pass filter.
  • a dielectric layer on which an electrode pattern is formed a surface acoustic wave filter mounted on the laminate and having a ground electrode corresponding to each frequency band, and a switch circuit. And a via that directly connects a ground electrode formed in the laminate and a ground terminal of the surface acoustic wave filter.
  • FIG. 1 is a circuit block diagram of a high-frequency switch module according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the module according to the embodiment.
  • FIG. 3 is an external view of the module according to the embodiment.
  • FIG. 4 is an exploded perspective view of the module according to the embodiment.
  • FIG. 5 is an exploded perspective view of another high-frequency switch module according to the embodiment.
  • FIG. 6A is an equivalent circuit diagram of a surface acoustic wave (S AW) filter according to the embodiment.
  • S AW surface acoustic wave
  • FIG. 6B is a characteristic diagram of the S AW filter according to the embodiment.
  • FIG. 7 is a plan view showing a mounting mode and terminal arrangement of the high-frequency switch module according to the embodiment.
  • FIG. 8 is a plan view showing a mounting mode and terminal arrangement of the high-frequency switch module according to the embodiment.
  • FIG. 9 shows the mounting configuration of the high-frequency switch module and the embodiment.
  • FIG. 3 is a plan view showing a terminal arrangement.
  • FIG. 10 is an internal structure diagram of the high-frequency switch module according to the embodiment.
  • FIG. 11 is a circuit block diagram of a conventional high-frequency component.
  • FIG. 12 is a board mounting diagram of a conventional high-frequency component. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a circuit block diagram of a high-frequency composite switch module according to an embodiment of the present invention.
  • the high-frequency composite switch module is a one-chip version of this circuit block.
  • This module supports the GSM band as the first frequency band and the DCS band as the second frequency band, and is used to separate dual band mobile phone antennas and GSM and DCS transmission and reception. Can be used.
  • This high-frequency composite switch module uses two transmission / reception systems with different passbands (for example, GSM band and DCS band).
  • the high-frequency composite switch module separates the input signal into a first frequency band (GSM) and a second frequency band (DCS) and combines them.
  • a switch 10 for switching the transmission signal and the reception signal of the second transmission / reception system (DCS), an LPF 13 connected to the transmission line of the switch 10 and a SAW filter 14 connected to the reception line are provided.
  • FIG. 2 shows the equivalent circuit of the high-frequency composite switch module.
  • Capacitors C1 to C3 and inductor L1 form LPF11.
  • Conden C 14, C 15 and inductors L 8, L 9 form LPF 13, capacitors C 4 to C 8, inductors L 2 to L 5 and diodes D 1, D 2 form switch 9 .
  • Capacitors C 16 to C 20, inductors L 10 to L 13 and diodes D 3 and D 4 form switch 10.
  • the capacitors C9 to C12 and the inductors L6 and L7 form a demultiplexing / multiplexing circuit 8.
  • the parallel resonance circuit of the capacitor C10 and the inductor L6 resonates almost in the second frequency band
  • the series resonance circuit of the inductor L7 and the capacitor C13 resonates almost in the first frequency band
  • the diode D2 and the capacitor C8 resonate in series at the first transmission frequency, and the phase rotation of the 7C type phase circuit of the capacitors C6, C7 and L4 causes the impedance on the receiving side as seen from the antenna to be reduced. Can be maximal. Therefore, a switch 9 for switching between transmission and reception using the diodes D1 and D2 can be formed.
  • capacitor C4 and the inductor L3 cancel the capacitance when the diode D1 is turned off in the first reception frequency band.
  • Inductor 2 is a choke inductor
  • capacitor C5 is a bypass capacitor.
  • the diode D 4 and the capacitor C 20 resonate in series at the second transmission frequency, and the phase rotation of the ⁇ -type phase circuit of the capacitors C 18, C 19 and L 12 causes the receiving side viewed from the antenna. Can be maximized. Therefore, a switch 10 for switching between transmission and reception can be formed using the diodes D3 and D4.
  • the capacitor C 16 and the inductor L 11 cancel the off-state capacitance of the diode D 3 in the second reception frequency band.
  • the capacitor L10 is a capacitor
  • the capacitor C17 is a bypass capacitor.
  • Figure 3 shows the appearance of the high-frequency composite switch module integrated into one chip.
  • a part of the demultiplexing, multiplexing, LPF and switch circuits is formed in the stack.
  • a chip component 16 such as a diode and a chip inductor and a SAW filter 15 for passing the first and second reception frequency bands are mounted on the laminate 17.
  • the laminate 17 has a dielectric having a relatively low dielectric constant ( ⁇ ⁇ ⁇ 10).
  • the inductor is formed by a meander or spiral electrode pattern, and the capacitor is formed by the counter electrode.
  • An input / output electrode and a ground electrode 18 are formed on the side surface of the laminate.
  • FIG. 4 is an exploded perspective view of the module of FIG. 3, showing a laminate 17 divided into laminates 17a to 17c.
  • the ground terminals 19 to 22 for mounting the SAW filter are connected to the ground electrodes 2 8 formed on the laminate 17 c via via holes 23 a to 26 a in the laminates 17 a and 17 b, respectively.
  • the parasitic inductance 30 between the SAW resonator 29 and the ground can be reduced. Therefore, as shown in FIG. 6B, the shift amount of the series resonance frequency of the SAW resonator 29 to the lower side is reduced, and as a result, the frequency shift of the lower attenuation pole of the SAW filter is reduced, and the attenuation is reduced. A decrease in the amount can be suppressed.
  • the ground electrode 28 formed on the laminate 17c which is the lowermost layer of the module of FIG. 4 is provided on the laminate 17d near the surface layer.
  • the vias 23 b to 26 b are shortened by the thickness of the stacked body 17 a. Therefore, the parasitic inductance can be further reduced, and the decrease in the attenuation of the SAW filter can be further suppressed. Furthermore, by connecting the ground terminal and the ground electrode with a plurality of vias per ground terminal, the parasitic inductance can be further reduced, and a decrease in the attenuation of the SAW filter can be further suppressed.
