WO2002017421A2 - Insulating and sealing composition - Google Patents
Insulating and sealing composition Download PDFInfo
- Publication number
- WO2002017421A2 WO2002017421A2 PCT/US2001/026069 US0126069W WO0217421A2 WO 2002017421 A2 WO2002017421 A2 WO 2002017421A2 US 0126069 W US0126069 W US 0126069W WO 0217421 A2 WO0217421 A2 WO 0217421A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating precursor
- fuel cell
- ultraviolet radiation
- coating
- acrylated
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 238000007789 sealing Methods 0.000 title claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 138
- 239000011248 coating agent Substances 0.000 claims abstract description 132
- 239000000446 fuel Substances 0.000 claims abstract description 110
- 239000002243 precursor Substances 0.000 claims abstract description 95
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 13
- 230000004044 response Effects 0.000 claims abstract description 3
- 239000000178 monomer Substances 0.000 claims description 79
- 239000004593 Epoxy Substances 0.000 claims description 22
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000002318 adhesion promoter Substances 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 125000001931 aliphatic group Chemical group 0.000 claims description 11
- 239000012965 benzophenone Substances 0.000 claims description 11
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 10
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical group C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 claims description 9
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 claims description 9
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 9
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 9
- 229920005862 polyol Polymers 0.000 claims description 9
- 150000003077 polyols Chemical class 0.000 claims description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 8
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000010894 electron beam technology Methods 0.000 abstract description 4
- 238000007796 conventional method Methods 0.000 abstract description 2
- 230000013011 mating Effects 0.000 abstract description 2
- 206010073306 Exposure to radiation Diseases 0.000 abstract 1
- 238000012216 screening Methods 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 22
- 238000009472 formulation Methods 0.000 description 21
- 239000002826 coolant Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 15
- 238000001723 curing Methods 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 12
- -1 aliphatic urethanes Chemical class 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000007800 oxidant agent Substances 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 125000003700 epoxy group Chemical group 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000012713 reactive precursor Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 229920006397 acrylic thermoplastic Polymers 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 6
- 150000003673 urethanes Chemical class 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 230000000712 assembly Effects 0.000 description 5
- 125000004386 diacrylate group Chemical group 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- CCEFMUBVSUDRLG-KXUCPTDWSA-N (4R)-limonene 1,2-epoxide Natural products C1[C@H](C(=C)C)CC[C@@]2(C)O[C@H]21 CCEFMUBVSUDRLG-KXUCPTDWSA-N 0.000 description 2
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920013646 Hycar Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CCEFMUBVSUDRLG-XNWIYYODSA-N Limonene-1,2-epoxide Chemical compound C1[C@H](C(=C)C)CCC2(C)OC21 CCEFMUBVSUDRLG-XNWIYYODSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000008062 acetophenones Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000003847 radiation curing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012858 resilient material Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- GRSGFPUWHKVFJW-UHFFFAOYSA-N 1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]-3-methoxypropan-2-ol;prop-2-enoic acid Chemical compound OC(=O)C=C.COCC(O)COC(C)COC(C)CO GRSGFPUWHKVFJW-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- IANYIYFOTQCDBY-UHFFFAOYSA-N 2,2-dimethylbutane prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.CCC(C)(C)C IANYIYFOTQCDBY-UHFFFAOYSA-N 0.000 description 1
- NEBBLNDVSSWJLL-UHFFFAOYSA-N 2,3-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(OC(=O)C(C)=C)COC(=O)C(C)=C NEBBLNDVSSWJLL-UHFFFAOYSA-N 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- PVBUTZWGEJHWSJ-UHFFFAOYSA-N 2-morpholin-4-yl-1-phenylpropan-1-one Chemical compound C=1C=CC=CC=1C(=O)C(C)N1CCOCC1 PVBUTZWGEJHWSJ-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- NCNNNERURUGJAB-UHFFFAOYSA-N 3-[2,2-bis(3-prop-2-enoyloxypropoxymethyl)butoxy]propyl prop-2-enoate Chemical compound C=CC(=O)OCCCOCC(CC)(COCCCOC(=O)C=C)COCCCOC(=O)C=C NCNNNERURUGJAB-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- YPCHGLDQZXOZFW-UHFFFAOYSA-N [2-[[4-methyl-3-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]carbonylamino]phenyl]carbamoyloxymethyl]-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound CC1=CC=C(NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C=C1NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C YPCHGLDQZXOZFW-UHFFFAOYSA-N 0.000 description 1
- VZTQQYMRXDUHDO-UHFFFAOYSA-N [2-hydroxy-3-[4-[2-[4-(2-hydroxy-3-prop-2-enoyloxypropoxy)phenyl]propan-2-yl]phenoxy]propyl] prop-2-enoate Chemical compound C=1C=C(OCC(O)COC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OCC(O)COC(=O)C=C)C=C1 VZTQQYMRXDUHDO-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- FCSHDIVRCWTZOX-DVTGEIKXSA-N clobetasol Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O FCSHDIVRCWTZOX-DVTGEIKXSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- DKUYEPUUXLQPPX-UHFFFAOYSA-N dibismuth;molybdenum;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mo].[Mo].[Bi+3].[Bi+3] DKUYEPUUXLQPPX-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical class C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- RZFODFPMOHAYIR-UHFFFAOYSA-N oxepan-2-one;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1CCCCCO1 RZFODFPMOHAYIR-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical class C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000006335 response to radiation Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2003/1034—Materials or components characterised by specific properties
- C09K2003/1062—UV-curable materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0625—Polyacrylic esters or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/068—Containing also other elements than carbon, oxygen or nitrogen in the polymer main chain
- C09K2200/0685—Containing silicon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to reactive coating compositions for insulating and sealing surfaces.
