WO2002009943A1 - A droplet deposition apparatus with releasably attached nozzle plate - Google Patents
A droplet deposition apparatus with releasably attached nozzle plate Download PDFInfo
- Publication number
- WO2002009943A1 WO2002009943A1 PCT/EP2001/008890 EP0108890W WO0209943A1 WO 2002009943 A1 WO2002009943 A1 WO 2002009943A1 EP 0108890 W EP0108890 W EP 0108890W WO 0209943 A1 WO0209943 A1 WO 0209943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle plate
- channel
- deposition apparatus
- termination surface
- droplet deposition
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/1433—Structure of nozzle plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2002/14362—Assembling elements of heads
Definitions
- This invention relates to droplet deposition apparatus and especially to ink jet printheads .
- it relates to methods for attaching the nozzle plate to the printhead body.
- the printing defects mentioned above can be caused by clogged nozzles, e.g., by drying of the ink in the nozzle or by impurities in the ink, by damaged nozzles, e.g., by the presence of hard pigments in the ink.
- SOHO Small Office/Home Office
- larger printheads even page wide printheads are used.
- a typical example of such a printhead has been disclosed in US-A-5 855 713. This patent discloses a printhead with a body with a plurality of parallel channels therein, the channels terminating in a common channel termination plane and a nozzle plate mounted on the body at the channel termination plane.
- the body and the nozzle plate are firmly bound together so that when printing problems arise due to defects in the nozzles, the whole printhead has to be discarded, or else the rework in removing the nozzle plate and replacing it with a new one is a very cumbersome task.
- the nozzle plate represents less than 20 % of the cost price of the printhead.
- the user is almost forced to discard an expensive printhead of the printer because a fairly inexpensive part of it has a defect.
- EP-A-0 703 082 discloses a printer wherein a nozzle plate is releasably attached to the printhead body by a clamp.
- a nozzle plate is releasably attached to the printhead body by means of a guide rail.
- JP-A-63 064755 discloses nozzle plates that each have only a single nozzle; the nozzle plates are releasably attached to the printhead body by means of protrusions and grooves.
- a nozzle plate is releasably attached to the printhead body by using an adhesive layer so that upon detaching the nozzle plate from the channel termination surface, there is an adhesive break between the adhesive layer and the channel termination surface and there is no cohesive break within the adhesive layer.
- An important advantage of the invention is that upon peeling by a shear force the nozzle plate is removed from the printhead body together with the adhesive layer. No or only a negligible residue of adhesive remains on the printhead body. Thus, if the nozzle plate has a defect, it is easy to remove the nozzle plate and the adhesive layer and to attach a new nozzle plate to the printhead body, thus reusing the printhead body.
- Fig. 1 shows an exploded view of a first embodiment of a releasably attached nozzle plate in accordance with the invention
- Fig. 2 shows an exploded view of a second embodiment of a releasably attached nozzle plate in accordance with the invention
- Fig. 3 shows an exploded view of a second embodiment of a releasably attached nozzle plate in accordance with the invention.
- a multi-channel droplet deposition apparatus - especially in an ink-jet printhead - comprising a body with a plurality of channels terminating in a common channel termination surface and a nozzle plate with through holes placed on said body at said termination surface, it is possible to attach a nozzle plate releasably to the body without having said nozzle plate moving during the operation of the printer, so that the distance nozzle plate/ink receiving medium stays constant and the registering between the nozzle plate and the channels is not diminished. This is even so in printhead structures wherein the outlet of the channel is larger than the opening of the nozzle and where thus, when the ink is propelled through the nozzles by piezo forces, the ink exerts pressure against the nozzle plate.
- the nozzle plate 102 is attached to a frame 101 that is attached to the printhead body 103.
- so-called "mini nozzle plates” are used.
- no frame 101 is used to carry the nozzle plate 102.
- a nozzle plate is releasably attached in accordance with the invention, i.e. by using an adhesive layer so that upon detaching the nozzle plate from the channel termination surface, there is an adhesive break between the adhesive layer and the channel termination surface.
- the nozzle plate is attached to a frame.
- the frame and/or the nozzle plate are releasably attached to the body.
- the frame 101 has a thickness d and inner dimensions X and Y and is provided with a nozzle plate 102 with nozzles 102a.
- the body 103 is, on the side of the surface 104 where the channels 104a for providing ink terminate - this surface is called the "channel termination surface" - machined so that the channel termination surface has lowered edges 105 and that the remainder of said surface is elevated above those edges to a thickness d' chosen so that d' ⁇ d.
- d' d so that the nozzle plate attached to the frame rests in contact on the remainder of the channel termination surface.