  • the S AW filter used in the high-frequency composite switch module according to the present embodiment includes at least two S AW elements respectively corresponding to a first frequency band and a second frequency band.
  • FIGS. 7 to 9 are plan views showing the mounting form and terminal arrangement of the SAW filter and the high-frequency chip component.
  • the SAW filter 31 is disposed at the center on the laminate 38.
  • the first Saw element 32 and the second Saw element 33 are arranged side by side in the longitudinal direction of the laminated body 38.
  • a portion corresponding to the first frequency band of the circuit or the filter, ie, the diodes D l and D 2 of the mounted components, the chip inductors L 2 and L 3 are provided.
  • the area corresponding to the second frequency band of the circuit / filter, ie, the diodes D 3 and D 4 of the mounted components, and the chip inductors L 10 and L 1 are provided in the region of the laminate on the side of the second SAW element 33 3. 1, the second transmitting terminal 36, the second receiving terminal 37, and the capacitors C11 to C20 formed by the electrode pattern, and the inductors L7 to L9, L12, and LI3 are provided. . This can prevent mutual interference between the circuits in the two frequency bands. Furthermore, since the coupling between the transmitting and receiving terminals can be reduced, the isolation between the terminals is improved.
  • the SAW filter 39 is arranged at the center on the laminate 46.
  • the first Saw element 40 and the second Saw element 41 are arranged side by side in the direction perpendicular to the longitudinal direction of the laminate 46.
  • the first SAW element side The transmission terminal 42 and the reception terminal 43 in the wavenumber band are formed apart from each other.
  • the transmission terminal 44 and the reception terminal 45 of the second frequency band are formed apart from each other.
  • the transmission terminal and the reception terminal may be formed with a conductor such as another terminal interposed therebetween. Further, the transmission terminal and the reception terminal may be formed near the separated ends of the laminate. As a result, the coupling between the transmitting and receiving terminals can be reduced, and the isolation improves.
  • the portion corresponding to the first frequency band of the circuit or the filter that is, the diodes D 1 and D 2 of the mounted components and the chip inductor L 2 are located in the region of the multilayer body on the first S AW element 40 side.
  • L 3 and the electrode pattern graphics formed by capacitor C 1 from C 1 0, inductor L 1, L 4 from the c laminate L 6 are provided second SAW element 4 1 side region to the circuit and fill evening
  • the parts corresponding to the second frequency band namely, the components D3 and D4 of the mounted components, the chip inductors L10 and L11, and the capacitors C11 to C20 formed by the electrode patterns, Inductors L7 to L9, L12 and L13 are provided.
  • the SAW filter 47 is arranged close to one end of the stacked body 54.
  • the first SAW element 48 and the second SAW element 49 are arranged side by side in a direction perpendicular to the longitudinal direction of the multilayer body 54.
  • a transmission terminal 50 and a reception terminal 51 of the first frequency band are formed apart from each other in a region on the side of the first SAW element 48 of the laminate.
  • the transmission terminal 52 and the reception terminal 53 of the second frequency band are formed apart from each other.
  • the transmission terminal and the reception terminal may be formed with a conductor such as another terminal interposed therebetween. Further, the transmission terminal and the reception terminal may be formed near the separated ends of the laminate. This reduces coupling between the transmitting and receiving terminals, The resolution is improved.
  • the portion corresponding to the first frequency band of the circuit filter, that is, the diodes D l and D 2 of the mounted components, and the chip inductor are provided in the region of the laminate on the first SAW element 48 side.
  • Capacitors C1 to C10 formed of L2, L3 and electrode patterns, and inductors LI, L4 to L6 are provided.
  • the area corresponding to the second frequency band of the circuit and the filter in the area on the second S AW element 47 side of the laminate, that is, the diodes D 3 and D 4 of the mounted components, the chip inductors L 10, L 11 and Capacitors C 11 to C 20 formed by electrode patterns and inductors L 7 to L 9, L 12, and L 13 are provided. With such a configuration, mutual interference between the circuits of the two frequency bands can be prevented, and the isolation is improved.
  • FIG. 10 shows a part of the internal structure of the laminated body of the high-frequency composite switch module according to the present embodiment.
  • the laminate comprises the dielectric layers 55a to 55h.
  • Capacitor C4 is formed by the capacitance between capacitor electrodes 56 and 57.
  • the capacitor terminal C 4 a closer to the ground is formed by the capacitor electrode 57 closer to the ground electrode 60 than the capacitor electrode 56.
  • the capacitor electrode 57 near the ground electrode 60 has a larger area than the electrode 56. This prevents a parasitic capacitance from being generated between the capacitor electrode 56 and the ground electrode 60, and forms a capacitor having a stable capacitance against printing misalignment and lamination misalignment in the manufacturing process.
  • Spiral electrodes 58 and 59 adjacent in the stack are shown in FIG.
  • Submit c thereby may be formed far dielectric layer from the ground electrode than the associated electrode pattern receiving an associated electrode pattern in addition stack, each of the wiring can be reduced the coupling between the transmitting and receiving circuit
  • a high-frequency composite switch module that can be shortened and has high performance can be obtained.
  • a demultiplexing / demultiplexing circuit a switch circuit, a low-pass filter, and a surface acoustic wave filter corresponding to a plurality of pass bands, which are used for mobile communication devices such as a mobile phone, are combined, It is possible to obtain a compact and high-performance high-frequency composite switch module.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