- a fuel cell is a device that converts chemical energy of fuels directly to electrical energy and heat.
- a fuel cell comprises two electrodes — an anode and a cathode — separated by an electrolyte.
- a gas distribution system supplies the anode and the cathode with fuel and oxidizer, respectively.
- fuel cells use the oxygen in the air as the oxidizer and hydrogen gas (including H 2 produced by reforming hydrocarbons) as the fuel.
- Other viable fuels include reformulated gasoline, methanol, ethanol, and compressed natural gas, among others.
- the fuel undergoes oxidation at the anode, producing protons and electrons.
- the protons diffuse through the electrolyte to the cathode where they combine with oxygen and the electrons to produce water and heat. Because the electrolyte acts as a barrier to electron flow, the electrons travel from the anode to the cathode via an external circuit containing a motor or other electrical load that consumes power generated by the fuel cell.
- PEM fuel cells use an electrolyte composed of a solid organic polymer, which is typically a poly-perfluorosulfonic acid.
- Other fuel cell technologies include electrolytes comprised of solid zirconium oxide and yttrium (solid oxide fuel cells) or a solid matrix saturated with a liquid electrolyte.
- Liquid electrolytes include aqueous potassium hydroxide (alkaline fuel cells), phosphoric acid (phosphoric acid fuel cells), and a mixture of lithium, sodium, and/or potassium carbonates (molten carbonate fuel cells).
- phosphoric acid fuel cells (PAFC) operate at higher temperatures than PEM fuel cells (about 175 °C to about 200 °C)
- PAFCs also find use in vehicle applications because of their higher efficiency and their ability to use impure hydrogen gas as fuel.
- the core of a typical PEM fuel cell is a three-layer membrane electrolyte assembly
- the MEA is comprised of a sheet of the polymeric electrolyte, which is about 50 ⁇ to about 175 ⁇ thick and is sandwiched between relatively thin porous electrodes (anode and cathode).
- Each of the electrodes usually consists of porous carbon bonded to platinum particles, which catalyze the dissociation of hydrogen molecules to protons and electrons at the anode and the reduction of oxygen to water at the cathode. Both electrodes are porous and therefore permit gases (fuel and oxidizer) to contact the catalyst.
- gases fuel and oxidizer
- platinum and carbon conduct electrons well so that electrons move freely throughout the electrodes.
- An individual fuel cell generally includes backing layers that are placed against the outer surfaces of the anode and the cathode layers of the MEA.
- the backing layers allow electrons to move freely into and out of the electrode layers, and therefore are often made of electrically conductive carbon paper or carbon cloth, usually about 100 ⁇ to 300 ⁇ thick. Since the backing layers are porous, they allow fuel gas or oxidizer to uniformly diffuse into the anode and cathode layers, respectively.
- the backing layers also assist in water management by regulating the amount of water vapor entering the MEA with the fuel and oxidizer and by channeling liquid water produced at the cathode out of the fuel cell.
- a complete fuel cell includes a pair of plates pressed against the outer surfaces of the backing layers. Besides providing mechanical support, the plates define fluid flow paths within the fuel cell, and collect current generated by oxidation and reduction of the chemical reactants.
- the plates are gas-impermeable and have channels or grooves formed on one or both surfaces facing the backing layers. The channels distribute fluids (gases and liquids) entering and leaving the fuel cell, including fuel, oxidizer, water, and any coolants or heat transfer liquids.
- each plate may also have one or more apertures extending through the plate that distribute fuel, oxidizer, water, coolant and any other fluids throughout a series of fuel cells.
- Each plate is made of an electron conducting material including graphite, aluminum or other metals, and composite materials such as graphite particles imbedded in a thermosetting or thermoplastic polymer matrix.
- individual fuel cells are connected in series or are "stacked" to form a fuel cell assembly.
- a single fuel cell typically generates an electrical potential of about one volt or less. Since most applications require much higher voltages — for example, conventional electric motors normally operate at voltages ranging from about 200 N to about 300 N — individual fuel cells are stacked in series to achieve the requisite voltage.
- a single plate separates adjacent fuel cells in the stack.
- Such plates which are known as bipolar plates, have fluid flow channels formed on both major surfaces — one side of the plate may carry fuel, while the other side may carry oxidizer.
- conventional fuel cell assemblies employ resilient o-rings or planar inserts disposed between adjacent fuel cell plates to seal flow channels and apertures.
- conventional fuel cell assemblies also provide electrical insulating sheets between adjacent plates to prevent individual fuel cells from short-circuiting.
- seals and insulators are generally satisfactory, they suffer certain disadvantages. For example, freestanding o-rings and planar inserts must be carefully aligned with channels and apertures to ensure proper sealing and insulation, which is time consuming.
- planar inserts used in fuel cell assemblies are typically made by injection molding, compression molding, or transfer molding, which require expensive, one-of-a-kind tooling.
- many of the resilient materials used to make o-rings and planar inserts do not have the requisite chemical resistance and low modulus to adequately seal fuels cells operating at higher temperatures or employing hydrocarbon-based heat transfer fluids and coolants.
- the present invention helps overcome, or at least mitigate one or more of the problems described above.
- the present invention provides a process for sealing and insulating a fuel cell assembly comprised of two or more fuel cell plates.
- the process includes providing a fuel cell plate having first and second surfaces and applying a coating precursor on at least the first surface of the fuel cell plate. Since the coating precursor is capable of polymerizing (curing) in response to radiation, the method also includes exposing the coating precursor on the fuel cell plate to radiation to initiate polymerization.
- Useful coating precursors include those that can polymerize in response to ultraviolet radiation. Such coating precursors include those that contain an acrylated oligomer and a photoinitiator.