- This remainder of the channel termination surface has dimensions X' and Y' chosen so that X' ⁇ X and Y' ⁇ Y.
- X' and Y' are equal to the inner dimensions X and Y of the frame so that the frame fits snugly over the remainder of the channel termination surface.
- registration marks on the channel termination surface can be useful to help the registration of the nozzle plate, these marks are not strictly necessary, since due to the fit of the frame over the elevated part of the channel termination surface, the nozzles are registered with the exits of the ink channels in the channel termination surface.
- the nozzle plate is attached to a frame and the frame and/or the nozzle plate are releasably attached to the body, as in the first embodiment.
- the channel termination surface 104 is not machined and is simply kept flat.
- the frame 101 carrying the nozzle plate 102 is placed on the flat channel termination surface 104 with the nozzle plate 102 positioned between the frame and the channel termination surface and then the frame is fixed to the body 103 of the droplet deposition apparatus.
- the body carries at the channel termination surface at least one registration mark, so that the nozzles in the nozzle plate can easily be brought in register with the openings of the channels in the channel termination surface.
- the frame carrying the nozzle plate can be made from any material known in the art, it can be made of stainless steel or of another metal (e.g. copper, aluminum, nickel, etc) , it can be made of rigid plastic (e.g. polyvinylchloride, polyurethane, polycarbonate, etc.).
- the nozzle plate is micro injection molded.
- the technique of micro injection molding is well known and makes it possible to manufacture parts with dimensions on micrometer scale with excellent control of tolerances and reproducibility .
- This technique makes it also possible to use virtually any polymer known in the art to manufacture the nozzle plate; e.g. thermoplastics, fiber reinforced thermoplastics, thermosetting plastics and elastomers can be used for producing a nozzle plate for use in a multi-channel droplet deposition apparatus according to this invention.
- thermoplastics, fiber reinforced thermoplastics, thermosetting plastics and elastomers can be used for producing a nozzle plate for use in a multi-channel droplet deposition apparatus according to this invention.
- micro injection molding it is possible to produce "mini nozzle plates” that can be combined together for making one large nozzle plate. The advantage of this system is that, when a nozzle is defect, only the "mini nozzle plate" carrying that nozzle has to be replaced.
- FIG. 3 such an apparatus is schematically shown. It shows two “mini nozzle plates” 102 that each have four nozzles 102a. These “mini nozzle plates” may be formed so as to fit tightly in a frame 101 that is attached to the body 103 of the droplet ejection apparatus at the channel termination surface 104. The “mini nozzle plates” may have over their length a notch and the frame may have springs 101a that fit in the notch when the "mini nozzle plates” are pressed in the frame, so as to keep the ⁇ "mini nozzle plates” secured in the frame. The “mini nozzle plates” may also be equipped with a grip for easy removal .
- the number of nozzles in a "mini nozzle plate” depends on the diameter of the nozzles and the nozzle pitch and on the dimension of the "mini nozzle plate” that is desired for easy handling of the "mini nozzle plates”. So, e.g., when a nozzle plate with nozzles having a diameter of 100 u and a pitch of 200 ⁇ m is to be made up with “mini nozzle plates", then it can be beneficial to produce, by micro injection molding, "mini nozzle plates” having something like 25 nozzles in a row, which gives a length of about 0.5 cm for every "mini nozzle plate” .
- the frame 101 can also be an integral part of the body 103; in this case the channel termination surface is preferably machined so as to have raised edges that then act as the frame for accepting the "mini nozzle plates".
- the frame is releasably attached to the body, it is easier to replace a "mini nozzle plate" than when the frame is an integral part of the body.
- no special frame is used to carry the nozzle plate.
- the nozzle plate can either be a "normal” nozzle plate or a “mini nozzle plate”.
- the nozzle plate that is preferably made of a polymeric sheet with through holes, is releasably attached to the body 103.
- the nozzle plate 102 is preferably made of a material that is a chemically resistant ablatable polymer in sheet form, such as polyester, polyether ether ketone or, which is more preferred, polyimide.
- Polyimide has the advantage that it has a relatively low thermal expansion coefficient and that it is obtainable in sheet form in a particularly flat condition approximating to an optically flat or mirror surface, appropriate for the nozzle exit face.
- the nozzle plate can also be coated with a low energy surface coating as disclosed in US-A-5 010 356.
- the nozzle plate can also be made of silicon.
- the nozzles 102a can be made in the nozzle plate using any technique known in the art.
- a possible way to make the nozzles, when these have a diameter of about 300 ⁇ m, is rigorous mechanical drilling.
