+

WO2002005540A2 - Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder - Google Patents

Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder Download PDF

Info

Publication number
WO2002005540A2
WO2002005540A2 PCT/DE2001/002491 DE0102491W WO0205540A2 WO 2002005540 A2 WO2002005540 A2 WO 2002005540A2 DE 0102491 W DE0102491 W DE 0102491W WO 0205540 A2 WO0205540 A2 WO 0205540A2
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
image data
data stream
transmitter
moving images
Prior art date
Application number
PCT/DE2001/002491
Other languages
English (en)
French (fr)
Other versions
WO2002005540A3 (de
Inventor
Gero BÄSE
Frank Burkert
Jürgen PANDEL
Sebastian Purreiter
Thomas Stockhammer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP01953868A priority Critical patent/EP1299998A2/de
Priority to JP2002509274A priority patent/JP2004503185A/ja
Priority to AU2001276309A priority patent/AU2001276309A1/en
Publication of WO2002005540A2 publication Critical patent/WO2002005540A2/de
Publication of WO2002005540A3 publication Critical patent/WO2002005540A3/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234327Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/613Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/70Media network packetisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/37Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability with arrangements for assigning different transmission priorities to video input data or to video coded data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/89Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2381Adapting the multiplex stream to a specific network, e.g. an Internet Protocol [IP] network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/6437Real-time Transport Protocol [RTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols

Definitions

  • the priority classes are used to sort the data of the moving images in such a way that those data with the greatest information content are first transmitted from the transmitter to the receiver within the image data stream.
  • this ensures that the data with the greatest information content (for each image in the sequence of moving images, that is to say for each synchronizable unit) is transmitted first.
  • less important data is transmitted (staggered), which guarantee a gradual improvement in the image quality. If the error occurs within this data, the video image can still be recognized in sufficient quality, the following within the current synchronizable unit
  • a synchronizable unit means the area between two synchronization points, from which the data of the image data stream are taken into account again, even if an error occurs.
  • the adaptation layer uses different protocols for the transmission from sender to receiver.
  • the adaptation layer it is possible for the adaptation layer to use either packet-switching services or connection-oriented services. This is advantageously used Adaptation layer of the quality of service characteristics of the respective transmission protocol.
  • the adaptation layer can use several protocols simultaneously or if the
  • Adaptation layer can use several channels of one or different protocols simultaneously.
  • One embodiment consists in that the transmission error is determined by using an error-sensitive protocol from the adaptation layer.
  • an error-sensitive protocol is an RTP protocol. Every packet that can be identified by a sequence number can be considered error-sensitive here, i.e. if a package is lost, the associated package number is also missing. The incoming parcel therefore has a higher number than the one actually expected. So the error (here: packet loss) can be noticed.
  • any other protocol can be used that at least ensures that transmission errors are noticed.
  • the transmission is carried out in a packet-switched and / or connection-oriented manner.
  • Another embodiment is that the image decoder displays the moving images contained.
  • an image decoder which has a processor unit which is designed such that a) the digitized moving images are present as an image data stream; b) the image data stream is divided into priority classes; c) based on an adaptation layer of the recipient
  • Transmission errors can be determined; d) error handling can be carried out for the transmission errors at the receiver and e) the transmitted error-treated image data stream can be fed to an image decoder.
  • a system for transmitting digitized moving images with one transmitter and one is also used to solve the problem
  • Receiver specified, in which the digitized moving images are available at the transmitter as an image data stream.
  • the transmitter divides the image data stream into priority classes.
  • the transmitter uses an adaptation layer to transmit the image data stream, which is divided into priority classes, to the receiver using a predetermined protocol.
  • the receiver uses an adaptation layer to determine transmission errors and carries out error handling for the specific transmission errors.
  • the transmitted and error-treated image data stream is fed to an image decoder.
  • the method for decoding digitized moving images is particularly suitable for carrying out one of the developments explained above.
  • the image decoder and the system for transmitting digitized moving images are particularly suitable for carrying out the described methods or one of the developments explained above. Exemplary embodiments of the invention are illustrated and explained below with reference to the drawings.
  • Figure 1 is a sketch of a system for the transmission of digitized moving images from a transmitter to a receiver.
  • Fig.l a system for the transmission of digitized moving images with a transmitter and a receiver is shown.