- the invention also provides an insulated fuel cell plate comprised of a plate having first and second surfaces and a coating precursor applied to at least one of the first and second surfaces of the plate.
- the coating precursor is generally an acrylate resin made up of an acrylated aliphatic urethane oligomer, an acrylated epoxy oligomer, a mono- functional monomer for reducing viscosity of the coating precursor, a multi-functional monomer for increasing cross-link density, an adhesion promoter, and a photoinitiator.
- the present invention provides an ultraviolet radiation or electron beam- curable coating precursor.
- the coating precursor includes an acrylated aliphatic urethane oligomer, an acrylated epoxy oligomer, a mono-functional monomer, a multi-functional monomer, an adhesion promoter, and a photoinitiator.
- a particular useful coating precursor includes from about 25 wt. % to about 65 wt. % of the acrylated aliphatic urethane oligomer; from about 5 wt. % to about 20 wt. % of the acrylated epoxy oligomer; from about 20 wt. % to about 40 wt. % of the mono-functional monomer; from about 1 wt.
- the present invention offers certain advantages over conventional methods and designs for insulating and sealing fuel cell plates and fuel cell assemblies.
- the disclosed coating precursors can be quickly and precisely applied to fuel cell plates (e.g., by screen printing) resulting in substantial cost savings.
- many of the disclosed coating precursors once cured, combine good chemical resistance with excellent mechanical properties.
- Fig. 1 is a sketch of an exploded cross sectional view of a fuel cell assembly (not to scale).
- Fig. 2 is plan view of one of the fuel cell plates having a coating for sealing and insulating the fuel cell assembly of Fig. 1.
- the present invention is a composition for sealing and insulating mating surfaces of manufactured parts.
- the coating can be used as an electrical insulation and a thermal insulation in many different products, including fuel cell assemblies and automotive gaskets used in internal combustion engines. Although described in relation to a PEM fuel cell assembly, the disclosed coating precursors can be used to seal and insulate other types of fuel cells, including, but not limited to alkaline fuel cells and phosphoric acid fuel cells.
- Fig. 1 shows an exploded cross sectional view (not to scale) of a representative fuel cell assembly 100.
- the fuel cell assembly 100 includes a stack of six individual fuel cells 102, although the number of fuel cells 102 can vary depending upon the desired voltage.
- Each of the fuel cells 102 includes a multi-layer active portion 104 sandwiched between a pair of bipolar plates 106 or between a single bipolar plate 106 and an end plate 108.
- Each active portion 104 includes a membrane electrolyte assembly (MEA) 110 disposed between a pair of backing layers 112.
- the MEA 110 includes a polymer electrolyte membrane (PEM) 114 interposed between an anode 116 and a cathode 118.
- Fig. 2 shows a plan view of one of the bipolar plates 106, and with Fig. 1, illustrates fluid flow paths within the fuel cell assembly 100.
- Each of the plates 106, 108 shown in Fig. 1 have apertures 120 that extend between first 122 and second 124 major surfaces of the plates 106, 108.
- the apertures 120 of adjacent plates 106, 108 align, forming cavities (not shown) that extend throughout the fuel cell assembly 100.
- Some of the cavities deliver fluids (fuel, oxidizer) to individual fuel cells 102, or deliver fluids (coolant, heat transfer fluid) to cooling areas 126 between individual fuel cells 102.
- Other cavities serve as collection regions for fluids (reaction products, coolant, heat transfer fluid).
- the plates 106, 108 also have grooves or channels 130 formed on either or both of the first 122 and second 124 surfaces, and evenly distribute reactants or heat transfer fluid across the active portion 104 and the cooling area 126 of each of the fuel cells 102.
- the plates 106, 108 include a resilient coating 132, which is applied on either or both of the major surfaces 122, 124 of the plates 106, 108.
- the coating 132 prevents mixing of disparate fluid streams during operation of the fuel cell assembly 100, and prevents electrical conduction among adjacent plates 106, 108.
- the coating 132 is chemically resistant to heat transfer fluids and electrolytes used in the various types of fuel cells, does not substantially interfere with fuel cell chemistry, is thermally stable at operating temperatures, and exhibits good adhesion to the plates 106, 108.
- the thickness and mechanical properties of the coating 132 will depend on the dimensions and properties of the plates 106, 108 and the active portion 104 of each of the fuel cells 102. Typically, however, the coating 132 is about 50 ⁇ to 250 ⁇ thick, has a tensile strength greater than about 500 psi, an elongation greater than about 100 percent, and a Shore A hardness between about 45 and about 85.
- the coating 132 which is applied on the plates 106, 108 in a fluid state and then solidified in situ, comprises a blend of one or reactive coating precursors that are subsequently polymerized and/or cross-linked.
- reactive means that the components of the coating 132 react with one another other or self -react to cure (solidify); such materials are also referred to as thermosetting resins.
- the coating 132 can be cross-linked and/or polymerized using any number of mechanisms, including oxidative curing, moisture curing, thermal curing, high energy radiation curing (e.g., ultraviolet curing, electron beam curing), condensation and addition polymerization, and the like.
- Useful reactive precursors include, but are not limited to acrylate resins such as acrylated urethanes, vinyl acrylates, acrylated epoxies, acrylated polyesters, acrylated acrylics, acrylated polyethers, acrylated olefins, acrylated oils, and acrylated silicones. These reactive precursors can be cured using mechanisms described above, typically in less than 45 minutes. Rapidly acting forms of radiation, which require application for less than about 30 seconds and preferably for less than about 5 seconds are particularly useful.
- Useful forms of radiation include ultraviolet (UN) radiation, infrared radiation, microwave radiation, and electron beam radiation.