明細 : 高周波複合スィツチモジュール 技術分野
本発明は携帯電話などの移動体通信機器に用いられる高周波複合スィ ツチモジュールに関する。 背景技術
近年のデジタル携帯電話など移動体通信機器に用いる、 小型で高性能 な分波回路およびスィツチ共用器の需要がますます増大している。 これ ら高周波部品の従来の回路ブロックを図 1 1に示す。 図 1 1は、 ョ一口 ッパにおいてサービスされている携帯電話で 9 0 0 MH z帯の GSMシ ステムと 1. 8 GH z帯の DC Sシステムの複合端末におけるアンテナ スィッチ共用器を示す。
図 1 1において、 高周波部品はアンテナポート 6 1と、 送信ポート 6 2、 64と、 受信ポート 6 3、 6 5と、 制御端子 6 6、 6 7と、 分波 . 合波回路 6 8と、 スィッチ回路 6 9、 7 0と、 低域通過フィルタ 7 1、 7 2とを備える。 分波 ·合波回路 6 8は低域通過フィルタと高域通過フ ィル夕を組み合わせた回路で一般的に形成され、 入力された信号を GS M帯と D C S帯に振り分ける。 スィッチ回路 6 9、 7 0は、 それぞれの 帯域で送信信号と受信信号を切り替える。
受信ポートはそれぞれ受信帯域制限用の帯域通過フィルタ、 例えば弾 性表面波 (SAW) フィルタ 7 3、 74に接続される。 そのため、 図 1 2に示すように携帯電話のマザ一基板 7 5上では、 アンテナスィツチ共 用器 7 6と S A Wフィルタ 7 7が個別部品として別々に実装されており 実装面積が大きい。
近頃の携帯電話は、 更なる利便性の向上を目指して、 マルチバンド化 や機能の向上と並行して、 小型化への市場要求が極めて大きい。 これに 対応したアンテナ共用器の要望が高まっている。
上記の共用器では、 アンテナスィツチ共用器と帯域通過フィル夕が個 別であり、 マザ一基板上でこれらを接続するためのランドや部品間隔が 必要である。 したがつてこの共用器を有する通信機器は小型化が困難で ある。 さらに部品間を接続するために一度マザ一基板上を信号が通過す るため信号の損失が大きく、 そのため通信機器は受信感度が劣化する。 また、 受信帯域制限用の帯域通過フィルタとして用いられる S A Wフ ィルタは、 グランドに接続された S A W共振子とグランド間に発生する 寄生ィンダクタンスの影響により、 S A Wフィルタの通過帯域に対して 下側減衰帯域の極の周波数が低くなり、 そこでの減衰量が減る。 S A W フィルタを積層体で構成されたアンテナスィツチ共用器と一体化する際 に、 S AWフィルタのグランド端子が積層体中のビアと引き回し線路を 介してグランド端子に接続される。 そのため、 引き回し線路による寄生 ィンダクタンスの影響により、 S A Wフィルタの下側減衰量が劣化する。 発明の開示
携帯電話などの移動体通信機器に用いられるアンテナ共用器と弾性表 面波 (S AW) フィルタを一体化した、 通過帯域の異なる複数の送受信 信号を扱う高周波複合スィツチモジュールを提供する。 S AWフィル夕 実装時の寄生ィンダクタンスが低減し、 S A Wフィルタの下側減衰量の 特性が向上する。 その高周波複合スィツチモジュールは分波 ·合波回路と、 スィツチ回 路と、 低域通過フィル夕と、 分波 ·合波回路とスィッチ回路と低域通過 フィルタのそれぞれ少なくとも一部を形成する電極パターンと、 電極パ ターンをその上に形成する誘電体層からなる積層体と、 それぞれの周波 数帯域に対応し、 それぞれグランド電極を有する、 積層体上に実装され た弾性表面波フィルタと、 スィッチ回路の一部を形成する、 積層体上に 実装されたダイオードと、 積層体内に形成されたグランド電極と、 弾性 表面波フィルタのグランド端子とを直接接続するビアとを備える。 図面の簡単な説明
図 1は本発明の実施の形態における高周波スィツチモジュールの回路 ブロック図である。
図 2は実施の形態におけるモジュールの等価回路図である。
図 3は実施の形態におけるモジュールの外観図である。
図 4は実施の形態におけるモジュールの分解斜視図である。
図 5は実施の形態における他の高周波スィツチモジュールの分解斜視 図である。
図 6 Aは実施の形態における弹性表面波 (S A W) フィル夕の等価回 路図である。
図 6 Bは実施の形態における S A Wフィルタの特性図である。
図 7は実施の形態における高周波スィツチモジュールの実装形態およ び端子配置を示した平面図である。
図 8は実施の形態における高周波スィツチモジュールの実装形態およ ぴ端子配置を示した平面図である。
図 9は実施の形態における高周波スィツチモジュールの実装形態およ び端子配置を示した平面図である。
図 1 0は実施の形態における高周波スィツチモジュールの内部構造図 である。
図 1 1は従来の高周波部品の回路ブロック図である。
図 1 2は従来の高周波部品の基板実装図である。 発明を実施するための最良の形態
図 1に本発明の実施の形態における高周波複合スィツチモジュールの 回路ブロック図を示す。 その高周波複合スィツチモジュールはこの回路 ブロックをワンチップ化したものである。 このモジュールは、 例えば第 1の周波数帯として GSM帯、 第 2の周波数帯として D C S帯の 2つの 周波数帯に対応し、 デュアルバンド携帯電話のアンテナと GSM系と D C S系のそれぞれの送受信の振り分けに用いることができる。
