WO2002009865A1 - Production de capsules de polyelectrolyte par precipitation superficielle - Google Patents
Production de capsules de polyelectrolyte par precipitation superficielle Download PDFInfo
- Publication number
- WO2002009865A1 WO2002009865A1 PCT/EP2001/008909 EP0108909W WO0209865A1 WO 2002009865 A1 WO2002009865 A1 WO 2002009865A1 EP 0108909 W EP0108909 W EP 0108909W WO 0209865 A1 WO0209865 A1 WO 0209865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- shell
- template
- template particles
- polyelectrolyte
- Prior art date
Links
- 229920000867 polyelectrolyte Polymers 0.000 title claims abstract description 98
- 238000001556 precipitation Methods 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title abstract description 13
- 239000002775 capsule Substances 0.000 title description 49
- 239000002245 particle Substances 0.000 claims abstract description 142
- 238000000034 method Methods 0.000 claims abstract description 58
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000007791 liquid phase Substances 0.000 claims abstract description 21
- 239000011780 sodium chloride Substances 0.000 claims abstract description 12
- 239000006185 dispersion Substances 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 16
- 239000004480 active ingredient Substances 0.000 claims description 15
- 150000001768 cations Chemical class 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 150000002632 lipids Chemical class 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- 210000004027 cell Anatomy 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 229920002521 macromolecule Polymers 0.000 claims description 7
- 150000001450 anions Chemical class 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 229920001222 biopolymer Polymers 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 230000000035 biogenic effect Effects 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 claims description 2
- 210000002421 cell wall Anatomy 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 claims description 2
- 239000008177 pharmaceutical agent Substances 0.000 claims 1
- 239000003094 microcapsule Substances 0.000 abstract description 16
- 239000002088 nanocapsule Substances 0.000 abstract description 2
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 48
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 32
- 229920000877 Melamine resin Polymers 0.000 description 30
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 29
- 150000003839 salts Chemical class 0.000 description 19
- 239000004816 latex Substances 0.000 description 17
- 229920000126 latex Polymers 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 16
- 230000035699 permeability Effects 0.000 description 16
- 239000000725 suspension Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000013543 active substance Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 12
- 229920000447 polyanionic polymer Polymers 0.000 description 12
- 239000003921 oil Substances 0.000 description 10
- -1 Polymethacrylic acid Chemical compound 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229920002307 Dextran Polymers 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 229960002086 dextran Drugs 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 150000004804 polysaccharides Chemical class 0.000 description 5
- 229920001661 Chitosan Polymers 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000005354 coacervation Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229920000831 ionic polymer Polymers 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- SWFFQOGIONQSGA-UHFFFAOYSA-N 2-(diethylamino)propyl 2-methylprop-2-enoate Chemical compound CCN(CC)C(C)COC(=O)C(C)=C SWFFQOGIONQSGA-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- UAAGNEXELYDRHU-UHFFFAOYSA-M 3-hydroxypropyl-dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)CCCO UAAGNEXELYDRHU-UHFFFAOYSA-M 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical group NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- XFOZBWSTIQRFQW-UHFFFAOYSA-M benzyl-dimethyl-prop-2-enylazanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC1=CC=CC=C1 XFOZBWSTIQRFQW-UHFFFAOYSA-M 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000002961 echo contrast media Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical class ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical compound [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GBSRRQISIWGCNC-UHFFFAOYSA-N methyl propane-1-sulfonate Chemical compound CCCS(=O)(=O)OC GBSRRQISIWGCNC-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- KDOBOUDNGLERSD-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(C)NC(=O)C=C KDOBOUDNGLERSD-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- OXUCOTSGWGNWGC-UHFFFAOYSA-N octane Chemical compound CCCCCCC[CH2-] OXUCOTSGWGNWGC-UHFFFAOYSA-N 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 238000000710 polymer precipitation Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- IZYCXLQBOZUYAR-UHFFFAOYSA-M trimethyl-[3-(2-methylprop-2-enoyloxy)propyl]azanium;bromide Chemical compound [Br-].CC(=C)C(=O)OCCC[N+](C)(C)C IZYCXLQBOZUYAR-UHFFFAOYSA-M 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229960003853 ultrasound contrast media Drugs 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5089—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5138—Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/10—Complex coacervation, i.e. interaction of oppositely charged particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/20—After-treatment of capsule walls, e.g. hardening
- B01J13/22—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2984—Microcapsule with fluid core [includes liposome]
Definitions
- the invention relates to a method for producing nano or microcapsules, which comprise a polyelectrolyte shell, by surface precipitation from the solution.
- capsules with a defined and small shell thickness and with selectively controllable permeability properties can be obtained.
- Different types of covers e.g. Polyelectrolyte shells, polyelectrolyte / ion shells, but also shells made of uncharged polymers can be produced.
- salts dissolved in the liquid contribute significantly to the stability of the shells formed by precipitation.
- suitable salts are all water-soluble, low molecular weight salts, including inorganic salts such as chlorides, bromides, nitrates, sulfates and carbonates, which are mono- and polyvalent
- Alkali, alkaline earth metals or transition metals such as iron, silver, copper.
- Concentrations are preferably in the range of 0.5 mM to 1 M or higher in cases where the effect of the salt is to reduce the electrostatic interactions between the polyelectrolytes on the one hand and the polyelectrolytes and the template surfaces on the other hand.
- the concentrations of the salts are preferably in the range of
- the encapsulation method according to the invention enables the encapsulation of any colloidal particles.
- liquid particles for example emulsified oil droplets or liquid-crystalline particles, or gaseous particles, for example air or other gas bubbles, can also be coated.
- the size of liquid or gas particles to be encapsulated can be adjusted, for example, by adding surface-active substances to the liquid phase.
- any colloidal solids in particular inorganic materials, e.g. Metals, ceramics, oxides or salt crystals, organic materials such as polymer latexes, organic precipitates, solidified oil droplets, gels or crystals, melamine formaldehyde particles, lipid vesicles, biological template particles such as cells or pollen are used.
- the size of the template particles can reach up to 50 ⁇ m - especially when using biological template materials.
- the size of the template particles is preferably up to 10 ⁇ m, particularly preferably from 5 nm to 10 ⁇ m and most preferably from 5 nm to 5 ⁇ m.
- the shape of the template particles is not critical. Both spherical and anisotropic particles can be coated.
- template particles are encapsulated which contain an active ingredient, for example themselves being an active ingredient.
- This active ingredient can be selected, for example, from catalysts, in particular enzymes, for example enzyme crystals, nanoparticles, for example magnetic nanoparticles, biological macromolecules, etc., pharmaceutical active ingredients, sensor molecules, for example radioactive or non-radioactive labeling molecules such as fluorescent labels, crystals, polymers and gases.
- the active substance particles can be added to the liquid phase or can be generated therein by precipitation. The precipitation can take place before or / and during the capsule formation and lead to crystals and / or amorphous structures.
- the capsules can be used for introducing organic liquids such as alcohols or hydrocarbons, for example hexanol, octanol, octane or decane, or for encapsulating gases for ultrasound contrast media.
- organic liquids such as alcohols or hydrocarbons, for example hexanol, octanol, octane or decane
- Such capsules filled with an organic, water-immiscible liquid can also be used for chemical reactions, for example polymerization reactions.
- the monomer can be specifically enriched in the interior of the capsules via its distribution equilibrium. If necessary, the monomer solution can be encapsulated in the interior prior to the start of the synthesis.
- the active substance to be enclosed is coupled or immobilized on the template particle or encapsulated or absorbed by the template particle, e.g. by phagocytosis or endocytosis in living cells or by encapsulation of nanoparticles in soluble template materials. After disintegration of the template particles, the active ingredient is released into the interior of the polyelectrolyte shell.
- the conditions for the disintegration of the template particle are expediently chosen so that no undesired decomposition of the active substance occurs.
- the active substance can be coupled to the template directly, but can also be effected by a binding agent.