  • the system, the image decoder and a method for transmitting digitized moving images from transmitter to receiver and a method for decoding are explained below.
  • Fig.l shows an encoder 101 for coding moving images.
  • the coded moving pictures are to be transmitted to a decoder 110 (compressed as possible, that is to conserve resources), the decoder 110 preferably operating according to a coding standard, for example MPEG-4 or H.263.
  • a coding standard for example MPEG-4 or H.263.
  • an extension is provided in the protocol architecture, which includes blocks 102 to 104 on the encoder side and blocks 107 to 109 on the decoder side. This extension in the
  • the protocol architecture aims to transparently provide an additional service for decoder 110, namely to provide a fault-tolerant and error-treated image data stream.
  • the transmission via the transmission channel (105 or 106) takes into account priority classes, that is to say that information with a high information content is transmitted first, and that the transmission errors of the channel are recognized and dealt with so that decoder 110 does not receive any bit errors that propagate through a sequence of moving images and thus lead to significant losses in video quality.
  • the partitioning in priority classes takes place in a block 102 on the side of the encoder 101, that is to say the image data stream is prodded element by element in priority classes.
  • Image data stream which comes for example from an H.26L picture encoder and has the following form
  • PSYNC Picture Sync
  • PTYPE Picture Type
  • MB_TYPE1 ... MB_TYPEn
  • Macroblock-Type all elements occurring in a frame / slice
  • CBPl CBPn
  • Coded Block Pattern coded block pattern
  • MVDl MVDn
  • Motion vector difference 5: LUMl ... LUMn ("Luminance Coefficient", luminance values) 6: CHRJ3C1 ... CHRJDCn ("DC Chrominace Coefficients", DC chrominance values)
  • priority class 1 being the one with the highest priority.
  • an adaptation layer blocks 103 and 104.
  • 1 shows an adaptation layer for a UMTS network in block 103 and an adaptation layer for an IP network (Internet protocol) in block 104. shown.
  • IP network Internet protocol
  • Adaptation layers are available so that the available networks are used accordingly (see return channels 112 and 114).
  • the adaptation layer packs the image data arranged in priority classes in RTP packets and transmits them (in various ways, for example in a packet-oriented manner) to the respective adaptation layer (see blocks 107 and 108) on the side of the decoder 110.
  • the image data streams are identified by reference numerals 111 and 113 characterized.
  • a packet transmitted in this way by the adaptation layer has the following structure, for example:
  • PSYNC PSYNC, PTYPE, MB_TYPE1 ... MB_TYPEn, CBPl ... CBPn, MVDl ... MVDn (priority classes 1 to 4) LUMl ... LUMn (priority class 5) CHR_DC1 ... CHR_DCn (priority class 6) CHR AC1. ..CHR ACn (priority class 7)
  • priority classes 1 to 4 see above for explanation.
  • the brightness values (gray values, luminance values) are summarized in priority class 5 and are transmitted before the chrominance values (priority classes 6 and 7). If the decoder receives such a packet, it recognizes that a picture begins, what type this picture has, whether there are objects in the picture and, if so, where, the type of coding (DCT in block or not) and the motion vector information. Immediately afterwards, the brightness values, i.e. the real image information, co co IM MP 1 t->
  • Partitioning remains addressable and on the other hand, as little space as possible is required for addressing.
  • the slice header information is classified in priority class 2 of the above example (macroblock type).
  • the slice header can be addressed as a table, the elements of the table indicating which macroblocks belong to which slice (column / row assignment).
  • Such slice addressing looks like this:
  • the slice headers are addressed within the actual image data, that is to say the DCT coefficients.
  • the slice information is assigned, for example, to the chrominance values, that is to say priority class 5 according to the above scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Es wird ein Verfahren zur Übertragung digitalisierter Bewegtbilder (Bilddatenstrom) von einem Sender zu einem Empfänger angegeben. Anhand einer Anpassungsschicht beim Sender wird der in Prioritätsklassen unterteilte Bilddatenstrom mittels eines vorgegebenen Protokolls zu dem Empfänger übertragen. Bei einer Anpassungsschicht des Empfängers werden Übertragungsfehler bestimmt, einer Fehlerbehandlung unterzogen und einem Bilddecoder zugeführt.

