WO2002014365A1 - Nouvelle proteine 12 activatrice du polypeptide-ras gtp et le polynucleotide codant pour ladite proteine - Google Patents
Nouvelle proteine 12 activatrice du polypeptide-ras gtp et le polynucleotide codant pour ladite proteine Download PDFInfo
- Publication number
- WO2002014365A1 WO2002014365A1 PCT/CN2001/000949 CN0100949W WO0214365A1 WO 2002014365 A1 WO2002014365 A1 WO 2002014365A1 CN 0100949 W CN0100949 W CN 0100949W WO 0214365 A1 WO0214365 A1 WO 0214365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- polynucleotide
- activating protein
- gtpase activating
- ras gtpase
- Prior art date
Links
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 113
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 113
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 113
- 108091006088 activator proteins Proteins 0.000 title abstract description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 115
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 109
- 229920001184 polypeptide Polymers 0.000 claims abstract description 105
- 238000000034 method Methods 0.000 claims abstract description 86
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 35
- 239000005557 antagonist Substances 0.000 claims abstract description 19
- 201000011510 cancer Diseases 0.000 claims abstract description 10
- 208000026278 immune system disease Diseases 0.000 claims abstract description 5
- 208000031886 HIV Infections Diseases 0.000 claims abstract description 3
- 208000037357 HIV infectious disease Diseases 0.000 claims abstract description 3
- 206010061218 Inflammation Diseases 0.000 claims abstract description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims abstract description 3
- 230000004054 inflammatory process Effects 0.000 claims abstract description 3
- 102000003901 Ras GTPase-activating proteins Human genes 0.000 claims description 103
- 108090000231 Ras GTPase-activating proteins Proteins 0.000 claims description 103
- 108090000623 proteins and genes Proteins 0.000 claims description 88
- 239000000523 sample Substances 0.000 claims description 62
- 239000012634 fragment Substances 0.000 claims description 37
- 238000009396 hybridization Methods 0.000 claims description 37
- 230000014509 gene expression Effects 0.000 claims description 31
- 201000010099 disease Diseases 0.000 claims description 30
- 239000002773 nucleotide Substances 0.000 claims description 30
- 125000003729 nucleotide group Chemical group 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 27
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 20
- 102000018898 GTPase-Activating Proteins Human genes 0.000 claims description 17
- 108091006094 GTPase-accelerating proteins Proteins 0.000 claims description 17
- 102000039446 nucleic acids Human genes 0.000 claims description 16
- 108020004707 nucleic acids Proteins 0.000 claims description 16
- 230000000295 complement effect Effects 0.000 claims description 15
- 230000027455 binding Effects 0.000 claims description 13
- 239000013604 expression vector Substances 0.000 claims description 13
- 230000002159 abnormal effect Effects 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000000556 agonist Substances 0.000 claims description 11
- 239000013612 plasmid Substances 0.000 claims description 11
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- 238000012216 screening Methods 0.000 claims description 10
- 241000700605 Viruses Species 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 238000000338 in vitro Methods 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 230000000692 anti-sense effect Effects 0.000 claims description 5
- 229940079593 drug Drugs 0.000 claims description 5
- 230000003278 mimic effect Effects 0.000 claims description 5
- 238000001727 in vivo Methods 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 238000002493 microarray Methods 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 6
- 239000008280 blood Substances 0.000 claims 1
- 210000004369 blood Anatomy 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 15
- 208000035475 disorder Diseases 0.000 abstract description 4
- 108020004511 Recombinant DNA Proteins 0.000 abstract description 3
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 67
- 102000004169 proteins and genes Human genes 0.000 description 43
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 42
- 150000001413 amino acids Chemical group 0.000 description 40
- 235000018102 proteins Nutrition 0.000 description 40
- 108020004414 DNA Proteins 0.000 description 35
- 239000002299 complementary DNA Substances 0.000 description 27
- 102000016914 ras Proteins Human genes 0.000 description 26
- 108010014186 ras Proteins Proteins 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 26
- 235000001014 amino acid Nutrition 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 21
- 108091028043 Nucleic acid sequence Proteins 0.000 description 18
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 14
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 14
- 239000013615 primer Substances 0.000 description 14
- 206010005003 Bladder cancer Diseases 0.000 description 13
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 201000005112 urinary bladder cancer Diseases 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 12
- 210000000349 chromosome Anatomy 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 239000003102 growth factor Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 201000007270 liver cancer Diseases 0.000 description 9
- 208000014018 liver neoplasm Diseases 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 210000002950 fibroblast Anatomy 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 206010009944 Colon cancer Diseases 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 5
- 108091006109 GTPases Proteins 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 208000029742 colonic neoplasm Diseases 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 108090000994 Catalytic RNA Proteins 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 102000015820 Ras GTPase-activating protein 1 Human genes 0.000 description 4
- 108050004017 Ras GTPase-activating protein 1 Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 208000037824 growth disorder Diseases 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 108091092562 ribozyme Proteins 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 210000001541 thymus gland Anatomy 0.000 description 4
- 101150066838 12 gene Proteins 0.000 description 3
- 206010010356 Congenital anomaly Diseases 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 206010012559 Developmental delay Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 206010038389 Renal cancer Diseases 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 3
- 206010017758 gastric cancer Diseases 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- 210000004754 hybrid cell Anatomy 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 201000003747 jejunal adenocarcinoma Diseases 0.000 description 3
- 201000010982 kidney cancer Diseases 0.000 description 3