- Molecules that can be degraded or degraded under certain conditions are preferably used as binding agents.
- Polylactic acid is particularly preferably used as a binding agent.
- the active ingredient is immobilized on the template particle, for example a partially crosslinked melamine formaldehyde particle, by means of the binding agent, in particular polylactic acid.
- the active ingredient to be enclosed itself becomes part of the layer structure when coating the core.
- the Active ingredient released inside the shell can be enclosed in the shell, in particular nanoparticles and non-biological macromolecular components and preferably biological macromolecules, such as proteins, in particular enzymes.
- 4-pyrene sulfate (4-PS) cationic polymers or particles are fixed in the shell. By dissolving 4-PS in salt solutions, these particles are then released into the interior of the shell.
- the incorporation of active substances into the interior enclosed by the shells can be carried out by introducing the active substances into the template particles beforehand when using reversible microgels as template particles.
- the use of partially cross-linked methylol melamine cores before coating enables substances to be incorporated into swollen cores which are included in the core after reversible shrinkage.
- soluble particles can be used as template particles. These soluble particles can be at least partially disintegrated without destroying the shell formed by precipitation through the particles.
- soluble particles are partially crosslinked melamine formaldehyde particles, which can be adjusted to an acidic value, for example by adjusting the pH in the medium containing the coated particles ⁇ 1, 5, can be resolved while the cladding layer itself remains at least partially intact.
- Partially crosslinked melamine formaldehyde particles can also be dissolved by chemical reactions, in particular by sulfonation in aqueous media. The production of such partially crosslinked melamine formaldehyde particles is described in detail in WO 99/47252.
- dissolvable template particles are soluble polymer cores, for example urea Formaldehyde particles or salt crystals, or salt crystals, for example carbonate compounds whose aqueous solubility is controllable, or organic compounds which are not soluble in water but in ethanol, for example cyanine dyes.
- soluble polymer cores for example urea Formaldehyde particles or salt crystals, or salt crystals, for example carbonate compounds whose aqueous solubility is controllable, or organic compounds which are not soluble in water but in ethanol, for example cyanine dyes.
- cells e.g. eukaryotic cells, such as mammalian erythrocytes or plant cells, unicellular organisms such as yeast, bacterial cells such as E.coli cells, cell aggregates, subcellular particles such as cell organelles, pollen, membrane preparations or cell nuclei or hollow cell wall or pollen wall preparations produced by chemical and / or biological processes , Virus particles and aggregates of biomolecules, e.g. Protein aggregates such as immune complexes, condensed nucleic acids, ligand-receptor complexes etc. can be used.
- the method according to the invention is also suitable for encapsulating living biological cells and organisms. Aggregates of amphiphilic materials, in particular membrane structures such as vesicles, e.g. Liposomes or micelles as well as other lipid aggregates.
- Biological template particles can be disintegrated by adding lysis reagents.
- Lysis reagents that can dissolve biological materials such as proteins and / or lipids are suitable.
- the lysis reagents preferably contain a deproteinizing agent, for example peroxo compounds such as H 2 O 2 or / and hypochlorite compounds such as sodium or potassium hypochlorite.
- the template particles are disintegrated within a short incubation period, for example from 1 min to 1 h at room temperature. The disintegration of the template particles is largely complete, since even when the remaining shells are viewed by electron microscopy, no residues of the particles can be detected.
- capsules with partially dissolved shells can be produced.
- the fragments formed during the disintegration of the template particles can escape from the interior of the capsules through pores, in particular nanopores, of the shell wall. Then, if desired, they can be separated from the capsules. This separation can be carried out by methods known to the person skilled in the art, for example by dialysis, filtration, centrifugation or / and controlled phase separation. However, it is often not necessary to separate template particle fragments.
- the capsules can also be used without a separation step.
- liquid or gaseous template particles can also be used, e.g. Drops of a micro or mini emulsion or gas bubbles of the appropriate size. Oil droplets which can be emulsified by ultrasound in an aqueous saline solution are particularly preferably used as the liquid template particles. The size of the liquid droplets or gas bubbles can be determined by appropriate measures, e.g. Set the power and duration of an ultrasound treatment to the desired sizes.
- liquid active ingredients such as perfume oils, pharmaceutically active oils, lipophilic solid active ingredients dissolved in oils or gas bubbles can be encapsulated as contrast agents.
- the interior can be loaded with molecules by varying the permeability of the HüMe as a function of the external physical and chemical parameters. A state of high permeability is set for loading. The enclosed material is then retained by changing the external parameters and / or closing the pores, for example by condensation of the shell or chemical and / or thermal modification of the pores or channels.
- the precipitation method according to the invention permits the deposition of charged and / or uncharged components on the template particle.
- the components required to form the shell contain at least one polyelectrolyte, for example two oppositely charged polyelectrolytes or / and a polyvalent metal cation and a negatively charged polyelectrolyte.
- Polyelectrolytes are generally understood to mean polymers with ionically dissociable groups which can be part or a substituent of the polymer chain.
- the number of these ionically dissociable groups in polyelectrolytes is usually so large that the polymers in the dissociated form (also called polyions) are water-soluble.
- the term polyelectrolytes is also understood to mean ionomers in which the concentration of the ionic groups is not sufficient for solubility in water, but which have sufficient charges in order to undergo self-assembly.
- the shell preferably comprises “real” polyelectrolytes.
- polyelectrolytes are divided into polyacids and polybases. Polyanions are formed from polyacids during dissociation with the elimination of protons, which can be both inorganic and organic polymers.
- Polybases contain groups that are capable of protons, e.g. by reaction with acids with salt formation. Polybases can have chain or lateral dissociable groups and form polycations by taking up protons.
- Polyelectrolytes suitable according to the invention are both biopolymers, such as alginic acid, gum arabic, nucleic acids, pectins, proteins and others, and chemically modified biopolymers, such as ionic or ionizable polysaccharides, for example carboxymethyl cellulose, chitosan and chitosan sulfate, lignin sulfonates and synthetic polymers, such as Polymethacrylic acid, polyvinylsulfonic acid, polyvinylphosphonic acid and polyethyleneimine.
- biopolymers such as alginic acid, gum arabic, nucleic acids, pectins, proteins and others
- chemically modified biopolymers such as ionic or ionizable polysaccharides, for example carboxymethyl cellulose, chitosan and chitosan sulfate, lignin sulfonates and synthetic polymers, such as Polymethacrylic acid, polyvinyl
- Suitable polyanions include naturally occurring polyanions and synthetic polyanions.
- naturally occurring polyanions are alginate, carboxymethylamylose, carboxymethylcellulose, carboxymethyldextran, carageenan, cellulose sulfate, chondroitin sulfate, chitosan sulfate, dextran sulfate, gum arabic, gum guar, gum gellan, heparin, hyaluronic acid and pectin, a xant corresponding pH value.
- Examples of synthetic polyanions are polyacrylates (salts of polyacrylic acid), anions of polyamino acids and their copolymers, polymaleinate, polymethacrylate, polystyrene sulfate, polystyrene sulfonate, polyvinyl phosphate, polyvinyl phosphonate, polyvinyl sulfate, polyacrylamide methyl propane sulfonate, polyl actate (malate), poly (butadiene), poly (butad) ethylene / maleinate), poly (ethacrylate / acrylate) and poly (glycerol methacrylate).
- Suitable polybases include naturally occurring polycations and synthetic polycations.
- suitable naturally occurring polycations are chitosan, modified dextrans, for example diethylaminoethyl-modified dextrans, hydroxymethylcellulose trimethylamine, lysozyme, polylysine, protamine sulfate, hydroxyethylcellulose trimethylamine and proteins at the corresponding pH.
