+

WO2002005713A1 - Instrument de diagnostic de champ magnetique cardiaque pour fibrillation et flutter auriculaires ; methode d'identification de chemin de retour electrique pour flutter et fibrillation auriculaires - Google Patents

Instrument de diagnostic de champ magnetique cardiaque pour fibrillation et flutter auriculaires ; methode d'identification de chemin de retour electrique pour flutter et fibrillation auriculaires Download PDF

Info

Publication number
WO2002005713A1
WO2002005713A1 PCT/JP2001/006192 JP0106192W WO0205713A1 WO 2002005713 A1 WO2002005713 A1 WO 2002005713A1 JP 0106192 W JP0106192 W JP 0106192W WO 0205713 A1 WO0205713 A1 WO 0205713A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
myocardium
data
image
subject
Prior art date
Application number
PCT/JP2001/006192
Other languages
English (en)
French (fr)
Inventor
Kenji Nakai
Masahito Yoshizawa
Kohei Kawazoe
Keita Yamazaki
Satoshi Fujita
Itsuro Tamura
Original Assignee
Japan Science And Technology Corporation
Takenaka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Takenaka Corporation filed Critical Japan Science And Technology Corporation
Priority to US10/333,023 priority Critical patent/US7123952B2/en
Priority to EP01948054A priority patent/EP1302159A4/en
Priority to AU2001269538A priority patent/AU2001269538A1/en
Publication of WO2002005713A1 publication Critical patent/WO2002005713A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/243Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetocardiographic [MCG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots

Definitions

  • the present invention relates to a cardiac magnetic field diagnostic apparatus and a method for identifying an electric circuit, and more specifically, a three-dimensional generation position of an abnormal excitation propagation circuit in the myocardium that causes atrial flutter and atrial fibrillation.
  • Field of the Invention The present invention relates to a cardiac magnetic field diagnostic device for non-invasively diagnosing a subject by non-contact magnetic measurement and a method for identifying an electric circuit.
  • ECG is an indirect measurement method.
  • the tissue existing from the heart to the body surface, the positional relationship between the heart and other organs and bones, the size of the heart, the electrical conductivity of each tissue of the human body, etc. vary greatly from subject to subject. It was extremely difficult to accurately determine the location of the affected area using information obtained through indirect measurements such as the one described above.
  • a method in which a needle electrode is directly pierced or a reticulated electrode is brought into contact with the heart exposed by surgical thoracotomy to measure myocardial potentials at multiple points simultaneously and accurately estimate the location of the affected area is adopted.
  • thoracotomy itself is a heavy burden on the patient, and it takes a long time to perform multiple simultaneous myocardial potential measurements and data analysis for identifying the location of the diseased part performed during the thoracotomy. But There is a problem that it takes a long time.
  • catheter ablation In addition, diagnostic and therapeutic methods using catheters have recently been adopted as other direct methods.
  • a catheter equipped with an electrode and a heater at the tip of a catheter is inserted into the body of a subject, and an electrophysiological examination is performed while performing fluoroscopy of the chest to identify the position of the affected area and use high frequency waves.
  • rapid treatment is performed by rapidly heating the target site using a method called catheter ablation.
  • Atrial flutter and atrial fibrillation are known to be caused by the formation of abnormal excitation propagation circuits in the myocardium. More specifically, atrial flutter is caused by the formation of an abnormal electrical circuit called the macro re-entry circuit around the tricuspid annulus, and atrial fibrillation is caused by atrial It is caused by the formation of an abnormal electrical circuit called a micro re-entry circuit (multiple wavelet theory). Recent studies have shown that in the early stages of paroxysmal atrial fibrillation, enhanced firing in local pulmonary veins may be triggered.
  • a SQUID magnetometer using a superconducting Quantum Interference Device (hereinafter abbreviated as SQUID), which can detect magnetic flux of about one billionth of geomagnetism with high sensitivity.
  • SQUID superconducting Quantum Interference Device
  • the current activity in the myocardium is visualized from the magnetocardiogram distribution shown in the magnetocardiogram in order to identify the location of the abnormal excitation propagation circuit in the myocardium that causes the diagnosis.
  • Methods have been proposed.
  • One such method has been to use one or more current dipoles to mimic and visualize a magnetic field source.
  • the number and the position of each circuit cannot be identified accurately.
  • such a method has a problem that the imitation result of the magnetic field source differs depending on the set initial value.
  • an object of the present invention is to provide a method for diagnosing atrial flutter and atrial fibrillation based on three-dimensional electrical activity in the myocardium obtained by noninvasive magnetic measurement.
  • An object of the present invention is to provide a cardiac magnetic field diagnostic apparatus and a method for identifying an electric circuit, which can safely, quickly and accurately identify a positional relationship of an abnormal electric circuit in a computer. Disclosure of the invention
  • a cardiac magnetic field diagnostic device for atrial flutter and atrial fibrillation includes a magnetic field distribution measuring device, a first arithmetic device, a second arithmetic device, and a display device.
  • the magnetic field distribution measuring means obtains a plurality of magnetic field time series data corresponding to a plurality of coordinates by non-contact magnetic measurement at a plurality of coordinates on the subject's chest, and obtains a magnetic field on the chest based on the plurality of magnetic field time series data. Generate distribution time series data.
  • the first arithmetic unit calculates the three-dimensional electrical activity state in the subject's myocardium based on the generated magnetic field distribution time-series data. Is generated.
  • the second processing device processes the separately supplied chest tomographic image data of the subject to generate data indicating an anatomical image.
  • the display device superimposes the image of the three-dimensional electrical activity state in the myocardium indicated by the data generated by the first arithmetic device on the anatomical image indicated by the data generated by the second arithmetic device. Display processing to be performed. This allows three-dimensional identification of abnormal electrical circuits in the myocardium.
  • the data indicating the three-dimensional electrical activity state in the myocardium generated by the first arithmetic unit is time-series data of a current density distribution in the myocardium
  • the display device includes Based on the sequence data, three-dimensionally display the positions of multiple abnormal electrical turning tracks on the anatomical image.
  • a cardiac magnetic field diagnostic device for atrial flutter and atrial fibrillation includes a magnetic field distribution measuring device, an arithmetic device, and a display device.
  • the magnetic field distribution measuring device acquires a plurality of magnetic field time series data corresponding to a plurality of coordinates by non-contact magnetic measurement at a plurality of coordinates on the subject's chest, and obtains a plurality of magnetic field time series data based on the plurality of magnetic field time series data.
  • the magnetic field distribution time series data is generated.
  • the arithmetic unit generates data indicating a three-dimensional electrical activity state in the myocardium of the subject based on the generated magnetic field distribution time series data.
  • the display device Based on the data generated by the arithmetic unit, the display device displays an image showing a stimulus propagation path from the sinus node of the subject's heart to the His bundle-Purkinje fiber system, and an image showing an abnormal electrical circuit in the myocardium. Are displayed in a superimposed manner.
  • abnormal electrical circuits in the myocardium can be identified three-dimensionally.
  • the data indicating the three-dimensional electrical activity state in the myocardium generated by the arithmetic device is current density distribution time-series data in the myocardium, and the display device is configured based on the current density distribution time-series data. Then, the positions of multiple abnormal electrical circuits are displayed three-dimensionally on an image showing the stimulus propagation path.
  • a method of identifying an electrical circuit of atrial flutter and atrial fibrillation includes a method of identifying a plurality of coordinates corresponding to a plurality of coordinates obtained by non-contact magnetic measurement at a plurality of coordinates on a subject's chest.
  • Generating first data indicating a three-dimensional electrical activity state in the myocardium of the subject based on the magnetic field distribution time series data on the chest generated based on the magnetic field time series data of the subject; and Chest tomographic image data of the subject Processing the data to generate second data representing an anatomical image; and converting the three-dimensional electrical activity image in the myocardium indicated by the first data to an anatomical image represented by the second data.
  • the three-dimensional electrical activity state in the myocardium indicated by the first data is a current density distribution in the myocardium.
  • a method for identifying an electric circuit of atrial flutter and atrial fibrillation corresponds to a plurality of coordinates obtained by non-contact magnetic measurement at a plurality of coordinates on a subject's chest.
  • the three-dimensional electrical activity state in the myocardium indicated by the data is a current density distribution in the myocardium.
  • an image showing the three-dimensional electrical activity state in the myocardium obtained by non-invasive magnetic measurement is used to convert chest tomographic image data of the same subject taken by another medical diagnostic apparatus.
  • the doctor can safely and safely determine the positional relationship in the myocardium of the abnormal electrical circuit that causes atrial flutter and atrial fibrillation. It becomes possible to identify quickly and with high accuracy.
  • an image showing a three-dimensional electrical activity state in the myocardium obtained by non-invasive magnetic measurement is used as a stimulus propagation path from the sinus node of the same subject's heart to the His bundle-Purkin fiber system.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic apparatus for atrial flutter and atrial fibrillation according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a more specific configuration of the cardiac magnetic field diagnostic device shown in FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of the magnetic field distribution measuring device shown in FIG.
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of magnetic field sensors on the front of the chest of the subject.
  • FIG. 5 is a diagram showing magnetic field time-series data obtained from each of the plurality of sensors in FIG.
  • FIG. 6 is a diagram schematically illustrating a method of calculating current density data from magnetic field time-series data.
  • FIG. 7A and 7B are diagrams showing examples of a three-dimensional anatomical image displayed on the display device 4.
  • FIG. 7A and 7B are diagrams showing examples of a three-dimensional anatomical image displayed on the display device 4.
  • FIG. 8 is a tomogram showing one section of the three-dimensional anatomical image shown in FIGS. 7A and 7B.
  • FIG. 9 is a flow chart for explaining the operation of the cardiac magnetic field diagnostic device according to Embodiment 1 of the present invention.
  • FIG. 10 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic apparatus for atrial flutter and atrial fibrillation according to Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram showing a more specific configuration of the cardiac magnetic field diagnostic device according to the second embodiment of the present invention shown in FIG.
  • FIGS. 12A and 12B are diagrams schematically showing a normal stimulus propagation path and an electrocardiogram waveform in the heart.
  • FIG. 13 is a diagram showing an image of the normal stimulus propagation path and the abnormal electric circuit actually displayed by the display device 6.
  • FIG. 14 is a flowchart illustrating the operation of the cardiac magnetic field diagnostic device according to the second embodiment.
  • FIG. 15 is a flowchart illustrating the operation of the cardiac magnetic field diagnostic device according to the second embodiment.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic device for atrial flutter and atrial fibrillation according to Embodiment 1 of the present invention.
  • the magnetic field distribution measurement device 1 performs non-contact magnetic measurement at a plurality of coordinates on a subject's chest using measurement means such as a SQUID magnetometer described in detail below. A plurality of magnetic field time series data corresponding to the coordinates of. Then, based on the plurality of acquired magnetic field time-series data, the time-series data on the chest, that is, the magnetic field distribution of the cardiac magnetic field is generated and output.
  • the first arithmetic device 2 uses, for example, various known calculation methods described below to calculate the three-dimensional Generate and output first data indicating an electrical activity state.
  • chest tomographic image data (multiple tomographic images of the same subject) obtained separately by tomographic diagnostic equipment such as nuclear magnetic resonance (MR I), Xf spring CT, echocardiography, and myocardial SPECT )
  • MR I nuclear magnetic resonance
  • Xf spring CT Xf spring CT
  • echocardiography Xf spring CT
  • myocardial SPECT Xf spring CT
  • second arithmetic unit 3 which processes the tomographic image data to generate and output second data indicating a three-dimensional anatomical image. I do.
  • the electrical activity state obtained by the first arithmetic unit 2 is, for example, a current density distribution in the myocardium