- 201000010260 leiomyoma Diseases 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 201000002528 pancreatic cancer Diseases 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 201000011549 stomach cancer Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- AFMZNQYNOSEBLP-YGOYTEALSA-N 5-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)-2-prop-2-ynyloxolan-2-yl]pyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(N)=CN1[C@]1(CC#C)O[C@H](CO)[C@@H](O)C1 AFMZNQYNOSEBLP-YGOYTEALSA-N 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 208000012239 Developmental disease Diseases 0.000 description 2
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 101000829958 Homo sapiens N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 101150040459 RAS gene Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 201000011603 cardia cancer Diseases 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000014107 chromosome localization Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 108091036078 conserved sequence Proteins 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 231100000676 disease causative agent Toxicity 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000010841 mRNA extraction Methods 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 108700042226 ras Genes Proteins 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- ZPDKTVJZFVWAOC-UHFFFAOYSA-N 4-hydroxy-1,3,2,4lambda5-dioxathiaphosphetane 4-oxide Chemical compound S1OP(O1)(O)=O ZPDKTVJZFVWAOC-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 206010003598 Atelectasis Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010007747 Cataract congenital Diseases 0.000 description 1
- 206010072942 Cerebellar dysplasia Diseases 0.000 description 1
- 206010009269 Cleft palate Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010018325 Congenital glaucomas Diseases 0.000 description 1
- 206010010506 Congenital hydrocephalus Diseases 0.000 description 1
- 206010068321 Congenital inguinal hernia Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 101100096502 Danio rerio spring gene Proteins 0.000 description 1
- 206010011882 Deafness congenital Diseases 0.000 description 1
- 206010061619 Deformity Diseases 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 206010012565 Developmental glaucoma Diseases 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 206010013613 Double ureter Diseases 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 102100039788 GTPase NRas Human genes 0.000 description 1
- 101710117710 GTPase activating protein 1 Proteins 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 1
- 208000000203 Hyaline Membrane Disease Diseases 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000032571 Infant acute respiratory distress syndrome Diseases 0.000 description 1
- 208000035478 Interatrial communication Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 206010024612 Lipoma Diseases 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101100096504 Mus musculus Spring1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 206010028729 Nasal cavity cancer Diseases 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028974 Neonatal respiratory distress syndrome Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 231100000742 Plant toxin Toxicity 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010063493 Premature ageing Diseases 0.000 description 1
- 208000032038 Premature aging Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101100426090 Rattus norvegicus Trim9 gene Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 208000037432 Thymic tumor Diseases 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- 206010046879 Vaginal atresia Diseases 0.000 description 1
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 1
- 101100096505 Xenopus laevis spring1 gene Proteins 0.000 description 1
- 230000007488 abnormal function Effects 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000013914 atrial heart septal defect Diseases 0.000 description 1
- 206010003664 atrial septal defect Diseases 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000006491 bone marrow cancer Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940090045 cartridge Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 206010008129 cerebral palsy Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- BKHZIBWEHPHYAI-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol Chemical compound ClC(Cl)Cl.CC(C)CCO BKHZIBWEHPHYAI-UHFFFAOYSA-N 0.000 description 1
- INQZDQBKBADILC-UHFFFAOYSA-N chloroform;diaminomethylideneazanium;thiocyanate Chemical compound [S-]C#N.NC([NH3+])=N.ClC(Cl)Cl INQZDQBKBADILC-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical group BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 208000022602 disease susceptibility Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 208000023437 ependymal tumor Diseases 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 125000000487 histidyl group Chemical class [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000011539 homogenization buffer Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 206010021093 hypospadias Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 201000010193 neural tube defect Diseases 0.000 description 1
- 201000002652 newborn respiratory distress syndrome Diseases 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- -1 phosphate amide Chemical class 0.000 description 1
- 239000003123 plant toxin Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 208000009138 pulmonary valve stenosis Diseases 0.000 description 1
- 208000030390 pulmonic stenosis Diseases 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000009834 selective interaction Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 208000037968 sinus cancer Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 201000009377 thymus cancer Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 208000024363 trachea neoplasm Diseases 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 201000003130 ventricular septal defect Diseases 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4705—Regulators; Modulating activity stimulating, promoting or activating activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, Ras GTPase activating protein 12, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and the polypeptide. Background technique
- the Ras gene is one of these subgroups and includes at least three members, N-ras, H-ras, and K_ras2.
- the variant form of Ras called the tumor suppressor gene, is considered to be the causative agent of cancer.
- Ras' normal cell genes and tumor suppressor genes encode chemically related proteins, collectively referred to as the ras p21 protein. Both the normal ras p21 and the tumor suppressor gene ras p21 proteins are combined with nucleotides, GTP and GDP, and GTP is slowly hydrolyzed to GDP.
- GTPase activating protein This intrinsic GTPase activity is stimulated by the cytokine GAP, which is called GTPase activating protein, but it has no effect on GTPase activity related to mutations in tumor suppressor genes.
- GAP is a cytoplasmic protein that can be transferred from the cytoplasm to the plasma membrane to interact with p21. Because it is a GTP-binding form of active ras, these proteins are called negative regulators of ras.
- the members of the GAP family are all large molecular weight proteins (from 765 to 3079 residues), but the same conserved sequence is a limited region (about 250 residues) and is called the "catalytic domain" Or rasGAP domain.