この高周波複合スィツチモジュールは、 通過帯域の異なる 2つの送受 信系 (例えば GSM帯と D C S帯) を极う。 その高周波複合スィッチモ ジュールは入力信号を第 1の周波数帯 (GSM) と第 2の周波数帯 (D C S) に切り分けかつ合成する分波 · 合波回路 8と、 第 1の送受信系 (GSM帯) の送信信号と受信信号を切り替えるスィッチ 9と、 スイツ チ 9の送信ラインに接続される低域通過フィルタ (L P F) 1 1と、 受 信ラインに接続される弹性表面波 (SAW) フィルタ 1 2と、 第 2の送 受信系 (D C S) の送信信号と受信信号を切り替えるスィッチ 1 0と、 スィッチ 1 0の送信ラインに接続される L P F 1 3と、 受信ラインに接 続される SAWフィルタ 1 4とを備える。
高周波複合スィッチモジュールの等価回路を図 2に示す。 コンデンサ C 1から C 3およびインダクタ L 1は L P F 1 1を形成する。 コンデン サ C 1 4、 C 1 5およびインダク夕 L 8, L 9は L P F 1 3を形成する, コンデンサ C 4から C 8、 インダクタ L 2から L 5およびダイオード D 1, D 2はスィッチ 9を形成する。 コンデンサ C 1 6から C 2 0、 イン ダクタ L 1 0から L 1 3およびダイオード D 3, D 4はスィッチ 1 0を 形成する。 コンデンサ C 9から C 1 2およびインダクタ L 6, L 7は分 波 ·合波回路 8を形成する。
コンデンサ C 1 0とインダクタ L 6の並列共振回路はほぼ第 2の周波 数帯域で共振し、 インダクタ L 7とコンデンサ C 1 3の直列共振回路は ほぼ第 1の周波数帯域で共振する。
ダイォ一ド D 2とコンデンサ C 8は、 第 1の送信周波数で直列共振し、 コンデンサ C 6 , C 7および L 4の 7C型位相回路の位相回転により、 ァ ンテナから見た受信側のインピーダンスを極大にできる。 したがってダ ィオード D 1および D 2を用いて送受信を切り替えるスィツチ 9を形成 できる。
コンデンサ C 4およびインダクタ L 3は、 ダイオード D 1のオフ時に おける容量を、 第 1の受信周波数帯域においてキャンセルする。 インダ クタ 2はチヨ一クインダクタ、 コンデンサ C 5はバイパスコンデンサ である。
ダイォ一ド D 4とコンデンサ C 2 0は、 第 2の送信周波数で直列共振 し、 コンデンサ C 1 8, C 1 9および L 1 2の π型位相回路の位相回転 により、 アンテナから見た受信側のインピーダンスを極大にできる。 し たがってダイォ一ド D 3および D 4を用いて送受信を切り替えるスィッ チ 1 0を形成できる。
コンデンサ C 1 6およびィンダク夕 L 1 1はダイォード D 3のオフ時 における容量を第 2の受信周波数帯域においてキャンセルする。 インダ クタ L 1 0はチヨ一クインダク夕、 コンデンサ C 1 7はバイパスコンデ ンサである。
図 3はワンチップ化された高周波複合スィツチモジュールの外観を示 す。 分波,合波回路、 L P Fおよびスィッチ回路の一部が積層体内に形 成される。 ダイオード、 チップインダクタなどのチップ部品 1 6や第 1 および第 2の受信周波数帯域を通過させる SAWフィル夕 1 5が積層体 1 7上に搭載される。
積層体 1 7は、 比較的誘電率の低い ( ε ι·< 1 0) 誘電体が積層され ている。 この中にインダクタはメアンダもしくはスパイラル形状の電極 パターンで形成され、 コンデンサは対向電極で形成される。 積層体の側 面には入出力電極およびグランド電極 1 8が形成される。
図 4は、 図 3のモジュールの分解斜視図で、 積層体 1 7を積層体 1 7 aから 1 7 cに分けて示す。 S A Wフィル夕を実装するグランド端子 1 9から 2 2はそれぞれ積層体 1 7 aおよび 1 7 b内のビアホール 2 3 a から 26 aを介して、 積層体 1 7 cに形成されたグランド電極 2 8に直 接接続されている。 この構造により、 図 6 Aに示すように、 SAW共振 子 2 9とグランド間に付く寄生インダクタンス 3 0を小さくできる。 し たがって図 6 Bに示すように SAW共振子 2 9の直列共振周波数の低域 側へのシフト量が少なくなり、 その結果、 S AWフィルタの下側減衰極 の周波数シフトが少なくなり、 減衰量の低下を抑制できる。
図 5では、 図 4のモジュールの最下層である積層体 1 7 cに形成され たグランド電極 2 8が、 表層の近傍である積層体 1 7 d上に設けられる。 この構造により、 ビア 2 3 bから 2 6 bが積層体 1 7 aの厚さ分だけ短 くなる。 したがって寄生インダクタンスをより小さくでき、 SAWフィ ル夕の減衰量の低下をさらに抑制できる。 さらに、 グランド端子とグランド電極を、 一つのグランド端子につき 複数のビアで接続することで、 寄生ィンダク夕ンスをより小さくでき、 S AWフィルタの減衰量の低下をさらに抑制できる。
本実施の形態における高周波複合スィツチモジュールに用いられる S AWフィルタは、 少なくとも第 1の周波数帯と第 2の周波数帯にそれぞ れ対応する 2つの S AW素子からなる。 図 7から図 9は、 この SAWフ ィル夕および高周波チップ部品の実装形態と端子配置を示す平面図であ る。
図 7では、 SAWフィル夕 3 1が積層体 3 8上の中央に配置される。 第 1の S AW素子 3 2と第 2の S A W素子 3 3が積層体 3 8の長手方向 に並べて配置される。 積層体の第 1の SAW素子 3 2側の領域に回路や フィル夕の第 1の周波数帯に対応する部分、 すなわち実装部品のダイォ ード D l , D 2、 チップインダクタ L 2, L 3、 第 1の送信端子 34、 第 1の受信端子 3 5および電極パターンで形成されたコンデンサ C 1か ら C 1 0、 インダクタ L 1 , L 4から L 6が設けられる。 積層体の第 2 の S AW素子 3 3側の領域に回路ゃフィルタの第 2の周波数帯に対応す る部分、 すなわち実装部品のダイオード D 3, D 4、 チップィンダクタ L 1 0 , L 1 1、 第 2の送信端子 3 6、 第 2の受信端子 3 7および電極 パターンで形成されたコンデンサ C 1 1から C 2 0、 インダクタ L 7か ら L 9、 L 1 2、 L I 3が設けられる。 これにより、 2つの周波数帯の 回路間の相互干渉を防ぐことができる。 さらに送受信端子間の結合を低 減できるため、 各端子間のアイソレーションが向上する。