  • the density of the image representing the current density distribution By paying attention to the local turning of the electric circuit, three-dimensional identification of the electric circuit is possible.
  • the display device 4 is configured to generate an image showing three-dimensional electrical activity (for example, current density distribution) in the myocardium indicated by the first data generated by the first arithmetic device by the second arithmetic device 3.
  • the 3D anatomical image of the subject's chest indicated by the second data is displayed.
  • FIG. 2 is a block diagram more specifically showing the configuration of the cardiac magnetic field diagnostic device according to Embodiment 1 of the present invention shown in FIG.
  • a magnetic field distribution measuring device 1 is installed in a magnetic shield room (MSR) 11 so as to perform non-contact magnetic measurement on the chest of a subject 12. It has a duty 13 with a built-in S QU ID magnetometer, and a calculation unit 14 for magnetic field distribution data.
  • Fig. 3 is installed in the ultra low temperature system in the dewar 13 in the MSR 11 shown in Fig. 2.
  • FIG. 4 is a block diagram showing the SQU ID magnetometer 15 and the calculation unit 14 installed in the normal temperature MSR 11 in more detail.
  • the configuration shown in Fig. 3 is a configuration for one channel for measuring magnetic field data at one point on the chest of the subject. As will be described later, in the present invention, multipoint simultaneous measurement of a magnetic field at a plurality of coordinates is performed on the chest of a subject. Therefore, the configuration for one channel shown in FIG. 3 is provided in MSR 11 in FIG. 2 for a plurality of channels required for measurement.
  • the SQU ID magnetometer 15 includes a pickup coil 16 made of a superconductor for detecting a magnetic field generated from the surface of the chest of a subject.
  • a pickup coil 16 captures a magnetic field, a current flows, and this current is drawn into the coil 17 to generate a magnetic field in the Nb shield 20.
  • the so-called zero-position method is used to provide feedback so that the magnetic field in the superconducting ring 18 is always constant (specifically, by adjusting the current flowing through the modulation coil 19).
  • the magnetic field detected by the pickup coil 16 is calculated by the arithmetic unit 14. It is converted into an electric signal and output.
  • a feedback method is a well-known technique called a flux locked loop (FLL).
  • the configuration shown in Fig. 3 is necessary for measuring the magnetic field data for one channel, and the electrical signal indicating the magnetic field time-series data of the magnetic field measured at one point on the front of the subject's chest Is output.
  • many sensors SQUID magnetometer
  • the magnetic field on the front of the chest is measured at multiple points.
  • the magnetic field changes with time. For example, even during a period corresponding to one heartbeat, if the measurement location is different, the magnetic field changes differently depending on the location.
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of sensors (each of which is a single channel SQUID magnetometer) on the front of the chest of the subject.
  • FIG. 5 shows a group of magnetic field time-series data showing a change in a magnetic field during one heartbeat period obtained from each sensor corresponding to each position of the plurality of sensors in FIG. I have.
  • the data output from the magnetic field distribution measuring device 1 shown in FIG. 2 is a group of magnetic field time series data corresponding to a plurality of measurement positions (coordinates) as shown in FIG. 5, but attention is paid to a specific time Then, when these one group of magnetic field time series data is captured, a graph (figure) is used to represent the actual state of the peaks and valleys showing the distribution of the magnetic field strength at a certain time on the front of the chest to be measured. Because it is difficult to obtain, the magnetic field distribution data expressed by a contour map like the atmospheric pressure of the weather chart can be obtained. For this reason, the data output from the magnetic field distribution measuring device 1 can be regarded as magnetic field distribution time-series data on the front of the chest.
  • Such a group of magnetic field time-series data that is, magnetic field distribution time-series data output from the magnetic field distribution measuring device 1 is given to the first arithmetic device 2 in FIG.
  • the first arithmetic unit 2 functions to obtain the electrical activity in the chest at that moment, for example, the current density in the chest flowing at that moment, based on the magnetic field distribution data at a certain time.
  • the magnetic field distribution measuring device From the magnetic field distribution time-series data generated by the magnetic field distribution measuring device 1, information on three-dimensional electrical activity at a site in the human body (the heart in the present invention) to be measured, for example, a current density distribution flowing through the site is obtained.
  • the method determined by the first arithmetic unit 2 will be described.
  • FIG. 6 is a diagram schematically illustrating a method for obtaining such a current density.
  • a current sensor virtual sensor
  • the current output of the virtual sensor can be obtained by multiplying the coefficients by the coefficients in the magnetic field time series data obtained from all the sensors (SQUID magnetometers) installed on the front of the human chest and taking the sum. Can be. How to find this coefficient is the central issue in this calculation.
  • the method of obtaining the current density will be described in more detail with reference to FIG.
  • N magnetic field sensors are arranged on the human body surface (front of the chest).
  • the human body (chest, especially the heart) to be analyzed is regarded as a collection of poxels, each of which is a small block.
  • the total number of poxels is M.
  • the poxels through which the distributed currents of the orthogonal components flow are arranged at the same coordinates.
  • the component orthogonal to the plane shown in 3 is often omitted because the magnetic field sensor is often placed on the upper chest plane in magnetocardiography.
  • the magnetic field time-series data obtained from each sensor j is B j (t), and the spatial filter coefficient of the poxel i corresponding to each sensor output (B j (t) is / 3.
  • the above-mentioned spatial filter coefficients can be set so as to have a sensitive sensitivity only to the distributed current of the corresponding Vota cell i by various methods such as SAM (Synthetic Aperture Magnetometry) and MU SIC (Multiple Signal Classification).
  • SAM and MU SIC have been researched and developed in fields such as radar and sonar, and their methods are well known, but have been applied to the diagnosis of cardiac magnetic fields. There is no.
  • the virtual sensor output calculated in real time for each pixel obtained by using the spatial filter coefficient by the SAM or MU SIC method has the advantage of having a very high real-time property.
  • the first arithmetic unit 2 generates and displays time-series data showing the three-dimensional current density distribution of the heart ⁇ to be analyzed from the magnetic field distribution data generated by the magnetic field distribution measuring device 1 Applied to one input of device 4.
  • the second arithmetic unit 3 shown in FIG. For example, multiple slice images of the same subject's chest (for example, a dozen or more images at 5 mm pitch) taken with an ECG-synchronized trigger using MR I, X-ray CT, echocardiography, myocardial SPECT, etc. ) Image data is input.
  • the second arithmetic unit 3 processes (interpolates) the data of the plurality of slice images, performs three-dimensional perspective transformation from a predetermined viewpoint, and generates second data indicating an anatomical image.
  • Techniques for forming a three-dimensional anatomical image from a plurality of slice images in this manner are well known. For example, Japanese Patent Application Laid-Open No. H11-12882, International Publication WO98 / 152 This is disclosed in detail in, for example, No. 26 gazette. Therefore, the details are not described here.
  • the second arithmetic unit 3 generates second data indicating a three-dimensional anatomical image of the chest near the heart of the same subject, and supplies the second data to the other input of the display device 4.
  • the display device 4 shown in FIG. 2 displays the three-dimensional anatomical image of the subject's chest formed based on the second data from the second arithmetic device 3 on the three-dimensional anatomical image from the first arithmetic device 2.
  • the images showing the three-dimensional current density distribution in the myocardium formed based on the data of 1 are superimposed and displayed.
  • FIGS.7A and 7B are diagrams showing real-time display modes of the three-dimensional current density distribution superimposed on the three-dimensional anatomical image displayed by the display device 4, respectively.
  • the current density distribution changes over time with the transition of time.
  • Each of Figures 7A and 7B is a three-dimensional image obtained by interpolating about five tomographic images obtained by slicing the subject's chest at a 5-mm pitch, for example, and illustrating the depth of the actual display image. It is difficult to express above.
  • a diagram constituting each image is represented by a plurality of overlapping diagrams, a three-dimensional image having a sense of depth formed by synthesizing a plurality of slice images. It can be inferred that this is a typical horn-necropsy image.
  • the upper side of the tomographic image is the front of the human body, and the lower side is the back.
  • Each of the tomographic images in Figs. 7A and 7B is a tomographic image viewed from below (foot side).
  • the set of circles indicated by A is a three-dimensional This displays the three-dimensional current density distribution superimposed on the image.
  • the diameter of each circle indicates the magnitude of the current density.
  • the magnitude of the current density can be displayed by shading a specific color on the screen.
  • FIG. 8 shows a tomographic image extracted at a certain depth of a three-dimensional anatomical image having a depth as shown in FIGS. 7A and 7B, and is displayed in the same manner.
  • the set represents the current density distribution on the tomographic image.
  • the physician can compare the current density distribution of the myocardium ⁇ ⁇ ⁇ ⁇ on the anatomical image.
  • the exact positional relationship can be grasped accurately.
  • the displayed current density distribution indicates local gyration
  • the position, size, and shape of the affected area in the myocardium where the electrical circulatory circuit that causes atrial flutter and atrial fibrillation occurs is determined. Diagnosis can be made accurately.
  • FIG. 9 is a flowchart showing a method of identifying a current density distribution in the myocardium (particularly, an abnormal electric circuit) performed by the cardiac magnetic field diagnostic apparatus according to Embodiment 1 above.
  • step S1 the magnetic field distribution measuring device 1 performs non-contact magnetic measurement at a plurality of coordinates on the human chest, generates a plurality of time-series data, and records the data if necessary.
  • the above-described arithmetic operation by the SAM or MU SIC in the first arithmetic unit 2 can be executed on time-series data supplied in real time.
  • step S2 an interpolation operation (three-dimensional perspective transformation from a predetermined viewpoint) is performed by the second arithmetic unit 3 on the plurality of MRI images photographed in advance with the ECG synchronization trigger, and the three-dimensional Obtain an anatomical image of.
  • step S3 the initial time of the analysis is set to t s , the end time of the analysis is set to t e , and the time interval of the analysis is set to ⁇ t.
  • step S4 the analysis is started by substituting the initial time t s for the analysis time t. Then, in step S5, the following processing is performed until the analysis time t reaches the end time t e .
  • step S6 the first arithmetic unit 2 Magnetic field distribution data in the heart muscle is processed by the SAM method or the MU SIC method to obtain current density distribution data in the myocardium.
  • step S7 the display device 4 superimposes and displays the current density distribution data in the myocardium on an anatomical image subjected to three-dimensional perspective transformation from a predetermined starting point.
  • step S8 ⁇ t is added to the analysis time t.
  • Embodiment 1 of the present invention a three-dimensional image showing the current density distribution in the myocardium obtained by noninvasive magnetic measurement on the chest of a subject using a SQUID magnetometer