- the coating 132 precursor can include a catalyst, an initiator, or curing agent to help initiate and/or accelerate curing.
- "resins” or “resin systems” refer to polydisperse systems containing monomers, oligomers, polymers, or combinations thereof. Exposing the coating precursor to high energy radiation represents a particular useful method of polymerizing the reactive components in coating precursors, offering additional advantages for fuel cell coatings 132 over thermally-cured reactive coating precursors. For instance, radiation cured coating precursors can be cross-linked at much lower temperatures (e.g., ambient temperature) than heat-cured reactive coating precursors.
- Radiation curing can proceed via at least two mechanisms. In a first mechanism, radiation provides fast and controlled generation of highly reactive species (free radicals) that initiate polymerization of unsaturated materials. In a second mechanism, radiation (UN/electron beam) activate certain cationic photoinitiators that decompose to yield an acid catalyst that propagates the cross-linking reaction.
- Examples of reactive precursors that can be cured using high energy radiation include, but are not limited to the acrylate resins. These reactive precursors include acrylates and methacrylates, and can be monomers or oligomers (i.e., moderately low molecular weight polymers typically containing 2-100 monomer units, and often 2-20 monomer units) of varying molecular weight (e.g., 100- 2000 weight average molecular weight).
- Useful reactive coating precursors include, but are not limited to acrylated urethanes, acrylated epoxies, acrylated olefins, and mixtures thereof.
- the acrylate resins typically comprise from about 30 wt. % to about 80 wt. % of the coating precursor, and preferably comprise from about 45 wt. % to about 60 wt. % of the coating precursor.
- Acrylated urethanes are diacrylate esters of hydroxy terminated ⁇ CO extended polyesters or polyethers. They can be aliphatic or aromatic, although acrylated aliphatic urethanes are generally more useful in fuel cell applications because they are less susceptible to attack by the heat transfer fluids and electrolytes and because they appear to provide better mechanical properties (tensile, elongation, hardness).
- the acrylated urethane provides the "backbone" of the cured coating, and therefore is usually present in the highest concentration, though too high a concentration may result in an unacceptably soft coating exhibiting insufficient thermal and chemical resistance.
- the acrylated urethanes typically comprise from about 25 wt. % to about 65 wt.
- % of the coating precursor and preferably comprise from about 40 wt. % to about 47 wt. % of the coating precursor.
- useful acrylated urethanes include those commercially available from Henkel Corp. under the trade name PHOTOMER (e.g., PHOTOMER 6010) and from UCB Radcure Inc. under the trade names EBECRYL (e.g., EBECRYL 220, 284, 4827, 4830, 6602, 8400 and 8402), RXO (e.g., RXO 1336), andRSX (e.g., RSX 3604, 89359, 92576).
- Other useful acrylated urethanes are commercially available from Sartomer Co.
- SARTOMER e.g., SARTOMER 9635, 9645, 9655, 963-B80, and 966- A80
- UVITHANE e.g., UVITHANE 782
- Acrylated epoxies are diacrylate esters of epoxy resins, such as the diacrylate esters of bisphenol A epoxy resin, and include epoxy resins having a pendent nitrile moiety.
- Acrylated epoxy resins generally improve the thermal stability and chemical resistance of the fuel cell coating 132, and increase its tensile strength. However, including an excessive amount of an acrylated epoxy may degrade the coating's adhesion to the plates 106, 108 and may also adversely impact its ability to seal.
- the acrylated epoxies typically comprise from about 5 wt. % to about 20 wt. % of the coating precursor, and preferably comprise from about 8 wt. % to about 13 wt. % of the coating precursor.
- acrylated epoxies examples include those commercially available from UCB Radcure Inc. under the EBECRYL and RXO trade names (e.g., EBECRYL 600, 629, 860 and 3708, RXO 2034) and from Henkel Corp. under the PHOTOMER trade name (e.g., PHOTOMER 3016, 3038 and 3071).
- Acrylated acrylics are acrylic oligomers or polymers that have reactive pendant or terminal acrylic acid groups capable of forming free radicals for subsequent reaction, and include acrylic resins having a pendant nitrile moiety.
- the acrylated acrylics Like the acrylated epoxies, the acrylated acrylics (especially those having pendant nitrile groups) generally improve the thermal stability of the fuel cell coating 132 and increase its tensile strength.
- the acrylated acrylics typically can comprise from about 0 wt. % to about 25 wt. % of the coating precursor, and preferably comprise from about 0 wt. % to about 13 wt. % of the coating precursor.
- Examples of useful acrylated acrylics are those commercially available from UCB Radcure under the EBECRYL trade name (e.g., EBECRYL 745, 754, 767, 1701, and 1755), from Sartomer Co.
- acrylated olefins are unsaturated oligomeric or polymeric materials having reactive pendant or terminal acrylic acid groups capable of forming free radicals for cross-linking or chain extension. Like the acrylated epoxies and acrylics, the acrylated olefins generally improve the thermal stability of the fuel cell coating 132 and increase its tensile strength.
- the acrylated olefins typically can comprise from about 0 wt. % to about 20 wt.
- the coating precursor preferably comprise from about 0 wt. % to about 13 wt. % of the coating precursor.
- useful acrylated olefins include polybutadiene acrylic oligomers, which are commercially available from Sartomer Co. under the trade name SARTOMER CN302, and from Ricon Resins under the trade name FX9005.
- the reactive precursors ordinarily include a reactive diluent for controlling viscosity, for increasing cross-link density, and for promoting adhesion.
- the reactive diluent includes at least one mono- or multi-functional monomer.
- mono-functional refers to a compound that contains one carbon-carbon double bond
- multi-functional refers to a compound that contains more than one carbon-carbon double bond or another chemically reactive group that can cross-link.