- Examples of synthetic polycations are polyallylamine, polyallylamine hydrochloride, polyamines, Polyvinylbenzyl- trimethyl ammonium chloride, polybrene, polydiallyldimethylammonium chloride, polyethyleneimine, polyimidazoline, polyvinylamine, polyvinylpyridine, poly (acrylamide / methacryloxypropyltrimethylammoniumbromid), poly (diallyldimethylammonium chloride / N-lisopropylacrylamid), poly (dimethylaminoethyl - acrylate / acrylamide), polydimethylaminoethyl methacrylate, polydimethylamino-epichlorohydrin, polyethyleneiminoepichlorohydrin, polymethacryloxyethyltrimethylammonium bromide, hydroxypropylmethacryloxyethyldimethylammonium chloride, poly (methyldiethylaminoethyl meth
- Linear or branched polyelectrolytes can be used.
- the use of branched polyelectrolytes leads to less compact polyelectrolyte multi-films with a higher degree of wall porosity.
- polyelectrolyte molecules can be crosslinked within or / and between the individual layers, e.g. by crosslinking amino groups with aldehydes.
- Amphiphilic polyelectrolytes e.g. Amphiphiie block or random copolymers with partial polyelectrolyte character to reduce permeability to polar small molecules are used.
- amphiphilic copolymers consist of units of different functionality, e.g.
- the capsule walls can be controlled in terms of their permeability or other properties.
- Weak polyelectrolytes, polyampholytes or copolymers with a poly (N-isopropyl-acrylamide) component e.g. Poly (N-isopropylacrylamide-acrylic acid), which change their water solubility as a function of temperature via the equilibrium of hydrogen bonds, which is associated with swelling.
- degradable polyelectrolytes for example photo-, acid-, base-, salt- or thermolabile polyelectrolytes
- the release of enclosed active substances can be controlled by dissolving the capsule walls.
- conductive polyelectrolytes or polyelectrolytes with optically active groups can also be used as capsule components for certain possible applications.
- suitable choice of the polyelectrolytes it is possible to set the properties and composition of the polyelectrolyte shell of the capsules according to the invention in a defined manner. The composition of the shells can be varied within wide limits by the choice of substances in the layer structure.
- polyelectrolytes or ionomers there are no restrictions with regard to the polyelectrolytes or ionomers to be used, as long as the molecules used have a sufficiently high charge and / or have the ability to bind to the via other types of interaction, such as hydrogen bonds and / or hydrophobic interactions layer below.
- Suitable polyelectrolytes are thus both low molecular weight polyelectrolytes or polyions and macromolecular polyelectrolytes, for example polyelectrolytes of biological origin.
- the permeability of the envelope wall is of particular importance for the use of the capsules.
- the large number of available polyelectrolytes enables the production of a large number of shell compositions with different properties.
- the electrical charge of the outer shell can be adapted to the application.
- the inner shell can be adapted to encapsulated active ingredients, which means e.g. stabilization of the active ingredient can be achieved.
- the permeability of the shell wall can also be influenced by the choice of the polyelectrolytes in the shell and by the wall thickness and the ambient conditions. This allows a selective design of the permeability properties as well as a defined change in these properties.
- the permeability properties of the shell can be further modified by pores in at least one of the polyelectrolyte layers. With a suitable choice, such pores can be formed by the polyelectrolytes themselves. In addition to the polyelectrolytes, the shell can also do other things Include substances to achieve a desired permeability. In particular, the introduction of nanoparticles with anionic and / or cationic groups or of surface-active substances, such as surfactants and / or lipids, can reduce the permeability for polar components.
- selective transport systems, such as carriers or channels, in the polyelectrolyte shell, in particular in lipid layers enables the transverse transport properties of the shell to be precisely adapted to the particular application.
- the pores or channels of the envelope wall can be opened or closed in a targeted manner by chemical modification and / or change in the ambient conditions. For example, a high salt concentration of the surrounding medium leads to a high permeability of the envelope wall.
- a first embodiment of the method according to the invention comprises a complex precipitation or coacervation of two oppositely charged polyelectrolytes from alkaline solution, in which both are kept in solution simultaneously without reacting with one another.
- the template particles to be coated are added to this solution.
- acid e.g. HCl titrated to the neutral range, whereby the template particles are encapsulated.
- the template particles can optionally be dissolved by filtration, centrifugation or sedimentation.
- the surface precipitation can be carried out from a solution comprising a complex of a low molecular weight ion and an oppositely charged polyelectrolyte.
- suitable low-molecular ions are metal cations, inorganic anions such as sulfate, carbonate, phosphate, nitrate etc., charged surfactants, charged lipids and charged oligomers in combination with a correspondingly oppositely charged polyelectrolyte. trolyten. This creates a distributed source for one polyelectrolyte in the presence of the other polyelectrolyte.
- the polyelectrolyte of the complex can be both the polycation and the polyanion.
- a positively charged polyelectrolyte with a multiply negatively charged low-molecular anion for example sulfate
- a coating of the template particles taking place.
- the coated template particles can be separated from the free complexes, for example by centrifugation, filtration and subsequent washing, and - if the particles are soluble - can be dissolved to produce microcapsules.
- Yet another preferred embodiment comprises surface precipitation from a solution containing partially destabilized polyelectrolyte complexes (polycation / polyanion) by means of salt addition or / and pH variation.
- polycation / polyanion partially destabilized polyelectrolyte complexes
- the negatively and positively charged polyelectrolyte can be dissolved in an aqueous solution with a high salt content, preferably a salt content of> 0.5 mol / l, e.g. 1 M NaCl, introduced and stirred.
- After adding the template particles they are coated.
- the coated template particles can be obtained, for example, by centrifugation or filtration and subsequent washing and, if appropriate, dissolved to produce microcapsules.
- the shell comprises metal cations and at least one negatively charged polyelectrolyte.
- Divalent metal cations and in particular trivalent metal cations are used as metal cations, for example.
- suitable metal cations are alkaline earth metal cations, transition metal cations and rare earth element cations such as Ca 2+ , Mg 2+ , Y 3 + , Tb 3+ and Fe 3 + .
- monovalent cations such as Ag + can also be used.
- the components required to form the shell comprise at least one macromolecule, e.g. an abiogenic macromolecule, such as an organic polymer, or a biomolecule, such as a nucleic acid, e.g. DNA, RNA or a nucleic acid analog, a polypeptide, a glycoprotein or a polysaccharide with a molecular weight of preferably> 5 kD, and particularly preferably> 10 kD.
- the macromolecules can carry charges, e.g. such as nucleic acids or else uncharged, such as polysaccharides, e.g. Dextran.
- the macromolecules can optionally be combined with polyelectrolytes and / or polyvalent metal cations, e.g. Combinations of macromolecular and low molecular weight biological cell substances, macromolecular and low molecular weight abiogenic substances and macromolecular and biogenic and abiogenic substances can be used.
- the components specified for forming the shell comprise a mixture of a plurality of polyelectrolytes or / and lipids or / and proteins or / and peptides or / and nucleic acids or / and further organic and inorganic compounds of biogenic or abiogenic origin.
- a suitable composition of the solvent with regard to salt content, pH value, co-solvents, surfactants and by a suitable choice of coating conditions, eg temperature, rheological conditions, presence of electrical and / or magnetic fields, presence of light the various shell components become for self-assembly on the templates, creating complex structures with diverse biomimetic properties.
- Yet another preferred embodiment of the method is characterized in that the bringing together of the liquid saline shell phase with the templates changes the system conditions in such a way that without further external stimulation, with the exception of permanent mixing, the casings are built up spontaneously, which, if necessary, can be dissolved the template remains intact.
- the precipitation according to step (b) of the method according to the invention takes place under conditions such that a shell with a defined thickness in the range from 1 to 100 nm, preferably 1 to 50 nm, particularly preferably 5 to 30 nm and most preferably 10 to 20, around the template nm is formed.
- the wall thickness and the homogeneity of the capsule shell are determined by the rate of polymer precipitation. This essentially depends on the concentration of the template particles, the concentration of the coating components and the speed of the solubility change in the liquid phase causing the precipitation.