  • the abnormal excitatory propagation circuit in the myocardium that causes atrial flutter and atrial fibrillation that is, the solution of the electrical circuit, the anatomical positional relationship, size, shape Doctors can be identified in three dimensions. Therefore, without performing multiple simultaneous myocardial potential measurements during surgical thoracotomy, an abnormal excitatory propagation circuit that causes atrial flutter and atrial fibrillation can be safely, quickly and accurately performed.
  • the operation time of the thoracotomy can be significantly reduced, and the burden on the patient can be reduced.
  • the abnormal excitatory transmission circuit can be identified safely, quickly, and with high accuracy as described above without using the conventional diagnostic method that performed electrophysiological examination with a catheter while performing chest X-ray fluoroscopy.
  • the current density distribution is measured as data indicating the electrical activity state in the myocardium, it is easy to match the current density distribution in the myocardium with medical knowledge on living myocardium. Diagnosis can be made while taking a diagnosis.
  • the second embodiment of the present invention provides a cardiomagnetic field diagnostic apparatus and an electric rotating apparatus that can reduce the number of examinations and perform diagnosis and examination directly by eliminating the need for forming an anatomical image.
  • a method for identifying a road is provided.
  • FIG. 10 is a functional block diagram schematically showing a configuration of an atrial flutter and atrial fibrillation cardiac magnetic field diagnostic apparatus according to Embodiment 2 of the present invention.
  • magnetic field distribution measuring apparatus 1 has already been described in relation to Embodiment 1, and will not be described again here.
  • the magnetic field distribution time-series data generated by the magnetic field distribution measuring device 1 is given to the arithmetic device 5.
  • the arithmetic unit 5 calculates a three-dimensional electrical activity state in the myocardium, for example, a three-dimensional state, based on the given magnetic field distribution time-series data, using the above-described calculation method such as the SAM method or the MU SIC method. Generate data indicating a current density distribution. Then, based on the generated three-dimensional current density distribution data, the arithmetic unit 5 calculates the data indicating the excitation (stimulation) propagation path in the heart during the period corresponding to the QRS group from the P wave of the electrocardiogram, and the current density distribution. The data shown is superimposed and given to the display device 6.
  • the display unit 6 displays an image showing the current density distribution in the myocardium indicated by the data generated by the arithmetic unit 5 from the P wave of the electrocardiogram similarly calculated by the arithmetic unit 5 to the excitation propagation corresponding to the period of the QRS group.
  • the path is superimposed and displayed on a three-dimensional image.
  • FIG. 11 is a block diagram showing a more specific configuration of the cardiac magnetic field diagnostic device according to Embodiment 2 of the present invention shown in FIG. 10.
  • the magnetic field distribution measuring device 1 is the same as the magnetic field distribution measuring device 1 described with reference to FIGS. 2 and 3, and a description thereof will be omitted.
  • the magnetic field distribution time-series data output from the magnetic field distribution measuring device 1 is given to the arithmetic device 5 in FIG. 11, and the arithmetic device 5 uses the SAM method described in connection with FIG.
  • the MU SIC method converts the magnetic field distribution time-series data into the current density distribution time-series data.
  • an electrocardiograph 21 for recording the electrocardiogram of the subject 12 is provided, and the electrocardiogram waveform data of the subject 12 measured by this is supplied to the arithmetic unit 5.
  • the waveform of the electrocardiogram is associated with the generated current density distribution, it is also possible to associate the electrocardiogram with an event occurring in the heart.
  • FIG. 12A is a diagram schematically showing a normal stimulus propagation path in the heart
  • FIG. 12B shows an electrocardiogram waveform for one heartbeat.
  • the sinoatrial node or sinus node of the heart functions as a pacemaker that determines the heart rate, and fires at regular intervals (the timing of the P wave of the electrocardiogram) to generate a pulse.
  • This pulse is transmitted to the atrioventricular node via a predetermined stimulus propagation path, and after a certain period of time, the pulse is transmitted from the His (bundle) bundle to the lower ventricle via the Purkinje fiber system, and the heart muscle contracts at a stretch. Occurs.
  • the propagation of the stimulation of the Pukinje fiber system from this His bundle corresponds to the period of the QRS complex of the electrocardiogram (isovolume systole).
  • the arithmetic unit 5 can determine the stimulus propagation path as a normal route as shown in Fig. 12 ⁇ .
  • the image data shown is generated.
  • Such an image of the stimulus propagation path shown in FIG. 12 # can be used as a template display instead of the anatomical image of the first embodiment. That is, even if there is no three-dimensional anatomical image as in the first embodiment, if the stimulus propagation path of the normal route shown in FIG. 12A is displayed, an abnormal excitation circuit generated around it, For example, an abnormal electrical circuit (dashed line in Fig. 12A) can be easily anatomically correlated by a physician, and its position, size, and shape can be identified. it can.
  • the arithmetic unit 5 of FIG. 11 generates data indicating the generated current density distribution by superimposing on the display of the stimulus propagation circuit as such a template. As described above, by focusing on the local turning of the image representing the current density distribution, it is possible to find an abnormal excitation circuit, that is, an electric turning circuit, and such image data is used as the image data of the template described above. And is given to the display device 6.
  • the display device 6 shown in FIG. 11 is based on the data from the arithmetic unit 5,
  • An image showing the current density distribution is displayed superimposed on a normal stimulus propagation circuit as a unit.
  • FIG. 13 shows an example of a screen actually displayed by the display device 6, in which an image of a current density distribution showing an abnormal electric circuit is displayed in a manner superimposed on a normal stimulus propagation circuit as a template. ing.
  • the physician can easily make anatomical correspondence based only on the relative position of the electrical circuit to the normal stimulus propagation circuit as a template shown in Fig. 13. Position, size, and shape of the object can be identified.
  • FIGS. 14 and 15 are flowcharts showing a method of identifying a current circulating circuit in the myocardium, which has been executed by the cardiac magnetic field diagnostic device according to Embodiment 2 described above.
  • step S 11 non-contact magnetic measurement is performed at a plurality of coordinates on the human chest using the magnetic field distribution measurement device 1 to generate and record a plurality of magnetic field time series data. I do.
  • step S12 the initial time of the analysis is determined as the P wave start time t sP of the electrocardiogram, the analysis end time is determined as the QRS group end time t eQRS of the electrocardiogram, and the analysis time interval is determined as ⁇ t. .
  • step S 13 t sP , which is the start time of the P wave, is substituted for the angular analysis time t.
  • step S14 the following steps S15 to S17 are repeated until the analysis time reaches the end time teQRS .
  • step S15 the arithmetic device 5 processes the cardiac magnetic field distribution data at the designated analysis time t by the SAM method or the MU SIC method to generate intramyocardial current density distribution data.
  • step S16 an image obtained by performing three-dimensional perspective transformation on the current density distribution data in the myocardium from a predetermined starting point is displayed.
  • step S17 ⁇ t is calculated for the analysis time t, and the process returns to step S14 to determine whether or not the end time t eQRS has been reached. If it is determined that the end time t eQRS has been reached, it corresponds to the period from the P wave to the QRS group in the ECG waveform. In addition, image data indicating the stimulus propagation path, which is the normal route shown in FIG. 12A, is obtained.
  • step S 1 8 in FIG. 1 5 the initial time of analysis defined as t s, defines the end time of the analysis and t e, defined as delta t the analysis time interval.
  • step S19 the initial time t s is substituted for the analysis time t.
  • step S 2 until the analysis time t reaches the end time t e is determined, the step S 2 1 to S 2 3 below is performed.
  • step S21 the arithmetic unit 5 processes the cardiac magnetic field distribution data at the designated analysis time t by the SAM method or the MU SIC method to generate intramyocardial current density distribution data.
  • step S22 the myocardial current density data is superimposed and displayed on the image of the normal stimulus propagation circuit that has been subjected to three-dimensional perspective transformation from a predetermined starting point.
  • step S23 ⁇ t is added to the analysis time t, and the process returns to step S20 to determine whether the end time t e has been reached.
  • the data indicating the current density distribution in the myocardium is superimposed and displayed on the image of the normal stimulus propagation path (FIG. 12A) obtained in the flow chart of FIG.
  • an image showing the current density distribution in the myocardium obtained by non-invasive magnetic measurement on the chest of a subject using a SQUID magnetometer is used as a template.
  • abnormal excitation propagation circuits in the myocardium that cause atrial flutter and atrial fibrillation that is, electrical
  • the doctor can three-dimensionally identify the relative position, size, and shape of the helical circuit with respect to the stimulus propagation circuit. Therefore, in the second embodiment, a preliminary inspection for obtaining an anatomical image can be omitted.
  • the conventional method of performing examination and treatment using a catheter while performing chest X-ray fluoroscopy also enables safe, rapid, and highly accurate identification of an abnormal excitation propagation circuit in the myocardium, as described above.
  • X-ray exposure time for doctors and radiologists can be significantly reduced, and the burden on doctors and radiologists can be reduced.
  • this embodiment 2 By using the method of identifying the electrical circulatory circuit with the catheter ablation method using high frequency, it is possible to execute a treatment directly linked to the diagnosis of atrial flutter and atrial fibrillation, further reducing the burden on the patient Can be.
  • the current density distribution is measured as data indicating the electrical activity state in the myocardium, it is easy to match the current density distribution in the myocardium with medical knowledge on living myocardium. The diagnosis can be made while taking the
  • the electrical activity state in the myocardium obtained by noninvasive magnetic measurement on the chest of a patient can be visually displayed on a three-dimensional anatomical image. Because it is possible, the position, shape, and number of abnormal electrical circuits in the myocardium can be identified three-dimensionally.
  • the generated data indicating the electrical activity state is the current density distribution data
  • the correspondence between the generated current density distribution of the abnormal excitation propagation circuit in the myocardium and the current density distribution in the myocardium is not sufficient. It is easy and does not have the inconvenience that the result changes depending on the number setting and the initial value as in the conventional analysis method that imitated the magnetic field source with one or more current dipoles.
  • an anomalous electrical circuit is superimposed on a normal stimulus propagation circuit from the sinus node of the same subject to the His bundle-purkin fiber system and displayed in a three-dimensional manner. It is possible to three-dimensionally identify the position, size, shape, and number of abnormal electrical circuits in the myocardium without obtaining a target image. In other words, the examination for obtaining an anatomical image can be omitted, and the effect of increasing the economic efficiency can be obtained.
  • abnormal electrical The position, shape, and number of mechanical circuits can be identified three-dimensionally, making it suitable for electrophysiological examinations using a catheter while performing fluoroscopy of the chest, or for treatment using high-frequency or high-power catheter ablation. Useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Description