- Reactive diluents are generally acrylate monomers, although non-acrylates such as n-vinyl pyrrolidone, limonene, and limonene oxide, can also be used, as long as the monomers are ethylenically unsaturated.
- the mono- functional monomers decrease the viscosity of the coating precursor without substantially degrading the properties of the coating.
- the mono-functional monomers can, in some cases, improve bulk mechanical properties (adhesion, tensile strength, elongation) as well.
- the mono-functional monomers typically comprise from about 20 wt. % to about 40 wt. % of the coating precursor, and preferably comprise from about 25 wt. % to about 35 wt. % of the coating precursor.
- useful mono- functional monomers include, but are not limited to ethyl acrylate, methyl methacrylate, isooctyl acrylate, oxethylated phenol acrylate, 2-ethylhexyl acrylate, 2-phenoxyethyl acrylate, 2-(ethoxyethoxy)ethyl acrylate, ethylene glycol methacrylate, tetrahydroxy furfuryl acrylate, caprolactone acrylate, and methoxy tripropylene glycol monoacrylate.
- Particularly useful mono-functional monomers include isobornyl acrylate monomer and octyldecyl acrylate monomer, which are available from UCB Radcure under the trade names D3OA and ODA, respectively.
- multi-functional monomers decrease the viscosity of the coating precursor, but also accelerate the rate of cure, and increase the cross-link density, which improves chemical resistance and increases tensile strength while decreasing elongation. Since the multi-functional monomers increase cross-link density, they are useful at lower concentrations than the mono-functional monomers, typically comprising from about 1 wt. % to about 5 wt. % of the coating precursor, and preferably comprising from about 2 wt. % to about 4 wt. % of the coating precursor.
- Examples of useful multi-functional monomers include, but are not limited to triethylene glycol diacrylate, methoxyethyoxylated trimethylpropane diacrylate, pentaerythritol triacrylate, glycerol triacrylate, glycerol trimethacrylate, trimethylolpropane propoxylate triacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, tetramethylene glycol diacrylate, tripropylene glycol diacrylate, ethylene glycol dimethacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, and 1,6-hexane diacrylate.
- mono- and multi-functional monomers include vinyl acetate, n- vinyl formamide, limonene oxide, and n- vinyl pyrrolidinone.
- Particularly useful multi-functional monomers include propoxylated glycerol triacrylate monomer and trimethylolpropane ethoxy triacrylate monomer, which are available from UCB Radcure under the trade names OTA-480, and TMPEOTA, respectively.
- the adhesion promoter includes at least one radiation curable material, such as mono- or multi-functional monomers or oligomers.
- One particularly useful adhesion promoter is a methacrylated polyol adhesion promoter available from UCB Radcure under the trade name EBECRYL 168.
- the adhesion promoter comprises from about 1 wt. % to about 15 wt. % of the coating precursor, and preferably comprises from about 7 wt. % to about 11 wt. % of the coating precursor.
- Most of the disclosed reactive mono- functional and multi-functional acrylate monomers are commercially available from UCB Radcure under the EBECRYL trade name, from Henkel Corp. under the PHOTOMER trade name, and from Sartomer Co. under the SARTOMER trade name.
- the reactive precursor includes at least one mono-functional monomer, at least one multi-functional monomer, and at least one multi-functional oligomer.
- the reactive precursors include mono-functional and multi-functional acrylated monomers having molecular weights no greater than about 1000 (usually between about 100-1000) and a multi-functional oligomeric acrylated urethane having a weight average molecular weight of at least about 500, but generally between about 500-7000.
- increasing the fraction of mono-functional monomers tends to lower the viscosity of the coating precursor blend and improve wet-out on the surfaces 122, 124 of the plates 106, 108.
- multi-functional monomers and oligomers e.g., diacrylates and triacrylates
- increasing the fraction of multi-functional monomers and oligomers tends to increase cross-linking, resulting in stronger adhesion, higher tensile strength, improved chemical resistance, but lower elongation.
- the coating precursor normally includes one or more photoinitiators when it is cross-linked or polymerized with ultraviolet radiation.
- photopolymerization initiators include, but are not limited to organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryl halides, hydrozones, mercapto compounds, pyrylium compounds, triacrylimidazoles, bisimidazoles, chloroalkytriazines, benzoin ethers, benzil ketals, thioxanthones, and acetophenone derivatives, and mixtures thereof.
- benzil methyl o-benzoate, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzophenone-tertiary amine, acetophenones such as 2,2-diethoxyacetophenone, benzyl methyl ketal, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-l-phenylpropan-l- one, l-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-l-one, 2-benzyl-2-N,N- dimethylamino-l-(4-morpholinophenyl)-l-butanone, 2,4,6-trimethylbenzoyl- diphenylphosphine oxide, 2-methyl-l-4(methylthio), phenyl-2-morpholino-l-propanone, bis(2,6-dimethoxybenzoyl)(2,4,4-
- the amount of the photoinitiators should be sufficient to generate the desired rate of curing and to produce the requisite coating properties and typically comprises from about 0.1 wt. % to about 10 wt. % of the coating precursor, and preferably comprises from about 1 wt. % to about 8 wt. %.
- a particularly useful blend of photoinitiators comprises from about 1 wt. % to about 4 wt. % benzophenone and from about 1.5 wt. % to about 5 wt. % of l-phenyl-2- hydroxy-2-methyl-l-propanone of the coating precursor.
- Benzophenone is commercially available from Sartomer Co.
- the propanone is commercially available from Ciba- Geigy Corp.
- the coating precursors may contain additives such as fillers, defoamers, flattening agents, wetting agents, slip aids, stabilizers, plasticizers, air-release agents, and the like.
- the additives can be reactive or non-reactive, but are typically non-reactive.