Description

co co M ho ι— » 1— ' cπ o Cπ o Cπ o Cπ
Dl öd
P- φ
P 01 n tr
P- ι- p Φ p-
, — , r+ (-> ^ P. ? P SD φ ri- r+ P P- P tr Φ P 3 s , — . SU iQ Ό P P tr
' — < d p o
CD
H
' — ' ι-( o d d N •X) o O ι-i P d et P- φ CΛ (D ω P-1 Φ ü P- P- Hi
CD
P rr t
SD
PJ rr
CD
P
Figure imgf000002_0001
co co IV) M
Cπ o Cπ o Cπ o Cπ
Figure imgf000003_0001
co co N> M P>
Cπ o Cπ o Cπ O Cπ
Figure imgf000004_0001
co co M I-1 h- >
Cπ o Cπ O Cπ o Cπ α et 3 ö > Cd ≤ Pf r| Hl P. Cd P. ^ H CJ: H < !-d φ Z P. cn Hi ^ ^ ir| öd σ
Φ tr SD P P. P- Φ P CD Φ Φ Φ P- Φ P r φ P Φ P Φ P- P- SD Φ Φ φ Φ Φ Φ P- (U CD n Φ P P P P P i -> tr fr z Φ tr Hi Φ 3 03 P P 01 P P <! tr tr tr tr tr P- Φ P rt
P P fr n φ φ p. P -> P φ P P P tr s: rt Φ P rt 01 P- φ rt P- tr ω Φ P Φ φ P. ιq Cd Φ P rt CD Φ Φ P hd P Φ φ Φ Φ TJ P P P
Φ P φ oi S! P 3 P P- d Φ P 3 P Ω 03 P W SD Φ φ P P P P P- CD ^
P SD P H3 Φ CD Φ Hi φ P Z tr SD SD tr P Hi O fr P P- er H- tr tr er φ Ω φ
>P P P et P- rt P- P P iQ φ Φ rt sQ P Φ Φ rt Φ Φ P fU Φ Φ CD V-1 tr TJ P
P P P Φ Φ rt P- P Φ tr 01 iQ tr P- d P P1 rt 01 03 H- Hi tr tr d 01 Hi p Hi
SU P iQ P P Φ P Φ P- SU <! P CD P P o 01 üi TJ P hd rt CU SD Pi Z Ω P P n sQ Φ P i-J P 01 φ P Φ P P P ιq 3 P <! P tr SD φ P P z φ PJ (- tr 03 P d Hi tr 01 Φ fr ιq Φ 3 Φ P tr Z Φ P SD fr P CL φ P- ^q 01 iQ
Hl P p: P- ιq 0- P rt 03 P . — . rt P φ P- Ω P Φ j P" p- 01 Φ * rt ö φ P iQ P hJ Φ Φ φ P 01 d P- s: 3 P tr Ω rt rt σ P d 03 φ P P •
Φ tr α tr P Cd P Ω P P. 3 SD P- α φ φ tr φ "> SU P P Φ Ω rt Φ , P cu (- P φ Φ tr LP P- (- P J P P rt rt iQ ιq P fr φ tr Cd φ Φ P Φ Φ P (- P Z P CU: Φ 3 03 α rt fr tr α α α φ P: P P P- fr P P P iQ rt 01 P- Φ et fr 03 φ P φ rt Φ Φ P- tr SD P fr P P P P rt hd rt Φ iQ IS! N P: Φ rt tr P P- φ φ 03 SU P tr P σ P φ
P- 03 SD hd Cd tr fr 01 P P Z d P 03 N φ P- • 03 ^i P- <! P ( P- φ SD P-
P P- P SU P- Φ P: tr P P- P P s: P- Φ P. TJ φ Φ φ P 0] P rt 01 n S
P rt P 01 P Φ SD iQ 03 sQ rt πd Φ P P P- P- tr $ α P- P P- φ P- P: tr P- rt P- rt P P- P 01 o Φ SD P tr φ φ I-1 J φ P Z Su H- N σ P φ sQ
Φ Φ rr p- Φ rt P Φ <! tr Φ fr fr T) Φ (- Φ SU P Φ o P φ d SD P t-1
P- P P- rt u tr Φ Φ P Φ Φ P- tr φ — SD P- ^ 01 P cn P Ω rt Hl rt P-
P ιP O P- rt et 01 fr P P Φ rt fr φ z er 01 et hd Hi tr σ φ p: Φ Ω φ Φ P P Φ (U Cd rt Φ P- 03 < Φ < tr φ Φ P tr P Φ Φ Φ P P 3 tr