- the most conserved region in this region is a 15-residue motif, which is a characteristic sequence of the protein family:
- Ras tumor suppressor genes are related to the growth of various tumors and involve 10-40% of the most common human cancers, such as bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, and gastric cancer. This gene is also associated with lymphoid and bone marrow hematopoietic tumors, mesenchymal origin tumors.
- the present invention includes the peptides of the above peptides, and the antagonists, inhibitors and agonists of the polypeptides can be used to diagnose, prevent and treat cancer, especially to detect the overexpression of normal or tumor suppressor gene ras p21 and treat the disease caused by ras tumor suppressor gene. Cancer.
- Ras GTPase activating protein 1 2 protein plays an important role in regulating important functions of the body such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes. Therefore, there is always a need to identify more participants These processes Ras GTPase activates the protein 12 protein, specifically identifying the amino acid sequence of this protein.
- the isolation of the new Ra s GTPase activating protein 12 protein encoding gene also provides a basis for the study to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
- Another object of the invention is to provide a polynucleotide encoding the polypeptide.
- Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a Ras GTPase activating protein 12.
- Another object of the present invention is to provide a genetically engineered host cell comprising a polynucleotide encoding a Ras GTPase activating protein 12.
- Another object of the present invention is to provide a method for producing Ras GTPase activating protein 12.
- Another object of the present invention is to provide an antibody against the polypeptide of the present invention-Ras GTPase activating protein 12.
- Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors of the Ras GTPase activating protein 12 of the polypeptide of the present invention.
- Another object of the present invention is to provide a method for diagnosing and treating a disease associated with an abnormality of Ras GTPase activating protein 12.
- the present invention relates to an isolated polypeptide, which is of human origin, and includes: a polypeptide having the amino acid sequence of SEQ ID D. 2, or a conservative variant, biologically active fragment, or derivative thereof.
- the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
- the invention further relates to a vector, in particular an expression vector, containing the polynucleotide of the invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; and a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
- a vector in particular an expression vector, containing the polynucleotide of the invention
- a host cell genetically engineered with the vector including a transformed, transduced or transfected host cell
- a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
- the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
- the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit Ras GTPase activating protein 12 protein activity, which comprises utilizing the polypeptide of the invention.
- the invention also relates to compounds obtained by this method.
- the invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of Ras GTPase activating protein 12 protein in vitro, which comprises detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting The amount or biological activity of a polypeptide of the invention in a biological sample.
- the present invention also relates to a pharmaceutical composition
- a pharmaceutical composition comprising a polypeptide of the present invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
- the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention for the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of Ras GTPase activating protein 12.
- Nucleic acid sequence refers to oligonucleotides, nucleotides or polynucleotides and fragments or parts thereof, and can also refer to genomic or synthetic DNA or RNA, which can be single-stranded or double-stranded, representing the sense strand or Antisense strand.
- amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
- a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as the replacement of isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
- “Deletion” refers to the absence of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence. Missed.
- Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
- Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
- Bioly active refers to a protein that has the structure, regulatory, or biochemical function of a natural molecule.
- immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind to specific antibodies in a suitable animal or cell.
- An "agonist” refers to a molecule that, when combined with Ras GTPase activating protein 1 2, can cause the protein to change, thereby regulating the activity of the protein.
- An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind Ras GTPase activating protein 12.
- Antagonist refers to a molecule that, when combined with Ras GTPase activating protein 12, can block or regulate the biological or immunological activity of Ras GTPase activating protein 12.
- Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecule that binds to Has GTPase activating protein 12.
- Regular refers to a change in the function of Ras GTPase activating protein 12, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of Ras GTPase activating protein 12. change.
- Substantially pure 1 'means substantially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated. Those skilled in the art can purify Ras GTPase activating protein 12 using standard protein purification techniques. Substantially pure Ras GTPase activating protein 12 can generate a single main band on a non-reducing polyacrylamide gel. The purity of Ras GTPase activating protein 12 polypeptide can be analyzed by amino acid sequence.
- Complementary refers to the natural binding of a polynucleotide by base-pairing under conditions of acceptable salt concentration and temperature.
- sequence "C-T-G-A” can be combined with the complementary sequence "G-A-C-T”.
- the complementarity between two single-stranded molecules may be partial or complete.
- the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
- “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
- Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be achieved by hybridization under conditions of reduced stringency (Sou t he rn blot or
- Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.).
- the MEGALIGN program can compare two or more sequences according to different methods such as the Clus ter method (Hi gg ins, DG and PM Sharp (1988) Gene 73: 237-244). 0
- the Clus ter method will check the distance between all pairs by Groups of sequences are arranged in clusters. The clusters are then assigned in pairs or groups.
- the percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula:
- the percent identity between nucleic acid sequences can also be determined by the Cluster method or by methods known in the art such as Jotun He in (Hein L, (1990) Methods in emzumo logy 183: 625-645).
- Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
- Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
- Antisense refers to a nucleotide sequence that is complementary to a particular DM or RNA sequence.
- the "antisense strand” refers to a nucleic acid strand that is complementary to the “sense strand”.
- Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. Such a chemical modification may be the replacement of a hydrogen atom with an alkyl group, an acyl group or an amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological characteristics of natural molecules.
- Antibody refers to a complete antibody molecule and its fragments, such as Fa, F (ab ') 2 and Fv, which can specifically bind to the antigenic determinant of Ras GTPase activating protein 12.
- a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
- isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally).
- a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
- Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not a component of its natural environment, they are still isolated.
- isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
- polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
- isolated Ras GTPase activating protein 12 means that Ras GTPase activating protein 12 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify Ras GTPase activating protein 12 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of Ras GTPase activating protein 12 peptide can be analyzed by amino acid sequence.
- the present invention provides a new polypeptide, Ras GTPase activating protein 12, which is basically composed of SEQ ID NO: 1;
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
- the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
- the invention also includes fragments, derivatives and analogs of Ras GTPase activating protein 12.
- fragment refers to a polypeptide that substantially retains the same biological function or activity of the Ras GTPase activating protein 12 of the present invention.
- a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution
- the amino acid may or may not be encoded by a genetic codon; or ( ⁇ ) a type in which a group on one or more amino acid residues is replaced by another group to include a substituent; or ( ⁇ ⁇ )
- Such a polypeptide sequence in which the mature polypeptide is fused with another compound such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol
- a polypeptide sequence in which an additional amino acid sequence is fused into the mature polypeptide (Such as leader sequences or secretory sequences or sequences used to purify this polypeptide or protease sequences)
- such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
- the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
- the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 1711 bases in length and its open reading frame 127-465 encodes 112 amino acids.
- the polynucleotide of the present invention may be in the form of DM or RNA.
- DM forms include cDNA, genomic DNA, or synthetic DNA.
- DNA can be single-stranded or double-stranded.
- DNA can be coding or non-coding.
- the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
- a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
- the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
- polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
- the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
- This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
- These nucleotide variants include substitution variants, deletion variants, and insertion variants.
- an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
- the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
- the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
- “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% F i co ll, 42 ° C, etc .; or (3) only between the two sequences
- the hybridization occurs only when the identity between them is at least 95%, and more preferably 97%.
- the polypeptide encoded by the hybridizable polynucleotide has the same biological function as the mature polypeptide shown in SEQ ID NO: 2 and Active.
- nucleic acid fragments that hybridize to the sequences described above.
- a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, most preferably at least 100 nucleotides. Nucleotides or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding Ras GTPase activating protein 12.
- polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
- the specific polynucleotide sequence encoding the Ras GTPase activating protein 12 of the present invention can be obtained by various methods.
- polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) expression of library Antibody screening to detect cloned polynucleotide fragments with common structural characteristics.
- the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
- genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is the method of choice. The more commonly used method is the isolation of cDNA sequences.
- the standard method for isolating the cDNA of interest is to isolate mRM from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
- Various methods have been developed for mRNA extraction, and kits are also commercially available (Qiagene).
- the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
- Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When combined with polymerase reaction technology, even very small expression products can be cloned.
- genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): a) DNA-DNA or DNA-RM hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of Ras GTPase activating protein 12 transcripts; (4) Detection of gene-expressed protein products by immunological techniques or determination of biological activity. The above methods can be used singly or in combination.
- the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
- the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
- probes based on the gene sequence are usually present invention, information on the sequence of chemically synthesized ⁇ 0; column.
- the genes or fragments of the present invention can of course be used as probes.
- DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
- immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect protein products expressed by the Ras GTPase activating protein 12 gene.
- ELISA enzyme-linked immunosorbent assay
- the RACE method RACE-rapid cDNA end rapid amplification method
- the primers for PCR may be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
- the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
- the polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
- the present invention also relates to a vector comprising a polynucleotide of the present invention, and a vector using the vector of the present invention or directly used
- Ras GTPase activating protein 12 coding sequence is genetically engineered in a host cell, and a method for producing the polypeptide of the present invention by recombinant technology.
- a polynucleotide sequence encoding a Ras GTPase activating protein 12 may be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
- vector refers to bacterial plasmids, bacteriophages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses or other vectors well known in the art.
- Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
- any plasmid and vector can be used to construct a recombinant expression vector.
- An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
- Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding Ra s GTPase activator protein 12 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology (Sanibroook, et al. Mo l ecu l ar C l on ing, a Labora tory Manua l, co ld Spr ing Harbor Labora t ory. New York, 1989).
- the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the l ac or trp promoter of E.
- the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors expressed by DM, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
- the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- GFP fluorescent protein
- tetracycline or ampicillin resistance for E. coli.
- a polynucleotide encoding a Ras GTPase activating protein 12 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetic engineering containing the polynucleotide or the recombinant vector.
- Host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
- coli Streptomyces
- bacterial cells such as Salmonella typhimurium
- fungal cells such as yeast
- plant cells such as fly S2 or Sf 9
- animal cells such as CH0, COS, or Bowes s melanoma cells, etc. .
- Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
- the host is a prokaryote such as E. coli
- competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 .
- transformation can also be performed by electroporation.
- the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
- the polynucleotide sequence of the present invention can be used to express or produce a recombinant Ras GTPase activating protein 12 (Scence, 1 984; 224: 1431). Generally there are the following steps: (1). Use the polynucleotide (or variant) encoding the human Ra s GTPase activating protein 12 of the present invention, or use a recombinant expression vector containing the polynucleotide to transform or transduce appropriately Host cell
- the medium used in the culture may be selected from various conventional mediums according to the host cells used. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
- a suitable method such as temperature conversion or chemical induction
- the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, recombinant proteins can be isolated and purified by various separation methods using their physical, chemical, and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC), and various other liquid chromatography techniques and combinations of these methods.
- conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
- FIG. 1 is a comparison diagram of gene chip expression profiles of Ras GTPase activating protein 12 and Ras GTPase activating protein according to the present invention.