- laser burning is a fabrication process that is well known to those skilled in the art.
- plasma etching is a method of choice, since by plasma etching nozzles with very smooth walls can be produced. This smoothness of the walls helps to avoid clogging of the nozzles and misdirection of the ink.
- a very good method for making the nozzles is the combination laser/plasma etching wherein a method is used of proper focusing and positioning the laser beam whereby an aperture with smaller diameter (than the one finally needed in the nozzle) is burned through the nozzle plate material. After this initial laser burning a plasma etching step follows to enlarge the diameter of the laser burned aperture to the final diameter of the nozzle.
- the nozzle plate can releasably be fastened to the body by mechanical means, such as screws, clamps, a kind of press- studs, coils springs, etc. It can also be releasably fastened by magnetic forces, e.g. by using a magnetic material to form the frame, or by incorporating permanent magnets either in the frame or in the body or in both.
- a nozzle plate is releasably attached to the printhead body by using an adhesive layer so that upon detaching the nozzle plate from the channel termination surface, there is an adhesive break between the adhesive layer and the channel termination surface and there is no cohesive break within the adhesive layer.
- an adhesive layer When a force is exerted substantially perpendicularly to the bound nozzle plate, there is no movement or displacement of the nozzle plate, but upon peeling by a shear force the nozzle plate is removed from the printhead body together with the adhesive layer.
- a proper combination of three materials must be used, i.e. the adhesive and the materials oJ the two parts that are attached to each other by the adhesive. These two parts are respectively the nozzle plate and the channel termination surface if no intermediate layers are used; see further below for the presence of intermediate layers .
- the nozzle plate is preferably made of polyimide. Some other suitable materials were already mentioned above.
- the channel termination surface is preferably made of PZT, which is a piezoelectric ceramic material. Other possible materials for the channel termination surface include other ceramic materials than PZT, stainless steel and sintered aluminum oxide AI2O3.
- the adhesive is preferably a so called “removable” pressure sensitive adhesive, although certain thermo adhesives can be used as well. Pressure sensitive adhesives that are more or less suitable, depending a.o.
- Acronal 4D on the materials of the two parts that are to be attached to each other by the adhesive, include: Acronal 4D, Acronal 50 D, Acronal DS 3454, Acronal 35 D, Acronal LA 449S, all from BASF; Adhesive 13D and Adhesive 51R, both from CYG, France; Primal EP-6120 and Primal PS-61D, both from Rohm & Haas; SE4367, SE1390, SE4397, all from H.B. Fuller, United Kingdom; R300, R361, R397, all from Rhone-Poulenc .
- a first kind of intermediate layer is a subbing layer that may be applied to the nozzle plate in order to enhance the adherence between the nozzle plate and the adhesive. First the subbing layer is applied to the nozzle plate and subsequently the adhesive layer is applied to the subbing layer. Suitable subbing layers can be determined by experimentation for a given kind of nozzle plate and adhesive .
- a second kind of intermediate layer is a release-enhancing layer that may be applied to the channel termination surface in order to decrease the adherence between the channel termination surface and the adhesive.
- Suitable release-enhancing products depend on the kind of channel termination surface and adhesive and may include products such as Polywax 1000 (polyethylene wax) from Bareco div. , Vydax 1000 [polytetrafluoroethylene (PTF ⁇ ) ] from duPont, Plexigum M345 (polymethyl methacrylate) from Rohm & Haas.
- a third kind of intermediate layer is an intermediate structure, such as a molybdenum plate having orifices, positioned between the channel termination surface and the nozzle plate.
- the nozzle plate is preferably releasably adhered, as described above, to the intermediate structure.
- the intermediate structure may also be releasably adhered to the channel termination surface.
- there is an adhesive layer between the nozzle plate and the channel termination surface positioned either between the nozzle plate and the intermediate structure, or between the intermediate structure and the channel termination surface, or - in which case there are two adhesive layers - even at both positions. It is preferred that the adhesive layer is applied, e.g. by coating, to the nozzle plate (or to the intermediate layer (s) applied already to the nozzle plate) and not to the channel termination surface.
- the nozzle plate, including the adhesive 5 layer is then adhered to the channel termination surface.
- the nozzle plate may have corrugations as disclosed in US-A-5 855 713. In this case, micro-cavities and bonding surface lands are formed together in the form of corrugations.
- the ' " ⁇ . r corrugations are typically 2-4 ⁇ m deep and of spacing or wavelength
- the lands left between the micro-cavities have preferably a width in contact with the channel termination surface of between 0.05 times and 0.25 times the width of the micro-cavities.