01 03 01 P P P πd Φ P Φ oi Φ rt o PJ P- tr P Φ P- P P. fr 3 fr rt rt Φ 01 D n SD z P P- Pt J P P P Φ 01 SD sQ P P SD P φ Cd Φ
^d Φ £D P rt P tr fr φ fr P P P- P- (- SD P φ P 01 rt P s: P Φ P- H- P- p-
P tr P P- Φ LQ φ rt φ Ω P P d er α 01 P P- Φ P- P- P P φ rt φ P P Φ rt d SU P Φ tr P tu Φ P. Ω SD rt P P φ φ 01 1 α Q rt d 3 "«• P- 0 P 01 P 01 et φ P fr tr d P tr ιq pj: P SD P φ φ P P sQ 01 I-1 TJ s; P φ CD P P p- d rt Φ tr P P 01 SD φ
Hl s; φ n P. 3 01 φ Φ P Φ < Φ rt P Ω vq Ω P 03 P Φ P P hd tr P φ Φ tr O [U fr P- <! rt !- P- o ιq P < P. tr tr ι fr 01 ιq rt CD Cd tr P 03 P 01 o rt φ P N CD 03 P φ Φ φ rt rt Φ P P- Cd ^
P. P co i 01 M fr P rt rt Φ tr vq Φ P P Cd P- : CU Φ tr P rt -1 P- φ φ Φ • Φ J tr rt Φ P- SD CD 03 P P- P tr tr 03 tr φ P- P tr
P P P oi 3 (- P P P P P. P P P iQ P ^q Φ Φ 01 Φ P ^1 rt rt
03 o Φ Φ φ tr P Φ P SD α iQ P- oi oi φ
03 rt 3 P φ P SD Φ P- N P Φ
P tr tr tr rt φ fr P- Hi P Φ φ Φ SD φ * P tr P P P- P z P- (D P Φ P rt 3 -> P Φ <! P- P P rt Φ P rt φ P Φ P <Q P rt tr
P- SD n P P Φ Φ cu φ tr P P • • P Hi N P- fr P- α Φ Φ <! rt Φ φ ω tr P P 01 01 P P tr P rt rt P φ SD N P φ tr α 03 P- 01 Φ 01 Φ tr Cd CΛ Φ CU P. Φ • P 01 P P Φ CD φ Φ 03 P- Cd Φ P P Φ P- P P- d ιP Φ rt ≥i 03 i Hl P- z P- P
P 01 P- fu P Cd P- CU: Hi 03 P 3 01 rt 03 • α Φ φ Φ p: Φ φ P CL
P P- P rt P. M !-• 01 o P et φ P- Q. sQ rt P- P. P P P Φ (->
3 n Φ P- • TJ P. φ tr Φ Φ rt φ Φ P. Z> ö P N P H- P Hl 03 d tr 3 P Hl P- 03 P- tr 3 P vq P P Φ SD φ Φ ≤ p. P Φ P
SU P CD: <i P rt Φ P: 01 tu P d P d P φ P- Ω P ^ U3
P 01 P Φ • Φ P iq P- P Ω 1 Hl Φ P Φ tr Φ
Pi φ 1 s P P "", -1 P ιq tr < tr P P3 tr tr
P Φ Z H- Φ Φ p- pj φ φ fr Φ α P o 3 Hl Ω P P P P P- P Φ Φ ω
Φ P p: tr *• P (- « H- P rt
P CD Hl P Φ P- P Z Φ P 01 φ (- Φ φ ω p- P 01 α Φ tr P rt P P- P rt φ
Bilddatenstrom synchrpnisieren kann. Dies ist Bestandteil des H.263 und MPEG-4-Standards .
Daten werden im Fehlerfall insbespndere bis zur nächsten erkannten Partitipnsgrenze verworfen. Durch die entsprechende Priorisierung der einzelnen Informationsgehalte soll sichergestellt sein, dass wichtige Informationen mit weitaus geringerer Wahrscheinlichkeit verloren gehen als Daten (Pakete) mit geringem Informationsgehalt. Somit wird sichergestellt, dass insbesondere eine gewisse Mindesqualität des Bildes bzw. der Folge von Bewegtbilder darstellbar ist.