- the upper graph is a graph of the Ras GTPase activating protein 12 expression
- the lower graph is a table of Ras GTPase activating protein. Daphism chart.
- 1-bladder mucosa 2-PMA + Ecv304 cell line, 3-LPS + Ecv304 cell line thymus, 4-normal fibroblasts 1024NC, 5- Fibroblast, growth factor stimulation, 1024NT, 6-scar into fc growth factor stimulation , 1013HT, 7- scar into fc without stimulation with growth factor, 1013HC, 8-bladder cancer cell EJ, 9-bladder cancer, 10-bladder cancer, 11-liver cancer, 12-liver cancer cell line, 13-fetal skin , 14-spleen, 15-prostate cancer, 16-jejunum adenocarcinoma, 17 cardia cancer.
- Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of Ras GTPase activating protein 12 isolated. 12kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
- CDNA was synthesized using fetal brain cell total RNA as a template and oligo-dT as a primer for reverse transcription reaction.
- PCR amplification was performed with the following primers:
- Primerl 5'- ATAATAAGGAAGGCTAATATTTGG -3 '(SEQ ID NO: 3)
- Primerl is a forward sequence located at the 5th end of SEQ ID NO: 1, starting at lbp;
- Primer2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
- Amplification reaction conditions 50 ⁇ l of KC1, 10mraol / L in 50 ⁇ 1 reaction volume
- RNA extraction in one step [Anal. Bioc em 1987, 162, 156-159] 0
- This method involves acid guanidinium thiocyanate-chloroform extraction. That is, the tissue is homogenized with 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH 4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ), Mix and centrifuge. The aqueous layer was aspirated, isopropanol (0.8 vol) was added and the mixture was centrifuged to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
- RNA probes were used to prepare labeled DNA probes by random primer method.
- the DNA probe used was the PCR amplified Ras GTPase activating protein 12 coding region sequence (127b P to 465bp) shown in FIG. 1.
- 32P-labeled probes (approximately 2x10 6 cpm / ml) were hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 (pH7 .4) -5 x SSC- 5 x Denhardt's solution and 200 ⁇ ⁇ / ⁇ 1 salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1% SDS at 55 ° C for 30 min. The j3 ⁇ 4 Phosphor Imager was then analyzed and quantified.
- Example 4 In vitro expression, isolation and purification of recombinant Ras GTPase activating protein 12
- Primer 3 5'- CCCCATATGATGCACACACAGGCCACTGCATGG- 3, (Seq ID No: 5)
- Primer4 5'-CATGGATCCTTAACCTGAAGGTGTCCTGGTGTC-3 '(Seq ID No: 6)
- the 5' ends of these two primers contain Mel and BamHI digestion sites, respectively, followed by the coding sequences of the 5 'and 3' ends of the target gene, respectively.
- the Ndel and BamHI restriction sites correspond to the selective endonuclease sites on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3).
- PBS-0784dl2 The plasmid was used as a template for the PCR reaction.
- the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 pg of pBS-0784dl2 plasmid, primers Primer-3 and Primer-4, and j was 10 pmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 rain, a total of 25 cycles. Ndel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase. The ligation product was transformed into E. coli DH5a by the calcium chloride method.
- the cells were collected by centrifugation, and the supernatant was collected by centrifugation. The supernatant was collected by centrifugation, and the layers were separated with an affinity chromatography column His s. Bind Quick Cartr idge (product of Novagen) capable of binding to 6 histidines (6His-Tag).
- the purified protein Ras GTPase activating protein 12 was obtained. After SDS-PAGE electrophoresis, a single band was obtained at 12 kDa ( Figure 2). The band was transferred to a PVDF membrane and the N-terminal amino acid sequence was analyzed by the Edams hydrolysis method. As a result, the 15 amino acids at the N-terminus were identical to the 15 amino acid residues at the N-terminus shown in SEQ ID NO: 2.
- the following peptides specific to Ras GTPase activating protein 12 were synthesized using a peptide synthesizer (product of PE company): NH2-Met-H i s-Thr-G 1 nA 1 a-Thr-A 1 a-Trp-Asp-H i s-Gl y-Thr-G 1 yA 1 a-Th r-COOH (SEQ ID NO: 7).
- the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
- Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
- the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
- the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissues or Whether the expression in tissue cells is abnormal.
- the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by using a filter hybridization method.
- Filter hybridization methods include dot blotting, Southern blotting, Northern blotting, and copying methods. They are all used to fix the polynucleotide sample to be tested on the filter and then hybridize using basically the same steps.
- the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer, so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthetic polymer.
- the pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid.
- the unhybridized probes are removed by a series of membrane washing steps.
- This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
- the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
- the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
- the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
- oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered:
- the preferred range of probe size is 18-50 nucleotides
- the GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
- Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The region is compared for homology. If the homology with the non-target molecule region is greater than 85% or there are more than 15 consecutive bases, then the primary probe should not be used;
- Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
- Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence (41Nt) of the gene fragment of SEQ ID NO: 1 or its complementary fragment:
- PBS phosphate buffered saline
- step 7 Resuspend the DNA pellet in a small volume of TE or water. Vortex at low speed or blow with a dropper while gradually increasing TE, mix until the DNA is fully lysed, and add approximately 1 ul per 1- 5 x 10 ⁇ cells.
- steps 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
- NC membrane nitrocellulose membrane
- probe 1 can be used to qualitatively and quantitatively analyze the presence and differential expression of the polynucleotide of the present invention in different tissues.