- the precipitation can take place, for example, by introducing part of the components forming the shell in the liquid phase and then adding one or more further shell components.
- a precipitation step can be used, for example, for a combination of metal cations and oppositely charged polyelectrolytes.
- Another possibility of precipitation consists in that the components required for the formation of the shell are already completely in the liquid phase and that the liquid phase causes the precipitation.
- This change in the liquid phase can include, for example, a change in the pH and / or a change in the composition of the liquid phase, for example by adding a solvent component and / or removing a solvent component.
- precipitation of hydrophilic biopolymers such as DNA or polysaccharides can be effected by adding ethanol to an aqueous liquid phase, while the precipitation of Polyelectrolyte combinations by evaporation of an organic solvent, such as acetone from the liquid phase.
- the coating method according to the invention can comprise carrying out at least one additional coating step before or / and after the precipitation step.
- Such an additional coating step can include, for example, the application of one or more lipid layers or / and the layer-by-layer application of polyelectrolytes.
- a modification of the permeability of a shell can be achieved by depositing lipid layers and / or amphiphilic polyelectrolytes on the polyelectrolyte shell. In this way, the permeability of the shells for small and polar molecules can be greatly reduced.
- lipids that can be deposited on the shells are lipids that carry at least one ionic or ionizable group, e.g. Phospholipids such as dipalmitoylphosphatidic acid or zwitterionic phospholipids such as dipalmitoylphosphatidylcholine or also fatty acids or corresponding long-chain alkylsulfonic acids.
- Phospholipids such as dipalmitoylphosphatidic acid
- zwitterionic phospholipids such as dipalmitoylphosphatidylcholine or also fatty acids or corresponding long-chain alkylsulfonic acids.
- lipid multilayers can be deposited on the shell.
- Polyelectrolytes can be applied in layers, for example as described in WO 99/47252.
- the layered shell structure can be combined, for example, with the precipitation step according to the invention in such a way that a small layer, for example 1 to 4 layers, of polyelectrolytes is first built up on the template particle, followed by a precipitation step according to the invention.
- a layer-by-layer deposition of polyelectrolytes on the shell can also take place after the precipitation steps.
- Monodisperse capsules can be produced by the method according to the invention. It is thus possible to obtain a composition with a capsule distribution in which the proportion of capsules whose deviation from the mean diameter is> 50% is less than 20%, preferably less than 10% and particularly preferably less than 1%.
- the capsules are very stable against chemical, biological, mechanical and thermal loads.
- the capsules can optionally be dried, frozen or / and freeze-dried with included active ingredients without impairing their properties. After thawing or resuspending in a solvent, e.g. aqueous solution, intact capsules are obtained under suitable media conditions and / or with an appropriate media composition.
- a solvent e.g. aqueous solution
- a powdery composition is obtained which can be resuspended in suitable solvents, in particular in aqueous solutions. Drying can be carried out by known methods, in particular at elevated or reduced temperature and / or reduced pressure.
- FIG. 1 shows an embodiment of the method according to the invention comprising the one-step formation of a polyelectrolyte / ion shell on colloidal template particles.
- FIG. 2 shows a further embodiment of the method according to the invention, comprising self-assembly of polymer films on the surface of colloidal particles.
- FIG. 3 shows a scanning microscopic confocal laser image of microcapsules, produced by a one-step precipitation from the temporary mixture water / acetone / sodium bromide with PSS 500 and PBVTAC.
- the template was a dissolvable melamine formaldehyde latex particle with a diameter of 5.2 ⁇ m.
- the solution window was left by evaporation of acetone.
- FIG. 4 shows a scanning microscopic confocal laser image of microcapsules, obtained by a one-step process from the temporary mixture of water / acetone / sodium bromide with PSS 500 and PVBTAC.
- the template was a dissolvable 5.2 ⁇ m diameter melamine formaldehyde latex particle.
- the solution window was left by adding water.
- Figure 5 shows a confocal microscopic image of colloidal
- Figure 6 shows a microscopic confocal image of colloidal particles coated by precipitates of fluorescently labeled dextran (a) and fluorescently labeled DNA (b) on melamine formaldehyde particles by dropwise addition of ethanol to an aqueous suspension.
- FIG. 7 shows empty shells made of the polyanion / metal complex PSS / Tb, characterized by atomic force microscopy.
- FIG. 7a shows the top view of a capsule made of 20 cladding layers and
- FIG. 7b shows the top view of several capsules each made up of about 100 cladding layers.
- FIG. 1 shows a schematic representation of two embodiments of the method according to the invention.
- a suspension of template particles (2) is produced which contains metal ions, for example ions of a polyvalent metal or ions of a noble metal, such as Ag + (4).
- metal ions for example ions of a polyvalent metal or ions of a noble metal, such as Ag + (4).
- an ion / polyelectrolyte shell is precipitated on the template particles.
- the coated template particles (8) can be processed further in different ways. Empty capsules (10) can thus be produced by dissolving the template particles.
- Metal-coated capsules (12) are obtained by reducing the metal ions.
- capsules are produced with an anisotropic shell, the inner part being an ion / polyelectrolyte shell and the outer part being a layered polyelectrolyte / polyelectrolyte shell.
- Empty capsules (18) can then be produced by dissolving the template particles.
- the inner ion / polyelectrolyte part of the shell can be dissolved by removing the metal ions (4), so that the polymer (6) is encapsulated (20) inside the shell formed from the oppositely charged polyelectrolytes (14a, 14b).
- FIG. 2 Another embodiment of the method according to the invention is shown in FIG. 2.
- a suspension of colloidal template particles (32) is presented in a liquid phase, which contains a polymer, for example a nucleic acid, a protein, a polysaccharide or a synthetic polymer, in dissolved form.
- a polymer for example a nucleic acid, a protein, a polysaccharide or a synthetic polymer, in dissolved form.
- Layered deposition of oppositely charged polyelectrolytes produces coated template particles with an anisotropic shell (40), the inner section of the shell being formed by the precipitated polymer and the outer section being formed by layers of oppositely charged polyelectrolyte. If soluble template particles are used, these can be dissolved, a polymer (42) encapsulated in the polyelectrolyte / polyelectrolyte shell being formed.
- Sodium polystyrene sulfate with a molecular weight of about 500,000 (PSS 500 ) and poly (vinylbenzyltrimethylammonium) chloride with a molecular weight of about 1 80,000 (PVBTAC) were purchased from Polysiences Europe GmbH.
- Sodium polystyrene sulfate with a molecular weight of about 70,000 (PSS 70 ) and poly (allylamine hydrochloride) with a molecular weight of 50 to 65,000 (PAH) were purchased from Aldrich.
- MF latex Partially crosslinked monodisperse meiamin-formaldehyde particles (MF latex) with diameters of 5.2 and 10 ⁇ m were obtained from Microparticles GmbH, Berlin, Germany. These particles are decomposable in acidic solutions of HCI (pH - 1), sodium pyrosulfite solutions or organic solvents.
- SFM images were obtained using a Digital Instruments Nanoscope Purple.
- the sample was prepared by applying a drop of the microcapsule suspension to a clean mica surface and drying in air. The dried microcapsules were examined in contact mode.
- Microcapsules produced by layer-by-layer deposition according to the prior art showed a typical ultra-thin shell structure with a small wall thickness of approximately 15 nm. These microcapsules could be completely dissolved by adding the ternary mixture of water / acetone / sodium bromide.
- FIGS. 3 and 4 CLSM images of capsules produced by the one-step surface precipitation according to the invention are shown in FIGS. 3 and 4.
- the solution window was exited by acetone evaporation and in Figure 4 by adding water.
- the size and shape of the microcapsules are similar to that of the template particles.
- a large proportion of the microcapsules are slightly smaller than the original template particles.
- An examination of the permeability properties showed that - as in the case of the step-by-step capsules - small polar dyes can penetrate the shell.