図 8では、 S A Wフィルタ 3 9が積層体 46上の中央に配置される。 第 1の S AW素子 40と第 2の S AW素子 4 1が積層体 46の長手方向 に対して垂直方向に並べて配置される。 第 1の SAW素子側に第 1の周 波数帯の送信端子 4 2と受信端子 4 3が離されて形成される。 第 2の S AW素子側では、 第 2の周波数帯の送信端子 4 4と受信端子 4 5が離さ れて形成される。 送信端子と受信端子は、 間に他の端子等の導体を挟ん で形成されてもよい。 また送信端子と受信端子は、 積層体の離れた端近 傍に形成されてもよい。 これにより送受信端子間の結合を低減でき、 ァ ィソレーションが向上する。
図 8では、 積層体の第 1の S AW素子 4 0側の領域に回路やフィルタ の第 1の周波数帯に対応する部分、 すなわち実装部品のダイォ一ド D 1 , D 2、 チップインダクタ L 2 , L 3および電極パターンで形成されたコ ンデンサ C 1から C 1 0、 インダクタ L 1, L 4から L 6が設けられる c 積層体の第 2の S A W素子 4 1側の領域に回路やフィル夕の第 2の周波 数帯に対応する部分、 すなわち実装部品のダイオード D 3, D 4、 チッ プィンダク夕 L 1 0, L 1 1および電極パターンで形成されたコンデン サ C 1 1から C 2 0、 インダクタ L 7から L 9, L 1 2 , L 1 3が設け られる。 このような構成により、 2つの周波数帯の回路間の相互の干渉 を防ぐことができ、 アイソレーションが向上する。
図 9では、 S AWフィルタ 4 7が積層体 5 4上の片側の端に寄せて配 置される。 第 1の S AW素子 4 8と第 2の S A W素子 4 9を積層体 5 4 の長手方向に対して垂直な方向に並べて配置される。 積層体の第 1の S AW素子 4 8側の領域に第 1の周波数帯の送信端子 5 0と受信端子 5 1 が互いに離れて形成される。 積層体の第 2の弾性表面波素子 4 9側の領 域では、 第 2の周波数帯の送信端子 5 2と受信端子 5 3が互いに離れて 形成される。 送信端子と受信端子は、 間に他の端子等の導体を挟んで形 成されてもよい。 また送信端子と受信端子は、 積層体の離れた端近傍に 形成されてもよい。 これにより、 送受信端子間の結合を低減でき、 アイ ソレ一シヨンが向上する。
また、 図 9では、 積層体の第 1の SAW素子 48側の領域に回路ゃフ ィル夕の第 1の周波数帯に対応する部分、 すなわち実装部品のダイォー ド D l , D 2、 チップインダクタ L 2, L 3および電極パターンで形成 されたコンデンサ C 1から C 1 0、 インダクタ L I , L 4から L 6が設 けられる。 積層体の第 2の S AW素子 47側の領域に回路やフィル夕の 第 2の周波数帯に対応する部分、 すなわち実装部品のダイオード D 3, D 4、 チップインダクタ L 1 0, L 1 1および電極パターンで形成され たコンデンサ C 1 1から C 2 0、 インダクタ L 7から L 9 , L 1 2 , L 1 3が設けられる。 このような構成により、 2つの周波数帯の回路間の 相互干渉を防ぐことができ、 アイソレーションが向上する。
図 1 0に本実施の形態における高周波複合スィツチモジュールの積層 体内部構造の一部を示す。 積層体は誘電体層 5 5a〜5 5 hよりなる。
コンデンサ C 4はコンデンサ電極 5 6, 5 7間の容量によって形成さ れる。 図 2の等価回路でグランドに近いコンデンサの端子 C 4 aはコン デンサ電極 5 6よりもグランド電極 6 0に近いコンデンサ電極 5 7で形 成される。 この構造により、 コンデンサ電極 5 6とグランド電極 6 0の 間に寄生容量が発生することを防ぎ、 高性能な高周波複合スィツチモジ ユールが得られる。
グランド電極 6 0に近いコンデンサ電極 5 7は、 電極 5 6よりも面積 がー回り大きく形成される。 これによりコンデンサ電極 5 6とグランド 電極 6 0の間に寄生容量が発生することを防ぐとともに、 製造工程にお ける印刷ずれや積層ずれに対しても安定した容量を有するコンデンサが 形成される。
積層体内で隣接するスパイラル電極 5 8および 5 9は、 それぞれ図 2 の等価回路のィンダクタ L 5および L 1を形成する。 本実施の形態では- これら隣接するスパイラルィンダク夕は信号通過経路を考慮して同じ巻 き方向で形成されている。 これによりスパイラル形状の電極パターン間 の結合による影響を少なくできる。
また積層体内において送信に関連する電極パターンを受信に関連する 電極パターンよりもグランド電極から遠い誘電体層上に形成しても良い c これにより、 送受信回路間の結合を低減できるとともにそれぞれの配線 を短くでき、 高性能な高周波複合スィツチモジュールが得られる。 産業上の利用可能性
本発明によれば、 携帯電話などの移動体通信機器に用いる、 分波 ·合 波回路、 スィッチ回路、 低域通過フィルタ、 さらには複数の通過帯域に 対応する弾性表面波フィルタを複合化して、 小型で高性能な高周波複合 スィツチモジュールを得ることができる。