- useful non-reactive air-release agents include polydimethyl siloxanes, such as various DC- series silicone oils commercially available from Dow Corning, and SAG 47, which is commercially available from OSI Specialties.
- additives including air- release agents
- the coating precursors may also contain various solvents other than the reactive diluent monomers to help dissolve or swell the higher molecular weight reactive resins (e.g., the acrylated oligomers).
- solvents are referred to as non-reactive diluents or non-reactive monomers because they do not significantly polymerize or cross-link with the reactive resin components.
- Useful solvents include ketone solvents, tetrahydrofuran, xylene, and the like, although preferably the coating precursors contain no solvents.
- the coating may also contain colorants (i.e., pigments and dyes).
- Suitable colorants include TiO 2 , phthalocyanine blue, phthalocyanine green, carbon black, basic carbonate white lead, zinc oxide, zinc sulfide, antimony oxide, zirconium oxide, lead sulfochromate, bismuth vanadate, bismuth molybdate, iron oxide magnetite, Fe 3 O 4 , and iron (III) oxide, Fe 2 O 3 , among others.
- Pigments can comprises from 0 wt. % to about 5 wt. % of the coating precursor.
- the acrylate resins are typically cured using radiation such as ultraviolet light.
- the fuel cell plates are placed on a conveyer that transports the plates under one or more sets of ultraviolet lamps, resulting in successive in-line exposure of the coating precursor to ultraviolet radiation.
- the sets of ultraviolet lamps have nominal radiant wavelengths that are the same or different.
- the length of exposure is controlled by the conveyor speed, which is typically in the range of 10 to 40 feet per minute and results in exposure times in the range of about 0.5 to about 5 seconds for each set of lamps.
- the UV lamps typically have power ratings from about 300 to about 600 watts per linear inch.
- Useful UV lamps include those employing type D, type V, type H, or type H bulbs, which are commercially available from Fusion UV Curing Systems and have nominal wavelengths of 375 nm, 425 nm, 250 nm, and 220 nm, respectively.
- Other useful UV lamps include arc-type UV lamps having a mercury spectrum similar to Fusion type H bulbs.
- One useful curing process employs two sets of arc-type UV lamps or UV lamps having type H bulbs.
- Another useful curing process uses a first set of UV lamps having type D bulbs (longer wavelength UV light), and a second set of UV lamps having type H or H* bulbs (shorter wavelength UV light).
- an initial exposure to UV lamps having type D bulbs cures the interior portions of the coating layer and adheres the coating to the surface of the fuel cell plate.
- Subsequent exposure to UV lamps having type H or FT bulbs cures the outer portions of the coating layer.
- the two-step curing process produces a satisfactory coating, curing under an inert nitrogen atmosphere may enhance coating properties. A flow rate of 20 cubic feet per minute of nitrogen through the curing equipment has been found in some instances to improve surface curing.
- each of the disclosed reactive coating precursors can be applied using coating techniques known to persons of ordinary skill in the art, including roller coating, dipping, brushing, spraying, stenciling, screen printing, and the like. However, of these coating techniques, screen printing is preferred because of its low cost, speed, and accuracy.
- the coating precursors may be applied to one or both sides of the fuel cell plate and as a cover- all coating or in selected continuous or discontinuous patterns depending on the insulating and sealing requirements of the fuel cell assembly. As noted above, the coating thickness for fuel cell plates is typically from about 50 ⁇ to about 250 ⁇ .
- Table 1 lists coating precursor compositions (formulations A-P) for insulating and sealing fuel cell plates.
- Each of the compositions includes an acrylated aliphatic or aromatic urethane oligomer, an isobornyl acrylate mono-functional monomer, a pair of photoinitiators (l-phenyl-2-hydroxy-2-methyl-l-propanone and benzophenone), and a polydimethylsiloxane air-release agent.
- all of the formulations include a multifunctional monomer — either propoxylated glycerol triacrylate (formulations A-I, K-O) or trimethylolpropane ethoxy triacrylate monomer (formulations J, P).
- formulations also include an acrylated olefinic oligomer (formulations B-E, G, I, L-O), an acrylated epoxy oligomer (formulations B, C, E, F, H-O), an acrylated epoxy monomer (formulation O), a methacrylated polyol adhesion promoter (formulations A-D, F-H, -O), or an octyldecyl mono-functional monomer (formulation O).
- an acrylated olefinic oligomer formulations B-E, G, I, L-O
- an acrylated epoxy oligomer formulations B, C, E, F, H-O
- an acrylated epoxy monomer formulation O
- a methacrylated polyol adhesion promoter formulations A-D, F-H, -O
- octyldecyl mono-functional monomer formulations
- the formulations listed in Table 1 were prepared by introducing the urethane oligomers and the polydimethylsiloxane air-release agent in a vessel. The mixture was stirred with heating to lower the viscosity of the mixture. The methacrylated polyol adhesion promoter (if present) was then added to the mixture. Once the adhesion promoter was fully dispersed, the non-urethane oligomers, and the mono-functional monomers (isobornyl acrylate and octydecyl acrylate monomer) were added (in order). In a separate vessel, benzophenone was dissolved in l-phenyl-2-hydroxy-2-methyl-l-propanone and in the multi-functional monomers with heating. The resulting blend of photoinitiators and multi-functional monomers were then admixed with the other coating precursor components.