- PSS with a molecular weight of 70,000, PAH with a molecular weight of 50,000 and acridine orange (AO) were obtained from Aldrich.
- Y (NO 3 ) 3 , FeCI 3 and TbCI 3 were purchased from Merck.
- Dipicolinic acid (DPA) and 4-pyrene sulfate (4-PS) were obtained from Molecular probes.
- DNA and dextran (molecular weight 76,000) labeled with rhodamine (Rd) were purchased from Sigma.
- Polystyrene latex particles (PS) modified with sulfate groups were, as in Furizava et al. (Kolloid-ZZPolym, 250 (1972), 908). Dispersions of acid-soluble melamine formaldehyde Hydparticles (MF latex) with diameters of 4 and 6.5 ⁇ m were obtained from Microparticels GmbH, Berlin, Germany.
- Table 1 shows the data relating to the final concentration of MF particles, Tb 3 + ions and the concentration of PSS after addition to the suspension. Remarkably, about 80 to 85% of the PSS used was adsorbed on the MF latex particles at all the concentrations examined.
- the MF particles were examined by confocal microscopy. A typical image for MF particles coated with PSS / Tb 3+ is shown in FIG. 5. The fluorescent label covers the MF particles evenly. Virtually no fluorescent label was found outside the particles. Table 1
- the controlled precipitation of polymers onto the surface of colloidal particles was carried out by reducing the solubility of polymers.
- DNA and dextran were used as polymers because of their low solubility in ethanol.
- Typical fluorescence confocal microscope images are shown in FIGS. 6a and b. As can be seen from the pictures, the fluorescent marking on the particle surface is homogeneous. An estimate of the mean The thickness of the polymer film on the particle gives a value of approximately 50 monomolecular layers of DNA for DNA, ie a thickness of approximately 100 nm.
- FIG. 7a shows a typical image (top view) of a capsule with 20 monomolecular Tb / PSS layers.
- the spherical shape observed in solution by confocal microscopy changes to a more polygonal shape after drying.
- the average minimum height of the capsules obtained from several measurements is approximately 20 nm.
- FIG. 7b shows the top view of an SFM image of a sample with several capsules, consisting of approximately 100 monomolecular layers of Tb / PSS. A number of the capsules have broken. This lower stability is believed to be due to the increased thickness of the sheath, which reduces the permeability of the capsule. When the MF latex is dissolved, this leads to a higher osmotic pressure and thus to an easier breaking of the capsules.
- Example 3 Complex precipitation or coacervation from alkaline solution of PSS and PAH.
- a starting solution of the two polyelectrolytes was prepared, in which both are kept in solution simultaneously without reacting with one another (similar to the ternary solvent). This was achieved by presenting 10 ml of 0.1% (w / w) NaOH solution with 0.1 M NaCl. 15 mg of PSS (70,000 MW) and 10 mg of PAH (50,000 to 65,000 MW) were dissolved in this solution in succession. It was shaken until completely dissolved (approx. 15 minutes). This solution is then stable for several hours. 1 ml of melamine formaldehyde (MF) latex with a diameter of, for example, 4.7 ⁇ m was added.
- MF melamine formaldehyde
- a starting solution of the two polyelectrolytes is prepared, in which both are in solution simultaneously without reacting with one another. This is achieved by presenting 100 ml of 0.1% (w / w) NaOH solution with 0.1 M NaCl. 300 mg of PSS (70,000 MW) and 200 mg of PAH (50-65,000 MW) are dissolved in this solution in succession. It is shaken until completely dissolved. This solution is stable for several hours. 20 ml of perfume oil are added. The Ultra-Turrax is then used for emulsification and then quickly tritrated with 10% (w / w) HCI to the neutral range. The emulsion is then cleaned, e.g. washed several times in the separating funnel. The result was an emulsion that was stable for months.
- Example 5 Surface precipitation from a solution containing a complex of polyelectrolyte and low molecular weight ligand and the correspondingly oppositely charged polyelectrolyte Solution I: 0.5 ml PAH solution (MW 50,000-65,000, 1 mg / ml) with NaCl (0.01-100 mM) + 750 ul sodium sulfate solution (10 -2 M); Solution II: 0.5 ml PSS (MG 70,000, 5 mg / ml) + 10 l melamine formaldehyde template particles with a diameter of 6.1 ⁇ m. Solution II is added to solution I and touched.
- PAH solution MW 50,000-65,000, 1 mg / ml
- NaCl 0.01-100 mM
- Solution II 0.5 ml PSS (MG 70,000, 5 mg / ml) + 10 l melamine formaldehyde template particles with a diameter of 6.1 ⁇ m.
- Solution II is added to solution I and touched.
- the system is cleaned (separation of the coated templates from the free complexes by centrifugation or filtration with subsequent washes).
- the template particles are dissolved by transferring them into a HCl solution of pH 1 and the microcapsules are obtained by further cleaning steps.
- Example 6 Surface precipitation from a solution containing partially destabilized polyelectrolyte complexes (polycation / polyanion) by adding salt and / or pH variation. 20 mg of PSS and 10 mg of PAH are introduced into 10 ml of 1 M NaCl. The system is stirred for 10 minutes. Then 1 ml of 4.7 ⁇ m MF latex is added. The system is stirred for several hours. It is then cleaned or washed by centrifugation or filtration and the templates are dissolved in dilute HCl (pH ⁇ 1) and the capsules are obtained.
- Example 7 One-step precipitation from a solution containing a complex of a polyelectrolyte and a polyvalent ion
- Solution I 1 ml of PSS solution (2 mg / ml) is mixed with 200 ⁇ l of a Y (NO 3 ) 3 solution (2 x 10 "2 M). The resulting charge ratio between sulfate and yttrium is 5: 3.
- Solution II 400 ⁇ l of oil are mixed with 1 ml of water. The mixture is ultrasonically emulsified in an Ultra-Turrax for 3 to 4 minutes. Solution I is then quickly added to solution II and the resulting emulsion is vortexed for 2 minutes. The emulsion is stable for more than 20 hours and can optionally serve as a starting system for further coatings.
- the method according to the invention is universally applicable.
- the physico-chemical conditions of the medium are set in this way, e.g. due to the high salt content that the preformed or / and freshly formed polyelectrolyte complexes in the coating liquid are unstable. It then surprisingly turns out that the distribution of the polyelectrolytes over all involved compartments takes place in finite time, which can be controlled by suitable parameters. Of course, this also includes the particle / medium or oil / medium phase boundary.