- the nozzle plate 15 strength of the nozzle plate can be adjusted so as to have a strong adhesion when the force is perpendicular to the plane of the nozzle plate (this force is exerted mainly by the ink pressure in the channels reaching the nozzle plate) and a sufficiently weak adhesion when a peeling force is exerted to separate the nozzle plate from
- Kapton film (Kapton is a Trademark of DuPont; Kapton is a polyimide), type 200 HN, nominal thickness 50.8 ⁇ m
- this adhesive is an acrylate-based, water based latex
- the adhesive was applied to the Kapton film by means of a 20 ⁇ m coating knife. After drying, the thickness of the adhesive layer
- TM 35 was about 10 ⁇ m.
- the Kapton film with the coated adhesive layer was adhered under pressure to the channel termination surface (using a Codor Lamipacker LPP650; the laminating rolls were set up to an impression of 1 mm to create enough pressure between the two rolls)
- the nozzle plate was peeled from the channel termination surface.
- the adhesive was completely removed from the channel termination surface, together with the nozzle plate. No residue of adhesive remained on the channel termination surface.
- Example 1 The PZT was replaced by aluminum oxide AI2O3; otherwise, the tests were identical to Examples 1 - 4. The same test results as in Example 1 were obtained.
- the possibility to replace only the nozzle plate and not the whole printhead is a desirable feature, especially in those ink jet printers - independently of the way of ink ejection - wherein the printhead has a wide array, even a page wide array of nozzles.
- the invention can not only be applied to piezo ink jet printheads but to all kinds of droplet deposition apparatus .
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/333,969 US6817698B2 (en) | 2000-08-01 | 2001-07-31 | Droplet deposition apparatus with releasably attached nozzle plate |
EP01958042A EP1307343B1 (en) | 2000-08-01 | 2001-07-31 | A droplet deposition apparatus with releasably attached nozzle plate |
JP2002516096A JP2004504963A (en) | 2000-08-01 | 2001-07-31 | Droplet deposition device having a detachably mounted nozzle plate |
DE60108640T DE60108640T2 (en) | 2000-08-01 | 2001-07-31 | DROPLETING DEVICE WITH SOLVENT NOZZLE PLATE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00202739A EP1177897A1 (en) | 2000-08-01 | 2000-08-01 | A droplet deposition apparatus with releasably attached nozzle plate |
EP00202739.9 | 2000-08-01 | ||
US23192100P | 2000-09-11 | 2000-09-11 | |
US60/231,921 | 2000-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002009943A1 true WO2002009943A1 (en) | 2002-02-07 |
Family
ID=8171877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/008890 WO2002009943A1 (en) | 2000-08-01 | 2001-07-31 | A droplet deposition apparatus with releasably attached nozzle plate |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP1177897A1 (en) |
JP (1) | JP2004504963A (en) |
DE (1) | DE60108640T2 (en) |
WO (1) | WO2002009943A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0316934D0 (en) * | 2003-07-19 | 2003-08-27 | Xaar Technology Ltd | Method of manufacturing a component for droplet deposition apparatus |
US7188925B2 (en) * | 2004-01-30 | 2007-03-13 | Hewlett-Packard Development Company, L.P. | Fluid ejection head assembly |
JP4556562B2 (en) * | 2004-09-01 | 2010-10-06 | セイコーエプソン株式会社 | Liquid jet head |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121081A (en) | 1979-03-14 | 1980-09-17 | Canon Inc | Recording head |
JPS6364755A (en) | 1986-09-08 | 1988-03-23 | Hitachi Ltd | Recording head |
US5278271A (en) * | 1989-05-02 | 1994-01-11 | Saiden Chemical Industry Co., Ltd. | Pressure sensitive adhesive composition and a pressure sensitive adhesive sheet, a label and a laminate utilizing it |
EP0703082A2 (en) | 1994-09-23 | 1996-03-27 | Compaq Computer Corporation | Removable orifice plate for ink jet printhead and securing apparatus |
WO1998017477A1 (en) * | 1996-10-24 | 1998-04-30 | Xaar Technology Limited | Passivation of ink-jet printheads |
EP0865923A2 (en) * | 1997-03-17 | 1998-09-23 | Lexmark International, Inc. | A fiducial system and method for conducting an alignment inspection |
US5855713A (en) | 1993-10-22 | 1999-01-05 | Xaar Technology Limited | Method of making a multi-channel droplet deposition apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6270494A (en) | 1993-03-01 | 1994-09-26 | Minnesota Mining And Manufacturing Company | Pressure sensitive adhesive comprising tacky microspheres and acrylamide containing binder |