- Test samples were prepared on various substrates by screen printing (110 mesh polyester screen, nominal 0.001-inch and 0.005 inch pad heights) or by casting (fixed clearance draw down knife). Depending on the test, the nominal coating thickness was 0.001 inches (adhesion, mandrel flex, coolant blisters) or 0.005-0.006 inches (tensile strength, elongation, Shore A hardness). However, the coating thickness of adhesion test samples of formulations H and P was 0.005-006 inches. Each of the example formulations was cured by successive exposure to 375 watts/inch UV lamps having Fusion type D bulbs (375 nm) and type FT 4" bulbs (220 nm), respectively, at line speeds of 15-25 feet per minute. The test samples were used to measure various properties, including tensile strength, elongation, Shore A hardness, adhesion (scratch, blistering), and temperature resistance (mandrel flex).
- Table 1 lists scratch adhesion results for test samples immersed in fuel cell coolant (formulations H, P), automotive coolant (A-P), or automotive oil (formulations J, K).
- Test samples of formulation H were immersed in three different heat transfer fluids at ambient temperature for 70 hours.
- the heat transfer fluids used were an isoparaffinic fluid commercially available from Solutia Inc. under the trade name THERMTNOL D12, a proprietary fluid commercially available from Dynalene Heat Transfer Fluids under the trade name DYNALENE FC-1, and a fluorinated hydrocarbon fluid commercially available from 3M under the trade name PF-5080.
- Test samples of formulations A-P were immersed in a 50:50 v/v mixture of GM LONG LIFE COOLANT and water for 72 hours at 100 °C; test samples I and K were immersed in ASTM IRM 903 oil for 72 hours at 150 °C. Following immersion, adhesion was measured using a RPM 516 scratch test method.
- a coated substrate was secured on a translatable stage and a "needle" was lowered onto the surface of the coated substrate.
- a 500-gram dead weight load was applied to one end of the needle so that the other end of the needle penetrated the coating.
- the needle executed a circular motion while the specimen was translated at a rate of about 2.5 mm/cycle, producing a series of 10-mm diameter, overlapping circular scratch marks in the coating.
- the appearance of the coating was ranked on a scale of 1 (poor adhesion) to 10 (best adhesion).
- Table 1 represents the average of three test samples per fluid; the designation "dry” refers to test samples that were not immersed in coolant or oil prior to the scratch test.
- Table 1 also lists tensile strength, elongation, and Shore A hardness for each of the coating formulations.
- tensile strength and elongation 1 inch by 4 inch specimens were die-cut from samples that were cast on polyester film using a fixed clearance draw down knife. The sample thickness was measured at multiple points on the film (minimum of six places near the center of the specimen), and the samples were pulled at ambient temperature on an Instron tester at a crosshead speed of 0.2 inches per minute.
- Table 1 reports average tensile strength and elongation at break based on five samples.
- Shore A hardness 0.5 inch by 1.5 inch specimens were cut from samples cast on polyester film. Specimens from a single formulation were stacked to obtain an overall sample thickness of 0.125 inches. The hardness of the "stacked" test sample was measured using a table mounted Shore A hardness tester. Five hardness measurements were obtained for each formulation.
- Table 1 also lists temperature resistance data (denoted "temperature mandrel”) and viscosity data. Temperature resistance was measured using a modified version of ASTM D573. Each test specimen (screen-printed coating on a 0.008 inch thick stainless steel coupon) was heat aged for 22 hours at 185 °C, bent around a 6-inch diameter mandrel, and then visually inspected for cracks in the coating or for loss of bond between the coupon and the coating. The appearance of the coating was ranked on a scale of 1 (many cracks, loss of bond) to 10 (few or no cracks, little or no loss of bond); data in Table 1 represent the average of three test specimens. The viscosity entries are based on a subjective assessment of the flow characteristics of the coating precursor. A ranking of 1 indicates the coating precursor would be difficult to screen print, and a ranking of 10 indicates that the coating precursor would be easy to screen print.
- Coolants tested THERMINOL D12, DYNALENE FC-1, PF-5080 (in order shown); all other formulations tested with a 50:50 v/v mixture of GM LONG LIFE COOLANT. 2 Contains 0.03 wt. % Fe 3 O 4 and 0.32 wt. % Fe 2 O 3 . Table 1 — Continued
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Fuel Cell (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002521384A JP2004507062A (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing compositions |
KR10-2003-7002596A KR20030024905A (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition |
CA002420449A CA2420449A1 (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition |
AU2001285128A AU2001285128A1 (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition |
MXPA03001375A MXPA03001375A (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition. |
EP01964251A EP1312126A2 (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition suitable for fuel cell assemblies |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64431600A | 2000-08-23 | 2000-08-23 | |
US09/644,316 | 2000-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002017421A2 true WO2002017421A2 (en) | 2002-02-28 |
WO2002017421A3 WO2002017421A3 (en) | 2003-01-03 |
Family
ID=24584381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/026069 WO2002017421A2 (en) | 2000-08-23 | 2001-08-21 | Insulating and sealing composition |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1312126A2 (en) |
JP (1) | JP2004507062A (en) |
KR (1) | KR20030024905A (en) |
AU (1) | AU2001285128A1 (en) |
CA (1) | CA2420449A1 (en) |
MX (1) | MXPA03001375A (en) |
WO (1) | WO2002017421A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206986A (en) * | 2002-12-25 | 2004-07-22 | Toyota Motor Corp | Fuel cell seal structure |