- the polyelectrolytes can arrange themselves in the known three-dimensional network structure with more or less water. By post-treatment, e.g. in aqueous solutions of high salt concentration, this can be transferred to other configurations. For example, an insufficiently networked shell can be converted into a more networked one.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/343,670 US7056554B2 (en) | 2000-08-02 | 2001-08-01 | Production of polyelectrolyte capsules by surface precipitation |
DE50103245T DE50103245D1 (de) | 2000-08-02 | 2001-08-01 | Polyelektrolytkapselherstellung durch oberflächenpräzipitation |
CA002417792A CA2417792C (fr) | 2000-08-02 | 2001-08-01 | Production de capsules de polyelectrolyte par precipitation superficielle |
DK01969563T DK1305109T3 (da) | 2000-08-02 | 2001-08-01 | Fremstilling af polyelektrolytkapsler ved overfladepræcipitation |
AT01969563T ATE273067T1 (de) | 2000-08-02 | 2001-08-01 | Polyelektrolytkapselherstellung durch oberflächenpräzipitation |
JP2002515408A JP2004504931A (ja) | 2000-08-02 | 2001-08-01 | 表面沈澱による高分子電解質カプセルの製造 |
EP01969563A EP1305109B1 (fr) | 2000-08-02 | 2001-08-01 | Production de capsules de polyelectrolyte par precipitation superficielle |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10037707.6 | 2000-08-02 | ||
DE2000137707 DE10037707A1 (de) | 2000-08-02 | 2000-08-02 | Polyelektrolytkapselherstellung durch Oberflächenpräzipitation |
DE10050382.9 | 2000-10-11 | ||
DE2000150382 DE10050382A1 (de) | 2000-10-11 | 2000-10-11 | Verkapselung von Flüssigkeiten |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002009865A1 true WO2002009865A1 (fr) | 2002-02-07 |
Family
ID=26006594
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/008899 WO2002009864A1 (fr) | 2000-08-02 | 2001-08-01 | Encapsulation de particules matricielles liquides |
PCT/EP2001/008909 WO2002009865A1 (fr) | 2000-08-02 | 2001-08-01 | Production de capsules de polyelectrolyte par precipitation superficielle |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/008899 WO2002009864A1 (fr) | 2000-08-02 | 2001-08-01 | Encapsulation de particules matricielles liquides |
Country Status (10)
Country | Link |
---|---|
US (2) | US20040013738A1 (fr) |
EP (2) | EP1307282A1 (fr) |
JP (1) | JP2004504931A (fr) |
AT (1) | ATE273067T1 (fr) |
CA (1) | CA2417792C (fr) |
DE (1) | DE50103245D1 (fr) |
DK (1) | DK1305109T3 (fr) |
ES (1) | ES2223914T3 (fr) |
PT (1) | PT1305109E (fr) |
WO (2) | WO2002009864A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002017888A2 (fr) * | 2000-08-28 | 2002-03-07 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Gestion et support de proprietes de liberation de capsules multicouches polyelectrolytiques |
US7321022B2 (en) | 2003-08-29 | 2008-01-22 | Louisiana Tech University Foundation, Inc. | Method for controlling stability of nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7364585B2 (en) | 2003-08-11 | 2008-04-29 | Boston Scientific Scimed, Inc. | Medical devices comprising drug-loaded capsules for localized drug delivery |
WO2009016091A1 (fr) * | 2007-08-01 | 2009-02-05 | Unilever Plc | Particules enrobées |
US7544770B2 (en) | 2003-08-29 | 2009-06-09 | Louisiana Tech Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US7550557B2 (en) | 2003-08-29 | 2009-06-23 | Louisiana Tech University Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US7767219B2 (en) | 2003-01-31 | 2010-08-03 | Boston Scientific Scimed, Inc. | Localized drug delivery using drug-loaded nanocapsules |
US7829119B2 (en) * | 2003-10-20 | 2010-11-09 | William Marsh Rice University | Method to fabricate microcapsules from polymers and charged nanoparticles |
US8119153B2 (en) | 2004-08-26 | 2012-02-21 | Boston Scientific Scimed, Inc. | Stents with drug eluting coatings |
US8187583B2 (en) | 2009-01-30 | 2012-05-29 | Conopco, Inc. | Oil-in-water emulsions |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7101575B2 (en) * | 1998-03-19 | 2006-09-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly |
US7640083B2 (en) | 2002-11-22 | 2009-12-29 | Monroe David A | Record and playback system for aircraft |
JP4944348B2 (ja) * | 2000-09-08 | 2012-05-30 | 三栄源エフ・エフ・アイ株式会社 | テトラフェニルバクテリオクロリン誘導体およびそれを含む組成物 |
DE10127526A1 (de) * | 2001-05-31 | 2002-12-12 | Novosom Ag | Verfahren zur Herstellung und Auflösung von Nano- und Mikrokapseln |
US20080026068A1 (en) * | 2001-08-16 | 2008-01-31 | Baxter Healthcare S.A. | Pulmonary delivery of spherical insulin microparticles |
DE10151290A1 (de) * | 2001-10-22 | 2003-04-30 | Roehm Gmbh | Verfahren zur Herstellung von wirkstoffhaltigen Pellets |
US6837171B1 (en) | 2002-04-29 | 2005-01-04 | Palmer/Snyder Furniture Company | Lightweight table with unitized table top |
US20030119203A1 (en) * | 2001-12-24 | 2003-06-26 | Kimberly-Clark Worldwide, Inc. | Lateral flow assay devices and methods for conducting assays |
US7504364B2 (en) * | 2002-03-01 | 2009-03-17 | Receptors Llc | Methods of making arrays and artificial receptors |
US7153754B2 (en) * | 2002-08-29 | 2006-12-26 | Micron Technology, Inc. | Methods for forming porous insulators from “void” creating materials and structures and semiconductor devices including same |
US20060057625A1 (en) * | 2002-09-16 | 2006-03-16 | Carlson Robert E | Scaffold-based artificial receptors and methods |
US7469076B2 (en) * | 2003-09-03 | 2008-12-23 | Receptors Llc | Sensors employing combinatorial artificial receptors |
US20050136483A1 (en) * | 2003-09-03 | 2005-06-23 | Receptors Llc | Nanodevices employing combinatorial artificial receptors |
US20040137481A1 (en) * | 2002-09-16 | 2004-07-15 | Receptors Llc | Artificial receptor building blocks, components, and kits |
US20050037381A1 (en) * | 2002-09-16 | 2005-02-17 | Receptors Llc | Artificial receptors, building blocks, and methods |
DE10244503A1 (de) * | 2002-09-25 | 2004-04-08 | Capsulution Nanoscience Ag | Methode zur Herstellung und Stabilisierung von Mikro- und Nanosuspensionen mit Amphiphilen und Polyelektrolyten |
DE10254636A1 (de) * | 2002-11-22 | 2004-06-09 | Capsulution Nanoscience Ag | Verfahren zum Modifizieren von Mikropartikeln sowie Vorrichtung zum Modifizieren von Mikropartikeln |
EP1613737A4 (fr) | 2003-03-28 | 2008-12-03 | Receptors Llc | Recepteurs artificiels comprenant des blocs de construction immobilises de maniere reversible et procedes |
DE10361084A1 (de) * | 2003-06-13 | 2005-01-05 | Henkel Kgaa | Lagerstabile Bleichmittelzusammensetzungen auf Basis von Peroxycarbonsäuren |
DE10361170A1 (de) * | 2003-06-13 | 2005-01-05 | Henkel Kgaa | Lagerstabiles Polyelektrolytkapselsystem auf Basis von Peroxycarbonsäuren |
DE10361100A1 (de) * | 2003-06-13 | 2005-01-05 | Henkel Kgaa | Lagerstabile Kapseln auf Basis von Peroxycarbonsäuren |
US7615530B2 (en) * | 2003-08-29 | 2009-11-10 | Artificial Cell Technologies, Inc. | Immunogenic compositions and methods of use |
US7943395B2 (en) | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US8137728B2 (en) * | 2004-03-11 | 2012-03-20 | University Of Massachusetts | Biopolymer encapsulation and stabilization of lipid systems and methods for utilization thereof |
DE102004013637A1 (de) * | 2004-03-19 | 2005-10-13 | Capsulution Nanoscience Ag | Verfahren zur Herstellung von CS-Partikeln und Mikrokapseln unter Verwendung poröser Template sowie CS-Partikel und Mikrokapseln |
US7744644B2 (en) * | 2004-03-19 | 2010-06-29 | Boston Scientific Scimed, Inc. | Medical articles having regions with polyelectrolyte multilayer coatings for regulating drug release |