- Example 7 DNA Mi croarray
- Gene chip or DNA microarray is a new technology that many national laboratories and large pharmaceutical companies are currently developing and developing. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of fast, efficient, and high-throughput analysis of biological information.
- the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
- the specific method steps have been reported in the literature, for example, see the literature DeRi s i, J. L., Lyer, V. & Brown, P. 0.
- a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the present invention.
- Polynucleotides They were amplified by PCR respectively. After purification, the concentration of the amplified product was adjusted to about 500 ng / ul, and spotted on a glass medium with a Cartesian 7500 spotting instrument (purchased from Cartesian, USA). The distance is 280 ⁇ . The spotted slides were hydrated, dried, and cross-linked in a UV cross-linker. After elution, the slides were fixed to fix the DNA on the glass slides to prepare chips. The specific method steps are widely reported in the literature. The post-spot processing steps of this embodiment are:
- the probes from the above two tissues were hybridized with the chip in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (1 ⁇ SSC, 0.2% SDS) at room temperature, and then scanned with ScanArray 3000.
- the scanner purchased from General Scanning Company, USA
- the scanned image was analyzed and processed with Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
- the above specific tissues are bladder mucosa and PMA + Ecv304 cells, respectively.
- polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
- the Ras gene is an intracellular signal transducer and it is also an oncogene.
- a variant form of Ras called a tumor suppressor gene, is considered to be a causative agent of cancer.
- Both Ras' normal cell genes and tumor suppressor genes encode chemically related proteins, collectively referred to as the ras p21 protein.
- Both the normal ras p21 and tumor suppressor gene ras p21 proteins bind to nucleotides, GTP, and GDP, and slowly hydrolyze GTP to GDP.
- This intrinsic GTPase activity is stimulated by the cytokine GAP, which is called GTPase activating protein, but it has no effect on GTPase activity related to mutations in tumor suppressor genes.
- GAP is a cytoplasmic protein that can be transferred from the cytoplasm to the plasma membrane to interact with p21. Because it is a GTP-binding form of active ras, these proteins are called negative regulators of ras.
- Ras tumor suppressor genes are related to the growth of various tumors and involve 10-40% of the most common human cancers, such as bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, and gastric cancer. This gene is also associated with lymphoid and bone marrow hematopoietic tumors, mesenchymal origin tumors.
- the present invention includes the peptides of the above peptides, and the antagonists, inhibitors and agonists of the polypeptides can be used to diagnose, prevent and treat cancer, especially to detect the overexpression of normal or tumor suppressor gene ras p21 and treat the disease caused by ras tumor suppressor gene. Cancer.
- GTPase-activating protein-specific conserved sequences are required to form its active motif. It can be seen that abnormal expression of the specific GTPase activating protein motif will cause abnormal function of the polypeptide containing the mot if of the present invention, thereby causing abnormal cell proliferation and causing related diseases such as various tumors and embryonic development disorders. Disease, growth disorders, etc.
- the abnormal expression of the Ras GTPase activating protein 12 of the present invention will produce various diseases, especially various tumors, embryonic developmental disorders, and growth disorders. These diseases include, but are not limited to:
- Tumors of various tissues bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, gastric cancer, leukemia, lymphoma, bone cancer, osteosarcoma, myeloma, bone marrow cancer, esophageal cancer, breast cancer, A Glandular tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymal tumor, glioblastoma, colon cancer, melanoma, adrenal cancer, bladder cancer, brain cancer, uterine cancer, endometrial cancer , Gallbladder cancer, colon cancer, thymic tumor, nasal cavity and sinus cancer, nasopharyngeal cancer, laryngeal cancer, tracheal tumor, fibroid, fibrosarcoma, lipoma, liposarcoma, leiomyoma
- Embryonic disorders congenital abortion, cleft palate, limb absentness, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney disease, double ureter, crypto, congenital inguinal hernia, double uterus, vaginal atresia, hypospadias , Bisexual deformity, Atrial septal defect, Ventricular septal defect, Pulmonary stenosis, Arterial duct occlusion, Neural tube defect, Congenital hydrocephalus, Iris defect, Congenital cataract, Congenital glaucoma or cataract, Congenital deafness
- Growth and development disorders mental retardation, cerebral palsy, brain development disorders, mental retardation, familial cerebellar dysplasia, strabismus, skin, fat and muscular dysplasia such as congenital skin sagging, premature aging Disease, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation
- Ras GTPase activating protein 12 of the present invention will also produce certain hereditary, hematological diseases, and immune system diseases.
- the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) Ras GTPase activating protein 1 2.
- Agonists increase Ra s GTPase activating protein 1 2 to stimulate cell proliferation and other biological functions, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
- mammalian cells or membrane preparations expressing Ras GTPase activating protein 12 and labeled Ras GTPase activating protein 12 can be cultured together in the presence of drugs. The ability of the drug to increase or block this interaction is then measured.
- Antagonists of Ras GTPase activating protein 1 2 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of Ras GTPase activating protein 12 can bind to Ras GTPase activating protein 12 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot function biologically. Learn function.
- Ras GTPase activating protein 12 When screening compounds as antagonists, Ras GTPase activating protein 12 can be added to a bioanalytical assay, and the compound can be determined by measuring the effect of the compound on the interaction between Ras GTPase activating protein 12 and its receptor. Whether it is an antagonist. Receptor deletions and analogs that function as antagonists can be screened in the same manner as described above for screening compounds.