Claims

請求の範囲
1 . 複数の周波数帯域の信号を切り替える高周波複合スィツチモジュ一 ルであって、
分波 ·合波回路と、
スィッチ回路と、
低域通過フィル夕と、
前記分波 ·合波回路とスィツチ回路と低域通過フィルタのそれぞ れの少なくとも一部を形成する電極パターンと、
前記電極パターンが少なくともその 1つの上に形成される複数の 誘電体層からなる積層体と、
前記複数の周波数帯域に対応し、 グランド端子を有する、 前記積 層体上に実装された弾性表面波フィルタと、
前記スィツチ回路の一部を形成する、 前記積層体上に実装された ダイォードと、
前記積層体内に形成されたグランド電極と、
前記弾性表面波フィルタの前記グランド端子とを直接接続するビ ァと
を備えた高周波複合スィツチモジュール。
2 . 前記グランド電極は、 前記複数の誘電体層のうちの、 前記積層体の 前記弹性表面波フィル夕が実装された面から最も遠い誘電体層上または その近傍の誘電体層上に形成された、 請求項 1記載の高周波複合スィッ チモジュ一 Jレ。
3 . 前記弹性表面波フィル夕の前記グランド端子と前記グランド電極は 複数のビアで直接接続された、 請求項 1記載の高周波複合スィツチモジ ユール。
4 . 前記複数の周波数帯は第 1と第 2の周波数帯を含み、
前記分波 ·合波回路と前記スィツチ回路と低域通過フィル夕の少 なくとも 1つは前記第 1と第 2の周波数帯にそれぞれ対応する第 1と第 2の部分を含み、
前記弾性表面波フィルタは、 前記積層体上の略中央に並べて配置 された前記第 1の周波数帯に対応する第 1の弾性表面波素子と前記第 2 の周波数帯に対応する第 2の弾性表面波素子とを備え、
前記積層体の前記第 1の弾性表面波素子の側の第 1の領域に前記 第 1の部分が設けられ、
前記積層体の前記第 2の弾性表面波素子の側の第 2の領域に前記 第 2の部分が設けられた、
請求項 1記載の高周波複合スィツチモジュール。
5 . 前記第 1の周波数帯に対応する、 前記第 1の領域に設けられた第 1の送信端子と、
前記第 1の周波数帯に対応する、 前記第 1の領域で前記第 1の送 信端子と反対の側に設けられた第 1の受信端子と、
前記第 2の周波数帯に対応する、 第 2の領域に設けられた第 2の 送信端子と、 '
前記第 2の周波数帯に対応する、 前記第 2の領域で前記第 2の送 信端子と反対の側に設けられた第 2の受信端子と
をさらに備えた、 請求項 4記載の高周波複合スィッチモジュール。
6 . 前記積層体上に設けられた第 1の送信端子と第 1の受信端子と第 2の送信端子と第 2の受信端子とをさらに備え、
前記複数の周波数帯は第 1と第 2の周波数帯を含み、
第 1の送信端子と第 1の受信端子とは前記第 1の周波数帯に対応 し、
第 2の送信端子と第 2の受信端子とは前記第 1の周波数帯に対応 し、
前記弾性表面波フィルタは、 前記積層体上の略中央に並べて配置 された前記第 1の周波数帯に対応する第 1の弾性表面波素子と前記第 2 の周波数帯に対応する第 2の弾性表面波素子とを備え、
前記積層体の前記第 1の弹性表面波素子の側の第 1の領域に前記 第 1の送信端子と前記第 1の受信端子が設けられ、
前記積層体の前記第 2の弾性表面波素子の側の第 2の領域に前記 第 2の送信端子と前記第 2の受信端子が設けられた、
請求項 1記載の高周波複合スィツチモジュール。
7 . 前記第 1の送信端子と前記第 1の受信端子との間の前記積層体上 に設けられた第 1の導体と、
前記第 2の送信端子と前記第 2の受信端子との間の前記積層体上 に設けられた第 2の導体と、
をさらに備えた、 請求項 6記載の高周波複合スィッチモジュール。
8 . 前記第 1の送信端子と前記第 1の受信端子は前記第 1と第 2の弾 性表面波素子が並べられた方向で対向する前記積層体の 2つの端の近傍 にそれぞれ設けられ、
前記第 2の送信端子と前記第 2の受信端子は前記第 1と第 2の弹 性表面波素子が並べられた方向で対向する前記積層体の 2つの端の近傍 にそれぞれ設けられた、 請求項 6記載の高周波複合スィツチモジュール t
9 . 前記分波 ·合波回路と前記スィッチ回路と前記低域通過フィルタ の少なくとも 1つは、 前記第 1と第 2の周波数帯にそれぞれ対応する、 前記第 1の領域に設けられた第 1の部分と前記第 2の領域に設けられた 第 2の部分を含む、 請求項 6記載の高周波複合スィツチモジュール。
1 0 . 前記積層体上に設けられた第 1の送信端子と第 1の受信端子と第
2の送信端子と第 2の受信端子とをさらに備え、