US8728525B2 (en) * | 2004-05-12 | 2014-05-20 | Baxter International Inc. | Protein microspheres retaining pharmacokinetic and pharmacodynamic properties |
WO2005110592A1 (fr) * | 2004-05-17 | 2005-11-24 | Yki, Ytkemiska Institutet Ab | Particules mesoporeuses chargees avec une substance active |
US7758892B1 (en) * | 2004-05-20 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical devices having multiple layers |
WO2006028930A2 (fr) | 2004-09-03 | 2006-03-16 | Receptors Llc | Recepteurs artificiels combinatoires contenant des elements constitutifs de liaison sur des squelettes |
US7985715B2 (en) * | 2004-09-11 | 2011-07-26 | Receptors Llc | Combinatorial artificial receptors including peptide building blocks |
EP1808225B1 (fr) * | 2004-10-18 | 2014-04-16 | Seiko Epson Corporation | Produit d'encapsulation, procédé servant à produire celui-ci et composition d'encre |
DE502006005846D1 (de) | 2005-04-13 | 2010-02-25 | Abbott Gmbh & Co Kg | Verfahren zur schonenden herstellung hochfeiner partikelsuspensionen und hochfeiner partikel sowie deren verwendung |
EP1885335A1 (fr) * | 2005-04-27 | 2008-02-13 | BAXTER INTERNATIONAL INC. (a Delaware corporation) | Microparticules a surface modifiee et procedes de formation et d'utilisation associes |
JP4997408B2 (ja) * | 2005-05-30 | 2012-08-08 | 独立行政法人産業技術総合研究所 | 中空状複合体及びその製造方法 |
US20070048383A1 (en) * | 2005-08-25 | 2007-03-01 | Helmus Michael N | Self-assembled endovascular structures |
ES2462519T3 (es) * | 2005-10-25 | 2014-05-23 | Artificial Cell Technologies, Inc. | Composiciones inmunógenas y procedimientos de uso |
US7914891B2 (en) | 2005-12-28 | 2011-03-29 | Kimberly-Clark Worldwide, Inc. | Wipes including microencapsulated delivery vehicles and phase change materials |
US7442439B2 (en) | 2005-12-28 | 2008-10-28 | Kimberly-Clark Worldwide, Inc. | Microencapsulated heat delivery vehicles |
US7497351B2 (en) | 2006-05-30 | 2009-03-03 | Kimberly-Clark Worldwide, Inc. | Wet wipe dispensing system |
US7654412B2 (en) | 2006-05-30 | 2010-02-02 | Kimberly-Clark Worldwide, Inc. | Wet wipe dispensing system for dispensing warm wet wipes |
US20070281031A1 (en) * | 2006-06-01 | 2007-12-06 | Guohan Yang | Microparticles and methods for production thereof |
WO2008005509A2 (fr) * | 2006-07-06 | 2008-01-10 | Massachusetts Institute Of Technology | Procédés et compositions destinés à modifier des surfaces biologiques |
US7964574B2 (en) * | 2006-08-04 | 2011-06-21 | Baxter International Inc. | Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes |
JP2010505882A (ja) * | 2006-10-06 | 2010-02-25 | バクスター・インターナショナル・インコーポレイテッド | 表面改質微粒子を含むマイクロエンカプセルならびに、その形成および使用の方法 |
US7517582B2 (en) | 2006-12-14 | 2009-04-14 | Kimberly-Clark Worldwide, Inc. | Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes |
US8192841B2 (en) | 2006-12-14 | 2012-06-05 | Kimberly-Clark Worldwide, Inc. | Microencapsulated delivery vehicle having an aqueous core |
US20090043276A1 (en) * | 2007-08-09 | 2009-02-12 | Boston Scientific Scimed, Inc. | Drug delivery device, compositions and methods relating thereto |
US8431508B2 (en) * | 2007-10-30 | 2013-04-30 | Cerahelix, Inc. | Inorganic structure for molecular separations |
RU2530653C2 (ru) * | 2008-01-24 | 2014-10-10 | Юниверсити Оф Юта Рисерч Фаундейшн | Адгезивные комплексные коацерваты и способы их получения и применения |
US8283384B2 (en) | 2008-01-24 | 2012-10-09 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
EP2103313A1 (fr) * | 2008-03-19 | 2009-09-23 | Koninklijke Philips Electronics N.V. | Procédé pour la synthèse de sphères creuses |
US7924142B2 (en) | 2008-06-30 | 2011-04-12 | Kimberly-Clark Worldwide, Inc. | Patterned self-warming wipe substrates |
US8367427B2 (en) * | 2008-08-20 | 2013-02-05 | Baxter International Inc. | Methods of processing compositions containing microparticles |
US8323685B2 (en) * | 2008-08-20 | 2012-12-04 | Baxter International Inc. | Methods of processing compositions containing microparticles |
US20100047292A1 (en) * | 2008-08-20 | 2010-02-25 | Baxter International Inc. | Methods of processing microparticles and compositions produced thereby |
US8323615B2 (en) * | 2008-08-20 | 2012-12-04 | Baxter International Inc. | Methods of processing multi-phasic dispersions |
CA2750815C (fr) * | 2009-02-09 | 2018-03-13 | Swetree Technologies Ab | Coques polymeres |
US8062555B2 (en) * | 2009-04-16 | 2011-11-22 | Rhodia Operations | Co-assembly method and co-assembled structures made thereby |
WO2011022524A1 (fr) * | 2009-08-20 | 2011-02-24 | Florida State University Research Foundation, Inc. | Complexes polyélectrolytes biocompatibles et leurs méthodes dutilisation |
CA2799818A1 (fr) | 2010-05-24 | 2011-12-01 | University Of Utah Research Foundation | Coacervats complexes adhesifs renforces et leurs procedes de production et d'utilisation |
US9173971B2 (en) | 2010-11-12 | 2015-11-03 | University Of Utah Research Foundation | Simple adhesive coacervates and methods of making and using thereof |
RU2567320C2 (ru) * | 2011-01-28 | 2015-11-10 | Учреждение Российской академии наук Институт теоретической и Экспериментальной биофизики РАН (ИТЭБ РАН) | Способ получения подложек с мнонослойным покрытием на основе полиэлектролитных микрокапсул, содержащих биологически активные материалы |
EP2747742B1 (fr) * | 2011-08-24 | 2016-01-20 | Unilever PLC | Particules d'administration d'agent traitant contenant des polysaccharides non-ioniques |
ES2555605T3 (es) * | 2011-08-24 | 2016-01-05 | Unilever N.V. | Partículas de suministro de agente de beneficio que comprenden dextrano |
FR2986165B1 (fr) * | 2012-01-31 | 2015-07-24 | Capsum | Procede de preparation de capsules rigidifiees |
CN104736689A (zh) * | 2012-10-17 | 2015-06-24 | 宝洁公司 | 非球形小滴 |
US20150105347A1 (en) * | 2012-10-17 | 2015-04-16 | The Procter & Gamble Company | Shape-Changing Droplet |
US10077324B2 (en) | 2013-02-06 | 2018-09-18 | Kci Licensing, Inc. | Polymers, preparation and use thereof |
FR3013218B1 (fr) * | 2013-11-18 | 2016-07-29 | Capsum | Composition comprenant des capsules gelifiees stabilisees par un tampon |
JP6742297B2 (ja) | 2014-07-14 | 2020-08-19 | ユニヴァーシティ オブ ユタ リサーチ ファンデーション | その場凝固複合コアセルベートならびにその製造および使用方法 |
CA3089480A1 (fr) | 2018-01-26 | 2019-08-01 | Fluidx Medical Technology, Llc | Appareil et procede d'utilisation de coacervats complexes a solidification in situ pour une occlusion vasculaire |
CN118599379B (zh) * | 2024-07-29 | 2025-01-03 | 济南市市政工程建设集团有限公司 | 一种自修复超疏水纳米防腐涂料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047253A1 (fr) * | 1998-03-19 | 1999-09-23 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fabrication de particules et de coques creuses enduites multicouches par assemblage automatique de multicouches de nanocomposites sur des gabarits colloidaux decomposables |
EP0972563A1 (fr) * | 1998-07-15 | 2000-01-19 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Fabrication de particules et coquilles vides revêtues de plusieurs couches par autoassemblage électrostatique de multicouche nanocomposite sur des matrices colloidales décomposables |
EP1116516A1 (fr) * | 2000-01-13 | 2001-07-18 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Couchage de particules solides par multicouches polymériques |