明細書 心房粗動および心房細動の心臓磁界診断装置および心房粗動および
心房細動の電気的旋回路の同定方法 技術分野
この発明は、 心臓磁界診断装置および電気的旋回路の同定方法に関し、 より特 定的には、 心房粗動および心房細動の原因となる心筋内の異常な興奮伝播回路の 3次元的発生位置を非接触磁気計測により非侵襲的に診断するための心臓磁界診 断装置および電気的旋回路の同定方法に関する。 背景技術
従来、 心疾患の診断を行なうために、 心電図を記録する方法が一般的に採用さ れている。
しかしながら、 従来の心電図法では、 たとえば心臓手術の際に治療すべき部位 の位置、 大きさ、 形状を推定するためには不十分であり、 患部位置の満足できる 推定を行なうことができなかった。
これは、 心電図法が間接的な計測方法であることによる。 すなわち、 心臓から 体表面までに存在する組織、 心臓と他の臓器や骨との位置的関係、 心臓の大きさ、 人体の各組識ごとの電気伝導率などが被験者ごとに大きく異なるため、 心電図の ような間接的計測で得られる情報では患部位置を正確に特定することは極めて困 難であった。
このような間接的計測法による問題点に鑑み、 より直接的な患部位置の同定方 法が採用されている。
たとえば、 外科的開胸手術によって暴露した心臓に、 針電極を直接刺し、 また は網状電極を接触させることにより、 多点同時の心筋電位計測を行ない、 患部位 置を正確に推定する方法が採用されている。 しかしながら、 開胸手術そのものは 患者の負担が大きく、 しかも開胸手術中に行なわれる患部位置同定のための多点 同時心筋電位測定およぴそのデータ解析に長時間を要するため、 開胸手術自体が 長時間化してしまうという問題点がある。
このため、 短時間で高精度の患部位置の推定を可能にする方法が強く要望され ていた。
また、 他の直接的な方法として、 カテーテルを用いた診断 ·治療法も近年採用 されている。 この方法は、 カテーテル先端部に電極とヒータとを具備したカテー テルを被験者の体内に挿入し、 胸部 X線透視を行ないながら電気生理学的検査を 行なうことによって患部位置を特定するとともに、 高周波を用いたカテーテル焼 灼法と呼ばれる方法により標的部位を急速加熱することにより迅速な治療を行な う方法である。
し力 しながら、 この方法では、 電気生理学的検査に時間を要するため、 胸部 X 線透視による医師および放射線技師の X線被爆量が大きいという問題がある。 一方、 さまざまな心疾患の中で、 心房粗動および心房細動は、 心筋内に異常な 興奮伝播回路が形成されることにより引き起こされることが知られている。 より 詳細に説明すると、 心房粗動は、 三尖弁輪周辺でマクロ · リエントリ (macro re-entry) 回路と呼ばれる異常な電気的旋回路が形成されることにより、 そして 心房細動は、 心房内で多数のマイクロ ■ リエントリ (micro re- entry) 回路と呼 ばれる異常な電気的旋回路が形成されること (multiple wavelet theory) によ り引き起こされる。 最近の研究では、 発作性心房細動の初期においては、 肺静脈 の局所における発火 (firing) 亢進がその誘引であることが知られている。
心房粗動および心房細動の治療のためには、 これらのリエントリ回路や肺静脈 局所における発火部位を同定することが重要である。 しかしながら、 上述のよう に心電図法による間接的計測では正確な同定は困難であり、 また外科的開胸手術 時の心筋電位計測やカテーテルを用いた電気生理学的検査のような直接的検査で は患者や医師に対する負担が大きい。
そこで、 これらのリエントリ回路や肺静脈局所における発火部位を非侵襲的に 診断することが強く望まれている。
一方、 地磁気の 1 0億分の 1程度の磁束を高感度に検出することができる超電 尊量ナ干渉 ナ (Superconducting Quantum Interference Device:以! ^、 S Q U I Dと略する) を用いた S Q U I D磁束計がさまざまな分野で応用されている。 特に、 前述のように非侵襲性の計測が強く要望されている生体計測の分野では、
S Q U I D磁束計を用いた人体の非接触磁気計測が試みられている。
特に、 近年の薄膜素子製造技術の進歩により D C— S Q U I Dが開発されたこ とにより、 S Q U I D磁束計を用いて心臓の磁界分布である心磁図を計測するこ とが試みられつつある。
しかしながら、 心磁図だけでは、 人体内における患部の位置、 大きさ、 形状を 直接表示することはできず、 心臓内における電気的旋回路の相対的な位置関係を 医師に的確に知らせることが困難であった。
このため、 心房粗動および心房細動の診断に際し、 原因となる心筋内の異常な 興奮伝播回路の位置を同定するために、 心磁図が示す心磁界分布から心筋内の電 流活動を可視化する方法が提案されてきた。 そのような方法として、 1つまたは 複数個の電流ダイポールで磁場源を模倣して可視化する方法が採用されてきた。 し力、し、 マイクロ ' リエントリ回路が多数存在する場合には、 その個数やそれぞ れの回路の位置を正確に同定することができないという問題があった。 また、 こ のような方法では、 設定される初期値次第で磁場源の模倣結果が異なってしまう という問題があった。
それゆえに、 この発明の目的は、 心房粗動および心房細動の診断に際し、 非侵 襲的な磁気計測により得られた心筋内の 3次元電気的活動状態を示すデータに基 づいて、 心筋内における異常な電気的旋回路の位置関係を安全、 迅速かつ高精度 に同定することができる心臓磁界診断装置および電気的旋回路の同定方法を提供 することである。 発明の開示
この発明による心房粗動および心房細動の心臓磁界診断装置は、 磁界分布計測 装置と、 第 1の演算装置と、 第 2の演算装置と、 表示装置とを備える。 磁界分布 計測手段は、 被験者の胸部上の複数の座標における非接触磁気計測により複数の 座標に対応する複数の磁界時系列データを取得し、 かつ複数の磁界時系列データ に基づいて胸部上の磁界分布時系列データを生成する。 第 1の演算装置は、 生成 された磁界分布時系列データに基づいて被験者の心筋内の 3次元電気的活動状態 を示すデータを生成する。 第 2の演算装置は、 別途供給された被験者の胸部断層 画像データを加工して解剖学的画像を示すデータを生成する。 表示装置は、 第 1 の演算装置により生成されたデータが示す心筋内の 3次元電気的活動状態の画像 を、 第 2の演算装置により生成されたデータが示す解剖学的画像に重ね合わせて 表示する表示処理を行なう。 これにより、 心筋内の異常な電気的旋回路を 3次元 的に同定することができる。
好ましくは、 第 1の演算装置によつて生成される心筋内の 3次元電気的活動状 態を示すデータは、 心筋内の電流密度分布時系列データであり、 表示装置は、 電 流密度分布時系列データに基づいて、 解剖学的画像上に複数の異常な電気的旋回 路の位置を 3次元的に表示する。
この発明の他の局面に従うと、 心房粗動および心房細動の心臓磁界診断装置は、 磁界分布計測装置と、 演算装置と、 表示装置とを備える。 磁界分布計測装置は、 被験者の胸部上の複数の座標における非接触磁気計測により複数の座標に対応す る複数の磁界時系列データを取得し、 かつ複数の磁界時系列データに基づいて胸 部上の磁界分布時系列データを生成する。 演算装置は、 生成された磁界分布時系 列データに基づいて被験者の心筋内の 3次元電気的活動状態を示すデータを生成 する。 表示装置は、 演算装置により生成されたデータに基づいて、 被験者の心臓 の洞結節からヒス束ープルキンェ繊維系への刺激伝播経路を示す画像と、 心筋内 の異常な電気的旋回路を示す画像とを重ね合わせて表示する表示処理を行なう。 これにより、 心筋内の異常な電気的旋回路を 3次元的に同定することができる。 好ましくは、 演算装置によつて生成される心筋内の 3次元電気的活動状態を示 すデータは、 心筋内の電流密度分布時系列データであり、 表示装置は、 電流密度 分布時系列データに基づいて、 刺激伝播経路を示す画像上に複数の異常な電気的 旋回路の位置を 3次元的に表示する。
この発明の他の局面に従うと、 心房粗動および心房細動の電気的旋回路の同定 方法は、 被験者の胸部上の複数の座標における非接触磁気計測により取得された 複数の座標に対応する複数の磁界時系列データに基づいて生成された胸部上の磁 界分布時系列データに基づいて、 被験者の心筋内の 3次元電気的活動状態を示す 第 1のデータを生成するステップと、 別途供給された被験者の胸部断層画像デー タを加工して解剖学的画像を示す第 2のデータを生成するステップと、 第 1のデ ータが示す心筋内の 3次元電気的活動状態の画像を、 第 2のデータが示す解剖学 的画像に重ね合わせて表示することにより、 心筋内の異常な電気的旋回路を 3次 元的に同定することを可能にするステップとを備えている。
好ましくは、 第 1のデータが示す心筋内の 3次元的電気活動状態は、 心筋内の 電流密度分布である。
この発明のさらに他の局面に従うと、 心房粗動および心房細動の電気的旋回路 の同定方法は、 被験者の胸部上の複数の座標における非接触磁気計測により取得 された複数の座標に対応する複数の磁界時系列データに基づいて生成された胸部 上の磁界分布時系列データに基づいて、 被験者の心筋内の 3次元電気的活動状態 を示すデータを生成するステップと、 生成されたデータに基づいて、 被験者の心 臓の洞結節からヒス束ープルキンェ繊維系への刺激伝播経路を示す画像と、 心筋 内の異常な電気的旋回路を示す画像とを重ね合わせて表示することにより、 心筋 内の異常な電気的旋回路を 3次元的に同定することを可能にするステップとを備 える。
好ましくは、 データが示す心筋内の 3次元電気的活動状態は、 心筋内の電流密 度分布である。
したがって、 この発明によれば、 非侵襲的な磁気計測により得た心筋内の 3次 元電気的活動状態を示す画像を、 他の医用診断装置で撮影された同一被験者の胸 部断層画像データを加工して得られた解剖学的画像上に重ね合わせて表示するこ とにより、 心房粗動および心房細動の原因となる異常な電気的旋回路の心筋内に おける位置関係を医師が安全、 迅速かつ高精度に同定することが可能となる。 さらに、 この発明によれば、 非侵襲的な磁気計測により得た心筋内の 3次元電 気的活動状態を示す画像を、 同一被験者の心臓の洞結節からヒス束ープルキンェ 繊維系への刺激伝播経路を示す画像上に重ね合わせて表示することにより、 心房 粗動および心房細動の原因となる異常な電気的旋回路の心筋内における位置関係 を医師が安全、 迅速かつ高精度に同定することが可能となる。 図面の簡単な説明 図 1は、 この発明の実施の形態 1による心房粗動およぴ心房細動の心臓磁界診 断装置の構成を概略的に示す機能プロック図である。
図 2は、 図 1に示した心臓磁界診断装置の構成をより具体化して示したプロッ ク図である。
図 3は、 図 2に示した磁界分布計測装置の詳細な構成を示すプロック図である。 図 4は、 被験者の胸部前面上における複数の磁界センサの配列例を示す図であ る。
図 5は、 図 4の複数のセンサのそれぞれから得られた磁界時系列データを示す 図である。
図 6は、 磁界時系列データから電流密度データを算出する方法を模式的に説明 する図である。
図 7 Aおよび 7 Bは、 表示装置 4に表示される 3次元的解剖学的画像の例を示 す図である。
図 8は、 図 7 Aおよび 7 Bに示した 3次元的解剖学的画像の一断面を示す断層 図である。
図 9は、 この発明の実施の形態 1による心臓磁界診断装置の動作を説明するフ ロー図である。
図 1 0は、 この発明の実施の形態 2による心房粗動および心房細動の心臓磁界 診断装置の構成を概略的に示す機能プロック図である。
図 1 1は、 図 1 0に示したこの発明の実施の形態 2による心臓磁界診断装置の 構成をより具体化して示したブロック図である。
図 1 2 Aおよび 1 2 Bは、 心臓における正常刺激伝播経路および心電図波形を 模式的に示す図である。
図 1 3は、 表示装置 6によって実際に表示された正常刺激伝播経路および異常 な電気的旋回路の画像を示す図である。
図 1 4は、 実施の形態 2による心臓磁界診断装置の動作を説明するフロー図で ある。
図 1 5は、 実施の形態 2による心臓磁界診断装置の動作を説明するフロー図で ある。 発明を実施するための最良の形態
以下、 この発明の実施の形態を図面を参照して詳しく説明する。 なお、 図中同 一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ] .
図 1は、 この発明の実施の形態 1による、 心房粗動および心房細動の心臓磁界 診断装置の構成を概略的に示す機能プロック図である。
図 1を参照して、 磁界分布計測装置 1は、 たとえば、 後で詳述する S Q U I D 磁束計のような計測手段を用いて、 被験者の胸部上の複数の座標における非接触 磁気計測を行ない、 複数の座標に対応する複数の磁界時系列データを取得する。 そして、 取得した複数の磁界時系列データに基づいて、 胸部上の、 すなわち心臓 磁場の磁界分布時系列データを生成して出力する。
磁界分布計測装置 1によつて計測された心臓の磁界分布時系列データに基づい て、 第 1の演算装置 2は、 ことえば、 後述する種々の公知の計算手法を用いて、 心筋内の 3次元電気的活動状態を示す第 1のデータを生成して出力する。
一方、 核磁気共鳴 (MR I ) 法、 Xf泉 C T法、 心エコー図法、 心筋 S P E C T 法などの断層診断装置によって別途得られた同一被験者の胸部の断層画像データ (複数枚の断層画像のデータを含む) 、 第 2の演算装置 3に与えられ、 第 2の 演算装置 3は、 これらの断層画像データを加工して 3次元的な解剖学的画像を示 す第 2のデータを生成して出力する。
ここで、 上述の第 1のデータを画像で表現すると、 第 1の演算装置 2で得られ た電気的活動状態がたとえば心筋内の電流密度分布であるときには、 電流密度分 布を表わす画像の濃淡の局所的旋回に着目することによって、 電気的旋回路の 3 次元的な同定が可能となる。
表示装置 4は、 第 1の演算装置によって生成された第 1のデータが示す心筋内 の 3次元電気的活動 (たとえば電流密度分布) を示す画像を、 第 2の演算装置 3 によつて生成された第 2のデータが示す被験者の胸部の 3次元的解剖学的画像に 重ね合わせて表示する。 この結果、 解剖学的画像上において心筋内の電気的旋回 路の位置関係を 3次元的に同定することができる。 次に、 図 2は、 図 1に示したこの発明の実施の形態 1による心臓磁界診断装置 の構成をより具体化して示したブロック図である。
図 2を参照して、 磁界分布計測装置 1は、 磁気シールドルーム (Magnetic Shield Room:以下、 MSR) 1 1内において、 被験者 12の胸部上において非 接触の磁気計測を行なうように設置された、 S QU I D磁束計を内蔵するデュヮ 一 13と、 磁界分布データの演算部 14とを備えている。
デュワー 1 3内には液体へリウムが満たされて超電導が生じる低温系の環境が 形成されており、 その中に、 超電導体からなる検出コイルで構成された SQU I D磁束計が収納されている。
図 3は、 図 2に示した MSR 11内のデュワー 1 3内の超低温系に設置される
SQU I D磁束計 1 5、 および常温系の MS R 1 1内に設置される演算部 14を より詳細に示すプロック図である。
なお、 図 3に示した構成は、 被験者の胸部上の 1点の磁界データを計測するた めの 1チャネル分の構成である。 後述するように、 この発明では、 被験者の胸部 上において複数の座標における磁場の多点同時計測を行なう。 したがって、 図 2 の MSR 1 1内には、 図 3に示す 1チャネル分の構成が、 計測に必要な複数チヤ ネル分設けられていることになる。
以下に、 図 3を参照して、 1チャネル分の SQU I D磁束計による磁界データ の生成について説明する。
まず、 SQU I D磁束計 1 5は、 被験者の胸部表面から発生する磁場を検出す るための、 超電導体からなるピックアップコイル 16を備える。 ピックアップコ ィル 16が磁場を捉えると電流が流れ、 この電流はコイル 17に引き込まれて N bシールド 20内に磁場を生じさせる。
この結果、 この磁場に対して線形に変化する磁場が超電導ループ 18内に形成 され、 この超電導ループ 18の両端の電圧を、 常温系の MSR 1 1内に設置され た演算部 14の増幅器によって検出し、 演算部 14は、 検出電圧に変化が生じな いよう、 Nbシーノレド 20内のモジュレーションコイル 1 9に流れる電流を調整. する。
すなわち、 この SQU I Dによる生体の磁場の検出は、 発生する磁場を直接計 測するものではなく、 いわゆるゼロ位法を用いて、 超電導リング 1 8内の磁場が 常に一定値となるようにフィードバックをかける (具体的にはモジュレーシヨン コイル 1 9に流れる電流を調整してモジュレーションコイル 1 9に発生する磁場 を制御することにより、 超電導ループ 1 8内に常に一定の磁場が生じるようにす る) ことにより、 ピックアップコイル 1 6で検出される磁場を、 演算部 1 4が電 気信号に変換して出力するものである。 このようなフィードバックの手法は通常、 フラックスロックトループ (flux locked loop:以下、 F L L ) と呼ばれる周知 の技術である。
このような S Q U I D磁束計 1 5およびその演算部 1 4は周知の技術であるた め、 これ以上の説明を省略する。
前述のように、 図 3に示した構成は、 1チャネル分の磁界データの計測に必要 な構成であり、 被験者の胸部前面上における 1点で計測された磁場の磁界時系列 データを示す電気信号を出力するものである。
この発明では、 前述のように被験者の胸部前面に多くのセンサ (S Q U I D磁 束計) を配列し、 胸部前面上の磁場を多点測定しょうとするものである。 磁場は 時間的に変化するものであり、 たとえば 1心拍に相当する期間中においても、 測 定場所が異なれば磁場は場所に応じた異なる変化をする。
図 4は、 被験者の胸部前面上における複数のセンサ (各々が 1チャネルの S Q U I D磁束計) の配置の一例を示す図である。 また、 図 5は、 図 4の複数のセン サのそれぞれの位置に対応してそれぞれのセンサから得られた、 1心拍期間にお ける磁場の変化を示す 1群の磁界時系列データを示している。
図 2に示す磁界分布計測装置 1から出力されるデータは、 図 5に示すような複 数の測定位置 (座標) に対応する 1群の磁界時系列データであるが、 ある特定の 時刻に着目してこれらの 1群の磁界時系列データを捉えると、 測定対象である胸 部前面上におけるある時刻の磁場の強さの分布状態を示す実際の山谷の様子をグ ラフ (図) で表現するのは困難なので、 天気図の気圧のように等高線図で表現し ている磁界分布データが得られる。 この意味からも、 磁界分布計測装置 1から出 力されるデータは、 胸部前面上の磁界分布時系列データとして捉えることができ る。 磁界分布計測装置 1から出力されるこのような 1群の磁界時系列データ、 すな わち磁界分布時系列データは、 図 2の第 1の演算装置 2に与えられる。 この第 1 の演算装置 2は、 ある時刻の磁界分布データに基づいてその瞬間における胸部内 の電気的活動、 たとえばその瞬間に流れる胸部内の電流密度を求めるように機能 する。
磁界分布計測装置 1によって生成された磁界分布時系列データから、 測定対象 となる人体内の部位 (この発明では心臓) における 3次元的な電気的活動の情報、 たとえば当該部位を流れる電流密度分布を第 1の演算装置 2で求める手法につい て説明する。
図 6は、 このような電流密度を求める方法を模式的に説明する図である。 以下 に説明する方法では、 解析しようとする人体内の特定の 1つの部位に仮に電流セ ンサ (仮想センサ) が設けられていたとすれば、 あたかもそこに流れるはずの電 流を間接的に算出しょうとするものである。 このため、 人体胸部前面に設置され たすベてのセンサ (S Q U I D磁束計) から得られる磁界時系列データにある係 数をかけてその総和を取ることによって、 当該仮想センサの電流出力を得ること ができる。 そして、 この係数をどのように求めるかがこの演算における中心的な 課題となる。
以下に、 図 6を参照して、 電流密度を求める手法についてより詳細に説明する。 まず、 人体表面 (胸部前面) 上に、 総数が N個の磁界センサが配列されているも のとする。 一方、 ①で示すように解析対象である人体 (胸部、 特に心臓) を、 各々が小さなブロックであるポクセルの集合体とみなす。 ここで、 ポクセルの総 数を M個とする。 なお、 ②に示すように、 同一座標に、 互いに直交成分の分布電 流が流れるポクセルを配置する。 ただし、 ③で示す平面に直交する成分は、 心磁 計測では磁界センサが胸部上平面に配置されることが多いため、 省略されること が多い。
各センサ jから得られる磁界時系列データを B j ( t ) とし、 各センサ出力 ( B j ( t ) に対応するポクセル iの空間フィルタ係数を /3 .とする。
ここで、 ポクセル iに仮想電流センサがあるものと考えた場合、 当該仮想電流 センサから得られる電流密度に対応する仮想センサ出力を S i ( t ) とすると、 S i ( t ) は次式で定義される。 Sic py . Bj (り したがって、 空間フィルタ係数 』が決まれば、 各ボタセル iにおける電流密 度を得ることができ、 解析対象全体における 3次元的電流密度分布を得ることが できる。.
上述の空間フィルタ係数 』を、 対応するボタセル iの分布電流に対してのみ 鋭敏な感度を有するように設定する手法としては、 S AM (Synthetic Aperture Magnetometry) 、 MU S I C (Multiple Signal Classification) などの種々の 手法を用いることができる。 S AMや MU S I Cは、 これまで、 レーダやソナ^" などの分野で研究開発が行なわれてきたものであり、 それぞれの手法は周知であ るが、 未だ心臓磁界の診断に応用されたことはない。
S AMや MU S I Cの手法によって空間フィルタ係数を用いて求められた各ポ クセルのリアルタイムに算出された仮想センサ出力は、 非常に高いリアルタイム 性を有するという利点を有している。
S AMや MU S I Cの技術そのものは周知であり、 またこれらの手法を用いて 空間フィルタ係数を求めるアルゴリズムは極めて複雑なため、 ここではその詳細 な説明を省略するが、 S AMについては、 1 9 9 9年発行の Proceedings of the 11th International Conference on Biomagnetismの Reent Advances m Biomagnetism" (Tohoku University Press発行) の第 3 0 2頁から第 3 0 5頁 の Robinson SE および Vrba J" による "Functional Neuroimaging by- Synthetic Aperture Magnetometry (SAM) " に詳細に説明されている。 MU S I Cについては、 平成 9年 1月 2 5日発行の原宏および栗城真也による 「脳磁気科 学一 S Q U I D計測と医学応用一」 (オーム社) の第 1 1 7頁から第 1 1 9頁に 詳細に説明されている。
このようにして、 第 1の演算装置 2は、 磁界分布計測装置 1によって生成され た磁界分布データから解析対象である心臓內の 3次元的電流密度分布を示す時系 列データを生成して表示装置 4の一方入力に与える。
一方、 図 2に示す第 2の演算装置 3には、 図示しない他の断層診断装置、 たと えば MR I法、 X線 C T法、 心エコー図法、 心筋 S P E C T法などを用いて心電 図同期トリガをかけて撮影された同一被験者の胸部の複数のスライス画像 (たと えば 5ミリピッチで十数枚程度) の画像データが入力される。
第 2の演算装置 3は、 これらの複数のスライス画像のデータを加工 (補間) し て所定視点から 3次元透視変換を施し、 解剖学的画像を示す第 2のデータを生成 する。 このように複数のスライス画像から 3次元的な解剖学的画像を形成する技 術は周知であり、 たとえば特開平 1 1— 1 2 8 2 2 4号公報、 国際公開 WO 9 8 / 1 5 2 2 6号公報などに詳細に開示されている。 したがって、 その詳細はここ では説明しない。
このようにして、 第 2の演算装置 3は、 同一被験者の心臓付近の胸部の 3次元 的な解剖学的画像を示す第 2のデータを生成し、 表示装置 4の他方入力に与える。 図 2の表示装置 4は、 第 2の演算装置 3からの第 2のデータに基づいて形成し た被験者の胸部の 3次元的な解剖学的画像上に、 第 1の演算装置 2からの第 1の データに基づいて形成した心筋内の 3次元的電流密度分布を示す画像を重ね合わ せて表示する。
図 7 Aおよび 7 Bは各々、 表示装置 4によって表示される 3次元的な解剖学的 画像に重ね合わされた 3次元的電流密度分布のリアルタイム表示の態様を示す図 であり、 図 7 Aと図 7 Bとでは、 時間の推移により電流密度分布が経時的に変化 している。
図 7 Aおよび 7 Bの各々は、 たとえば被験者の胸部を 5ミリピッチでスライス して得た 5枚程度の断層画像を補間処理した 3次元的画像であり、 実際の表示画 像の奥行き感を図面上で表現することは困難である。 図 7 Aおよび 7 Bの各図で は、 各画像を構成する線図が重複した複数の線図によって表現されていることか ら、 複数のスライス画像の合成により形成された奥行き感のある立体的な角?剖学 的画像であることを推測することができる。
なお、 図 7 Aおよび 7 Bの各々において、 断層像の上側が人体の前面であり、 下側が背面である。 また図 7 Aおよび 7 Bの各断層像は、 下側 (足側) から見た 断層像である。
図 7 Aおよび 7 Bの各々において、 Aで示す円の集合は、 3次元的角军剖学的画 像に重ね合わされた 3次元的電流密度分布を表示する.ものであり、 各円の径の大 きさが電流密度の大きさを表わしている。 また、 電流密度の大小は、 画面上の特 定の色の濃淡で表示することもできる。
また、 図 8は、 図 7 Aおよび 7 Bのような深さのある立体的解剖学的画像のあ る深さにおける断層画像を抽出して表示するものであり、 同様に Aで示す円の集 合が当該断層画像上における電流密度分布を表わしている。
このように、 深さのある 3次元的な解剖学的画像上に心筋内の 3次元的電流密 度分布を表示することにより、 医師は解剖学的画像上における心筋內の電流密度 分布の相対的な位置関係を的確に把握することができる。 特に、 表示された電流 密度分布が局所的旋回を示しているときには、 心房粗動および心房細動の原因と なる電気的旋回路の生じている心筋内の患部の位置、 大きさ、 および形状を的確 に診断することができる。
図 9は、 以上の実施の形態 1による心臓磁界診断装置によって実行される心筋 内の電流密度分布 (特に、 異常な電気的旋回路) の同定方法を示すフロー図であ る。
図 9を参照すると、 まずステップ S 1において、 磁界分布計測装置 1により、 人体胸部上の複数の座標において非接触磁気計測を行ない、 複数の時系列データ を生成し、 必要であれば記録する。 なお、 第 1の演算装置 2における前述の S A Mまたは MU S I Cによる演算は、 リアルタイムで供給される時系列データに対 して実行可能である。
次に、 ステップ S 2において、 予め心電図同期トリガをかけて撮影した複数の MR I画像に対して、 第 2の演算装置 3により補間演算 (所定視点からの 3次元 透視変換) を施し、 3次元の解剖学的画像を得る。
次に、 ステップ S 3において、 解析の初期時刻を t s、 解析の終了時刻を t e、 解析の時間間隔を Δ tと定める。
次に、 ステップ S 4において、 解析時刻 tに初期時刻 t sを代入して解析を開 始する。 そして、 ステップ S 5において、 解析時刻 tが終了時刻 t eに達するま で、 以下の処理を行なう。
すなわち、 ステップ S 6において、 第 1の演算装置 2により指定解析時刻 tに おける心臓磁界分布データを S AM法または MU S I C法で処理して心筋内電流 密度分布データを得る。
次に、 ステップ S 7において、 表示装置 4により、 心筋内電流密度分布データ を、 所定始点から 3次元透視変換を施した解剖学的画像に重ね合わせて表示する。 次に、 ステップ S 8において解析時刻 tに Δ tを加算する。
これらのステップ S 6〜S 8の処理が、 解析時刻 tが終了時刻 t eに達したこ とがステップ S 5で判断されるまで繰返され、 終了時刻 t eに達すると、 解剖学 的画像に重ね合わされた心筋内電流密度分布データの表示を終了する。
以上のように、 この発明の実施の形態 1によれば、 S Q U I D磁束計を用いた 被験者の胸部上の非侵襲的な磁気計測によって得られた心筋内の電流密度分布を 示す画像を 3次元的解剖学的画像に重ねて表示することにより、 心房粗動および 心房細動の原因となる心筋内の異常な興奮伝播回路、 すなわち電気的旋回路の解 剖学的位置関係、 大きさ、 形状を医師が 3次元的に同定することが可能となる。 このため、 外科的開胸手術時に多点同時の心筋電位計測を行なわなくても、 心 房粗動おょぴ心房細動の原因となる異常な興奮伝播回路を、 安全、 迅速、 かつ高 精度に同定することが可能となり、 開胸手術の手術時間を著しく短縮することが でき、 患者の負担を軽減することができる。
また、 胸部 X線透視をしながらカテーテルによる電気生理学的検査を行なつて いた従来の診断方法を用いなくても、 上述のように異常な興奮伝播回路を安全、 迅速、 かつ高精度に同定することが可能となるため、 医師や放射線技師の X線被 爆時間を著しく短縮することができ、 医師および放射線技師の負担を軽減するこ とができる。
また、 この実施の形態 1による電気的旋回路の同定方法を、 高周波によるカテ 一テル焼灼法と併用することにより、 低侵襲性の手術で心房粗動および心房細動 を治療することができ、 患者の負担をさらに軽減することができる。
さらに、 この実施の形態 1では、 心筋内の電気的活動状態を示すデータとして 電流密度分布を計測しているので、 心筋内電流密度分布と、 生存心筋に関する医 学的知見との整合性を容易にとりながら診断を行なうことができる。
[実施の形態 2 ] 上述の実施の形態 1では、 解剖学的画像を形成するために、 被験者の多数の断 層像を得る必要があり、 MR I法、 X線 C T法等による検査を事前に行なってい た。 このため、 検査回数が多くなり、 患者の負担となるとともに、 検査と直結し た治療を行なうことができなかった。
この発明の実施の形態 2は、 解剖学的画像の形成を不要とすることにより、 検 查回数を減らし、 診断と検査とを直結して実施することができる心臓磁界診断装 置および電気的旋回路の同定方法を提供するものである。
図 1 0は、 この発明の実施の形態 2による、 心房粗動および心房細動の心臓磁 界診断装置の構成を概略的に示す機能プロック図である。
図 1 0を参照して、 磁界分布計測装置 1については、 実施の形態 1に関連して 既に説明したので、 ここでは繰返して説明しない。
磁界分布計測装置 1によって生成された磁界分布時系列データは、 演算装置 5 に与えられる。 演算装置 5は、 与えられた磁界分布時系列データに基づいて、 先 に述べた S AM法あるいは MU S I C法等の計算手法を用いて心筋内の 3次元電 気的活動状態、 たとえば 3次元的電流密度分布を示すデータを生成する。 そして、 演算装置 5は、 生成した 3次元的電流密度分布データに基づいて、 心電図の P波 から Q R S群に相当する期間の心臓内の興奮 (刺激) 伝播経路を示すデータと、 電流密度分布を示すデータとを重ね合わせて、 表示装置 6に与える。
表示装置 6は、 演算装置 5によって生成されたデ一タが示す心筋内の電流密度 分布を示す画像を、 同じく演算装置 5によって求められた心電図の P波から Q R S群の期間に相当する興奮伝播経路の 3次元的画像に重ね合わせて表示する。 こ の結果、 実施の形態 1のような解剖学的画像を用いなくても、 心筋内の電気的旋 回路の位置関係を 3次元的に同定することが可能となる。
次に、 図 1 1は、 図 1 0に示したこの発明の実施の形態 2による心臓磁界診断 装置の構成をより具体化して示したブロック図である。
図 1 1を参照して、 磁界分布計測装置 1は、 図 2および図 3に関連して説明し た磁界分布計測装置 1と同じなので、 ここでは説明を省略する。
磁界分布計測装置 1から出力された磁界分布時系列データは、 図 1 1の演算装 置 5に与えられ、 この演算装置 5は、 図 6に関連して説明した S AM法あるいは MU S I C法などにより、 磁界分布時系列データを電流密度分布時系列データに 変換する。
ここで、 被験者 1 2の心電図を記録する心電計 2 1が設けられており、 これに より測定された被験者 1 2の心電図波形データは演算装置 5に与えられる。 ここで、 心電図の波形と、 生成された電流密度分布とを対応づければ、 心電図 と、 心臓にぉ ヽて発生している事象との対応づけも可能となる。
ここで、 図 1 2 Aは、 心臓における正常な刺激伝播経路を模式的に示す図であ り、 図 1 2 Bは 1心拍分の心電図波形を示している。
図 1 2 Aおよび 1 2 Bを参照して、 心臓の洞房結節または洞結節は心拍を決定 するペースメーカとしての機能を有し、 一定間隔 (心電図の P波のタイミング) で発火してパルスを発生する。 このパルスは、 決められた刺激伝播経路を介して 房室結節に伝わり、 ここで一定時間後、 ヒス (H I S ) 束からプルキンェ繊維系 を介して下方の心室にパルスを伝達し、 一気に心筋の収縮が生じる。 このヒス束 からプ キンェ繊維系の刺激の伝播は、 心電図の Q R S群の期間 (等容収縮期) に相当する。
'したがって、 この Ρ波から Q R S群の期間に関連づけた心臓磁界、 すなわち心 筋内電流密度分布の解析により、 演算装置 5は、 図 1 2 Αに示すような正常ルー トとしての刺激伝播経路を示す画像データを生成する。
このような図 1 2 Αに示す刺激伝播経路の画像は、 実施の形態 1の解剖学的画 像の代わりにテンプレート表示として使用することができる。 すなわち、 実施の 形態 1のような 3次元の解剖学的画像がなくても、 この図 1 2 Aに示す正常ルー トの刺激伝播経路が表示されれば、 その周辺に生じた異常興奮回路、 たとえば異 常な電気的旋回路 (図 1 2 A中の破線) は、 医師であれば、 容易に解剖学的な対 応づけが可能であり、 その位置、 大きさ、 形状を同定することができる。
図 1 1の演算装置 5は、 このようなテンプレートとしての刺激伝播回路の表示 に重ね合わせて、 生成された電流密度分布を示すデータを生成する。 前述のよう に、 電流密度分布を表わす画像の局所的旋回に着目することによって、 異常興奮 回路、 すなわち電気的旋回路を見出すことが可能であり、 そのような画像データ が上述のテンプレートの画像データに合成されて、 表示装置 6に与えられる。 図 1 1に示す表示装置 6は、 演算装置 5からのデータに基づいて、
トとしての正常な刺激伝播回路に重ね合わせて、 電流密度分布を示す画像を表示 する。
図 1 3は、 表示装置 6によって実際に表示される画面の一例であり、 テンプレ —トとしての正常刺激伝播回路に重ね合わせて、 異常な電気的旋回路を示す電流 密度分布の画像が表示されている。
医師であれば、 図 1 3に示すテンプレートとしての正常刺激伝播回路に対する 電気的旋回路の相対的位置関係だけに基づいて、 容易に解剖学的な対応づけが可 能であり、 電気的旋回路の位置、 大きさ、 形状を同定することができる。
図 1 4および図 1 5は、 以上の実施の形態 2による心臓磁界診断装置によって 実行きれた心筋内の電流旋回路の同定方法を示すフロー図である。
まず、 図 1 4を参照して、 ステップ S 1 1において、 磁界分布計測装置 1を用 いて人体胸部上の複数の座標において非接触磁気計測を行ない、 複数の磁界時系 列データを生成し記録する。
次に、 ステップ S 1 2において、 解析の初期時刻を、 心電図の P波開始時刻 t sPと定め、 解析終了時刻を心電図の Q R S群終了時刻 t eQRSと定め、 解析の時間 間隔を Δ tと定める。
次にステップ S 1 3において、 角军析時刻 tに、 P波の開始時刻である t sPを代 入する。
そして、 ステップ S 1 4において、 解析時間が終了時刻 t eQRSに到達するまで、 以下のステップ S 1 5〜S 1 7の処理が繰返される。
すなわち、 ステップ S 1 5において、 演算装置 5により指定解析時刻 tにおけ る心磁界分布データを S AM法または MU S I C法で処理して心筋内電流密度分 布データを生成する。
次に、 ステップ S 1 6において、 心筋内電流密度分布データに所定始点から 3 次元透視変換を施した画像を表示する。
次に、 ステップ S 1 7において、 解析時刻 tに Δ tを力!]算し、 ステップ S 1 4 に戻って終了時刻 t eQRSに達したか否かを判定する。 ここで終了時刻 t eQRSに達し たことが判定されると、 心電図の波形のうち P波から Q R S群に至る期間に対応 づけて図 1 2 Aに示す正常ルートである刺激伝播経路を示す画像データが得られ たことになる。
次に、 図 1 5のステップ S 1 8に進み、 解析の初期時刻を t sと定め、 解析の 終了時刻を t eと定め、 解析時間間隔を Δ tと定める。
次に、 ステップ S 1 9において、 解析時刻 tに初期時刻 t sを代入する。
次に、 ステップ S 2 0において、 解析時刻 tが終了時刻 t eに到達したことが 判断されるまで、 以下のステップ S 2 1〜S 2 3が実行される。
すなわち、 ステップ S 2 1において、 演算装置 5により、 指定解析時刻 tにお ける心磁界分布データを S AM法または MU S I C法で処理して心筋内電流密度 分布データを生成する。
次に、 ステップ S 2 2において、 心筋内電流密度データを、 所定始点から 3次 元透視変換を施した正常刺激伝播回路の画像に重ね合わせて表示する。
さらにステップ S 2 3において、 解析時刻 tに Δ tを加算し、 ステップ S 2 0 に戻って終了時刻 t eに達したか否かを判定する。 これにより、 心筋内の電流密 度分布を示すデータが、 図 1 4のフロー図で得られた正常刺激伝播経路 (図 1 2 A) の画像に重ね合わせて表示されることになる。
以上のように、 この発明の実施の形態 2によれば、 S Q U I D磁束計を用いた 被験者の胸部上の非侵襲的な磁気計測によって得られた心筋内の電流密度分布を 示す画像を、 テンプレートとしての正常刺激伝播経路に重ねて表示することによ り、 他の解剖学的画像と重ね合わせることなく、 心房粗動および心房細動の原因 となる心筋内の異常な興奮伝播回路、 すなわち電気的旋回路の刺激伝播回路に対 する相対的な位置関係、 大きさ、 形状を医師が 3次元的に同定することが可能と なる。 したがって、 この実施の形態 2では、 解剖学的画像を得るための事前の検 査を省略することができる。
また、 胸部 X線透視をしながらカテーテルによる検査および治療を行なう従来 の方法においても、 上述のように安全、 迅速、 かつ高精度に心筋内の異常な興奮 伝播回路の同定が可能となるため、 医師や放射線技師の X線被爆時間を著しく短 縮することができ、 医師および放射線技師の負担を軽減することができる。 また、 解剖学的画像作成のための検査が不要となるため、 この実施の形態 2に よる電気的旋回路の同定方法を高周波によるカテーテル焼灼法と併用することに より、 心房粗動および心房細動の診断と直結した治療を実行することができ、 患 者の負担をさらに軽減することができる。
さらに、 この実施の形態 2では、 心筋内の電気的活動状態を示すデータとして 電流密度分布を計測しているので、 心筋内電流密度分布と、 生存心筋に関する医 学的知見との整合性を容易に取りながら、 診断を行なうことができる。
以上のように、 この発明によれば、 患者の胸部上における非侵襲磁気計測によ つて得られた心筋内電気的活動状態を、 3次元的な解剖学的画像上で可視表示す ることができるので、 心筋内の異常な電気的旋回路の位置、 形状、 個数を 3次元 的に同定することができる。
したがって、 胸部 X線透視をしながらカテーテルによる電気生理学的検査を行 なう場合の医師や放射線技師の年間 X線被爆時間を著しく低減することができ、 また開胸での手術時間を著しく短縮することができ、 この結果、 患者および医師 双方の負担を軽減することができる。
さらに、 高周波を用いたカテーテル焼灼法による治療の前に本努明を併用する ことにより、 効率の良い診断法が可能となる。
特に、 生成される電気的活動状態を示すデータが電流密度分布データである場 合には、 生成された心筋内の異常な興奮伝播回路の電流密度分布と心筋内電流密 度分布との対応が容易であり、 1個または複数個の電流ダイポールで磁場源を模 倣していた従来の解析方法のように、 個数の設定や初期値次第で結果が変わると いう不都合が生じない。
この発明のさらに他の局面によると、 同一被験者の洞結節からヒス束一プルキ ンェ繊維系への正常刺激伝播回路に、 異常な電気的旋回路を重ね合わせて 3次元 表示することにより、 解剖学的画像を得ることなく、 心筋内の異常な電気的旋回 路の位置、 大きさ、 形状、 個数を 3次元的に同定することができる。 すなわち、 解剖学的画像を得るための検査を省略でき、 より経済効率が上がるという効果を 奏する。 産業上の利用可能性 以上のように、 この発明に係る心房粗動およぴ心房細動の心臓磁界診断装置お よび心房粗動および心房細動の電気的旋回路の同定方法によれば、 心筋内の異常 な電気的旋回路の位置、 形状、 個数を 3次元的に同定することができるので、 胸 部 X線透視をしながらのカテーテルによる電気生理学的検査または高周波を用レ、 た力テーテル焼灼法による治療に有用である。

Claims

請求の範囲
1 . 心房粗動および心房細動の心臓磁界診断装置であって、
被験者の胸部上の複数の座標における非接触磁気計測により前記複数の座標に 対応する複数の磁界時系列データを取得し、 かつ前記複数の磁界時系列データに 基づいて前記胸部上の磁界分布時系列データを生成する磁界分布計測装置 ( 1 ) と、
前記生成された磁界分布時系列データに基づいて前記被験者の心筋内の 3次元 電気的活動状態を示すデータを生成する第 1の演算装置 (2 ) と、
別途供給された前記被験者の胸部断層画像データを加工して解剖学的画像を示 すデータを生成する第 2の演算装置 (3 ) と、
前記第 1の演算装置により生成されたデータが示す前記心筋内の 3次元電気的 活動状態の画像を、 前記第 2の演算装置により生成されたデータが示す前記解剖 学的画像に重ね合わせて表示する表示処理を行なう表示装置 (4 ) とを備え、 こ れにより、 心筋内の異常な電気的旋回路を 3次元的に同定することができる、 心
2 . 前記第 1の演算装置によって生成される前記心筋内の 3次元電気的活動状態 を示すデータは、 心筋内の電流密度分布時系列データであり、 前記表示装置は、 前記電流密度分布時系列データに基づいて、 前記解剖学的画像上に複数の異常な 電気的旋回路の位置を 3次元的に表示する、 請求項 1に記載の心臓磁界診断装置。
3 . 心房粗動および心房細動の心臓磁界診断装置であって、
被験者の胸部上の複数の座標における非接触磁気計測により前記複数の座標に 対応する複数の磁界時系列データを取得し、 かつ前記複数の磁界時系列データに 基づいて前記胸部上の磁界分布時系列データを生成する磁界分布計測装置 ( 1 ) と、
前記生成された磁界分布時系列データに基づいて前記被験者の心筋内の 3次元 電気的活動状態を示すデータを生成する演算装置 (5 ) と、
前記演算装置により生成されたデータに基づいて、 前記被験者の心臓の洞結節 からヒス束ープルキンェ繊維系への刺激伝播経路を示す画像と、 心筋内の異常な 電気的旋回路を示す画像とを重ね合わせて表示する表示処理を行なう表示装置
( 6 ) とを備え、 これにより、 心筋内の異常な電気的旋回路を 3次元的に同定す ることができる、 心臓磁界診断装置。
4 . 前記演算装置によって生成される前記心筋内の 3次元電気的活動状態を示す データは、 心筋内の電流密度分布時系列データであり、 前記表示装置は、 前記電 流密度分布時系列データに基づいて、 前記刺激伝播経路を示す画像上に複数の異 常な電気的旋回路の位置を 3次元的に表示する、 請求項 3に記載の心臓磁界診断
5 . 心房粗動および心房細動の電気的旋回路の同定方法であって、
被験者の胸部上の複数の座標における非接触磁気計測により取得された前記複 数の座標に対応する複数の磁界時系列データに基づいて生成された前記胸部上の 磁界分布時系列データに基づいて、 前記被験者の心筋内の 3次元電気的活動状態 を示す第 1のデータを生成するステップと、
另リ途供給された前記被験者の胸部断層画像データを加工して解剖学的画像を示 す第 2のデータを生成するステップと、
前記第 1のデータが示す前記心筋内の 3次元電気的活動状態の画像を、 前記第
2のデータが示す前記解剖学的画像に重ね合わせて表示することにより、 心筋内 の異常な電気的旋回路を 3次元的に同定することを可能にするステップとを備え る、 電気的旋回路の同定方法。
6 . 前記第 1のデータが示す心筋内の 3次元的電気活動状態は、 心筋内の電流密 度分布である、 請求項 5に記載の電気的旋回路の同定方法。
7 . 心房粗動および心房細動の電気的旋回路の同定方法であって、
被験者の胸部上の複数の座標における非接触磁気計測により取得された前記複 数の座標に対応する複数の磁界時系列データに基づいて生成された前記胸部上の 磁界分布時系列データに基づいて、 前記被験者の心筋内の 3次元電気的活動状態 を示すデ一タを生成するステップと、
前記生成されたデータに基づいて、 前記被験者の心臓の洞結節からヒス束ープ ルキンェ繊維系への刺激伝播経路を示す画像と、 心筋内の異常な電気的旋回路を 示す画像とを重ね合わせて表示することにより、 心筋内の異常な電気的旋回路を 3次元的に同定することを可能にするステップとを備える、 電気的旋回路の同定 方法。
8 . 前記データが示す心筋内の 3次元電気的活動状態は、 心筋内の電流密度分布 である、 請求項 7に記載の電気的旋回路の同定方法。
PCT/JP2001/006192 2000-07-18 2001-07-17 Instrument de diagnostic de champ magnetique cardiaque pour fibrillation et flutter auriculaires ; methode d'identification de chemin de retour electrique pour flutter et fibrillation auriculaires WO2002005713A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/333,023 US7123952B2 (en) 2000-07-18 2001-07-17 Cardiac magnetic field diagnozer for atrial flutter and atrial fibrillation and method for identifying electric turning path of atrial flutter and atrial fibrillation
EP01948054A EP1302159A4 (en) 2000-07-18 2001-07-17 CARDIAC MAGNETIC FIELD DIAGNOSIS INSTRUMENT FOR AURICULAR FIBRILLATION AND FLUTTER; ELECTRIC RETURN PATH IDENTIFICATION METHOD FOR AURICULAR FLUTTER AND FIBRILLATION
AU2001269538A AU2001269538A1 (en) 2000-07-18 2001-07-17 Cardiac magnetic field diagnozer for atrial flutter and atrial fibrillation and method for identifying electric turning path of atrial flutter and atrial fibrillation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000217833A JP3712348B2 (ja) 2000-07-18 2000-07-18 心房粗動および心房細動の心臓磁界診断装置およびその作動方法
JP2000-217833 2000-07-18

Publications (1)

Publication Number Publication Date
WO2002005713A1 true WO2002005713A1 (fr) 2002-01-24

Family

ID=18712888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006192 WO2002005713A1 (fr) 2000-07-18 2001-07-17 Instrument de diagnostic de champ magnetique cardiaque pour fibrillation et flutter auriculaires ; methode d'identification de chemin de retour electrique pour flutter et fibrillation auriculaires

Country Status (5)

Country Link
US (1) US7123952B2 (ja)
EP (1) EP1302159A4 (ja)
JP (1) JP3712348B2 (ja)
AU (1) AU2001269538A1 (ja)
WO (1) WO2002005713A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712349B2 (ja) * 2000-07-18 2005-11-02 独立行政法人科学技術振興機構 生存心筋診断装置およびその作動方法
JP3944383B2 (ja) * 2001-11-16 2007-07-11 株式会社日立製作所 心臓磁場計測装置
JP4426773B2 (ja) * 2003-04-18 2010-03-03 株式会社日立ハイテクノロジーズ 生体磁場計測装置及び当該装置により実行される生体磁場計測方法
US20050171396A1 (en) * 2003-10-20 2005-08-04 Cyberheart, Inc. Method for non-invasive lung treatment
JP3890344B2 (ja) * 2004-09-29 2007-03-07 株式会社日立ハイテクノロジーズ 生体磁場計測装置
US8594772B2 (en) 2008-06-03 2013-11-26 International Business Machines Corporation Method for monitoring and communicating biomedical electromagnetic fields
US20110133729A1 (en) * 2008-08-15 2011-06-09 Koninklijke Philips Electronics N.V. Method and monitoring device for performing an rf-safe mit scan
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
US9223418B2 (en) 2010-12-15 2015-12-29 Microsoft Technology Licensing, Llc Pen digitizer
US9378444B2 (en) 2010-12-23 2016-06-28 Microsoft Technology Licensing, Llc Encoded micro pattern
JP2015119818A (ja) * 2013-12-24 2015-07-02 学校法人金沢工業大学 生体磁場解析装置、生体磁場解析システム、生体磁場解析方法および生体磁場解析プログラム
KR101764697B1 (ko) 2015-08-17 2017-08-16 연세대학교 산학협력단 심장 세동 질환 예측 방법 및 그 장치
US11493566B2 (en) 2016-09-07 2022-11-08 Texas Tech University System Electric current imaging system
US10034645B1 (en) * 2017-04-13 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for detecting complex networks in MRI image data
CN115334962A (zh) * 2020-03-13 2022-11-11 朝日英达科株式会社 医疗装置以及图像生成方法
JP7584350B2 (ja) 2021-04-27 2024-11-15 株式会社アドバンテスト 信号ベクトル導出装置、方法、プログラム、記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (ja) * 1995-04-24 1996-11-05 Toshiba Corp 組織の興奮伝播過程のシミュレーション方法及びこの方法を使用した組織内電磁気現象診断装置
JPH10276998A (ja) * 1997-04-10 1998-10-20 Toshiba Corp 興奮伝播過程のシミュレーション装置
JPH10323335A (ja) * 1997-05-26 1998-12-08 Toshiba Corp 心臓内電気現象の診断装置およびその診断方法
JPH11128191A (ja) * 1997-10-30 1999-05-18 Toshiba Corp 心臓内電気現象の診断装置およびその現象の表示方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594849A (en) * 1991-08-09 1997-01-14 Yale University Biomedical magnetism imaging apparatus and method
EP0968683B1 (en) 1996-10-08 2011-05-25 Hitachi Medical Corporation Method and apparatus for forming and displaying image from a plurality of sectional images
JPH11128224A (ja) 1997-10-28 1999-05-18 Mitsubishi Heavy Ind Ltd 超音波3次元画像再構成装置
AU2043699A (en) 1998-01-23 1999-08-09 Ctf Systems Inc. System and method for measuring, estimating and displaying rms current density maps
JP3712350B2 (ja) * 2000-07-18 2005-11-02 独立行政法人科学技術振興機構 心室遅延電位の心臓磁界診断装置およびその作動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (ja) * 1995-04-24 1996-11-05 Toshiba Corp 組織の興奮伝播過程のシミュレーション方法及びこの方法を使用した組織内電磁気現象診断装置
JPH10276998A (ja) * 1997-04-10 1998-10-20 Toshiba Corp 興奮伝播過程のシミュレーション装置
JPH10323335A (ja) * 1997-05-26 1998-12-08 Toshiba Corp 心臓内電気現象の診断装置およびその診断方法
JPH11128191A (ja) * 1997-10-30 1999-05-18 Toshiba Corp 心臓内電気現象の診断装置およびその現象の表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1302159A4 *

Also Published As

Publication number Publication date
EP1302159A4 (en) 2007-06-06
JP3712348B2 (ja) 2005-11-02
JP2002028143A (ja) 2002-01-29
EP1302159A1 (en) 2003-04-16
US7123952B2 (en) 2006-10-17
AU2001269538A1 (en) 2002-01-30
US20040077964A1 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
AU2020200911B2 (en) Registration maps using intra-cardiac signals
JP5054873B2 (ja) 局部的エレクトログラムから心臓組織を特徴付けるための装置
JP3712348B2 (ja) 心房粗動および心房細動の心臓磁界診断装置およびその作動方法
JP4027867B2 (ja) 生体磁場計測装置
JP2018525041A (ja) 機能的な心臓電気生理の評価のための方法およびシステム
JP3712349B2 (ja) 生存心筋診断装置およびその作動方法
WO2005117695A1 (ja) 心臓磁界診断装置および傷害心筋の3次元局在評価方法
Fenici et al. Nonfluoroscopic localization of an amagnetic stimulation catheter by multichannel magnetocardiography
JP3835805B2 (ja) 心臓磁界診断装置およびその作動方法
JP3712350B2 (ja) 心室遅延電位の心臓磁界診断装置およびその作動方法
Brisinda et al. First 36-channel magnetocardiographic study of CAD patients in an unshielded laboratory for interventional and intensive cardiac care
JP2002355229A (ja) 磁界解析方法および電流分布可視化装置
US20180028078A1 (en) Continuous and rapid quantification of stroke volume from magnetohydrodynamic voltages in magnetic resonance imaging
JP3809454B2 (ja) 心臓磁界診断装置およびその作動方法
Agren et al. Magnetocardiographic localization of arrhythmia substrates: a methodology study with accessory pathway ablation as reference
JP4972443B2 (ja) 生体磁場計測装置
Boudlali Analysis of Electroanatomic Mapping System Accuracy Using X-ray Reconstruction of Electrode Locations in a Porcine Animal Model
Mäkijärvi et al. New trends in clinical magnetocardiography
Baron-Palucka Magnetocardiography-measurement conduction, data formats and diagnostic applications.
Xu et al. Reconstructing the Electrical Activity of the Heart by Precise Registration between Magnetocardiography and Computed Tomography Using Apical Calibration Algorithm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001948054

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001948054

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10333023

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001948054

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载