前記複数の周波数帯は第 1と第 2の周波数帯を含み、
第 1の送信端子と第 1の受信端子とは前記第 1の周波数帯に対応 し、
第 2の送信端子と第 2の受信端子とは前記第 1の周波数帯に対応 し、 '
前記弾性表面波フィルタは、 前記積層体上の中央部より端に前記 端と略平行に並べて配置された前記第 1の周波数帯に対応する第 1の弹 性表面波素子と前記第 2の周波数帯に対応する第 2の弾性表面波素子と を備え、
前記積層体の前記第 1の弾性表面波素子の側の第 1の領域に前記 第 1の送信端子と前記第 1の受信端子とが設けられ、
前記積層体の前記第 2の弾性表面波素子の側の第 2の領域に前記 第 2の送信端子と前記第 2の受信端子とが設けられた、 請求項 1記載の高周波複合スィツチモジュール。
1 1 . 前記第 1の送信端子と前記第 1の受信端子との間の前記積層体上 に設けられた第 1の導体と、 · 前記第 2の送信端子と前記第 2の受信端子との間の前記積層体上 に設けられた第 2の導体と、
をさらに備えた、 請求項 1 0記載の高周波複合スィッチモジュール。
1 2 . 前記第 1の送信端子と前記第 1の受信端子は前記第 1と第 2の弾 性表面波素子が並べられた方向で対向する前記積層体の 2つの端の近傍 にそれぞれ設けられ、
前記第 2の送信端子と前記第 2の受信端子は前記第 1と第 2の弾 性表面波素子が並べられた方向で対向する前記積層体の 2つの端の近傍 にそれぞれ設けられた、 請求項 1 0記載の高周波複合スィッチモジュ一 ル。
1 3 . 前記分波 ·合波回路と前記スィッチ回路と前記低域通過フィルタ の少なくとも 1つは、 前記第 1の領域に設けられた前記第 1の周波数帯 に対応する第 1の部分と、 前記第 2の領域に設けられた前記第 2の周波 数帯に対応する第 2の部分とを備えた、 請求項 1 0記載の高周波複合ス ィツナモンユール。
1 4 . 前記分波 ·合波回路と前記スィツチ回路と前記低域通過フィルタ との少なくとも 1つは、 前記複数の誘電体層のうちの第 1の誘電体上に 形成された第 1のコンデンサ電極と、 前記複数の誘電体層のうちの前記 第 1の誘電体層より前記グランド層に近い第 2の誘電体上に形成された 第 2のコンデンサ電極とを有するコンデンサを備えた、 請求項 1記載の 高周波複合スィツチモジュール。
1 5 . 前記第 1のコンデンサ電極は前記第 2のコンデンサ電極と大きさ が異なる、 請求項 1記載の高周波複合スィツチモジュール。
1 6 . 前記第 2のコンデンサ電極は前記第 1のコンデンサ電極より大き い、 請求項 1 5記載の高周波複合スィッチモジュール。
1 7 . 前記電極パターンはそれぞれが同じ方向に巻く互いに隣接するス パイラル形状の電極パターンを備えた、 請求項 1記載の高周波複合スィ ツチモシユール。
1 8 . 前記電極パターンは、 前記分波,合波回路と前記スィッチ回路と 前記低域通過フィルタの受信に関連する回路を形成する第 1の電極パタ —ンと、 前記分波 ·合波回路と前記スィツチ回路と前記低域通過フィル 夕の送信に関連する回路を形成する第 2の電極パターンとを備え、
前記第 1の電極パターンは、 前記複数の誘電体層のうちの第 1の 誘電体層上に形成され、
前記第 2の電極パターンは前記グランド電極に対して前記第 1の 誘電体層よりも遠い、 前記複数の誘電体層のうちの 2の誘電体層上に 形成された、 請求項 1記載の高周波複合スィツチモジュール。
PCT/JP2001/008793 2000-10-06 2001-10-05 Module de commutation composite haute frequence WO2002032002A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/148,699 US6856213B2 (en) 2000-10-06 2001-10-05 High frequency composite switch module
EP01974707A EP1235357A4 (en) 2000-10-06 2001-10-05 COMPRESSED HIGH FREQUENCY SWITCHING MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-307277 2000-10-06
JP2000307277A JP2002118486A (ja) 2000-10-06 2000-10-06 高周波複合スイッチモジュール