WO2001064330A1 (fr) * | 2000-03-02 | 2001-09-07 | Novosom Ag | Nanocapsules a enveloppe de polyelectrolyte |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4640709A (en) * | 1984-06-12 | 1987-02-03 | Monsanto Company | High concentration encapsulation by interfacial polycondensation |
DE59915041D1 (de) * | 1998-03-19 | 2009-07-30 | Max Planck Gesellschaft | Verfahren zum Aufbringen mehrerer Schichten von Beschichtungssubstanzen auf Templatpartikel |
US7101575B2 (en) * | 1998-03-19 | 2006-09-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly |
-
2001
- 2001-08-01 US US10/343,583 patent/US20040013738A1/en not_active Abandoned
- 2001-08-01 WO PCT/EP2001/008899 patent/WO2002009864A1/fr not_active Application Discontinuation
- 2001-08-01 WO PCT/EP2001/008909 patent/WO2002009865A1/fr active IP Right Grant
- 2001-08-01 JP JP2002515408A patent/JP2004504931A/ja not_active Withdrawn
- 2001-08-01 EP EP01971841A patent/EP1307282A1/fr not_active Withdrawn
- 2001-08-01 DE DE50103245T patent/DE50103245D1/de not_active Expired - Lifetime
- 2001-08-01 US US10/343,670 patent/US7056554B2/en not_active Expired - Fee Related
- 2001-08-01 ES ES01969563T patent/ES2223914T3/es not_active Expired - Lifetime
- 2001-08-01 AT AT01969563T patent/ATE273067T1/de not_active IP Right Cessation
- 2001-08-01 EP EP01969563A patent/EP1305109B1/fr not_active Expired - Lifetime
- 2001-08-01 CA CA002417792A patent/CA2417792C/fr not_active Expired - Fee Related
- 2001-08-01 PT PT01969563T patent/PT1305109E/pt unknown
- 2001-08-01 DK DK01969563T patent/DK1305109T3/da active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047253A1 (fr) * | 1998-03-19 | 1999-09-23 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fabrication de particules et de coques creuses enduites multicouches par assemblage automatique de multicouches de nanocomposites sur des gabarits colloidaux decomposables |
EP0972563A1 (fr) * | 1998-07-15 | 2000-01-19 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Fabrication de particules et coquilles vides revêtues de plusieurs couches par autoassemblage électrostatique de multicouche nanocomposite sur des matrices colloidales décomposables |
EP1116516A1 (fr) * | 2000-01-13 | 2001-07-18 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Couchage de particules solides par multicouches polymériques |
WO2001064330A1 (fr) * | 2000-03-02 | 2001-09-07 | Novosom Ag | Nanocapsules a enveloppe de polyelectrolyte |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002017888A2 (fr) * | 2000-08-28 | 2002-03-07 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Gestion et support de proprietes de liberation de capsules multicouches polyelectrolytiques |
WO2002017888A3 (fr) * | 2000-08-28 | 2002-07-25 | Max Planck Gesellschaft | Gestion et support de proprietes de liberation de capsules multicouches polyelectrolytiques |
US7767219B2 (en) | 2003-01-31 | 2010-08-03 | Boston Scientific Scimed, Inc. | Localized drug delivery using drug-loaded nanocapsules |
US8652200B2 (en) | 2003-08-11 | 2014-02-18 | Boston Scientific Scimed, Inc. | Medical devices comprising drug-loaded capsules for localized drug delivery |
US7364585B2 (en) | 2003-08-11 | 2008-04-29 | Boston Scientific Scimed, Inc. | Medical devices comprising drug-loaded capsules for localized drug delivery |
US7538184B2 (en) | 2003-08-29 | 2009-05-26 | Louisiana Tech University Foundation | Method for controlling stability of nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7534860B2 (en) | 2003-08-29 | 2009-05-19 | Louisiana Tech University Foundation | Nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7411038B2 (en) | 2003-08-29 | 2008-08-12 | Louisiana Tech University Foundation | Artificial red blood cells |
US7544770B2 (en) | 2003-08-29 | 2009-06-09 | Louisiana Tech Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US7550557B2 (en) | 2003-08-29 | 2009-06-23 | Louisiana Tech University Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US7348399B2 (en) | 2003-08-29 | 2008-03-25 | Louisiana Tech University Foundation, Inc. | Nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7893198B2 (en) | 2003-08-29 | 2011-02-22 | Louisiana Tech University Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US7321022B2 (en) | 2003-08-29 | 2008-01-22 | Louisiana Tech University Foundation, Inc. | Method for controlling stability of nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7829119B2 (en) * | 2003-10-20 | 2010-11-09 | William Marsh Rice University | Method to fabricate microcapsules from polymers and charged nanoparticles |
US8119153B2 (en) | 2004-08-26 | 2012-02-21 | Boston Scientific Scimed, Inc. | Stents with drug eluting coatings |
WO2009016091A1 (fr) * | 2007-08-01 | 2009-02-05 | Unilever Plc | Particules enrobées |
US8187583B2 (en) | 2009-01-30 | 2012-05-29 | Conopco, Inc. | Oil-in-water emulsions |
Also Published As
Publication number | Publication date |
---|---|
DE50103245D1 (de) | 2004-09-16 |
WO2002009864A9 (fr) | 2002-09-19 |
US7056554B2 (en) | 2006-06-06 |
CA2417792A1 (fr) | 2003-01-30 |
EP1305109A1 (fr) | 2003-05-02 |
JP2004504931A (ja) | 2004-02-19 |
CA2417792C (fr) | 2009-09-08 |
EP1307282A1 (fr) | 2003-05-07 |
US20040013738A1 (en) | 2004-01-22 |
PT1305109E (pt) | 2004-11-30 |
ES2223914T3 (es) | 2005-03-01 |
US20030175517A1 (en) | 2003-09-18 |
ATE273067T1 (de) | 2004-08-15 |
DK1305109T3 (da) | 2004-12-20 |
WO2002009864A1 (fr) | 2002-02-07 |
EP1305109B1 (fr) | 2004-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1305109B1 (fr) | Production de capsules de polyelectrolyte par precipitation superficielle | |
EP1647326B1 (fr) | Procédé de préparation de capsules ayant une enveloppe de polyélectrolyte | |
EP1098696B1 (fr) | Revetement polyelectrolytique de specimens biologiques | |
DE60110809T2 (de) | Mehrschichtige Polyelektrolytkapseln mit kontrollierter und verzögerter Freisetzung | |
DE60000622T2 (de) | Einkapselung von kristallen mit mehrschichtigem überzug | |
DE60109732T2 (de) | Beschichtung von ungeladen soliden teilchen durch polymermehrlagen | |
DE69904307T2 (de) | Herstellung von mit mehrlagen gestrichenen partikeln und hohlen schalen durch elektrostatische selbstorganisierung von nanokompositmehrlagen auf zersetzbaren schablonen | |
Sukhorukov et al. | Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds | |
US7101575B2 (en) | Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly | |
EP1729745B1 (fr) | Procede pour produire des particules de type coeur-ecorce et des microcapsules au moyen de matrices microporeuses, particules de type coeur-ecorce et microcapsules, et leur utilisation | |
DE19812083A1 (de) | Herstellung von Nano- und Mikrokapseln durch schichtweise Polyelektrolyt-Selbstassemblierung | |
Cayre et al. | Hollow microspheres with binary porous membranes from solid-stabilised emulsion templates | |
DE10037707A1 (de) | Polyelektrolytkapselherstellung durch Oberflächenpräzipitation | |
DE19907552A1 (de) | Polyelektrolythüllen auf biologischen Templaten | |
DE10050382A1 (de) | Verkapselung von Flüssigkeiten | |
Dähne et al. | Capsules: Specific Layer Structures | |
Sukhorukov et al. | Nanoengineered Inorganic/Organic Composite Microcapsules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2417792 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10343670 Country of ref document: US Ref document number: 2002515408 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001969563 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001969563 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001969563 Country of ref document: EP |