US5695837A (en) | 1995-04-20 | 1997-12-09 | Minnesota Mining And Manufacturing Company | Tackified acrylic adhesives |
US5756625A (en) | 1996-10-11 | 1998-05-26 | Minnesota Mining And Manufacturing Company | Stabilized adhesive microspheres |
JPH11198378A (en) * | 1998-01-16 | 1999-07-27 | Canon Inc | Ink jet head and its manufacture |
-
2000
- 2000-08-01 EP EP00202739A patent/EP1177897A1/en not_active Withdrawn
-
2001
- 2001-07-31 JP JP2002516096A patent/JP2004504963A/en active Pending
- 2001-07-31 EP EP01958042A patent/EP1307343B1/en not_active Expired - Lifetime
- 2001-07-31 WO PCT/EP2001/008890 patent/WO2002009943A1/en active IP Right Grant
- 2001-07-31 DE DE60108640T patent/DE60108640T2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121081A (en) | 1979-03-14 | 1980-09-17 | Canon Inc | Recording head |
JPS6364755A (en) | 1986-09-08 | 1988-03-23 | Hitachi Ltd | Recording head |
US5278271A (en) * | 1989-05-02 | 1994-01-11 | Saiden Chemical Industry Co., Ltd. | Pressure sensitive adhesive composition and a pressure sensitive adhesive sheet, a label and a laminate utilizing it |
US5855713A (en) | 1993-10-22 | 1999-01-05 | Xaar Technology Limited | Method of making a multi-channel droplet deposition apparatus |
EP0703082A2 (en) | 1994-09-23 | 1996-03-27 | Compaq Computer Corporation | Removable orifice plate for ink jet printhead and securing apparatus |
WO1998017477A1 (en) * | 1996-10-24 | 1998-04-30 | Xaar Technology Limited | Passivation of ink-jet printheads |
EP0865923A2 (en) * | 1997-03-17 | 1998-09-23 | Lexmark International, Inc. | A fiducial system and method for conducting an alignment inspection |
Also Published As
Publication number | Publication date |
---|---|
DE60108640T2 (en) | 2006-03-30 |
DE60108640D1 (en) | 2005-03-03 |
EP1307343B1 (en) | 2005-01-26 |
JP2004504963A (en) | 2004-02-19 |
EP1177897A1 (en) | 2002-02-06 |
EP1307343A1 (en) | 2003-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0937579B1 (en) | Ink jet head and manufacturing method thereof, discharge opening plate for head and manufacturing method thereof, and ink jet apparatus with ink jet head | |
US5208604A (en) | Ink jet head and manufacturing method thereof, and ink jet apparatus with ink jet head | |
JP4094716B2 (en) | Inkjet cartridge manufacturing method | |
US6659588B2 (en) | Liquid discharge head and producing method therefor | |
US7942997B2 (en) | High resolution inkjet printer | |
JP2005119319A (en) | Simplified ink jet head | |
US20130062007A1 (en) | Method For Facilitating Assembly Of A Printhead Having A Polymer Layer | |
EP0573238A2 (en) | Vacuum cleaner for acoustic ink printer | |
US5332466A (en) | Liquid jet recording head manufacturing method | |
EP1848593B1 (en) | High resolution inkjet printer | |
EP0534414B1 (en) | Ink jet recording head | |
US5682187A (en) | Method for manufacturing an ink jet head having a treated surface, ink jet head made thereby, and ink jet apparatus having such head | |
US6817698B2 (en) | Droplet deposition apparatus with releasably attached nozzle plate | |
EP1307343B1 (en) | A droplet deposition apparatus with releasably attached nozzle plate | |
JPH0649373B2 (en) | Method for manufacturing ink jet recording head | |
US6302512B1 (en) | Ink jet recording head and method producing the same | |
US8939548B2 (en) | Lamination processes | |
US6550132B1 (en) | Method of making an ink-jet recording head | |
EP0757940A2 (en) | A liquid jet recording head, and a manufacturing method thereof, as well as a liquid jet recording apparatus with said liquid jet recording head mounted thereon | |
JP3044729B2 (en) | Inkjet head | |
JPH08238777A (en) | Method for manufacturing ink jet recording head | |
JPH0445950A (en) | Nozzle plate for ink jet printer head | |
US20120247659A1 (en) | Method For Assembling A Printhead Having An Inkjet Ejector With A Polymer Aperture Plate Attached To An Outlet Plate | |
KR20080013625A (en) | Piezoelectric inkjet printer head and its manufacturing method | |
JPH1016215A (en) | Ink jet head and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001958042 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10333969 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2001958042 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001958042 Country of ref document: EP |