- Polypeptide molecules capable of binding to Ras GTPase activating protein 12 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, generally, 12 molecules of Ras GTPase activating protein should be labeled.
- the present invention provides the use of polypeptides, and fragments, derivatives, analogs or cells thereof as antigens to produce Methods of producing antibodies. These antibodies can be polyclonal or monoclonal antibodies.
- the present invention also provides
- Ras GTPase activating protein 12 epitope antibody include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
- Polyclonal antibodies can be produced by injecting Ras GTPase activating protein 12 directly into immunized animals (such as rabbits, mice, rats, etc.).
- immunized animals such as rabbits, mice, rats, etc.
- a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant. Wait.
- Techniques for preparing monoclonal antibodies to Ras GTPase activator protein 12 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV- Hybridoma technology, etc.
- Chimeric antibodies that bind human constant regions to non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
- the existing technology for producing single-chain antibodies (U.S. Pat No. 4946778) can also be used to produce single-chain antibodies against Ras GTPase activating protein 12.
- Anti-Ras GTPase activating protein 12 antibodies can be used in immunohistochemical techniques to detect Ras GTPase activating protein 12 in biopsy specimens.
- Monoclonal antibodies that bind to Ras GTPase activating protein 12 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
- Antibodies can also be used to design immunotoxins that target a particular part of the body.
- Ras GTPase-activated protein 12 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
- a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
- This hybrid antibody can be used to kill Ras GTPase activating protein 12 positive cells .
- the antibodies of the present invention can be used to treat or prevent diseases related to Ras GTPase activating protein 12. Administration of an appropriate amount of antibody can stimulate or block the production or activity of Ras GTPase activating protein 12.
- the invention also relates to a diagnostic test method for quantitative and localized detection of Ras GTPase activating protein 12 levels. These tests are well known in the art and include FISH assays and radioimmunoassays. The level of Ras GTPase activating protein 12 detected in the test can be used to explain the importance of Ras GTPase activating protein 12 in various diseases and to diagnose diseases in which Ras GTPase activating protein 12 plays a role.
- polypeptide of the present invention can also be used for peptide mapping analysis.
- the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry.
- the polynucleotide encoding Ras GTPase activating protein 12 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of Ras GTPase activating protein 12.
- Recombinant gene therapy vectors (such as viral vectors) can be designed to express Different Ras GTPase activating protein 12 to inhibit endogenous Ras GTPase activating protein 12 activity.
- a variant Ras GTPase activating protein 12 may be shortened and lack a signaling functional domain. Although Ras GTPase activating protein 12 can bind to a downstream substrate, it lacks signaling activity.
- the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of Ras GTPase activating protein 12.
- Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus and the like can be used to transfer a polynucleotide encoding Ras GTPase activating protein 12 into cells.
- Methods for constructing recombinant viral vectors carrying a polynucleotide encoding Ras GTPase activator protein 12 can be found in the existing literature (Sambrook, et al.).
- a recombinant polynucleotide encoding Ras GTPase activating protein 12 can be packaged into liposomes and transferred into cells.
- Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
- a vector such as a virus, phage, or plasmid
- Oligonucleotides including antisense RNA and DNA
- ribozymes that inhibit Ras GTPase activating protein 12 mRNA are also within the scope of the present invention.
- a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
- Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DM synthesis techniques, such as solid-phase phosphate amide chemical synthesis to synthesize oligonucleotides.
- Antisense RM molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphate thioester or peptide bonds instead of phosphodiester bonds.
- the polynucleotide encoding Ras GTPase activating protein 12 can be used for the diagnosis of diseases related to Ras GTPase activating protein 12.
- the polynucleotide encoding Ras GTPase activating protein 12 can be used to detect the expression of Ras GTPase activating protein 12 or the abnormal expression of Ras GTPase activating protein 12 in a disease state.
- the DNA sequence encoding Ras GTPase activating protein 12 can be used to hybridize biopsy specimens to determine the expression of Ras GTPase activating protein 12.
- Hybridization techniques include Southern blotting, Northern blotting, in situ hybridization, and the like. These techniques and methods are publicly available and mature, and related kits are commercially available.
- polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues.
- Ras GTPase activating protein 12 specific primers for RNA-polymerase chain reaction (RT-PCR) amplification in vitro can also detect Ras GTPase activating protein 12 transcription products.
- Ras GTPase activating protein 12 mutant forms include the same as normal wild-type Ras GTPase.
- the live protein 12 DNA sequence is compared to point mutations, translocations, deletions, recombinations, and any other abnormalities. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
- sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position of a human chromosome and can hybridize with it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeat polymorphisms) are available for labeling chromosomal positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
- the PCR primers (preferably 15-35b P ) are prepared based on the cDNA, and the sequence can be located on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those hybrid cells that contain the human gene corresponding to the primer will produce amplified fragments.
- PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
- oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
- Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
- Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
- FISH Fluorescent in situ hybridization
- the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendelian Inherance in Man (available online with Johns Hopkins University Welch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
- the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all of the affected individuals and the mutation is not observed in any normal individual, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
- the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
- suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, Glycerin and their combinations.
- the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients that do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
- the present invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the present invention.
- a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the present invention.
- these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which reminders permit their administration on the human body by government agencies that manufacture, use, or sell them.
- the polypeptide of the present invention can be used in combination with other therapeutic compounds.
- the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
- Ras GTPase activating protein 12 is administered in an amount effective to treat and / or prevent specific indications.
- the amount and range of Ras GTPase-activated custard 12 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. '
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU95376/01A AU9537601A (en) | 2000-06-14 | 2001-06-11 | A new polypeptide-ras gtp activator protein 12 and the polynucleotide encoding it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN00116501A CN1328009A (zh) | 2000-06-14 | 2000-06-14 | 一种新的多肽——Ras GTP酶激活蛋白12和编码这种多肽的多核苷酸 |
CN00116501.1 | 2000-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002014365A1 true WO2002014365A1 (fr) | 2002-02-21 |
Family
ID=4585905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2001/000949 WO2002014365A1 (fr) | 2000-06-14 | 2001-06-11 | Nouvelle proteine 12 activatrice du polypeptide-ras gtp et le polynucleotide codant pour ladite proteine |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN1328009A (fr) |
AU (1) | AU9537601A (fr) |
WO (1) | WO2002014365A1 (fr) |
-
2000
- 2000-06-14 CN CN00116501A patent/CN1328009A/zh active Pending
-
2001
- 2001-06-11 AU AU95376/01A patent/AU9537601A/en not_active Abandoned
- 2001-06-11 WO PCT/CN2001/000949 patent/WO2002014365A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
BISCHOFF F.R. ET AL.: "Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport", PROC. NATL. ACAD. SCI. USA, vol. 92, no. 5, 1995, pages 1749 - 1753 * |
LOFTUS B.J. ET AL.: "Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q", GENOMICS, vol. 60, no. 3, 1999, pages 295 - 308 * |
Also Published As
Publication number | Publication date |
---|---|
AU9537601A (en) | 2002-02-25 |
CN1328009A (zh) | 2001-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001055189A1 (fr) | NOUVEAU POLYPEPTIDE, SECp43, 32 S'ASSOCIANT AVEC L'ARNt DE LA SELENOCYSTEINE HUMAINE, ET POLYNUCLEOTIDE CODANT POUR CE POLYPEPTIDE | |
WO2002014510A1 (fr) | Nouveau polypeptide, proteine cbp20 humaine 47.74, et polynucleotide codant ce polypeptide | |
WO2002014365A1 (fr) | Nouvelle proteine 12 activatrice du polypeptide-ras gtp et le polynucleotide codant pour ladite proteine | |
WO2002000823A2 (fr) | Nouveau polypeptide, proteine d'activation enzymatique ras gtp 9.57, et polynucleotide codant ce polypeptide | |
WO2001075048A2 (fr) | Nouveau polypeptide, proteine ribosomale humaine s11 23, et polynucleotide codant pour ce polypeptide | |
WO2001083687A2 (fr) | Nouveau polypeptide, proteine pax humaine 23, et polynucleotide codant pour ce polypeptide | |
WO2001087949A1 (fr) | Nouveau polypeptide, proteine pax humaine 9, et polynucleotide codant pour ce polypeptide | |
WO2001070965A1 (fr) | Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide | |
WO2001079432A2 (fr) | Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 58, et polynucleotide codant pour ce polypeptide | |
WO2001081594A1 (fr) | Nouveau polypeptide, proteine pax humaine 17, et polynucleotide codant pour ce polypeptide | |
WO2001081420A1 (fr) | Nouveau polypeptide, laminine 19, et polynucleotide codant pour ce polypeptide | |
WO2001072793A1 (fr) | Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide | |
WO2001090177A1 (fr) | Nouveau polypeptide, activateur humain de la mort naturelle des cellules b13.64, et polynucleotide codant ce polypeptide | |
WO2001075101A1 (fr) | Nouveau polypeptide, proteine humaine de regulation de la transcription 8, et polynucleotide codant pour ce polypeptide | |
WO2001094401A1 (fr) | Nouveau polypeptide, proteine npat humaine 15, et polynucleotide codant pour ce polypeptide | |
WO2001072801A1 (fr) | Nouveau polypeptide, proteine ribosomale humaine s11 12, et polynucleotide codant pour ce polypeptide | |
WO2001070956A1 (fr) | Nouveau polypeptide, proteine humaine de reparation 8 du mesappariement de l'adn, et polynucleotide codant pour ce polypeptide | |
WO2001079429A2 (fr) | Nouveau polypeptide, facteur humain d'echange guanine nucleotide 10, et polynucleotide codant pour ce polypeptide | |
WO2001055419A1 (fr) | Nouveau polypeptide, site de liaison 27 d'arn s1, et polynucleotide codant pour ce polypeptide | |
WO2001090171A1 (fr) | Nouveau polypeptide, proteine humaine ribosomale sii 12, et polynucleotide codant ce polypeptide | |
WO2001081399A1 (fr) | Nouveau polypeptide, proteine pax humaine 14, et polynucleotide codant pour ce polypeptide | |
WO2001087959A1 (fr) | Nouveau polypeptide, proteine pax humaine 11.9, et polynucleotide codant pour ce polypeptide | |
WO2001074893A1 (fr) | Nouveau polypeptide, proteine humaine de regulation de la transcription 11.8, et polynucleotide codant pour ce polypeptide | |
WO2001083778A1 (fr) | Nouveau polypeptide, proteine pax humaine 10.3, et polynucleotide codant pour ce polypeptide | |
WO2001070803A1 (fr) | Nouveau polypeptide, proteine humaine de regulation de la transcription 9.7, et polynucleotide codant pour ce polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |