+

WO2002007740A2 - Schlangentoxin und dessen verwendung als arzneimittel - Google Patents

Schlangentoxin und dessen verwendung als arzneimittel Download PDF

Info

Publication number
WO2002007740A2
WO2002007740A2 PCT/EP2001/007977 EP0107977W WO0207740A2 WO 2002007740 A2 WO2002007740 A2 WO 2002007740A2 EP 0107977 W EP0107977 W EP 0107977W WO 0207740 A2 WO0207740 A2 WO 0207740A2
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cys
cells
nachr
sclc
Prior art date
Application number
PCT/EP2001/007977
Other languages
English (en)
French (fr)
Other versions
WO2002007740A3 (de
Inventor
Christoph Methfessel
Viktor Tsetlin
Yuri Utkin
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU2001276394A priority Critical patent/AU2001276394A1/en
Publication of WO2002007740A2 publication Critical patent/WO2002007740A2/de
Publication of WO2002007740A3 publication Critical patent/WO2002007740A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • SCLC Small Cell Lung Carcinoma
  • Nicotinergic acetylcholine receptors are an important class of ligand-gated ion channels. They are extremely widespread in the human body and in the animal kingdom and are involved in many important processes of signal transmission and cell recognition in the organism (see Lindstrom, Jon M., Nicotinic acetylcholine receptors, in: Ligand-Voltage- Gated Ion Channels, 153-75, Editor (s): North, R. Alan, CRC Press (1995); Bertrand D. and Changeux J.-P., Nicotinic Receptor: an allosteric protein specialized for inter-cellular communication, Seminars in The Neurosciences 7 , 75-90 (1995)).
  • nAChR neuropeptide
  • nAChR complex A number of characteristic chemical, biochemical and structural features can be recognized as a potential subunit of an nAChR complex (Lindstrom JM, Purification and Cloning of Nicotinic Acetylcholine Receptors, p. 3-23, in: Arneric SP and Brioni JD, eds., Neuronal Nicotinic Receptors : Pharmacology and Therapeutic Opportunities, Wiley-Liss (1998)).
  • a functional nAChR complex in the cell membrane of a human body cell consists of five such nAChR proteins. These five subunits of such a receptor complex can be encoded by different nAChR genes, and usually the type and function of a cell determines which combinations of nAChR subunits for the expression of functional nAChR pentamers in their Contribute membrane (Ramirez-Latorre J, Crabtree G, Turner J, Role L., Molecular Composition and Biophysical Properties of Nicotinic Receptors, p. 43-64, in: Arneric SP and Brioni JD, eds., Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities, Wiley-Liss (1998)).
  • the subunits ⁇ 1, ⁇ 1, ⁇ , ⁇ and ⁇ occur preferably in the muscle cells and are responsible there for the transmission of nerve excitation to the muscle.
  • This is the first subfamily of the nAChR in the human organism.
  • the subunits ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 as well as the subunits ß2, ß3 and ß4 are preferentially expressed in nerve cells and neuroendocrine cells, where they form functional nAChR complexes in different compositions and important, not yet fully elucidated Have functions in cellular signal transmission.
  • These "neuronal" nAChR form the second family of nicotinic receptors in the organism.
  • nAChR subunits ⁇ 7 and ⁇ 9 which, in contrast to all other nAChR subunits, can already form functional nAChR channels on their own, ie as homopentameric protein complexes, although it is not excluded that the ⁇ 7 or ⁇ 9 subunits also can form functional nAChR together with other subunits from the first or second family
  • ⁇ 7-nAChR Functional nAChR complexes containing at least one ⁇ 7 subunit. They are in the central nervous system
  • CNS neuroendocrine cells
  • ⁇ 7-nAChR are characterized by a
  • ⁇ 7-nAChR can be blocked or inactivated by certain snake toxins, snail toxins or plant toxins that have no or only little effect on other neuronal nAChR (Bertrand D, Bertrand S, Ballivet M, Pharmacological properties of the homomeric alpha-7 receptor, Neurosci. Lett. 146, 87-90 (1992); Castro NG, Albuquerque EX, Alpha-bungarotoxin sensitive hippocampal nicotinic receptor Channel has a high calcium permeability, Biophysical
  • snake toxins that are known to block ⁇ 7-nAChR include, for example alpha-Bungarotoxin ( ⁇ BgTx) from Bungarus multicinctus or the alpha-Cobratoxin ( ⁇ CbTx) from Naja kaouthia (formerly Naja siamensis) (Hucho, F, Peptide Toxins acting on the Nicotinic Acetylcholine Receptor. Chap. 16, p. 577-610 in: Handbook of Experimantal Pharmacology (1992), Loring, RH, The molecular basis of curaremimetic snake neurotoxin specificity for neuronal nicotinic receptor subtypes,
  • the snake toxins contain, in addition to these nAChR-active alpha toxins, a large number of other, more or less toxic components, which can cause very different effects in the organism. For many of these components are the biological target and the effect on the animal
  • Small cell lung cancer SCLC is one of the most malignant cancers and is responsible for about 25% of lung cancer deaths. It is considered incurable. Therefore, new methods or active ingredients that could inhibit the growth of these cells are of great importance.
  • SCLC cell lines There are numerous strains of cultured SCLC cell lines that have been isolated from SCLC tumors. These cells can be used to examine the biochemical processes that influence the growth and proliferation of these cells and possibly also to test active substances that prevent cell growth and could therefore be suitable as therapeutic agents for the treatment of SCLC tumors.
  • nAChR Maneckjee R, Minna JD, Opioid and nicotine receptors affect growth regulation of human hing cancer cell lines, Proc. Natl. Acad. Sei. USA, 87 , 3294-3298 (1990); Cattaneo MG, Codignola A, Vincentini LM, Clementi F, Sher E, Nicotine stimulates a serotonergic autoerine loop in human small cell hing carcinoma, Cancer Res.
  • Codignola A Tarroni P, Cattaneo MG, Vincentini LM, Clementi F, Sher E, Serotonin release and cell proliferation are under the control of alpha-bungarotoxin sensitive nicotinic receptors in small-cell lung carcinoma cell lines, FEBS Letters 342, 286-290 (1994)) and that certain substances in tobacco smoke such as nicotine or the nitrosamine NNK accelerate the growth and proliferation of SCLC cells in this way (Schuller, H, nitrosamine-induced lung Carcinogenesis and Ca2 + / Calmodulin Antagonists, Cancer Res. Suppl.
  • ⁇ 7-nAChR occurs in malignant small cell lung cancer cells (SCLC) (Tarroni P, Rubboli F, Chini B, Zwart R, Oortgiesen M, Sher E, Clementi F, neuronal-type nicotinic receptors in human neuroblastoma and small- cell lung carcinoma cell lines, FEBS Letters 312, 66-70 (1992); Sciamanna MA,
  • ⁇ 7-nAChR can also be activated by endogenously available substances such as acetylcholine and choline, so that the proliferation-promoting effect of the activation of ⁇ 7-nAChR in the SCLC cells does not necessarily depend on the supply of exogenous ⁇ 7-nAChR Agonists like nicotine or
  • a snail toxin conotoxin Im-I
  • conotoxin Im-I is also known, which is a potent and selective blocker of the ⁇ 7-nAChR.
  • this toxin is characterized by the fact that its binding to the ⁇ 7-nAChR is rapidly reversible, so that a permanent presence of the active substance would be necessary to permanently block the ⁇ 7-nAChR.
  • SCLC small cell lung cancer
  • This peptide (I) is part of the weak toxin from the poison from Naja kaouthia. It is a new chemical compound because, in contrast to all similar peptides described so far, it contains a tryptophan residue W36, which is not found in other similar peptides.
  • the peptides according to the invention are potent and practically irreversible blockers of the ⁇ 7-nAChR. If, for example, the peptide (I) is used in a relatively low concentration of 10 ⁇ M on ⁇ 7-nAChR of the rat, which have been expressed in a heterologous expression system (the Xenopus oocyte, see literature reference), this is normally achieved by administration Ion inward current triggered by lOO ⁇ M acetylcholine in such cells is almost completely blocked. In a similar experiment it can be shown that this effect also occurs on human ⁇ 7-nAChR. It was also shown that the blocking effect of peptide (I) on ⁇ 7 nicotine receptor channels is very long-lasting. While the blockage of the receptor by other toxins decreases after the toxin has been washed out, the blockage of the peptide (I) is almost irreversible and lasts for a long time after the toxin has been washed out.
  • the peptides according to the invention are thus the first peptides which combine a high selectivity for ⁇ 7-nAChR with a practically irreversible effect and thus offer the prerequisites for achieving a targeted inhibition of the proliferation of SCLC cells.
  • the peptides according to the invention are well tolerated and do not trigger any major side effects.
  • the peptides according to the invention are thus potent but physiologically well tolerated inhibitors of the function of ⁇ 7-nAChR.
  • the peptides according to the invention can be used directly to inhibit the growth of
  • SCLC cells or tumors can be used in patients.
  • the peptides according to the invention can also be coupled to a marker which, after binding to the surface of the SCLC cells, is then treated in a second therapeutic step by a cytotoxic active ingredient, such as e.g. one
  • cytotoxic substance suitable for cancer therapy in humans can be used as the cytotoxic active ingredient.
  • the peptides according to the invention can also be used to support the apoptosis-inducing effect of morphine or other opiates and in this way to achieve SCLC therapy. As described above, this effect of morphine or other opiates is made possible and / or enhanced by inhibitors of the nicotine receptor, for example the peptides according to the invention. Since the peptides according to the invention recognize and bind the 7-nAChR on the surface of SCLC cells, they are also suitable for labeling these cells and making them recognizable for diagnostic purposes.
  • the peptides can be derivatized by suitable radioactive, fluorescent, or other additional chemical groups conventionally used for this purpose, so that cells which carry the ⁇ 7-nAChR and are probably cancer cells can be differentiated from other harmless cells or that cancer cells clearly the SCLC disease or other cancer.
  • Possible chemical derivatizations that could be used for this purpose include: radioactive or fluorescent labels, ferritin, inorganic nanoparticles, magnetic or other beads, linkers to polymeric substrates, chemical groups that carry recognition features for antibodies, biotin, enzymes , DNA or RNA
  • the present invention also encompasses short-chain peptides derived from peptide (I) by omitting up to five individual amino acids, replacing them with other amino acids, or by short sequences of up to five other amino acids, and one of which is the peptide (I) show corresponding interaction with the ⁇ 7-nAChR.
  • the present invention also encompasses peptides or proteins with a longer amino acid sequence which, as part of their sequence, contain essential parts of the sequence of the peptide (I) and which are thereby able to recognize and bind to ⁇ 7-nAChR.
  • the peptides according to the invention can influence the cell division, the growth, the morphology, or the physiological behavior of human cells.
  • the invention relates in particular to the influencing of cells which express the 7-subtype of the nicotinic receptor. These include in particular nerve cells, neuroendocrine cells (such as chromaffin cells), endocrine cells of the lungs, cells of the skin and epithelial tissue, and very particularly cancer cells.
  • the invention expressly relates to the influencing of endocrine cells in the lungs and to cancer cells which lead to malignant diseases of the lung tissue and the respiratory tract, and in particular the small cell lung tumor cells (SCLC).
  • SCLC small cell lung tumor cells
  • the invention also relates to pharmaceutical dosage forms which contain the peptides according to the invention, either alone or together with pharmaceutically suitable excipients.
  • dosage forms according to the invention have the purpose that the peptides according to the invention are brought specifically to the place in the organism where the cytostatic or anti-proliferation effect is desired and are largely kept away from other areas of the organism.
  • the peptides according to the invention are in particular in a pharmaceutical form such that the preparation can be inhaled by the patient in such a way that the compounds according to the invention preferably reach the respiratory tract and the lungs.
  • the present invention is particularly advantageous in such a form that the average particle size of the pharmaceutical preparation is in the range of 100 nm-10 ⁇ M, so that when an aerosol is inhaled with a particularly deep and sustainable application of the compounds into the finer branches of the lungs is to be expected.
  • Other conventional pharmaceutical dosage forms such as intravenous administration is also encompassed by the present invention.
  • Fig. 1 The inhibition of the binding of [1251] ⁇ -Bgt to the GST- ⁇ 7- (1-209) fusion protein by the weak toxin, ⁇ -cobratoxin of naja kouthia and naja oxiana neurotoxin NT-JJ according to the invention.
  • the inhibition of the ⁇ 7-nAChR of rats and of human ⁇ 7-nAChR by the weak toxin according to the invention show typical currents before and after by short ACh pulses (100 ⁇ M, 3 s) from oocytes that express either ⁇ 7 receptors from rats (upper lanes) or from humans (lower lanes) 30 minutes of treatment with 2 ⁇ M of the weak toxin according to the invention were generated.
  • the diagrams on the right represent dose-effect inhibition curves with the weak toxin according to the invention, which were determined by plotting the signal currents as a function of the toxin concentration. Values measured in different (2 to 4) cells were normalized to the control current, which was triggered by 100 ⁇ M ACh. The cells were kept at -80 mV.
  • Fig. 3 The practically irreversible blockade of rat ⁇ 7 receptors, which was expressed in Xenopus oocytes, shown by a washout experiment.
  • the molecular weight of the toxin was determined by MALDI TOF using a BRUKER REFLEX (BRUKER) mass spectrometer.
  • the toxin has a molecular weight of 7613 daltons.
  • the structure of the toxin was further determined by Edman degradation of proteolytic fragments using a 473A protein sequencer (Applied Biosystems, Foster City, Ca., USA). This clearly results in the specified sequence of this toxin.
  • the medium was filtered at 0.2 ⁇ m before use and antibiotics were added (20 ⁇ g / ml kanamycin, 100 units / ml penicillin and 100 ⁇ g / ml streptomycin).
  • Electrophysiological recordings were made using a dual electrode voltage clamp (GENECLAMP 500 from Axon Instruments, Forster CA) as already described [Bertrand D, Bertrand S, Ballivet M,
  • FIG. 2 An example of the blocking of ⁇ 7-nAChR by the weak toxin is shown in FIG. 2. It can be seen from the dose-response curves that the toxin acts even more strongly on the rat's ⁇ 7 nAChR than on the human ⁇ 7 nAChR. An example is shown in FIG. 3 that the blocking of the ⁇ 7-nAChR by the weak toxin is almost irreversible. Even after washing out the toxin for 60 minutes, the current triggered by ACh remains far below the initial value. 4. Evidence of inhibition of SCLC cell proliferation
  • the proliferation of cells can be quantified by culturing the cells in a culture medium according to the usual methods. After a suitable incubation period, the cells must be dissociated, stained with a suitable dye, and counted directly in a chamber (Schuller, H. Cell type specific, receptor mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines, Biochemical Pharmacology 38, 3439-3442, 1998). In this way it can be demonstrated that nicotine or others
  • Agonists of the ⁇ 7-nAChR accelerate the growth of these cells, while snake toxins such as alpha-cobratoxin, alpha-bungarotoxin or even weak toxin can slow down or prevent the proliferation of these cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Peptid mit der Aminosäuresequenz (I) oder davon abgeleitete Allele beziehungsweise Peptide, die wesentliche Teile des Peptids (I) enthalten, ein Verfahren zu dessen Herstellung und dessen Verwendung zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung des α7-nACh-Rezeptors therapiert werden können, wobei es sich insbesondere um die Behandlung von Krebs wie das kleinzellige Lungenkarzinom handelt.

Description

Schlangentoxin und dessen Verwendung als Arzneimittel
Die vorliegende Erfindung betrifft ein neues Schlangentoxin sowie davon abgeleitete Peptide oder Verbindungen, dessen Gewinnung und dessen Verwendung zur
Hemmung des Wachstums von Krebszellen, und zwar speziell des kleinzelligen Lungenkarzmoms (SCLC = Small Cell Lung Carcinoma).
Nikotinerge Acetylcholinrezeptoren (nAChR) sind eine wichtige Klasse von ligandengesteuerten Ionenkanälen. Sie kommen im menschlichen Körper wie auch im Tierreich außerordentlich weit verbreitet vor und sind an vielen wichtigen Prozessen der Signalübertragung und der Zellerkennung im Organismus beteiligt (vgl. Lindstrom, Jon M., Nicotinic acetylcholine receptors, in: Ligand-Voltage- Gated Ion Channels , 153-75, Editor(s): North, R. Alan, CRC Press (1995); Bertrand D. und Changeux J.-P., Nicotinic Receptor: an allosteric protein specialized for inter- cellular communication, Seminars in The Neurosciences 7, 75-90 (1995)).
Die bisher bekannten nAChR des menschlichen Organismus lassen sich auf ca. 15 eindeutig identifizierte und molekularbiologisch charakterisierte DNA-Sequenzen oder Gene zurückführen. Jedes dieser Gene kodiert für ein Protein, das durch eine
Reihe von charakteristischen chemischen, biochemischen und strukturellen Merkmalen als potentielle Untereinheit eines nAChR-Komplexes erkennbar ist (Lindstrom J.M., Purification and Cloning of Nicotinic Acetylcholine Receptors, p. 3-23, in: Arneric SP and Brioni JD, eds., Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities, Wiley-Liss (1998)).
Ein funktioneller nAChR-Komplex in der Zellmembran einer menschlichen Körperzelle besteht aus fünf solchen nAChR-Proteinen. Diese fünf Untereinheiten eines solchen Rezeptorkomplexes können von verschiedenen nAChR-Genen kodiert sein, und in der Regel bestimmt die Art und Funktion einer Zelle, welche Kombinationen von nAChR Untereinheiten zur Expression funktioneller nAChR-Pentamere in ihrer Membran beitragen (Ramirez-Latorre J, Crabtree G, Turner J, Role L., Molecular Composition and Biophysical Properties of Nicotinic Receptors, p. 43-64, in: Arneric SP and Brioni JD, eds., Neuronal Nicotinic Receptors: Pharmacology and Thera- peutic Opportunities, Wiley-Liss (1998)).
Es ist bekannt, dass die Untereinheiten αl, ßl,γ, δ und ε vorzugsweise in den Muskelzellen vorkommen und dort für die Übertragung der Nervenerregung auf den Muskel verantwortlich sind. Dies ist die erste Unterfamilie der nAChR im menschlichen Organismus. Die Untereinheiten α2, α3, α4, α5, und α6 sowie die Unterein- heiten ß2, ß3 und ß4 werden bevorzugt in Nervenzellen und neuroendocrinen Zellen exprimiert, wo sie in unterschiedlichen Zusammensetzungen funktionelle nAChR- Komplexe bilden und wichtige, im Einzelnen noch nicht vollständig aufgeklärte Funktionen bei der zellulären Signalübertragung haben. Diese "neuronalen" nAChR bilden die zweite Familie nikotinerger Rezeptoren im Organismus. Schließlich gibt es die Untereinheiten α7 und α9, die im Gegensatz zu allen anderen nAChR-Unter- einheiten bereits allein, also als homopentamere Proteinkomplexe, funktioneile nAChR-Kanäle bilden können, wobei aber nicht ausgeschlossen ist, dass die α7- oder α9-Untereinheiten auch gemeinsam mit anderen Untereinheiten aus der ersten oder zweiten Familie funktionelle nAChR bilden können (Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J., Human 7 acetylcholine receptor: cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and fünctional α7 homomers expressed in Xenopus oocytes, Molecular Pharmacology 45, 546-554 (1994); Alkondon M, Albuquerque EX, Diversity of Nicotinic Acetylcholine Receptors in Rat Hippocampal Neurons, I. Pharmacological and fünctional evidence for distinct structural subtypes., J.
Pharmacol. Expt. Ther. 265, 1455-1473 (1993); Bertrand D, Bertrand S, Ballivet M, Pharmacological properties of the homomeric alpha-7 receptor, Neurosci. Lett. 146, 87-90 (1992); Castro NG, Albuquerque EX, Alpha-bungarotoxin sensitive hippocampal nicotinic receptor Channel has a high calcium permeability, Biophysical Journal 68, 516-524 (1995), Zhang ZW, Vijayaraghavan S, Berg DK, Neuronal acetylcholine recepotrs that bind alpha-Bungarotoxin with high affinity function as ligand-gated ion Channels, Neuron 12, 167-177 (1994)).
Funktionelle nAChR Komplexe, die mindestens eine α7-Untereinheit enthalten, werden hierin als "α7-nAChR" bezeichnet. Sie sind im Zentralen Nervensystem
(ZNS) sehr weit verbreitet, aber kommen auch in anderen Geweben und Zellen vor, zum Beispiel auch in Epithel-, Haut-, oder sekretorischen Zellen und besonders in neuroendocrinen Zellen, unter anderem auch in der Lunge.
Gegenüber den anderen Arten von nAChR zeichnen sich α7-nAChR durch eine
Reihe von besonderen Eigenschaften aus. Sie lassen sich nicht nur vom natürlichen Botenstoff Acetylcholin, sondern auch von dessen natürlichem Abbauprodukt Cholin aktivieren (Albuquerque EX, Pereira EFR, Braga MFM, Alkondon M, Contribution of nicotinic receptors to the function of synapses in the central nervous System: The action of choline as a selective agonist of, 7 receptors, J. Physiology (Paris) 92, 309-
316 (1998)). Sie lassen bei ihrer Aktivierung nicht nur vorrangig Natrium, sondern auch zweiwertiges Calcium durch die Zellmembran fließen, wobei bekannt ist, dass in solcher Weise eindringendes Calcium eine ganze Reihe von biochemischen, regulatorischen und wachstumsfördernden Effekten in Zellen auszulösen vermag. Auch lassen sich α7-nAChR durch bestimmte Schlangentoxine, Schneckentoxine oder Pflanzengifte blockieren oder inaktivieren, die auf andere neuronale nAChR keine oder nur geringe Wirkung haben (Bertrand D, Bertrand S, Ballivet M, Pharmacological properties of the homomeric alpha-7 receptor, Neurosci. Lett. 146, 87-90 (1992); Castro NG, Albuquerque EX, Alpha-bungarotoxin sensitive hippocampal nicotinic receptor Channel has a high calcium permeability, Biophysical
Journal 68, 516-524 (1995)).
Es ist bekannt, dass die Giftseren von verschiedenen Schlangen peptidische Toxine enthalten, die nAChR biochemisch erkennen und binden sowie funktionell blockieren und inaktivieren können (sog. alpha-Toxine). Zu den Schlangentoxinen, die bekanntermaßen den α7-nAChR blockieren können, gehören zum Beispiel das alpha-Bungarotoxin (αBgTx) aus Bungarus multicinctus oder das alpha-Cobratoxin (αCbTx) aus Naja kaouthia (früher Naja siamensis) (Hucho, F, Peptide Toxins acting on the Nicotinic Acetylcholine Receptor. Chap. 16, p. 577-610 in: Handbook of Experimantal Pharmacology (1992), Loring, RH, The molecular basis of curaremimetic snake neurotoxin specificity for neuronal nicotinic receptor subtypes,
J. Toxicology - Toxin Reviews 12 (2), p. 105-153 (1993)). Ein wichtiges Merkmal der Proteinstruktur solcher alpha-Toxine ist die Ausbildung von drei Schleifen oder Fingern, wonach diese Toxine auch als „three flnger toxins" bezeichnet werden (Menez, A, Fünctional architectures of animal toxins: a clue to drug design?, Toxicon 36 (11), 1557-1572 (1998); Tsetlin V., Snake venom alpha-neurotoxins and other
'three-fmger' proteins, Eur. J. Biochem. 264 (2), 281-286 (1999)). Entsprechend den Merkmalen ihrer Sequenzen und der Anzahl disulfidischer Verknüpfungen werden diese Toxine weiter in "short sequence" und "long sequence" Toxine unterschieden (Tsetlin V., Snake venom alpha-neurotoxins and other 'three-fmger' proteins, Eur. J. Biochem. 264 (2), 281-286 (1999)).
Hervorzuheben ist, dass die bereits genannten Toxine neben dem α7-nAChR vorrangig auch die nAChR der Muskulatur angreifen und blockieren, so dass diese Toxine zu einer starken und langanhaltenden Lähmung der Muskulatur führen, und mithin für eine therapeutische Anwendung völlig ungeeignet sind.
Es ist bekannt, dass die Schlangentoxine neben diesen nAChR aktiven alpha-Toxinen eine Vielzahl weiterer, mehr oder weniger toxischer Komponenten enthalten, die ganz unterschiedliche Wirkungen im Organismus hervorrufen können. Für viele dieser Komponenten sind das biologische Target und die Wirkung auf den tierischen
Organismus noch nicht oder nur unvollständig bekannt.
Eine solche Komponente, die in der Literatur schon in den 70er Jahren beschrieben wurde, aber über die sonst bisher nur wenig bekannt war und die insbesondere noch nicht in reiner Form isoliert worden ist, sind die als "weak toxin" bezeichneten
Peptidfraktionen aus dem Gift von Naja melanoleuca. Sie zeigten im Tierversuch an Mäusen oder Ratten keine auffallende toxische Wirkung. Deshalb war bisher völlig unklar, welche biologischen Funktionen ein solches Weak Toxin haben könnte (Carlsson FHH, Snake venom toxins, The primary structure of protein S4C11, A neurotoxin homologue from the venom of forest cobra (Naja melanoleuca), Biochim. Biophys. Acta 400, 310-321 (1975); Joubert FJ, Taljaard N, Snake venoms, The amino acid sequences of two Melanoleuca-type toxins, Hoppe-Seyler's Z. Physiol. Chem. 361, 425-436 (1980), Shafqat J., Siddiqi A.R., Zaidi Z.H., Joernvall H., Extensive multiplicity of the miscellaneous type of neurotoxins from the venom of the cobra Naja naja naja and structural characterization of major components, FEBS Lett. 284, 70-72 (1991)).
Das kleinzellige Lungenkarzinom SCLC ist eine der bösartigsten Krebserkrankungen und ist für etwa 25 % der Todesfälle durch Lungenkrebs verantwortlich. Es gilt als unheilbar. Deshalb sind neue Methoden oder Wirkstoffe, die das Wachstum dieser Zellen hemmen könnten, von großer Bedeutung.
Es existieren zahlreiche Stämme kultivierter SCLC-Zellinien, die aus SCLC Tumoren isoliert worden sind. An diesen Zellen kann man die biochemischen Vorgänge untersuchen, die das Wachstum und die Proliferation dieser Zellen beein- flussen und eventuell auch Wirkstoffe erproben, die das Zellwachstum unterbinden und damit als Therapeutika zur Behandlung von SCLC-Tumoren geeignet sein könnten.
Es ist bekannt, dass die Proliferation von SCLC-Zellen durch die Aktivierung von nAChR gefördert wird (Maneckjee R, Minna JD, Opioid and nicotine receptors affect growth regulation of human hing cancer cell lines, Proc. Natl. Acad. Sei. USA, 87, 3294-3298 (1990); Cattaneo MG, Codignola A, Vincentini LM, Clementi F, Sher E, Nicotine stimulates a serotonergic autoerine loop in human small cell hing carcinoma, Cancer Res. 53, 5566-5568 (1993); Codignola A, Tarroni P, Cattaneo MG, Vincentini LM, Clementi F, Sher E, Serotonin release and cell proliferation are under the control of alpha-bungarotoxin sensitive nicotinic receptors in small-cell lung carcinoma cell lines, FEBS Letters 342, 286-290 (1994)) und dass bestimmte Stoffe im Tabakrauch wie Nikotin oder das Nitrosamin NNK auf diesem Wege das Wachstum und die Proliferation von SCLC-Zellen beschleunigen (Schuller, H, Nitrosamine-induced Lung Carcinogenesis and Ca2+/Calmodulin Antagonists, Cancer Res. Suppl. 52, 2723s-2726s (1992); Schuller HM, Orloff M; Tobacco- specific carcinogenic nitrosamines; Biochem. Pharmacol. 55, 1377-1384 (1998)). Auch ist bekannt, dass α7-nAChR in den malignen kleinzelligen Lungenkrebszellen (SCLC) vorkommen (Tarroni P, Rubboli F, Chini B, Zwart R, Oortgiesen M, Sher E, Clementi F, Neuronal-type nicotinic receptors in human neuroblastoma and small- cell lung carcinoma cell lines, FEBS Letters 312, 66-70 (1992); Sciamanna MA,
Griesmann GE, Williams CL, Lennon VA, Nicotinic Acetylcholine Receptors of Muscle and Neuronal alpha-7 Types Coexpressed in a Small Cell Lung Carcinoma, J. Neurochemistry 69, 3202-3211 (1997)), so dass Blocker dieser speziellen nAChR- Unterart für die Erkennung oder Therapie von SCLC Erkrankungen besonders interessant sein sollten.
Wie bereits oben dargelegt wurde, lassen sich α7-nAChR aber auch durch endogen verfügbare Stoffe wie Acetylcholin sowie Cholin aktivieren, so dass die prolifera- tionsfördernde Wirkung der Aktivierung von α7-nAChR in den SCLC-Zellen nicht notwendigerweise auf die Zufuhr exogener α7-nAChR Agonisten wie Nikotin oder
NNK angewiesen ist.
Es ist bereits gezeigt worden, dass die Blockade der α7-nAChR mit einem geeigneten Wirkstoff die Proliferation der SCLC-Zellen hemmen oder unterbinden kann, zumindest soweit diese Proliferation durch die Aktivierung der oc7-nAChR befördert wird. Insbesondere ist beschrieben, dass die Proliferation von SCLC-Zellen in vitro durch Schlagentoxine wie beispielsweise α-Bungarotoxin, α-Cobratoxin oder Conotoxin-Iml gehemmt wird (Codignola A, Tarroni P, Cattaneo MG, Vincentini LM, Clementi F, Sher E, Serotonin release and cell proliferation are under the control of alpha-bungarotoxin sensitive nicotinic receptors in small-cell lung carcinoma cell lines, FEBS Letters 342, 286-290 (1994); Codignola A, Mclntosh JM, Cattaneo MG, Vicentini LM, Clementi F, Sher E, Alpha-conotoxin Imperialis I inhibits nicotine- evoked hormone release and cell proliferation in human neuroendocrine carcinoma cells, Neurosci. Lett. 206, 53-56 (1996)).
Zusätzlich ist beschrieben worden, dass bei SCLC Zellen von bestimmten Wirkstoffen wie Morphin der Vorgang der Apoptose ausgelöst werden kann, der zu einem Absterben der Zellen führt. Diese Wirkung kann mit Agonisten des Nikotinrezeptors unterbunden werden und mit Antagonisten des Nikotinrezeptors, wie z.B. den bereits genannten Schlangentoxinen, kann diese Unterdrückung der Apoptose wieder rück- gängig gemacht werden.
Dies lässt es denkbar erscheinen, dass Blocker von Nikotinrezeptoren geeignet sind, um das Wachstum und die Vermehrung von SCLC-Zellen zu kontrollieren oder sogar - ggf. in Kombination mit anderen Wirkstoffen - zu einem Absterben dieser Zellen zu führen. Bedauerlicherweise sind die bisher beschriebenen Schlangentoxine, die eine hemmende Wirkung auf den 7-nAChR ausüben können, für eine solche Therapie ungeeignet, insbesondere weil diese Toxine mit noch höherer Potenz die nAChR des Muskels blockieren und somit zu schweren, sogar lebensbedrohlichen Lähmungen führen.
Es ist auch wie bereits erwähnt ein Schneckentoxm, Conotoxin Im-I, bekannt, das ein potenter und selektiver Blocker des α7-nAChR ist. Dieses Toxin zeichnet sich jedoch dadurch aus, dass seine Bindung an den α7-nAChR rasch reversibel ist, so dass zu einer dauerhaften Blockade des α7-nAChR eine ständige Präsenz des Wirkstoffs erforderlich wäre.
Es war daher die Aufgabe der vorliegenden Erfindung, Verbindungen bereitzustellen, die praktisch irreversibel an α7-nAChR binden, jedoch nicht die erheblichen Nebenwirkungen wie beispielsweise die Hemmung von nAChR im Muskel unter Verursachung schwerer Lähmungen aufweisen, und somit zur Behandlung von
Krebs, insbesondere des Small cell lung cancer (SCLC) geeignet sind. Die vorstehende Aufgabe wird erfindungsgemäß durch ein Peptid mit der Aminosäuresequenz
Leu Thr Cys Leu Asn Cys Pro Glu Met Phe Cys Gly Lys Phe Gin Ile 1 5 10 15
Cys Arg Asn Gly Glu Lys Ile Cys Phe Lys Lys Leu His Gin Arg Arg 20 25 30
Pro Leu Ser Trp Arg Tyr Ile Arg Gly Cys Ala Asp Thr Cys Pro Val 35 40 45
Gly Lys Pro Tyr Glu Met Ile Glu Cys Cys Ser Thr Asp Lys Cys Asn 50 55 60
Arg (I)
65
oder davon abgeleitete Allele beziehungsweise durch Verbindungen, die wesentliche
Teile des Peptids (I) enthalten und die vorstehende Wirkung aufweisen, gelöst. Dieses Peptid (I) ist Bestandteil des weak toxins aus dem Gift von Naja kaouthia. Es ist eine neue chemische Verbindung, denn es enthält im Gegensatz zu allen bisher beschriebenen ähnlichen Peptiden einen Tryptophan-Rest W36, der in anderen gleichartigen Peptiden nicht vorkommt.
Es wurde festgestellt, dass die erfindungsgemäßen Peptide potente und praktisch irreversible Blocker des α7-nAChR sind. Wendet man zum Beispiel das Peptid (I) in relativ niedriger Konzentration von lOμM auf α7-nAChR der Ratte an, die in einem heterologen Expressionssystem (der Xenopus Oocyte, s. Literaturangabe) zur Expression gebracht worden sind, so wird der normalerweise durch die Gabe von lOOμM Acetylcholin in solchen Zellen ausgelöste Ionen-Einwärtsstrom fast vollständig blockiert. In einem gleichartigen Experiment kann man zeigen, dass diese Wirkung auch an humanen α7-nAChR stattfindet. Weiter konnte gezeigt werden, dass die blockierende Wirkung des Peptids (I) auf α7- Nikotinrezeptorkanäle sehr lang anhaltend ist. Während die Blockade des Rezeptors durch andere Toxine nach dem Auswaschen des Toxins wieder nachlässt, ist die Blockade des Peptids (I) fast irreversibel und hält nach Auswaschen des Toxins für längere Zeit an.
Somit sind die erfindungsgemäßen Peptide die ersten Peptide, die eine hohe Selektivität für α7-nAChR mit einer praktisch irreversiblen Wirkung verbinden und damit die Voraussetzungen bieten, eine gezielte Hemmung der Proliferation von SCLC-Zellen zu erreichen. Zugleich sind die erfindungsgemäßen Peptide gut verträglich und löst keine größeren Nebenwirkungen aus. Damit sind die erfindungsgemäßen Peptide potente, aber physiologisch gut verträgliche Hemmer der Funktion von α7-nAChR.
Die erfindungsgemäßen Peptide können direkt zur Hemmung des Wachstums von
SCLC-Zellen oder Tumoren in Patienten eingesetzt werden.
Weiterhin kann die erfindungsgemäßen Peptide auch an einen Marker gekoppelt werden, der dann nach der Bindung an die Oberfläche der SCLC-Zellen in einem zweiten Therapieschritt von einem cytotoxischen Wirkstoff, wie z.B. einem
Kompelementsystem, erkannt wird, was zur gezielten Zerstörung dieser markierten Zellen führt. Als cytotoxischer Wirkstoff kann hierbei jede für die Krebstherapie beim Menschen geeignete cytotoxische Substanz eingesetzt werden.
Auch können die erfindungsgemäßen Peptide dazu verwendet werden, die Apoptose- auslösende Wirkung von Morphin oder anderen Opiaten zu unterstützen und auf diesem Wege zu einer Therapie des SCLC zu gelangen. Wie vorstehend beschrieben wird diese Wirkung von Morphin oder anderen Opiaten durch Hemmer des Nikotinrezeptors wie zum Beispiel den erfindungsgemäßen Peptiden ermöglicht und/oder verstärkt. Indem die erfindungsgemäßen Peptide die 7-nAChR auf der Oberfläche von SCLC- Zellen erkennen und binden, sind sie auch geeignet, diese Zellen zu markieren und für diagnostische Zwecke erkennbar zu machen. Dazu können die Peptide durch geeignete herkömmlich für diesen Zweck verwendete radioaktive, fluoreszente, oder andere zusätzliche chemische Gruppen derivatisiert werden, so dass Zellen, die den α7-nAChR tragen und wahrscheinlich Krebszellen sind, von anderen harmlosen Zellen differenziert werden können oder dass Krebszellen eindeutig der Erkrankung SCLC oder einer anderen Krebsart zugeordnet werden könnten.
Dazu gehört auch, die erfindungsgemäßen Peptide chemisch so zu modifizieren, dass sie leichter erkannt werden können. Als chemische Derivatisierungen, die zu diesem Zweck eingesetzt werden könnten, kommen unter anderem in Betracht: Radioaktive oder fluoreszierende Markierungen, Ferritin, anorganische Nanopartikel, magnetische oder andere Beads, Linker zu polymeren Substraten, chemische Gruppen, die Erkennungsmerkmale für Antikörper tragen, Biotin, Enzyme, DNA- oder RNA-
Sequenzen.
Die vorliegende Erfindung umfasst auch kurzkettige Peptide, die vom Peptid (I) abgeleitet sind, indem bis zu fünf einzelne Aminosäuren weggelassen, durch andere Aminosäuren ausgetauscht, oder durch kurze Sequenzen von bis zu fünf beliebigen anderen Aminosäuren ersetzt worden sind, und welche eine dem Peptid (I) entsprechende Wechselwirkung mit dem α7-nAChR zeigen.
Die vorliegende Erfindung umfasst auch Peptide oder Proteine mit einer längeren Aminosäurensequenz, welche als Teil ihrer Sequenz wesentliche Teile der Sequenz des Peptids (I) enthalten, und die dadurch in der Lage sind, α7-nAChR zu erkennen und an sie zu binden.
Die erfindungsgemäßen Peptide können die Zellteilung, das Wachstum, die Morpho- logie, oder das physiologische Verhalten von menschlichen Zellen beeinflussen. Insbesondere können die Zellteilung, das Wachstum, die Morphologie oder das Ver- halten solcher menschlicher Zellen beeinflusst werden, die in ihrer Zellmembran nikotinerge Acetylcholinrezeptoren ausprägen. Unter den nikotinerg empfindlichen Zellen bezieht sich die Erfindung ganz besonders auf die Beeinflussung von Zellen, die den 7- Subtyp des nikotinergen Rezeptors ausprägen. Dazu zählen insbesondere Nervenzellen, Neuroendocrine Zellen (wie z.B. Chromaffinzellen), endocrine Zellen der Lunge, Zellen der Haut und des Epithelialgewebes, und ganz besonders auch Krebszellen.
Ganz ausdrücklich bezieht sich die Erfindung auf die Beeinflussung von endocrinen Zellen der Lunge sowie auf Krebszellen, die zu malignen Erkrankungen des Lungengewebes und der Atemwege führen, und dabei ganz speziell die kleinzelligen Lungentumorzellen (SCLC).
Gegenstand der Erfindung sind weiter auch pharmazeutische Darreichungsformen, welche die erfindungsgemäßen Peptide enthalten, sei es allein oder zusammen mit pharmazeutisch geeigneten Hilfsstoffen.
Erfindungsgemäß sind insbesondere Darreichungsformen, die den Zweck haben, dass die erfindungsgemäßen Peptide gezielt an jene Stelle im Organismus gebracht werden, an der die cytostatische oder proliferationshemmende Wirkung erwünscht ist, und von anderen Bereichen des Organismus weitgehend ferngehalten wird.
Erfindungsgemäß ist insbesondere die Darreichung der erfindungsgemäßen Peptide in einer solchen pharmazeutischen Form, dass die Zubereitung vom Patienten in der Weise inhaliert werden kann, so dass die erfindungsgemäßen Verbindungen bevorzugt in die Atemwege und die Lunge gelangen. Besonders erfindungsgemäß ist darüber hinaus die Darreichung in einer solchen Form, dass die mittlere Teilchengröße der pharmazeutischen Zubereitung im Bereich von 100 nm - lOμM liegt, so dass bei der Inhalation eines Aerosols mit einer besonders tiefen und nachhaltigen Applikation der Verbindungen in die feineren Verästelungen der Lunge zu rechnen ist. Andere herkömmliche pharmazeutische Darreichungsformen wie beispielsweise eine intravenöse Verabreichung sind von der vorliegenden Erfindung ebenfalls umfasst.
Die vorliegende Erfindung wird weiterhin durch Abbildungen veranschaulicht. Es zeigen:
Fig. 1: Die Inhibierung der Bindung von [1251] α-Bgt an das GST-α7-(l-209)- Fusions-Protein durch das erfindungsgemäße weak toxin, α-Cobratoxin von naja kouthia und naja oxiana neurotoxin NT-JJ.
Fig. 2: Die Inhibierung der α7-nAChR von Ratten und von humanen α7-nAChR durch das erfindungsgemäße weak toxin. Die Diagramme auf der linken Seite stellen typische Ströme dar, die durch kurze ACh-Impulse (100 μM, 3 s) von Oozyten, welche entweder α7-Rezeptoren von Ratten (obere Spuren) oder von Menschen (untere Spuren) exprimieren, vor und nach 30-minütiger Behandlung mit 2 μM des erfindungsgemäßen weak toxins erzeugt wurden. Die Diagramme auf der rechten Seite stellen Dosis- Wirkungs-lnhibierungskurven mit dem erfindungsgemäßen weak toxin dar, die durch Auftragung der Signalströme als Funktion der Toxin-Konzentration ermittelt wurden. In unterschiedlichen (2 bis 4) Zellen gemessene Werte wurden auf den Kontrollstrom normiert, der durch 100 μM ACh ausgelöst wurde. Die Zellen wurden bei -80 mV gehalten.
Fig. 3: Die durch ein Auswaschexperiment gezeigte praktisch irreversible Blockade von Ratten-α7-Rezeptoren, die in Xenopus oocytes exprimiert wurden. Die
Ströme, die bei einer 4 s Anwendung von 50μM ACh zu Beginn, nach 20 min. Inkubation in lOμM des erfindungsgemäßen weak toxins, and nach 20 min. und 60 min. Auswaschen gemessen wurden, zeigen eine praktisch irreversible Blockade des Rezeptors durch das erfindungsgemäße weak toxin an. Die Erfindung wird nachstehend durch bevorzugte Ausführungsbeispiele näher erläutert, auf welches sie jedoch nicht eingeschränkt ist. Soweit nicht anders angegeben, beziehen sich nachstehend alle Mengenangaben auf Gewichtsprozente.
Beispiele
1. Isolierung des Weak Toxin
Schlangen der Gattung Naja kaouthia wurden in Gefangenschaft gehalten und durch manuelle Massage der Giftdrüse gemolken. Das Gift wurde über wasserfreiem CaCl2 getrocknet und bei -20°C aufbewahrt.
200-300 mg Naja kaouthia-Gift wurden auf einer Sephadex G-50sf (2.5x95 cm) Säule fraktioniert. Die toxische Hauptfraktion wurde auf einer HEMA BIO 1000 CM
Säule (8x250 mm, Firma Tessek, Tschechien) in einem Ammoniumacetat- Gradienten (pH 7.5) von 20 mM bis 1 M weiter getrennt. Die das weak toxin enthaltende Fraktion wurde schließlich durch Reverse-phase HPLC auf einer Vydac C18 Säule (4.6x250mm) in einem Acetomtril/Wasser-Gradienten (von 15 bis 45%) in Gegenwart von 0.1 % Trifluoressigsäure gereinigt. Die Ausbeute an weak toxin beträgt etwa 1 mg.
Die Molekülmasse des Toxins wurde durch MALDI TOF unter Verwendung eines BRUKER REFLEX (BRUKER)-Mass-spektrometers bestimmt. Das Toxin hat ein Molekulargewicht von 7613 Dalton.
Die Struktur des Toxins wurde weiterhin durch Edman-Abbau von proteolytischen Fragmenten unter Verwendung eines Proteinsequenziergeräts 473A (Applied Biosystems, Foster City, Ca., USA) bestimmt. Daraus ergibt sich eindeutig die ange- gebene Sequenz dieses Toxins.
2. Nachweis der Interaktion des Weak toxins mit 7-nAChR durch Verdrängung der Bindung von α-Bungarotoxin
Eine Lösung aus GST-α7-(l-209)-Fusions-Protein (17 μg/ml, pH 8.0, 0.1% CHAPS; vgl. Ariel, S., Asher, O., Barchan, D., Ovadia, M., Fuchs, S., Ann. N.Y. Acad. Sei. 841 (1998), 93-96) welches die ligandenbindende Domäne des alpha-7 Nikotinrezeptors enthält, wurde mit unterschiedlichen Konzentrationen des zu prüfenden Toxins in einem Flüssigkeitsvolumen von 190 μl für 1 h bei Raumtemperatur inkubiert. Dann wurden 10 μl 0.4 μM [l^Sjjα-Bungarotoxin (αBgt) (dargestellt gem. Klukas, O., Peshenko, I.A., Rodionov, I.L., Telyakova, O.V., Utkin, Yu.N., Tsetlin,
V.l., Bioorgan. Khim. 21 (1995), 152-155) zugegeben und das Gemisch eine weitere Stunde inkubiert. Das nicht gebundene [χ25i] Bgt wurde durch Schnellfiltration durch DE-81 -Filter (Whatman, England) entfernt, die Filter wurden viermal mit 1 ml 50 mM Tris-HCl-Puffer (pH 8.0) mit 0.1% Triton X-100 gewaschen und mittels eines γ-Zählers (Ultragamma (LKB)) gezählt. Das Weak Toxin verdrängt -Bgt in diesem Versuch mit einem IC5o-Wert von 4,3 μM, während mit α-Cobratoxin unter diesen Bedingungen ein IC5o-Wert von 9,1 μM erhalten wird (siehe Fig. 1).
3. Nachweis der Blockade von α7 -nAChR durch das Weak Toxin mit elektro- physiologischen Experimenten in Xenopus Oocyten
Es ist bekannt und Stand der Technik, die Wirkung von Agonisten oder Antagonisten eines Nikotinrezeptors mit elektrophysiologischen Methoden nachzuweisen. Die entsprechenden Methoden und Versuchsanordnungen sind in der Literatur an vielen Stellen beschrieben worden(s. z.B. Kettenmann & Grantyn, eds. 1992). Besonders einfach und zweckmässig ist es hierbei, Monierte Rezeptorgene in Xenopus Oocyten zu injizieren und so zur Expression zu bringen. An diesen Zellen können die notwendigen elektrophysiologischen Messungen dann besonders einfach und bequem durchgeführt werden. (z.B. Bertrand D, Bertrand S, Ballivet M, Pharmacological properties of the homomeric alpha-7 receptor, Neurosci. Lett. 146, 87-90 (1992),
Amar M, Thomas P, Johnson C, Lunt GG, Wonnacott S, Agonist Pharmacology of the neuronal a7 nicotinic receptor expressed in Xenopus Oocytes, FEBS Lett. 327, 284-288 (1993), Cooper JC, Gutbrod O, Witzemann V, Methfessel C, Pharmacology of the nicotinic acetylcholine receptor from fetal rat muscle expressed in Xenopus oocytes, Eur. J. Pharmacol. 309, 287-298 (1996)). Xenopus oocytes wurden isoliert und wie bereits beschrieben bereitgestellt (Bertrand, D. et al., Methods in Neuroscience, 4 (1991), New York, Academic Press, 174-193). Am ersten Tag nach der Isolierung der Oocyten wurden jeweils 10 nl einer Lösung mit 2 ng eines entsprechenden cDNA-Expressionsvektors in die Zellkerne der Oocyten injiziert. Die Oocyten wurden 3 - 5 Tage in einem geeigneten Medium gehalten (BARTH-Lösung bestehend (in mM) aus NaCl 88, KC1 1, NaHCO3 2.4, MgSO4 0.82, Ca(NO3)2 0.33, CaCl2 0.41, HEPES 10, pH 7.4). Um eine Kontamination möglichst gering zu halten, wurde das Medium vor der Verwendung bei 0.2 μm filtriert und mit Antibiotika versetzt (20 μg/ml Kanamycin, 100 Einheiten/ml Penicillin und 100 μg/ml Streptomycin).
Elektrophysiologische Experimente:
Elektrophysiologische Aufzeichnungen wurden unter Verwendung einer Dualelektroden-Spannungsklemme (GENECLAMP 500 von Axon Instruments, Forster CA) wie bereits beschrieben angefertigt [Bertrand D, Bertrand S, Ballivet M,
Pharmacological properties of the homomeric alpha-7 receptor, Neurosci. Lett. 146, 87-90 (1992)]. Eine Superfusion mit OR2 Oozyten-Ringerlösung, enthaltend: 82.5 mM NaCl; 2.5 mM KC1; 2.5 mM CaCl2; 1 mM MgCl2; 5 mM HEPES; bei pH 7.4 (eingestellt mit NaOH) wurde für diese electrophysiologischen Experimenten verwendet. Acetylcholin (Fluka, Buchs, Schweiz) wurde als Stammlösung bei -20°C aufbewahrt und unmittelbar vor dem Experiment dem OR2 zugegeben. Weak toxin- Inkubationen wurden durch Zugabe des Toxins zum Perfusionsmedium durchgeführt. Um die Adsorption des Toxins an Plastikoberflächen zu verhindern, wurden der Lösung 20 ug/ml Rinderserumalbumin (Sigma, Fraktion V) zugegeben.
Ein Beispiel für die Blockade der α7-nAChR durch das Weak Toxin ist in Fig. 2 gezeigt. Aus den Dosis- Wirkungs-Kurven ist erkennbar dass das Toxin am α7-nAChR der Ratte noch stärker wirkt als am humanen α7-nAChR. In Fig. 3 ist ein Beispiel dafür gezeigt, dass die Blockade der α7-nAChR durch das weak toxin fast irre- versibel ist. Auch nach 60-minütigem Auswaschen des Toxins bleibt der durch ACh ausgelöste Strom weit unterhalb des Anfangswertes. 4. Nachweis der Hemmung der Proliferation von SCLC Zellen
Die Proliferation von Zellen lässt sich quantifizieren, indem die Zellen in einem Kulturmedium nach den üblichen Verfahren gezüchtet werden. Nach einer geeigneten Inkubationszeit sind die Zellen zu dissoziieren, mit einem geeigneten Farbstoff anzufärben, und direkt in einer Kammer zu zählen (Schuller, H. Cell type specific, receptor mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines, Biochemical Pharmacology 38, 3439- 3442, 1998). Auf diese Weise lässt sich nachweisen, dass Nikotin oder andere
Agonisten der α7-nAChR das Wachstum dieser Zellen beschleunigen, während Schlangentoxine wie Alpha-Cobratoxin, alpha-Bungarotoxin oder eben auch weak toxin die Proliferation dieser Zellen verlangsamen oder unterbinden können.

Claims

Patentansprüche
1. Peptid mit der Aminosauresequenz
Leu Thr Cys Leu Asn Cys Pro Glu Met Phe Cys Gly Lys Phe Gin Ile 1 5 10 15
Cys Arg Asn Gly Glu Lys Ile Cys Phe Lys Lys Leu His Gin Arg Arg 20 25 30
Pro Leu Ser Trp Arg Tyr Ile Arg Gly Cys Ala Asp Thr Cys Pro Val 35 40 45
Gly Lys Pro Tyr Glu Met Ile Glu Cys Cys Ser Thr Asp Lys Cys Asn ' '50 55 60
Arg (I)
65
oder davon abgeleitete Allele beziehungsweise Peptide, die wesentliche Teile des Peptids (I) enthalten.
2. Peptid nach Anspruch 1, dadurch gekennzeichnet, dass bis zu fünf einzelne Aminosäuren weggelassen, durch andere Aminosäuren ausgetauscht, oder durch kurze Sequenzen von bis zu fünf beliebigen anderen Aminosäuren ersetzt worden sind.
3. Verfahren zur Herstellung eines Peptids gemäß Anspruch 1 oder 2, umfassend die Isolierung des Gifts von Schlangen der Gattung Naja kaouthia durch manuelle Massage der Giftdrüse, das Trocknen des Gifts über wasserfreiem CaCl2, und die Isolierung des Peptids durch sequentielle Ionenaustausch- und Reverse-Phase-Chromatographie.
4. Peptid, erhältlich nach dem Verfahren gemäß Anspruch 3.
5. Peptid nach Anspruch 4, dadurch gekennzeichnet, dass es ein Molekular- gewicht von 7613 Dalton besitzt.
6. Peptid nach Anspruch 4 oder 5, dadurch gekennzeichnet, das es die Aminosäure Tryptophan in seiner Primärsequenz enthält.
7. Pharmazeutische Zusammensetzung, enthaltend mindestens ein Peptid gemäß
Anspruch 1 oder 4.
8. Verwendung eines Peptids gemäß Anspruch 1 oder 4 zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung des α7-nACh-Rezeptors therapiert werden können.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Krankheit Krebs ist.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass es sich um das kleinzellige Lungenkarzinom (SCLC) handelt.
11. Verwendung eines Peptids gemäß Anspruch 1 oder 4 zur Herstellung eines Mittels zur Diagnose von Krebs,.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass es sich um die Diagnose des kleinzelligen Lungenkarzinoms (SCLC) handelt.
13. Verfahren zur Markierung von Tumorzellen in vitro, umfassend die Bindung eines Peptids gemäß Anspruch 1 oder 4 an die Zielzellen.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei den Zielzellen um Zellen des kleinzelligen Lungenkarzinoms (SCLC) handelt.
PCT/EP2001/007977 2000-07-24 2001-07-11 Schlangentoxin und dessen verwendung als arzneimittel WO2002007740A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001276394A AU2001276394A1 (en) 2000-07-24 2001-07-11 Snake toxin and use thereof as a pharmaceutical

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10035854.3 2000-07-24
DE10035854A DE10035854A1 (de) 2000-07-24 2000-07-24 Schlangentoxin und dessen Verwendung als Arzneimittel

Publications (2)

Publication Number Publication Date
WO2002007740A2 true WO2002007740A2 (de) 2002-01-31
WO2002007740A3 WO2002007740A3 (de) 2002-06-20

Family

ID=7649937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007977 WO2002007740A2 (de) 2000-07-24 2001-07-11 Schlangentoxin und dessen verwendung als arzneimittel

Country Status (4)

Country Link
US (1) US20020150975A1 (de)
AU (1) AU2001276394A1 (de)
DE (1) DE10035854A1 (de)
WO (1) WO2002007740A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849540A (zh) * 2014-03-13 2014-06-11 陈海峰 一种蛇蝎益气养生酒及其制备方法
CN109651496A (zh) * 2018-11-20 2019-04-19 南京昂峰医药科技有限公司 一种蛇毒蛋白储备液、其组合物以及稳定蛇毒蛋白的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259237B1 (en) 2006-12-29 2007-08-21 Miller Kent D Pan-antiviral peptides
US9220743B2 (en) * 2010-01-22 2015-12-29 Nuovo Biologics, Llc Pan-antiviral peptides for protein kinase inhibition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232911A (en) * 1990-01-03 1993-08-03 Ventech Research Inc. Mixture of a non-covalent heterodimer complex and a basic amphiphatic peptide as cytotoxic agent
US5565431A (en) * 1994-06-20 1996-10-15 Lipps; Binie V. Cancer cell inhibitors and method
ES2112803B1 (es) * 1996-09-23 1998-12-01 Gil Salvador Contri Nuevo procedimiento para la obtencion de un producto organico destinado al tratamiento y curacion de melanomas, carcinomas y otras enfermedades celulares o no celulares.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849540A (zh) * 2014-03-13 2014-06-11 陈海峰 一种蛇蝎益气养生酒及其制备方法
CN109651496A (zh) * 2018-11-20 2019-04-19 南京昂峰医药科技有限公司 一种蛇毒蛋白储备液、其组合物以及稳定蛇毒蛋白的方法

Also Published As

Publication number Publication date
AU2001276394A1 (en) 2002-02-05
US20020150975A1 (en) 2002-10-17
WO2002007740A3 (de) 2002-06-20
DE10035854A1 (de) 2002-02-07

Similar Documents

Publication Publication Date Title
DE69122956T2 (de) Verfahren und zusammensetzungen zur hemmung der angiogenese
DE69027865T2 (de) ZUSAMMENSETZUNGEN enthaltend omega Conotoxin Peptide Derivate und deren Verwendung ZUR BEHANDLUNG VON ISCHÄMIE-ARTIGEN NEURONALEN SCHÄDIGUNGEN
DE60033437T2 (de) Glp-2 enthaltende formulierungen
DE19735587B4 (de) Peptid mit radioprotektiver Wirkung, dieses enthaltende kosmetische oder pharmazeutische Zusammensetzung, für dieses kodierende Nukleinsäure, Herstellungsverfahren für dieses Peptid und die Verwendung als radioprotektives Agens
DE69737065T2 (de) Insulin c-peptide
DE69228749T2 (de) Neuartige polypeptide und ihre verwendung
DE69633133T2 (de) TFPI-verwandte Peptide die das Wachstums von glatten Muskelzellen inhibieren
DE69928375T2 (de) Analgetikum aus schlangengift
EP3747454B1 (de) Amyloid-beta-bindende peptide und diese peptide zur verwendung für die therapie und die diagnose der alzheimerschen demenz
DE102004051014A1 (de) Chemisch modifizierte Peptidanaloga
EP1056467B1 (de) Verfahren zur behandlung von erkrankungen oder störungen des innenohrs
EP2523968A1 (de) Zyklische peptide zur regulierung von vektoriellen ionenkanälen
WO2002007740A2 (de) Schlangentoxin und dessen verwendung als arzneimittel
DE69932834T2 (de) Neue Peptide
DE102008014880A1 (de) Antientzündliches Polypeptid
AT506150A1 (de) Zyklisches und cystein-freies peptid
DE69901805T2 (de) Pharmazeutische zusammensetzung mit mutiertem tyrosin 353 ezrin
WO2000046245A2 (de) Humane antibiotische proteine
DE3639796A1 (de) Wachstumhinderndes schlangengift-peptid
DE69911632T2 (de) Contulakin-g, analoga davon und deren verwendung
DE60036638T2 (de) Verwendung von colostrinin, dessen peptidbestandteile und deren analoga zur förderung der neuronalen zelldifferenzierung
DE3724323C2 (de) Ein neuer Inhibitor für die Proteinsynthese
EP3558336A1 (de) D-enantiomere peptide zur therapie von chronischem und neuropathetischem schmerz
DE2720041A1 (de) Herzstaerkendes mittel
EP2219663B1 (de) Reverses protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载