Publications (1)

Publication Number Publication Date
WO2002032002A1 true WO2002032002A1 (fr) 2002-04-18

Family

ID=18787814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008793 WO2002032002A1 (fr) 2000-10-06 2001-10-05 Module de commutation composite haute frequence

Country Status (4)

Country Link
US (1) US6856213B2 (ja)
EP (1) EP1235357A4 (ja)
JP (1) JP2002118486A (ja)
WO (1) WO2002032002A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204135A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 高周波低域通過フィルタ
DE10102201C2 (de) * 2001-01-18 2003-05-08 Epcos Ag Elektrisches Schaltmodul, Schaltmodulanordnung und verwendung des Schaltmoduls und der Schaltmodulanordnung
JP2003087150A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高周波複合スイッチモジュール
US20050059371A1 (en) * 2001-09-28 2005-03-17 Christian Block Circuit arrangement, switching module comprising said circuit arrangement and use of switching module
US7492565B2 (en) * 2001-09-28 2009-02-17 Epcos Ag Bandpass filter electrostatic discharge protection device
US6750737B2 (en) 2001-10-02 2004-06-15 Matsushita Electric Industrial Co., Ltd. High frequency switch and radio communication apparatus with layered body for saw filter mounting
DE10246098A1 (de) 2002-10-02 2004-04-22 Epcos Ag Schaltungsanordnung
JP3960277B2 (ja) 2002-10-23 2007-08-15 株式会社村田製作所 高周波モジュールおよび通信装置
EP1596505A4 (en) * 2003-02-14 2008-07-30 Hitachi Metals Ltd SWITCHING CIRCUIT AND HIGH FREQUENCY COMPOSITE ELEMENTS
EP1450486A1 (en) * 2003-02-20 2004-08-25 TDK Corporation Multi-Mode Filter
US6998932B2 (en) * 2003-03-28 2006-02-14 Matsushita Electric Industrial Co., Ltd. High-frequency switch
JP3778902B2 (ja) 2003-04-28 2006-05-24 富士通メディアデバイス株式会社 分波器及び電子装置
US7194241B2 (en) * 2003-12-04 2007-03-20 Skyworks Solutions, Inc. Efficient multiple-band antenna switching circuit
JP2006310904A (ja) * 2005-04-26 2006-11-09 Hitachi Media Electoronics Co Ltd 信号回路及びこれを備える情報処理装置
US7359677B2 (en) * 2005-06-10 2008-04-15 Sige Semiconductor Inc. Device and methods for high isolation and interference suppression switch-filter
EP2056457B1 (en) 2006-08-21 2013-05-01 Murata Manufacturing Co. Ltd. High frequency module
TW200835043A (en) * 2007-01-19 2008-08-16 Murata Manufacturing Co High-frequency part
JP6119845B2 (ja) * 2013-04-16 2017-04-26 株式会社村田製作所 高周波部品およびこれを備える高周波モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334560A (ja) * 1993-03-26 1994-12-02 Hitachi Denshi Ltd 無線機
EP0667685A2 (en) * 1994-02-10 1995-08-16 Hitachi, Ltd. Branching filter, branching filter module and radio communication apparatus
JPH07240241A (ja) * 1994-02-28 1995-09-12 Mitsumi Electric Co Ltd 電子部品のアース接続構造及び接続方法
JPH08181035A (ja) * 1994-12-26 1996-07-12 Sumitomo Metal Ind Ltd 積層チップコンデンサ
EP0921642A2 (en) * 1997-12-03 1999-06-09 Hitachi Metals, Ltd. Multiband high-frequency switching module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459368A (en) * 1993-08-06 1995-10-17 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device mounted module
DE69433305T2 (de) * 1993-08-24 2004-08-26 Matsushita Electric Industrial Co., Ltd., Kadoma Geschichtetes dielektrisches Filter
JPH07264000A (ja) * 1994-03-16 1995-10-13 Fujitsu Ltd 弾性表面波フィルタ素子及びそれをパッケージングして成る弾性表面波フィルタ
JP3301262B2 (ja) * 1995-03-28 2002-07-15 松下電器産業株式会社 弾性表面波装置
JPH09121138A (ja) * 1995-08-24 1997-05-06 Fujitsu Ltd フィルタ装置及びこれを用いた無線装置
US6222426B1 (en) * 1998-06-09 2001-04-24 Oki Electric Industry, Co., Ltd. Branching filter with a composite circuit of an LC circuit and a serial arm saw resonator
JP2000068785A (ja) * 1998-06-09 2000-03-03 Oki Electric Ind Co Ltd 分波器及び分波器パッケ―ジ
JP2001102957A (ja) * 1999-09-28 2001-04-13 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
US6456172B1 (en) * 1999-10-21 2002-09-24 Matsushita Electric Industrial Co., Ltd. Multilayered ceramic RF device
US6570469B2 (en) * 2000-06-27 2003-05-27 Matsushita Electric Industrial Co., Ltd. Multilayer ceramic device including two ceramic layers with multilayer circuit patterns that can support semiconductor and saw chips
JP4049239B2 (ja) * 2000-08-30 2008-02-20 Tdk株式会社 表面弾性波素子を含む高周波モジュール部品の製造方法
EP1223634A3 (en) * 2000-12-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334560A (ja) * 1993-03-26 1994-12-02 Hitachi Denshi Ltd 無線機
EP0667685A2 (en) * 1994-02-10 1995-08-16 Hitachi, Ltd. Branching filter, branching filter module and radio communication apparatus
JPH07240241A (ja) * 1994-02-28 1995-09-12 Mitsumi Electric Co Ltd 電子部品のアース接続構造及び接続方法
JPH08181035A (ja) * 1994-12-26 1996-07-12 Sumitomo Metal Ind Ltd 積層チップコンデンサ
EP0921642A2 (en) * 1997-12-03 1999-06-09 Hitachi Metals, Ltd. Multiband high-frequency switching module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1235357A4 *

Also Published As

Publication number Publication date
EP1235357A1 (en) 2002-08-28
US6856213B2 (en) 2005-02-15
US20040119560A1 (en) 2004-06-24
EP1235357A4 (en) 2009-09-02
JP2002118486A (ja) 2002-04-19

Similar Documents

Publication Publication Date Title
JP5702303B2 (ja) Rfフロントエンドモジュールおよびアンテナシステム
KR101404535B1 (ko) 분기 회로, 고주파 회로 및 고주파 모듈
WO2001045285A1 (fr) Composant composite, haute frequence, de commutation
US7190970B2 (en) Multiplexer
WO2002032002A1 (fr) Module de commutation composite haute frequence
US8189613B2 (en) High-frequency component
JP2007306172A (ja) バンドパスフィルタ素子および高周波モジュール
JP2004201263A (ja) 高周波複合部品
JP2005064779A (ja) ハイパスフィルタおよびこれを用いたマルチバンドアンテナスイッチ回路、マルチバンドアンテナスイッチ積層モジュール、並びに通信装置
US20030220083A1 (en) High frequency composite component
US12273088B2 (en) Filter, multiplexer, and communication module
JP2003087076A (ja) チップ状lc複合部品およびそれを用いた回路
JP5778423B2 (ja) Lcフィルタおよび高周波スイッチモジュール
JP5874501B2 (ja) 高周波モジュール
JP4505777B2 (ja) 周波数分波回路、およびマルチバンドアンテナスイッチ積層モジュール複合部品
JP4038714B2 (ja) 高周波スイッチ回路およびマルチバンド用高周波スイッチモジュール
JP3920620B2 (ja) アンテナスイッチモジュール
JP2005142689A (ja) 高周波部品
CN113206652B (zh) 滤波器、复用器及通信模块
KR20110037471A (ko) 듀얼밴드 이동통신 단말기용 쿼드플렉서
JP2004260744A (ja) 高周波スイッチモジュール及びそれを用いた無線電話通信装置
JP3615739B2 (ja) 積層部品
JP2005136888A (ja) 高周波分波回路、それを搭載した高周波部品、高周波モジュール及び無線通信機器
JP4289322B2 (ja) 複合高周波部品及びそれを用いた移動体通信装置
JP2005244860A (ja) 高周波スイッチモジュール及びこれを用いた通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001974707

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001974707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10148699

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载