DE102012014756A1 (en) * | 2012-07-26 | 2014-01-30 | Daimler Ag | Method and device for connecting at least two components of a fuel cell |
US20150240413A1 (en) * | 2014-02-24 | 2015-08-27 | Gary S. Selwy | Composition and process for applying hydrophobic coating to fibrous substrates |
EP3611199A4 (en) * | 2017-04-14 | 2020-12-30 | ThreeBond Co., Ltd. | Photocurable resin composition, fuel cell using same, and sealing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101553943B (en) * | 2006-01-17 | 2016-12-21 | 汉高美国知识产权有限责任公司 | Sealant integrated fuel cell components and the method and the system that produce it |
JP6956840B1 (en) * | 2020-09-30 | 2021-11-02 | 住友理工株式会社 | Fuel cell components and their manufacturing methods |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4609686A (en) * | 1985-04-19 | 1986-09-02 | The Standard Oil Company | 100 percent solids epoxy, nitrile coating compositions and method of making same |
US5013631A (en) * | 1989-03-03 | 1991-05-07 | Westinghouse Electric Corp. | Ultraviolet curable conformal coatings |
CN1051563C (en) * | 1994-09-30 | 2000-04-19 | 泽恩丽兹株式会社 | Gasket material composition and process for producing gasket therefrom |
WO1996028396A1 (en) * | 1995-03-13 | 1996-09-19 | Dsm N.V. | Radiation curable optical fiber coating composition |
DE69818874T2 (en) * | 1997-07-16 | 2004-05-19 | Ballard Power Systems Inc., Burnaby | Process for producing an elastic seal for the membrane electrode arrangement (mea) in an electrochemical fuel cell |
DE19739970A1 (en) * | 1997-09-11 | 1999-03-18 | Basf Ag | Radiation-curable preparations based on aliphatic prepolymers containing urethane groups with ethylenically unsaturated double bonds |
EP1009052B1 (en) * | 1998-06-02 | 2012-02-15 | Panasonic Corporation | Polymer electrolyte fuel cell and method of manufacture thereof |
DE19829142A1 (en) * | 1998-06-30 | 2000-01-05 | Manhattan Scientifics Inc | Gas-tight combination of bipolar plate and membrane-electrode assembly of polymer electrolyte membrane fuel cells |
-
2001
- 2001-08-21 KR KR10-2003-7002596A patent/KR20030024905A/en not_active Withdrawn
- 2001-08-21 AU AU2001285128A patent/AU2001285128A1/en not_active Abandoned
- 2001-08-21 JP JP2002521384A patent/JP2004507062A/en active Pending
- 2001-08-21 MX MXPA03001375A patent/MXPA03001375A/en not_active Application Discontinuation
- 2001-08-21 CA CA002420449A patent/CA2420449A1/en not_active Abandoned
- 2001-08-21 WO PCT/US2001/026069 patent/WO2002017421A2/en active Application Filing
- 2001-08-21 EP EP01964251A patent/EP1312126A2/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206986A (en) * | 2002-12-25 | 2004-07-22 | Toyota Motor Corp | Fuel cell seal structure |
DE102012014756A1 (en) * | 2012-07-26 | 2014-01-30 | Daimler Ag | Method and device for connecting at least two components of a fuel cell |
US20150240413A1 (en) * | 2014-02-24 | 2015-08-27 | Gary S. Selwy | Composition and process for applying hydrophobic coating to fibrous substrates |
US9790640B2 (en) * | 2014-02-24 | 2017-10-17 | Gary S Selwyn | Composition and process for applying hydrophobic coating to fibrous substrates |
EP3611199A4 (en) * | 2017-04-14 | 2020-12-30 | ThreeBond Co., Ltd. | Photocurable resin composition, fuel cell using same, and sealing method |
US11414512B2 (en) | 2017-04-14 | 2022-08-16 | Threebond Co., Ltd. | Photocurable resin composition, fuel cell using same, and sealing method |
Also Published As
Publication number | Publication date |
---|---|
JP2004507062A (en) | 2004-03-04 |
CA2420449A1 (en) | 2002-02-28 |
AU2001285128A1 (en) | 2002-03-04 |
KR20030024905A (en) | 2003-03-26 |
EP1312126A2 (en) | 2003-05-21 |
MXPA03001375A (en) | 2003-06-06 |
WO2002017421A3 (en) | 2003-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6824874B1 (en) | Insulator and seal for fuel cell assemblies | |
US20040166392A1 (en) | Epoxy nitrile insulator and seal for fuel cell assemblies | |
AU761468B2 (en) | Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds | |
CN100461518C (en) | Fuel cell having hydrophilic substrate layer | |
JP5594966B2 (en) | Method for forming a fuel cell | |
US6869719B2 (en) | Polymer electrolyte fuel cell stack | |
EP1976046A1 (en) | Fuel cell separator, process for producing the same, and fuel cell including the separator | |
EP0786155B1 (en) | Cathode reactant flow field component for a fuel cell stack | |
US20020155333A1 (en) | Apparatus and method for electrochemical cell components | |
JP2009524194A (en) | UV curable fuel cell sealant and fuel cell formed therefrom | |
US7138203B2 (en) | Apparatus and method of manufacture of electrochemical cell components | |
WO2002017421A2 (en) | Insulating and sealing composition | |
CN102473936B (en) | Fuel cell and method for manufacturing same | |
US20040209155A1 (en) | Fuel cell, electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof | |
JP2003297385A (en) | Method of manufacturing fuel cell separator, fuel cell separator, and polymer electrolyte fuel cell | |
US7196120B2 (en) | Ultraviolet radiation curable coating for MLS head gasket applications | |
CN1299372C (en) | Guide plate for proton exchange film fuel cell and its manufacture | |
US7220786B1 (en) | Ultraviolet radiation curable coating for MLS head gasket applications | |
US20060172172A1 (en) | Hydrophilic bipolar plates | |
CN113912785B (en) | All-solid-state battery and photocurable composition for the all-solid-state battery | |
Frisch | PEMFC Stack Sealing Using Silicone Elastomers | |
KR20110082853A (en) | Polymer membrane composition for fuel cell, polymer membrane, membrane electrode assembly and fuel cell using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/001375 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002521384 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2420449 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037002596 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001964251 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037002596 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2001964251 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |