+

WO2002007173A1 - Electromagnetically coupled device - Google Patents

Electromagnetically coupled device Download PDF

Info

Publication number
WO2002007173A1
WO2002007173A1 PCT/JP2000/004742 JP0004742W WO0207173A1 WO 2002007173 A1 WO2002007173 A1 WO 2002007173A1 JP 0004742 W JP0004742 W JP 0004742W WO 0207173 A1 WO0207173 A1 WO 0207173A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rectifier circuit
circuit
mos transistor
voltage
Prior art date
Application number
PCT/JP2000/004742
Other languages
English (en)
French (fr)
Inventor
Ikuo Nishimoto
Tatsuya Ueno
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to PCT/JP2000/004742 priority Critical patent/WO2002007173A1/ja
Priority to US10/332,926 priority patent/US6750560B1/en
Priority to JP2002512988A priority patent/JP3867854B2/ja
Priority to AU2000260170A priority patent/AU2000260170A1/en
Publication of WO2002007173A1 publication Critical patent/WO2002007173A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/45Transponders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0087Converters characterised by their input or output configuration adapted for receiving as input a current source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention can generate a stable internal power supply from power energy supplied from an external device by electromagnetic induction coupling via a coil, and / or stably transmit information to and from an external device via the coil.
  • the present invention relates to an electromagnetic inductive coupling device capable of communicating. Background art
  • spherical semiconductors have been proposed in which functional elements such as transistors and sensors and semiconductor integrated circuits that perform predetermined processing functions are formed on the surface of a spherical semiconductor chip (pole) having a diameter of about l mm.
  • a spherical semiconductor of this type in which a coil (loop antenna) 2 that functions as an antenna element is provided on the surface of a spherical semiconductor chip 1.
  • This spherical semiconductor is configured to operate by receiving power supply from an external device using electromagnetic inductive coupling via the coil 2 and to transmit and receive information signals to and from the external device via the coil. You.
  • the integrated circuit formed on the semiconductor chip 1 includes, for example, a power supply unit 3 which receives a power (electromagnetic energy) supplied from the outside via a coil 2 to generate a predetermined internal power supply as shown in FIG. It includes a receiving unit 4 for receiving an information signal from the device via the coil 2 and a transmitting unit 5 for transmitting an information signal via the coil 2 to an external device.
  • the integrated circuit includes a device main body 6 including an arithmetic control unit and the like, and also includes a sensor unit 7 such as a temperature sensing element, a memory 8, and the like, and is configured to perform a predetermined function by the operation of the device main body 6.
  • the transmission and reception of the information signal through the coil 2 is performed by modulating the information signal using an electromagnetic induction magnetic field for transmitting electric power as a carrier.
  • a rectifier circuit 3a for full-wave rectification of power energy is provided.
  • the rectifier circuit 3a is generally configured by connecting a MOS transistor formed on the semiconductor chip 1 to a bridge.
  • the power energy supplied via the coil 2 varies greatly depending on the distance to the external device that supplies the energy, and is roughly inversely proportional to the square of the distance. Therefore, in a power supply system configured to supply the necessary electromagnetic energy to the spherical semiconductor at the maximum distance Lmax, if the distance between the spherical semiconductor and the external device becomes 12, the spherical semiconductor is necessary. Four times the required power will be supplied.
  • the voltage (full-wave rectified output) obtained via the rectifier circuit 3a shows a voltage value four times as large.
  • the full-wave rectified output of the rectifier circuit 3a was specified as a constant voltage (Zener breakdown voltage) using a zener diode 3b, and the full-wave rectified output was specified. Is smoothed via the capacitor 3c to generate a stable internal power supply.
  • the present invention has been made in consideration of the above circumstances, and has as its object to stabilize power energy supplied from an external device by using electromagnetic induction coupling via a coil. It is an object of the present invention to provide an electromagnetic induction coupling device provided with a power supply circuit having a simple configuration capable of generating an internal power supply.
  • Another object of the present invention is to provide an external device using electromagnetic inductive coupling via a coil to modulate an information signal using the supplied power energy as a carrier and transmit / receive the information signal. Regardless, it is an object of the present invention to provide an electromagnetic induction coupling device capable of realizing reliable information communication while stably generating an internal power supply.
  • an electromagnetic induction coupling device includes a coil that is electromagnetically coupled to a magnetic field having power energy, a rectifier circuit that performs full-wave rectification of power energy captured via the coil, And a smoothing circuit for smoothing the rectified output of the rectifier circuit to generate an internal power supply.
  • a MOS transistor having a source and a drain connected to both ends of the coil is provided, and the output of the smoothing circuit is provided. Accordingly, by controlling the gate voltage of the MOS transistor, the voltage (AC voltage) applied to the rectifier circuit is limited, and the rectified output voltage (DC voltage) obtained via the rectifier circuit is made constant. It features a constant voltage control circuit.
  • a MOS transistor is provided in parallel with a coil that captures power energy by electromagnetic induction coupling, and a part of the power energy is bypassed by the MOS transistor.
  • a constant DC voltage internal power supply
  • the MOS transistor is controlled by the coil voltage with respect to the gate voltage.
  • the power energy (alternating current) obtained from a part of the power energy is bypassed in an alternating-current manner while exchanging the functions as its source and drain.
  • the power energy (alternating current) applied to the rectifier circuit itself can be limited, and thus the power capacity of the rectifier element (MOS transistor) constituting the rectifier circuit is reduced.
  • the rectifier element (MOS transistor) can be reduced in size according to the power capacity required by the internal circuit.
  • the electromagnetic induction coupling device further comprises: a data receiving unit that detects a modulation component of power energy taken in through the coil and receives an information signal indicated by the modulation component; A transmission unit for controlling the gate voltage of the MOS transistor to change the degree of electromagnetic inductive coupling of the coil to the magnetic field and transmitting the transmission information.
  • the electromagnetic induction coupling device is configured to remove a high-frequency component from a full-wave rectified output from a rectifier circuit via a smoothing circuit in accordance with an internal voltage.
  • the MOS transistor Since the MOS transistor is driven by the generated gate voltage, the power energy applied to the rectifier circuit can be suppressed without damaging the modulation component included in the power energy obtained via the coil. Therefore, even when a predetermined internal voltage is obtained by smoothing the full-wave rectified output required from the rectifier circuit, as described above, only the power energy applied to the rectifier circuit is limited by using the MOS transistor. It is possible to reliably detect a modulation component obtained by modulating an information signal using the taken power energy as a carrier.
  • the rectifier circuit is configured by connecting four MOS transistors as rectifier elements in a bridge connection, and is simultaneously integrated on a predetermined semiconductor together with an MS transistor connected in parallel to the coil.
  • the predetermined semiconductor is realized as a spherical semiconductor having the coil provided on a surface thereof.
  • FIG. 1 is a schematic configuration diagram of a power supply unit in an electromagnetic induction coupling device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a power supply unit and a data unit in an electromagnetic induction coupling device according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a data communication unit.
  • 3A and 3B are voltage waveform diagrams for explaining the operation of the electromagnetic induction coupling device according to the present invention.
  • FIG. 3A shows an output voltage waveform of a coil
  • FIG. 3B shows an output voltage of a rectifier circuit using a zener diode.
  • C is a voltage waveform applied to the rectifier circuit in the electromagnetic induction coupling device according to the present invention
  • (d) is a voltage waveform obtained from the rectifier circuit in the electromagnetic induction coupling device according to the present invention. Waveform.
  • FIG. 4 is a diagram showing a relationship between a spherical semiconductor and a coil provided on the surface thereof.
  • FIG. 5 is a diagram showing a schematic configuration example of an integrated circuit provided in a spherical semiconductor.
  • FIG. 6 is a diagram showing a configuration example of a power supply circuit provided in a spherical semiconductor.
  • This electromagnetic induction coupling device is realized as a spherical semiconductor that operates by receiving power energy from an external device using electromagnetic waves, for example, and is generally configured with a power supply unit as shown in FIG. .
  • the power supply unit shown in FIG. 1 includes a coil 11 which is positioned in a magnetic field formed by the external device 10, is electromagnetically inductively coupled to the magnetic field, and takes in power energy of the magnetic field.
  • the electromagnetic induction coupling device is formed of a spherical semiconductor
  • the coil 11 is formed of, for example, a single-turn or several-turn annular coil which is wound on the surface of a spherical semiconductor substrate and functions as an antenna element.
  • a rectifier circuit 12 for full-wave rectification of power energy (AC) obtained from the magnetic field through the coil 11 is provided between both terminals of the coil 11.
  • the wave rectified output is smoothed through a smoothing circuit 13 composed of a capacitor or the like, and is supplied to an internal circuit (not shown) as a predetermined internal power supply (DC).
  • the rectifier circuit 12 is configured by bridge-connecting MOS transistors as described above with reference to FIG.
  • this power supply section is that a source and a drain are connected to both ends of the coil 11 in front of the rectifier circuit 12, respectively.
  • the point is that the MOS transistors 14 connected in columns are provided.
  • a constant voltage control circuit 15 that receives the internal voltage smoothed by the smoothing circuit 13 and generates a control voltage (DC voltage) corresponding to the internal voltage is provided.
  • the control voltage generated by the constant voltage control circuit 15 is applied to the gate of the MOS transistor 14.
  • this power supply section is connected to the gate of the MOS transistor 14 provided in parallel on the AC input side of the rectifier circuit 12 and to the internal power supply generated by smoothing the full-wave rectified output by the rectifier circuit 12.
  • the gate voltage is applied to drive the MOS transistor 14.
  • a part of the power energy (alternating current) obtained through the coil 11 is bypassed by the MOS transistor 14, thereby limiting the power energy applied to the rectifier circuit 12 to thereby reduce the rectifier circuit 12. It is characterized by the stabilization of the internal power supply (DC voltage) generated via.
  • the rectifier circuit 12, the smoothing circuit path 13, and the constant voltage control circuit 15 integrated on the semiconductor substrate usually include the potential of the semiconductor substrate. Is used as a reference potential.
  • both ends of the coil 11 are floating with respect to the potential (reference voltage) of the semiconductor substrate.
  • the terminal with the lower voltage is connected to the potential (reference) of the semiconductor substrate in accordance with the polarity of the power energy (AC) generated in the coil 11. Voltage).
  • the MOS transistor 14 connected in parallel to such a coil 11 basically connects its source region and drain region to a channel formed under the gate electrode via an insulating layer. It has an element structure symmetrically arranged via the regions, and one functions as a source region and the other functions as a drain region according to the magnitude of the potential applied to both regions.
  • the MOS transistor 14 is an n-channel transistor (nM ⁇ S transistor)
  • the DC voltage generated by the constant voltage control circuit 15 is applied to the gate of the n_MOS transistor 14.
  • the nM ⁇ S transistor 14 occurs in the coil 11 In accordance with the polarity of the applied voltage, a region connected to the terminal on the low potential side (terminal connected to the semiconductor substrate) of the coil 11 functions as a source.
  • the n-MOS transistor 14 operates as a predetermined resistor by operating according to the potential of the semiconductor substrate (reference potential) and the gate voltage (DC voltage) applied between its gate and source. A part of the AC power energy (AC power) generated in the system is bypassed.
  • the power energy applied to the rectifier circuit 12 is suppressed by the operation of the MOS transistor 14, and the AC voltage applied to the rectifier circuit 12 is suppressed. Then, the voltage level of the full-wave rectified output obtained from the rectifier circuit 12 is suppressed, and the smoothed output (internal power supply voltage) is stabilized at a constant voltage level.
  • the MOS transistor 14 is a p-channel transistor (p-MOS transistor)
  • the region connected to the coil 11 functions as a source, It works in reverse to the n-MOS transistor described above. Therefore, irrespective of whether the M ⁇ S transistor 14 is of the n-channel type or the p-channel type, the rectifier circuit 12 is theoretically operated only by reversing its operation polarity. Works exactly the same.
  • the coil is compared with the power energy required by the internal circuit. Even if the power energy obtained through 11 is large, the surplus of the power energy can be bypassed through the MOS transistor 14. Therefore, it is sufficient to use a MOS transistor having a power capacity corresponding to the power energy required by the internal circuit as the MOS transistor as a rectifying element constituting the rectifier circuit 12. Area). Only for the MOS transistor 14, a transistor having a large power capacity capable of bypassing a surplus of power energy obtained through the coil 11 may be used.
  • the MOS transistor that constitutes the rectifier circuit 12 its internal circuit It is sufficient to use a small device with a small element area corresponding to the power capacity required by the company.
  • the MOS transistor 14 has a large large power capacity that allows for the extra power supplied through the coil 11. It just needs to be. Therefore, it is only necessary to prepare a large power capacity with a large element area for the MOS transistor 14 only. Therefore, the element formation scale (area required for element formation) of the entire power supply unit is reduced, and its size is reduced. Can be achieved.
  • the power supply unit having the above-described configuration is also useful in an electromagnetic induction coupling device configured to perform information communication by modulating an information signal using an electromagnetic wave of a predetermined frequency for supplying power energy via the coil 11 as a carrier.
  • a carrier signal having a frequency of several hundred kHz to several hundred MHz is used as a carrier signal for transmitting information energy from an external device to a spherical semiconductor and superimposing an information signal for information communication.
  • the information signal includes, for example, a command signal for operating the spherical semiconductor and an error detection code.
  • the information signal transmitted from the spherical semiconductor to the external device includes a response signal to the command signal, a measurement data obtained by the sensor unit 7 of the spherical semiconductor, an error detection code, and the like.
  • a modulation method for superimposing such an information signal on the carrier signal a method such as ASK (Amplitude Shift Keying) or FSK (Frequency Shift Keying) is appropriately used.
  • FIG. 2 shows a schematic configuration of an electromagnetic induction coupling device having a data communication function in addition to the above-described power supply unit.
  • the power supply unit is denoted by the same reference numerals as those shown in FIG.
  • the data receiving section for extracting the information signal superimposed on the carrier of the power energy obtained through the coil 11 includes a detection circuit 21 connected to one end of the coil 11.
  • the detection output is amplified to a predetermined level via an amplifier circuit 22 to obtain demodulated data (received data).
  • the clock generator 23 is connected to one end of the coil 11 to extract a carrier component obtained from the coil 11, and generates a click signal of a predetermined frequency from the frequency of the carrier component. Be composed.
  • the data transmitting unit controls the gate voltage of the M ⁇ S transistor 14 to change the degree of electromagnetic induction coupling of the coil 11 to the magnetic field (Q of the coil 11), thereby changing the transmission information.
  • This is realized as a load switch circuit 24 for transmitting the data.
  • This gate switch circuit 24 is provided so as to function in parallel with the aforementioned constant voltage control circuit 15 by controlling the gate voltage of the MOS transistor 14 through a diode 25.
  • the electromagnetic induction coupling device having such a data receiving unit (detection circuit 21) and a data transmission unit (load switch circuit 24), a certain internal energy is obtained from the power energy obtained through the coil 11. Even when a power supply is generated and operated, stable data communication can be realized irrespective of the magnitude of power energy.
  • the carrier signal is amplitude-modulated by an information signal at a rate of 10%, and information [1] is represented by an amplitude of 100%, and information [0] is represented by an amplitude of 90%. Is shown.
  • an electromagnetic wave (power energy) subjected to 10% modulation is received via the coil 11 and, for example, its internal power is generated via the conventional power supply unit shown in FIG.
  • the rectifier circuit 3a performs full-wave rectification of the power energy (AC power) as it is, and the upper limit of the rectified output voltage is specified by the zener diode 3b, as shown in Fig.
  • the modulation component is lost.
  • the rectified output voltage is specified by the zener diode 3b that specifies the voltage of the internal power supply, so that the modulation component of the carrier signal is changed as shown in the rectified equivalent waveform in FIG. 3 (b). Will be spoiled.
  • the power energy (AC power) itself supplied to the rectifier circuit 12 by the MOS transistor 14 is limited.
  • the modulated component of the carrier signal is not impaired, as shown by the rectified equivalent waveform in (). That is, the smoothing circuit 13 is obtained from the rectifier circuit 12. Is simply smoothing the full-wave rectified output that is
  • the detection circuit 21 serving as the data receiving section for example, by performing full-wave rectification of the AC power, the modulation component shown as the change in the amplitude level (thick line F) as shown in FIG. Can be detected at the same time.
  • the gate control of the MOS transistor 14 using the load switch circuit 24, which is the data transmission unit, does not affect the effect of the zener diode 3b as in the conventional circuit shown in FIG. Since it is not received, the electrical characteristic (Q) of the coil 11 is equivalently changed, so that the carrier signal carrying the power energy received via the coil 11 can be reliably modulated.
  • the electrical characteristics of the coil (antenna) on the external device side that is electromagnetically coupled via the coil 11 it is possible to reliably execute the information communication.
  • the electromagnetic induction coupling device of the present invention even when data signals are modulated by modulating an information signal using an electromagnetic wave used for power transmission as a carrier, rectification can be performed without impairing the information represented by the modulated component.
  • a constant internal power supply voltage can be obtained stably by limiting the AC power applied to the circuit.
  • the MOS transistor 14 connected in parallel to the coil 11 and used for power (voltage) adjustment may be a p-channel transistor or an n-channel transistor.
  • the voltage applied to the gate of the MOS transistor 14 may be determined according to the required internal power supply voltage.
  • an example has been described in which an information signal is transmitted from an external device to a spherical semiconductor by modulating the power energy composed of electromagnetic waves. It is also possible to configure so as to execute a predetermined operation set in advance. You. Therefore, in this case, the detection circuit 21 shown in FIG. 2 becomes unnecessary.
  • the operation of the MOS transistor 14 may be controlled to modulate the above-described unmodulated magnetic field environment.
  • the present invention is characterized in that a MOS transistor for defining the AC voltage is provided on the AC input terminal side of the rectifier circuit, and can be variously modified and implemented without departing from the gist thereof. .
  • Industrial applicability is characterized in that a MOS transistor for defining the AC voltage is provided on the AC input terminal side of the rectifier circuit, and can be variously modified and implemented without departing from the gist thereof. .
  • the present invention when rectifying power energy supplied by electromagnetic induction coupling via a coil to generate a predetermined internal power supply, the AC power itself applied to the rectifier circuit using a MOS transistor connected in parallel to the coil.
  • a stable internal power supply can be generated simply and effectively.
  • the power supply unit can be compactly constructed, it is suitable for realizing a semiconductor functional device including the power supply unit when the element region (area) is limited like a spherical semiconductor.
  • There are advantages such as.
  • data communication is realized by modulating an information signal using an electromagnetic wave used for transmission of power energy as a carrier, it is possible to stably generate an internal power supply without disturbing the data communication. Excellent effect can be achieved.
  • the mos transistor connected in parallel to the coil bypasses the surplus of power energy obtained through the coil, so that the power capacity of the rectifier element that constitutes the rectifier circuit is reduced by the power required by the internal circuit.
  • the effect is that the size can be reduced and the size can be reduced according to the capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Rectifiers (AREA)
  • Near-Field Transmission Systems (AREA)
  • Control Of Electrical Variables (AREA)

Description

明 細 書
技術分野
本発明は、 コイルを介する電磁誘導結合により外部装置から給電される電力 エネルギから安定した内部電源を生成することができ、 および/または上記コ ィルを介して外部装置との間で安定に情報通信することのできる電磁誘導結合 装置に関する。 背景技術
近時、 直径 l mm程度の球状の半導体チップ (ポール) の表面にトランジス 夕やセンサ等の機能素子や、 所定の処理機能を果たす半導体集積回路を形成し た球状半導体が提唱されている。 この種の球状半導体には、 例えば図 4に示す ように球状の半導体チップ 1の表面にアンテナ素子として機能するコイル (ル —プアンテナ) 2を設けたものがある。 この球状半導体は、 コイル 2を介する 電磁誘導結合を利用して外部装置から電力供給を受けて作動し、 また上記コィ ルを介して外部装置との間での情報信号を送受するように構成される。
ちなみに半導体チップ 1上に形成される集積回路は、 例えば図 5に示すよう にコイル 2を介して外部から給電される電力 (電磁エネルギ) を受けて所定の 内部電源を生成する電源部 3、 外部装置からの情報信号をコイル 2を介して受 信する受信部 4、 また外部装置に対して上記コイル 2を介して情報信号を送信 する送信部 5を備える。 更に集積回路は、 演算制御部等からなる装置本体 6を 備えると共に感温素子等のセンサ部 7やメモリ 8等を備え、 装置本体 6の動作 により所定の機能を果たすように構成される。
尚、 コイル 2を介する情報信号の送受信は、 電力を伝送する電磁誘導磁場を キャリアとして情報信号を変調する等して行われる。
ところで電源部 3は、 例えば図 6に示すようにコイル 2を介して給電された 電力エネルギを全波整流する整流回路 3 aを備えて構成される。 ちなみに上記 整流回路 3 aは一般的には半導体チップ 1上に形成される MO Sトランジスタ をプリッジ接続して構成される。 またコイル 2を介して給電される電力エネル ギは、 そのエネルギ供給元である外部装置との距離によって大きく変化し、 概 略的には距離の 2乗に反比例する。 この為、 その最大距離 Lmaxにおいて球状 半導体に必要な電磁エネルギを給電し得るように構成された給電系において、 球状半導体と外部装置との距離が 1 2となったような場合、 球状半導体が必 要とする電力の 4倍もの電力が給電されることになる。 この結果、 電源部 3の 内部インピーダンスが一定であるような場合、 整流回路 3 aを介して求められ る電圧 (全波整流出力) は 4倍もの大きな電圧値を示すことになる。
そこで従来では、 専ら、 図 6に示すように整流回路 3 aの全波整流出力をッ ェナ一ダイオード 3 bを用いて一定電圧 (ツエナー降伏電圧) に規定すると共 に、 その全波整流出力をコンデンサ 3 cを介して平滑化して安定した内部電源 を生成するようにしている。
しかしながらツエナ一ダイオード 3 bを用いて内部電圧を規定するといえど も、 外部装置との距離に応じてコイル 2を介して給電される電力エネルギが大 きく変化することが否めない。 この為、 整流回路 3 aを構成する MO Sトラン ジス夕としては、 その最大電力エネルギを見込んだ電力容量を持つものを用い ることが必要となり、 MO Sトランジスタが大型化 (大面積化) することが否 めない。 また上述した電源回路 3においては、 例えばコイル 2に電磁誘導結合 される所定周波数の電磁波をキャリアとして情報信号を変調して送受信する場 合、 その変調の度合いによってはツエナーダイオード 3 bによる電圧の規定に よって、 その変調成分が失われる虞もある等の不具合がある。 発明の開示
本発明は上述した事情を考慮してなされたもので、 その目的は、 コイルを介 する電磁誘導結合を利用して外部装置から給電される電力エネルギから、 安定 した内部電源を生成することのできる簡易な構成の電源回路を備えた電磁誘導 結合装置を提供することにある。
また本発明の別の目的は、 コイルを介する電磁誘導結合を利用して外部装置 力 給電される電力エネルギをキャリアとして情報信号を変調して該情報信号 を送受信するに際して、 上記電力エネルギの変化に拘わることなく、 その内部 電源を安定に生成しながら、 確実な情報通信を実現することのできる電磁誘導 結合装置を提供することにある。
上述した目的を達成するべく本発明に係る電磁誘導結合装置は、 電力エネル ギを有する磁場に電磁誘導結合されるコイルと、 このコイルを介して取り込ま れる電力エネルギを全波整流する整流回路と、 この整流回路による整流出力を 平滑化して内部電源を生成する平滑回路とを備えてなり、 特に前記コイルの両 端にソースおよびドレインをそれぞれ接続した MO Sトランジスタを設け、 前 記平滑回路の出力に応じて上記 MO Sトランジスタのゲート電圧を制御するこ とで前記整流回路に加わる電圧 (交流電圧) を制限し、 以て該整流回路を介し て得られる整流出力電圧 (直流電圧) を一定化する定電圧制御回路を設けたこ とを特徴としている。
即ち、 本発明に係る電磁誘導結合装置は、 電磁誘導結合により電力エネルギ を取り込むコイルに対して並列に MO Sトランジスタを設けて該 MO Sトラン ジス夕により前記電力エネルギの一部をバイパスし、 これによつて整流回路に 加える電力エネルギ、 ひいてはその交流電圧を制限することで一定の直流電圧 (内部電源) を得る。 特に前記整流回路による全波整流出力を平滑化して求め られる内部電源 (直流電圧) に応じて上記 MO Sトランジスタのゲ一ト電圧を 制御すれば、 このゲート電圧に対して MO Sトランジスタが前記コイルから得 られる電力エネルギ (交流) の極性に応じて、 そのソースおよびドレインとし ての機能を入れ換えながら交流的に電力エネルギの一部をバイパスする。 この 結果、 前記整流回路に加わる電力エネルギ (交流) 自体を制限することができ、 従って整流回路を構成する整流素子 (MO Sトランジスタ) の電力容量を、 そ の内部回路が必要とする電力容量に合わせて小さく抑え、 整流素子 (MO Sト ランジス夕) の小型化を図ることが可能となる。
また本発明に係る電磁誘導結合装置は、 更に前記コイルを介して取り込まれ る電力エネルギの変調成分を検出して、 該変調成分により示される情報信号を 受信するデータ受信部と、 送信情報に応じて前記 MO Sトランジスタのゲート 電圧を制御して前記コイルの前記磁場に対する電磁誘導結合の度合いを変化さ せて該送信情報を送信するデ一夕送信部とを備えることを特徴としている。 このようなデータ受信部およびデータ送信部を更に備えて構成される電磁誘 導結合装置においては、 整流回路による全波整流出力から平滑回路を介してそ の高周波成分を除去した内部電圧に応じて生成したゲート電圧にて前記 MO S トランジスタを駆動しているので、 前記コイルを介して得られる電力エネルギ に含まれる変調成分を損なうことなしに前記整流回路に加わる電力エネルギを 抑えることができる。 従って整流回路から求められる全波整流出力を平滑化し て所定の内部電圧を得るに際しても、 前述したように MO Sトランジスタを用 いて整流回路に加える電力エネルギを制限するだけなので、 前記コイルを介し て取り込まれる電力エネルギをキャリアとして情報信号を変調してなる変調成 分を確実に検出することが可能となる。
好ましくは前記整流回路は、 整流素子としての 4個の MO Sトランジスタを プリッジ接続して構成されるものであって、 前記コイルに並列接続される M〇 Sトランジスタと共に所定の半導体上に同時集積される。 また前記所定の半導 体は、 その表面に前記コイルを設けた球状半導体として実現される。 図面の簡単な説明
図 1は、 本発明の一実施形態に係る電磁誘導結合装置における電源部の概略 構成図。
図 2は、 本発明の別の実施形態に係る電磁誘導結合装置における電源部とデ
—タ通信部の構成例を示す概略図。 図 3は、 本発明に係る電磁誘導結合装置の作用を説明するための電圧波形図 であって、 (a)はコイルの出力電圧波形、 (b )はツエナ一ダイオードを用いて 整流回路の出力電圧を規制したときの電圧波形、 (c )は本発明に係る電磁誘導 結合装置において整流回路に加えられる電圧波形、 (d)は本発明に係る電磁誘 導結合装置において整流回路から得られる電圧波形。
図 4は、 球状半導体とその表面に設けられたコイルとの関係を示す図。 図 5は、 球状半導体が備える集積回路の概略的な構成例を示す図。
図 6は、 球状半導体に設けられる電源回路の構成例を示す図。 発明を実施するための最良の形態
以下、 図面を参照して本発明の一実施形態に係る電磁誘導結合装置について 説明する。 この電磁誘導結合装置は、 例えば外部装置から電磁波を用いて電力 エネルギが供給されて作動する球状半導体として実現されるもので、 概略的に は図 1に示すような電源部を備えて構成される。
この図 1に示す電源部は、 外部装置 1 0が形成する磁場中に位置付けられて 該磁場に電磁誘導結合し、 該磁場が有する電力エネルギを取り込むコイル 1 1 を備える。 このコイル 1 1は、 電磁誘導結合装置が球状半導体からなる場合、 例えば球状の半導体基板の表面に巻装されてアンテナ素子として機能する 1夕 —ンないし数ターンの環状コイルからなる。
このコイル 1 1の両端子間には、 前記磁場から該コイル 1 1を介して得られ る電力エネルギ (交流) を全波整流する整流回路 1 2が設けられ、 この整流回 路 1 2による全波整流出力はコンデンサ等からなる平滑回路 1 3を介して平滑 化されて所定の内部電源 (直流) として図示しない内部回路に給電されるよう になっている。 尚、 上記整流回路 1 2は、 図 6を参照して前述したように MO Sトランジスタをブリッジ接続して構成される。
さてこの電源部が特徴とするところは、 前記整流回路 1 2の前段側に、 前記 コイル 1 1の両端にソースとドレインとをそれぞれ接続して該コイル 1 1に並 列接続した MO Sトランジスタ 1 4を設けた点にある。 そしてこの MO Sトラ ンジスタ 1 4を駆動するべく、 前記平滑回路 1 3により平滑化された内部電圧 を受けて該内部電圧に応じた制御電圧 (直流電圧) を生成する定電圧制御回路 1 5を設け、 この定電圧制御回路 1 5が生成した制御電圧を前記 MO Sトラン ジス夕 1 4のゲートに加えるようにしたことを特徴としている。
即ち、 この電源部は、 整流回路 1 2の交流入力側に並列に設けた MO Sトラ ンジスタ 1 4のゲートに、 上記整流回路 1 2による全波整流出力を平滑化して 生成された内部電源に応じたゲ一ト電圧を印加して MO Sトランジスタ 1 4を 駆動する。 そしてコイル 1 1を介して得られる電力エネルギ (交流) の一部を MO Sトランジスタ 1 4によりバイパスし、 これによつて整流回路 1 2に加え る電力エネルギを制限することで該整流回路 1 2を介して生成される内部電源 (直流電圧) の安定化を図ることを特徴としている。
ここで上述した如く構成された電源部について考察すれば、 半導体基板上に 集積される整流回路 1 2、 平滑回路路 1 3、 および定電圧制御回路 1 5は、 通 常、 その半導体基板の電位を基準電位として構成される。 これに対してコイル 1 1自体は、 その両端は半導体基板の電位 (基準電圧) に対して共にフローテ イング状態にある。 しかしコイル 1 1は整流回路 1 2に接続されることで、 該 コイル 1 1に生起される電力エネルギ (交流) の極性に応じて、 その電圧が低 い側の端子が半導体基板の電位 (基準電圧) に接続されることになる。
一方、 このようなコイル 1 1に対して並列に接続された MO Sトランジスタ 1 4は、 基本的にはそのソース領域とドレイン領域とを、 絶縁層を介してゲー ト電極下に形成されるチャネル領域を介して対称に配置した素子構造を有し、 両領域に加えられた電位の大小に応じて一方がソース領域として、 他方がドレ イン領域として機能する。 例えば上記 MO Sトランジスタ 1 4が nチャネル型 のものである場合 (n-M〇Sトランジスタ) 、 該 n_MO Sトランジスタ 1 4 に対して、 そのゲートに前記定電圧制御回路 1 5にて生成された直流電圧 (ゲ —ト電圧) を印加すると、 該 n-M〇Sトランジスタ 1 4はコイル 1 1に生起 された電圧の極性に応じて、 該コイル 1 1の電位が低い側の端子 (半導体基板 に接続された側の端子) に接続された領域がソースとして機能する。 そして n - MO Sトランジスタ 1 4は、 半導体基板の電位 (基準電位) とそのゲート - ソース間に加えられるゲート電圧 (直流電圧) に応じて動作して所定の抵抗と して働き、 コイル 1 1に生起される交流の電力エネルギ (交流電力) の一部を バイパスする。
この結果、 整流回路 1 2に加えられる電力エネルギが M O Sトランジスタ 1 4の働きにより抑えられ、 ひいては該整流回路 1 2に加えられる交流電圧が抑 えられる。 そして整流回路 1 2から得られる全波整流出力の電圧レベルが抑え られ、 その平滑化出力 (内部電源電圧) が一定の電圧レベルに安定化される。 尚、 MO Sトランジスタ 1 4が pチャネル型のものである場合には (p - M O Sトランジスタ) 、 逆にコイル 1 1の電位が高い側の端子) に接続された領 域がソースとして機能し、 上述した n- MO Sトランジスタと逆に作用する。 従って M〇Sトランジスタ 1 4が nチャネル型のものであるか、 或いは pチヤ ネル型のものであるかに拘わらず、 その動作極性を逆とするだけで整流回路 1 2に対して原理的には全く同様に機能する。
またこのようにして MO Sトランジスタ 1 4を用いて整流回路 1 2に加える 電力エネルギを制限するように構成された電源部によれば、 その内部回路が必 要とする電力エネルギに比較してコイル 1 1を介して得られる電力エネルギが 多くなつても、 その電力エネルギの余剰分を MO Sドランジス夕 1 4を介して バイパスすることができる。 従って整流回路 1 2を構成する整流素子としての MO Sトランジスタとして、 その内部回路が必要とする電力エネルギに対応し た電力容量を有するものを用いれば十分であり、 MO Sトランジスタの小型化 (小面積化) を図ることが可能である。 そして MO Sトランジスタ 1 4につい てだけ、 コイル 1 1を介して得られる電力エネルギの余剰分をバイパス可能な 電力容量の大きいものを用いればよい。
即ち、 整流回路 1 2を構成する MO Sトランジスタとしては、 その内部回路 が要求する電力容量に応じた素子面積の小さい小型のものを用いれば良く、 一 方、 MO Sトランジスタ 1 4については、 コイル 1 1を介して給電される余剰 電力を見込んだ大型の大電力容量のものとするだけで良い。 従って MO Sトラ ンジス夕 1 4についてだけ素子面積の大きい大電力容量のものを準備すればよ いので、 電源部全体の素子形成規模 (素子形成に必要な面積) を小さくして、 その小型化を図ることが可能となる。
ところで上述した構成の電源部は、 コイル 1 1を介して電力エネルギを供給 する所定周波数の電磁波をキヤリアとして情報信号を変調して情報通信するよ うに構成した電磁誘導結合装置においても有用である。 尚、 外部装置から球状 半導体向けて電力エネルギを伝送すると共に、 情報信号を重畳させて情報通信 するキャリア信号としては、 数百 k Hz〜数百 MHzの周波数のものが用いられ る。 ちなみに上記情報信号は、 例えば球状半導体を作動させるための指令信号 や誤り検出符号からなる。 また球状半導体から外部装置に向けて送信する情報 信号は、 前記指令信号に対する応答信号や球状半導体が有する前述したセンサ 部 7によって求められた測定デ一夕や誤り検出符号等からなる。 そしてこのよ うな情報信号を前記キヤリァ信号に重畳させる為の変調方式としては、 A S K (Ampl i tude Shi f t Keying) や F S K (Frequency Shi f t Keying) 等の方式が 適宜用いられる。
図 2は、 上述した電源部に加えてデータ通信機能を備えた電磁誘導結合装置 の概略構成を示すもので、 その電源部については図 1に示すものと同一符号を 付して示してある。 しかしてコイル 1 1を介して求められる電力エネルギのキ ャリアに重畳された情報信号を抽出するデータ受信部は、 前記コイル 1 1の一 端に接続された検波回路 2 1からなる。 そしてその検波出力を増幅回路 2 2を 介して所定のレベルに増幅して復調データ (受信データ) を得るように構成さ れる。 またクロック生成部 2 3は、 前記コイル 1 1の一端に接続されて該コィ ル 1 1から求められるキャリア成分を抽出し、 このキャリア成分の周波数から 所定周波数のク口ック信号を生成する如く構成される。 これに対してデータ送信部は、 前記 M〇Sトランジスタ 1 4のゲート電圧を 制御して前記コイル 1 1の前記磁場に対する電磁誘導結合の度合い (コイル 1 1の Q) を変化させて該送信情報を送信するロードスィツチ回路 2 4として実 現される。 この口一ドスイッチ回路 2 4は、 ダイオード 2 5を介して前記 MO Sトランジス夕 1 4のゲ一ト電圧を制御することで、 前述した定電圧制御回路 1 5と並列に機能するように設けられる。
このようなデータ受信部 (検波回路 2 1 ) とデータ送信部 (ロードスィッチ 回路 2 4 ) とを備えた電磁誘導結合装置によれば、 コイル 1 1を介して得られ る電力エネルギから一定の内部電源を生成して作動する場合であっても、 電力 エネルギの大きさに拘わることなく、 安定したデータ通信を実現することがで きる。
即ち、 コイル 1 1を介して得られる電力エネルギが大きい場合、 その交流信 号は、 内部電圧に対して図 3 )に示すように大きな振幅を示す。 尚、 ここで は情報信号によりそのキヤリァ信号を 1 0 %の割合で振幅変調し、 1 0 0 %の 振幅で情報 [ 1 ] を、 9 0 %の振幅で情報 [ 0 ] を表した例を示している。 このような 1 0 %変調が施された電磁波 (電力エネルギ) をコイル 1 1を介 して受信して、 例えば図 6に示した従来の電源部を介してその内部電源を生成 するようにすると、 整流回路 3 aはその電力エネルギ (交流電力) をそのまま 全波整流し、 ツエナーダイオード 3 bにてその整流出力電圧の上限値を規定す ることになるので、 図 3 ( b )に示すようにその変調成分が失われてしまう。 換 言すれば内部電源の電圧を規定するツエナ一ダイオード 3 bによって、 その整 流出力電圧が規定されるので、 図 3 ( b )にその整流等価波形を示すようにキヤ リァ信号の変調成分が損なわれてしまう。
これに対して本発明に係る電磁誘導結合装置の電源部によれば、 MO Sトラ ンジス夕 1 4によって整流回路 1 2に供給する電力エネルギ (交流電力) 自体 を制限するので、 図 3 ( c )にその整流等価波形を示すようにキャリア信号の変 調成分が損なわれることがない。 即ち、 平滑回路 1 3は、 整流回路 1 2から得 られる全波整流出力をそのまま平滑化しているに過ぎず、 また定電圧制御回路
1 5は平滑化された内部電源電圧に従ってゲート電圧を生成して MO Sトラン ジス夕 1 4を駆動して電力エネルギ (交流電力) の一部をバイパスするに過ぎ ないので、 整流回路 1 2の交流入力端子間には、 その振幅がそのまま抑制され た交流電力が加えられる。 従ってデータ受信部である検波回路 2 1においては、 例えば上記交流電力を全波整流することによって図 3 ( d)に示すように、 その 振幅レベルの変化 (太線 F ) として示される変調成分を確実に検出することが 可能となる。
同様にしてデータ送信部であるロードスィッチ回路 2 4を用いて MO Sトラ ンジス夕 1 4をゲート制御しても、 図 6に示した従来回路のようにツエナーダ ィォ一ド 3 bの影響を受けることがないので、 コイル 1 1の電気的特性 (Q) を等価的に変化させて該コイル 1 1を介して受信される電力エネルギを担うキ ャリア信号を確実に変調することができる。 そしてコイル 1 1を介して電磁結 合している外部装置側のコイル (アンテナ) の電気特性を変化させて、 その情 報通信を確実に実行することが可能となる。
即ち、 本発明に係る電磁誘導結合装置によれば、 電力伝送に用いる電磁波を キャリアとして情報信号を変調してデータ通信する場合であっても、 その変調 成分により示される情報を損なうことなしに整流回路に加える交流電力を制限 して、 一定の内部電源電圧を安定に得ることができる。
尚、 本発明は上述した実施形態に限定されるものではない。 例えばコイル 1 1に並列に接続して電力 (電圧) 調整に用いる MO Sトランジスタ 1 4として は、 pチャネル形のものであっても、 nチャネル形のものであっても良い。 ま た MO Sトランジスタ 1 4のゲートに加える電圧は、 必要とする内部電源電圧 に応じて定めればよいものである。 またここでは電磁波からなる電力エネルギ を変調して外部装置から球状半導体に対して情報信号を送信する例について説 明したが、 球状半導体においては、 無変調の磁場環境において電力を受け取つ たときに予め設定された所定の動作を実行するように構成することも可能であ る。 従ってこの場合には、 図 2に示す検波回路 2 1等が不要となる。 この際、 球状半導体装置側から外部装置に対する情報信号の送信については、 MO Sト ランジス夕 1 4の動作を制御して、 上述した無変調の磁場環境を変調するよう にすれば良い。
要するに本発明は、 整流回路の交流入力端側にその交流電圧を規定する MO Sトランジスタを設けたことを特徴とするものであり、 その要旨を逸脱しない 範囲で種々変形して実施することができる。 産業上の利用可能性
本発明によれば、 コイルを介する電磁誘導結合により給電される電力エネル ギを整流して所定の内部電源を生成するに際して、 コイルに並列接続した MO Sトランジスタを用いて整流回路に加える交流電力自体を制限するので、 簡易 にして効果的に安定した内部電源を生成することができる。 そして電源部をコ ンパクトに構築することができるので、 球状半導体のようにその素子領域 (面 積) が限られているような場合に電源部を含む半導体機能素子を実現する上で 好適である等の利点がある。 しかも電力エネルギの伝送に用いる電磁波をキヤ リアとして情報信号を変調してデータ通信を実現する場合においても、 そのデ 一夕通信を阻害することなく、 内部電源を安定に生成することができる等の優 れた効果が奏せられる。
更にはコイルに並列接続した MO Sトランジスタにて、 コイルを介して得ら れる電力エネルギの余剰分をバイパスするので、 整流回路を構成する整流素子 の電力容量を、 その内部回路が必要とする電力容量に合わせて小さくし、 小型 化することができる等の効果が奏せられる。

Claims

請 求 の 範 囲
1. 電力エネルギを有する磁場に電磁誘導結合されるコイル (11) と、 このコイルを介して取り込まれる電力エネルギを全波整流する整流回路 (1
2) と、
この整流回路からの整流出力を平滑化して所定の内部電源を生成する平滑回 路 (13) と、
ソースおよびドレインを前記コイルの両端間に並列接続した MOSトランジ スタ (14) と、
前記平滑回路の出力を受けて作動して上記 MOSトランジスタのゲート電圧 を制御して前記整流回路に加わる電圧を制限する定電圧制御回路 (15) と を具備したことを特徴とする電磁誘導結合装置。
2. 電力エネルギを有する磁場に電磁誘導結合されるコイル (11) と、 このコイルを介して取り込まれる電力エネルギを全波整流する整流回路 (1
2) と、
この整流回路からの整流出力を平滑化して所定の内部電源を生成する平滑回 路 (13) と、
ソースおよびドレインを前記コィルの両端間に並列接続した MOSトランジ ス夕 (14) と、
前記平滑回路の出力を受けて作動して上記 M〇Sトランジスタのゲート電圧 を制御して前記整流回路に加わる電圧を制限する定電圧制御回路 (15) と、 前記コイルを介して取り込まれる電力エネルギの変調成分を検出して、 該変 調成分により示される情報信号を受信するデ一夕受信部 (21) と、
送信情報に応じて前記 M〇Sトランジスタのゲート電圧を制御して前記コィ ルの前記磁場に対する電磁誘導結合の度合いを変化させて該送信情報を送信す るデータ送信部 (24) と
を具備したことを特徴とする電磁誘導結合装置。
3. 前記整流回路は、 整流素子としての 4個の MOSトランジスタをブリツ ジ接続して構成されるものであって、 前記コイルに並列接続される MO Sトラ ンジス夕と共に所定の半導体上に同時集積されるものである請求項 1または 2
4. 前記所定の半導体は、 その表面に前記コイルを設けた球状半導体からな る請求項 3に記載の電磁誘導結合装置。
PCT/JP2000/004742 2000-07-14 2000-07-14 Electromagnetically coupled device WO2002007173A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2000/004742 WO2002007173A1 (en) 2000-07-14 2000-07-14 Electromagnetically coupled device
US10/332,926 US6750560B1 (en) 2000-07-14 2000-07-14 Electromagnetically coupled device
JP2002512988A JP3867854B2 (ja) 2000-07-14 2000-07-14 電磁誘導結合装置
AU2000260170A AU2000260170A1 (en) 2000-07-14 2000-07-14 Electromagnetically coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004742 WO2002007173A1 (en) 2000-07-14 2000-07-14 Electromagnetically coupled device

Publications (1)

Publication Number Publication Date
WO2002007173A1 true WO2002007173A1 (en) 2002-01-24

Family

ID=11736263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004742 WO2002007173A1 (en) 2000-07-14 2000-07-14 Electromagnetically coupled device

Country Status (4)

Country Link
US (1) US6750560B1 (ja)
JP (1) JP3867854B2 (ja)
AU (1) AU2000260170A1 (ja)
WO (1) WO2002007173A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042750A1 (en) * 2002-11-07 2004-05-21 Auckland Uniservices Limited Load control for ipt systems
WO2005031944A1 (en) * 2003-09-29 2005-04-07 Auckland Uniservices Limited Inductively powered power transfer system with one or more independently controllable loads
JP2008269583A (ja) * 2007-03-22 2008-11-06 Semiconductor Energy Lab Co Ltd 半導体装置
JP2010097598A (ja) * 2008-09-17 2010-04-30 Semiconductor Energy Lab Co Ltd 半導体装置
JP2012522482A (ja) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド バッテリーを充電するための無線電力デバイスの最適化
WO2014010513A1 (ja) * 2012-07-10 2014-01-16 日立マクセル株式会社 非接触電力伝送システム及び二次電池パック
JP2017158012A (ja) * 2016-03-01 2017-09-07 ローム株式会社 非接触通信媒体及びそれを用いた電子機器
JP7583137B2 (ja) 2018-04-09 2024-11-13 ソニーセミコンダクタソリューションズ株式会社 非接触通信媒体及び記録媒体カートリッジ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701739B2 (en) * 2001-12-03 2010-04-20 Igo, Inc. Portable device having integral voltage connector
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
RU2008104539A (ru) * 2005-07-08 2009-08-20 Мед-Эль Электромедицинише Герэте Гмбх (At) Способ выпрямления сигнала, выпрямительное устройство, электрическое устройство (варианты), устройство защиты полярности и имплантируемое медицинское устройство, содержащие упомянутое выпрямительное устройство
US8248141B2 (en) 2005-07-08 2012-08-21 Med-El Elekromedizinische Geraete Gmbh Data and power system based on CMOS bridge
US20070139829A1 (en) * 2005-12-20 2007-06-21 General Electric Company Micro-electromechanical system based arc-less switching
JP4620151B2 (ja) * 2008-12-12 2011-01-26 東光株式会社 非接触電力伝送回路
IT1400748B1 (it) 2010-06-30 2013-07-02 St Microelectronics Srl Apparato per il trasferimento wireless di energia fra due dispositivi e contemporaneo trasferimento di dati.
KR101933462B1 (ko) * 2011-10-19 2019-01-02 삼성전자주식회사 무선 전력의 크기를 조정하는 무선 전력 수신기
KR101428161B1 (ko) 2012-04-26 2014-08-07 엘지이노텍 주식회사 무선전력 수신장치 및 그의 전력 제어 방법
FR3011696B1 (fr) * 2013-10-09 2015-12-11 Schneider Electric Ind Sas Systeme de conversion d' energie, ensemble de rechargement par induction et procedes d' emission et de reception de donnees associes
JP6676174B2 (ja) * 2016-08-26 2020-04-08 マクセル株式会社 非接触受電装置、非接触送電装置および非接触送受電装置
KR102480474B1 (ko) 2017-10-31 2022-12-23 삼성전자 주식회사 무선 전력을 수신하는 전자 장치 및 전자 장치의 동작 방법
JP7205169B2 (ja) * 2018-11-01 2023-01-17 オムロン株式会社 非接触給電装置
CN109466350A (zh) * 2018-12-24 2019-03-15 西安工业大学 一种lcl复合型无线充电装置
CN111478583B (zh) * 2020-04-24 2021-04-20 无锡芯朋微电子股份有限公司 开关电源控制电路及应用该电路的开关电源控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106170A (ja) * 1993-09-29 1995-04-21 Tdk Corp 非接触型充電器用トランス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446779C2 (de) * 1994-12-24 1996-12-19 Daimler Benz Ag Anordnung zur berührungslosen induktiven Übertragung elektrischer Leistung
US6546268B1 (en) * 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
AU2000260169A1 (en) * 2000-07-14 2002-01-30 Yamatake Corporation Insulated-gate semicondcutor device for rectifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106170A (ja) * 1993-09-29 1995-04-21 Tdk Corp 非接触型充電器用トランス

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042750A1 (en) * 2002-11-07 2004-05-21 Auckland Uniservices Limited Load control for ipt systems
WO2005031944A1 (en) * 2003-09-29 2005-04-07 Auckland Uniservices Limited Inductively powered power transfer system with one or more independently controllable loads
US7633235B2 (en) 2003-09-29 2009-12-15 Auckland Uniservices Limited Inductively-powered power transfer system with one or more independently controllable loads
JP2008269583A (ja) * 2007-03-22 2008-11-06 Semiconductor Energy Lab Co Ltd 半導体装置
US8331873B2 (en) 2007-03-22 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2010097598A (ja) * 2008-09-17 2010-04-30 Semiconductor Energy Lab Co Ltd 半導体装置
JP2012522482A (ja) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド バッテリーを充電するための無線電力デバイスの最適化
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
WO2014010513A1 (ja) * 2012-07-10 2014-01-16 日立マクセル株式会社 非接触電力伝送システム及び二次電池パック
JP2017158012A (ja) * 2016-03-01 2017-09-07 ローム株式会社 非接触通信媒体及びそれを用いた電子機器
US10333354B2 (en) 2016-03-01 2019-06-25 Rohm Co., Ltd. Contactless communication medium and electronic device using the same
JP7583137B2 (ja) 2018-04-09 2024-11-13 ソニーセミコンダクタソリューションズ株式会社 非接触通信媒体及び記録媒体カートリッジ

Also Published As

Publication number Publication date
AU2000260170A1 (en) 2002-01-30
US6750560B1 (en) 2004-06-15
JP3867854B2 (ja) 2007-01-17

Similar Documents

Publication Publication Date Title
WO2002007173A1 (en) Electromagnetically coupled device
US6636146B1 (en) Contactless communication system for exchanging data
US10700554B2 (en) Power reception device and non-contact power feeding system
US8872385B2 (en) Wireless power transmission system
JP3392016B2 (ja) 電力伝送システム並びに電力伝送および情報通信システム
JP4584373B2 (ja) 電磁誘導結合で作動する遠隔交信装置
US7014111B2 (en) High sensitivity reader for passive transponders
JP3554160B2 (ja) 情報通信装置
KR20170102478A (ko) 서브-임계 기술을 사용하는 집적 회로들을 갖춘 수동형 rfid 태그들
KR19980024391A (ko) 전력전송시스템 및 ic카드와 ic카드를 사용한 정보통신시스템
JP4332963B2 (ja) 電磁トランスポンダの容量性変調
US6572023B2 (en) Integrated circuit card
JP3871667B2 (ja) 非接触icカード
JP5282498B2 (ja) リーダ/ライタ、通信方法、およびプログラム
US6262903B1 (en) Direct-current power supply circuit having control sections with at least one control section having priority over another control section
JP2001236474A (ja) カードリードライト装置及びその制御方法とゲートシステム
JP3635990B2 (ja) Idタグ用リーダライタ
JP2000209790A (ja) 移動体識別装置
WO2006038314A1 (ja) 信号抽出回路および非接触icカード
JP2606584Y2 (ja) 非接触式データキャリアの信号復調回路
JP2002222399A (ja) 非接触式icカード
JPH08195697A (ja) 非接触式応答ユニット
JP2002208972A (ja) 非接触データ受信方式
JPH07218626A (ja) 送受信回路
JP2001211108A (ja) 非接触通信媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10332926

Country of ref document: US

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载