Eine andere Weiterbildung besteht darin, dass anhand der Prioritätsklassen eine Sortierung der Daten der Bewegtbilder derart erfolgt, dass diejenigen Daten mit dem größten Informationsgehalt zuerst innerhalb des Bilddatenstroms von dem Sender zum Empfänger übertragen werden. Dadurch wird, wie bereits oben erwähnt, sichergestellt, dass die Daten mit dem größten Informationsgehalt (für jedes Bild der Folge von Bewegtbildern, das heißt für jede synchronisierbare Einheit) zuerst übertragen werden. Nachfolgend werden (gestaffelt) jeweils unwichtigere Daten übertragen, die eine sukzessive Verbesserung der Bildqualität gewährleisten. Sollte sich der Fehler innerhalb dieser Daten abspielen, so ist das Videobild trotzdem in ausreichender Qualität erkennbar, die innerhalb der aktuellen synchronisierbaren Einheit nachfolgende
Information wird verworfen. Mit synchronisierbarer Einheit ist damit gemeint der Bereich zwischen zwei Synchronisationspunkten, ab denen jeweils wieder - auch bei Auftreten eines Fehlers - die Daten des Bilddatenstroms erneut berücksichtigt werden.
Eine andere Weiterbildung besteht darin, dass die Anpassungsschicht unterschiedliche Protokolle für die Übertragung von Sender zu Empfänger nutzt. Insbesondere ist es möglich, dass sich die Anpassungsschicht entweder paketvermittelnder Dienste oder verbindungsorientierter Dienste bedient. Vorteilhaft bedient sich die AnpassungsSchicht der Dienstgütemerkmale des jeweiligen Übertragungsprotokolls .
Insbesondere ist es ein Vorteil, wenn die Anpassungsschicht mehrere Protokolle gleichzeitig nutzen kann bzw. wenn die
AnpassungsSchicht mehrere Kanäle eines oder unterschiedlicher Protokolle gleichzeitig nutzen kann.
Eine Ausgestaltung besteht darin, dass der Übertragungsfehler bestimmt wird, indem von der Anpassungsschicht ein fehlersensitives Protokoll eingesetzt wird. Insbesondere ist solch ein fehlersensitives Protokoll ein RTP-Protokoll . Jedes Paket das anhand einer Sequenznummer identifiziert werden kann, kann hier als fehlersensitiv gelten, d.h. falls ein Paket verlorengeht, fehlt auch die zugehörige Paketnummer. Das ankommende Paket hat somit eine höhere Nummer als das eigentlich erwartete. Damit kann der Fehler (hier: Paketverlust) bemerkt werden.
Grundsätzlich kann aber auch jedes andere Protokoll eingesetzt werden, das zumindest sicherstellt, dass Übertragungsfehler bemerkt werden.
Auch ist es eine Ausgestaltung, dass die Übertragung paketvermittelt und/oder verbindungsorientiert durchgeführt wird.
Eine andere Ausgestaltung ist es, dass der Bilddecoder die enthaltenen Bewegtbilder darstellt.
Insbesondere ist es ein Vorteil des beschriebenen Verfahrens, dass ein standardmäßiger Bilddecoder eingesetzt werden kann, für den transparent der Dienst "Fehlerbehandlung" erbracht wird. Somit wird die Funktionalität des standardisierten Decoders derart erweitert, dass dieser keinerlei fortgepflanzte Übertragungsfehler mehr darstellt. Dies wird durch die beschriebene AnpassungsSchicht sichergestellt. Cd N Cd
P- P d p-
P 01 P sx Ω CD φ sx tr 9
CD ιq p S! rt Φ Φ φ
Φ Hl P p-
P p: tr rt
01 tr CD: Φ rt P P P
P rt sQ er
O Φ p-
3 d P
P ex P-
Z Φ d
P- P P
P P. vQ ex Φ s
P CD tr φ Ω Φ
P- p: P 03
P tr P rt φ Φ tr φ
3 P -• tr rt O: rt
Cd P Ω
P- CU fr CD ιq Φ P ex Φ P Ω
P tr φ Φ
Ω CΛ P-
P ^ SD
Φ P- P
Φ tr Ω p-
P Φ P
Φ —
N P d P. (X Q er P SU
Φ Φ P oi
Pi tr Ω 01 d: CD tr tr P Φ
P Φ P- rt Φ p-
• P
P-1 P Φ rt Φ
Φ
W P φ P tu Tj α TJ φ φ
P
1 <
O
P
Figure imgf000008_0001
Zusätzlich wird zur Lösung der Aufgabe ein Bilddecoder angegeben, der eine Prozessoreinheit aufweist, die derart ausgeführt ist, dass a)die digitalisierten Bewegtbilder als ein Bilddatenstrom vorliegen; b)der Bilddatenstrom in Prioritätsklassen unterteilt ist; c) anhand einer Anpassungsschicht des Empfängers
Übertragungsfehler bestimmbar sind; d) für die Übertragungsfehler beim Empfänger eine Fehlerbehandlung durchführbar ist und e)der übertragene fehlerbehandelte Bilddatenstrom einem Bilddecoder zuführbar ist.
Auch wird zur Lösung der Aufgabe ein System zur Übertragung digitalisierter Bewegtbilder mit einem Sender und einem
Empfänger angegeben, bei dem die digitalisierten Bewegtbilder beim Sender als ein Bilddatenstrom vorliegen. Der Sender unterteilt den Bilddatenstrom in Prioritätsklassen. Der Sender überträgt anhand einer Anpassungsschicht den in Prioritätsklassen unterteilten Bilddatenstrom mittels eines vorgegebenen Protokolls zu dem Empfänger. Der Empfänger bestimmt anhand einer Anpassungsschicht Übertragungsfehler und führt eine Fehlerbehandlung für die bestimmten Übertragungsfehler aus. Beim Empfänger wird der übertragene und fehlerbehandelte Bilddatenstrom einem Bilddecoder zugeführt.
Das Verfahren zur Decodierung digitalisierter Bewegtbilder ist insbesondere geeignet zur Durchführung einer der vorstehend erläuterten Weiterbildungen.
Der Bilddecoder und das System zur Übertragung digitalisierter Bewegtbilder sind insbesondere geeignet zur Durchführung der beschriebenen Verfahren oder einer der vorstehend erläuterten Weiterbildungen. Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen dargestellt und erläutert.
Es zeigt
Figur 1 eine Skizze eines Systems zur Übertragung digitalisierter Bewegtbilder von einem Sender zu einem Empfänger.
In Fig.l ist ein System zur Übertragung digitalisierter Bewegtbilder mit einem Sender und einem Empfänger dargestellt. Nachfolgend werden das System, der Bilddecoder und ein Verfahren zur Übertragung digitalisierter Bewegtbilder von Sender zu Empfänger bzw. ein Verfahren zur Decodierung erläutert.
Fig.l zeigt einen Encoder 101 zur Codierung von Bewegtbildern. Die codierten Bewegtbilder sollen (möglichst komprimiert, das heißt ressourcenschonend) zu einem Decoder 110 übertragen werden, wobei der Decoder 110 vorzugsweise nach einem Codierungsstandard, zum Beispiel MPEG-4 oder H.263, arbeitet. Hierzu ist eine Erweiterung in der Protokollarchitektur vorgesehen, die die Blöcke 102 bis 104 auf der Seite des Encoders und die Blöcke 107 bis 109 auf der Seite des Decoders umfasst. Diese Erweiterung in der
Protokollarchitektur verfolgt das Ziel, für den Decoder 110 transparent einen zusätzlichen Dienst zur Verfügung zu stellen, nämlich einen fehlertoleranten und fehlerbehandelten Bilddatenstrom bereitzustellen. Hierbei ist es zum einen von Vorteil, dass die Übertragung über den Übertragungskanal (105 bzw. 106) unter Berücksichtigung von Prioritätsklassen erfolgt, das heißt diejenige Information mit hohem Informationsgehalt zuerst übertragen wird, und weiterhin die Übertragungsfehler des Kanals erkannt und behandelt werden, so dass der Decoder 110 keine Bit-Fehler erhält, die sich über eine Folge von Bewegtbildern fortpflanzen und somit zu signifikanten Einbußen in der Videoqualität führen. Demgemäss erfolgt in einem Block 102 auf der Seite des Encoders 101 die Partitionierung in Prioritätsklassen, das heißt der Bilddatenstrom wird elementweise in Prioritätsklassen geprdnet. Ausgehend von einem
Bilddatenstrom, der beispielsweise von einem H.26L- Bildencoder stammt, und folgende Gestalt hat
PSYNC | PTYPE | MB_TYPE1 | MVD1 | CBP1 | LUM1 | CHR_AC1 | CHR DCl I MB TYPE2 I MVD2 I CBP2 I LUM2 | CHR AC2 | CHR DC2
wird eine Partitionierung in folgende Prioritätsklassen durchgeführt:
1: PSYNC ("Picture Sync", Bildsynchronisation)
PTYPE ("Picture Type", Bildtyp) 2: MB_TYPE1...MB_TYPEn ("Macroblock-Type" alle in einem Frame/Slice vorkommenden Elemente) 3: CBPl...CBPn ("Coded Block Pattern", codiertes Blockmuster) 4: MVDl...MVDn ("Motion Vector Difference",
Bewegungsvektordifferenz) 5: LUMl...LUMn ("Luminanz Coefficient" , Luminanzwerte) 6: CHRJ3C1...CHRJDCn ( "DC-Chrominace Coefficients" , DC-Chrominanzwerte)
7: CHR_AC1... CHR_ACn ( "AC-Chro inace Coefficients",
AC-Chrominanzwerte)
Die beschriebenen Prioritätsklassen 1 bis 7 sind beispielhaft, wobei die Prioritätsklasse 1 diejenige mit der höchsten Priorität ist. Nach der Partitionierung des Bilddatenstroms in die Prioritätsklassen (siehe Block 102) wird in einer AnpassungsSchicht (Blöcke 103 und 104) eine Übertragung über einen (fehlerbehafteten) Übertragungskanal angestoßen. In Fig.l ist in Block 103 eine Anpassungsschicht für ein UMTS-Netzwerk und in einem Block 104 eine Anpassungsschicht für ein IP-Netzwerk (Internet-Protokoll), dargestellt. Ein großer Vorteil besteht nun darin, dass, abhängig von dem jeweils verwendeten Netzwerk, die speziellen Dienstgütemerkmale dieses Netzwerks genutzt werden können. Die Dienstgütemerkmale werden der Anpassungsschicht von dem Netzwerk mitgeteilt. Ferner kann auf der Seite des Decoders 110 dem Encoder 101 mitgeteilt werden, welche
Anpassungsschichten vorhanden sind, sodass eine entsprechende Ausnutzung der zur Verfügung stehenden Netzwerke erfolgt (siehe Rückkanäle 112 und 114) . Die Anpassungsschicht verpackt die in Prioritätsklassen geordneten Bilddaten in RTP-Pakete und übermittelt diese (über verschiedene Wege, beispielsweise paketorientiert) zu der jeweiligen Anpassungsschicht (siehe Blöcke 107 und 108) auf der Seite des Decoders 110. Die Bilddatenströme sind durch die Bezugszeichen 111 und 113 gekennzeichnet.
Ein derartig von der AnpassungsSchicht übermitteltes Paket hat beispielsweise folgenden Aufbau:
1: PSYNC, PTYPE, MB_TYPE1...MB_TYPEn, CBPl...CBPn, MVDl...MVDn (Prioritätsklassen 1 bis 4) LUMl...LUMn (Prioritätsklasse 5) CHR_DC1...CHR_DCn (Prioritätsklasse 6) CHR AC1...CHR ACn (Prioritätsklasse 7)
Hier ist nochmals verdeutlicht, dass die für das jeweilige Bild der Folge von Bewegtbilder wichtigste Information in den Prioritätsklassen 1 bis 4, Erläuterung siehe oben, zusammengefasst sind. Die Helligkeitswerte (Grauwerte, Luminanzwerte) sind in der Prioritätsklasse 5 zusammengefasst und werden noch vor den Chrominanzwerten (Prioritätsklassen 6 und 7) übertragen. Erhält der Decoder ein solches Paket, erkennt er, dass ein Bild anfängt, welchen Typ dieses Bild hat, ob Objekte in dem Bild vorhanden sind und wenn ja, wo, die Codierungsart (DCT in Block vorhanden oder nicht) und die Bewegungsvektorinformation. Direkt danach werden die Helligkeitswerte, also die wirklichen Bildinformationen, co co IM M P1 t->
Cπ o Cπ o Cπ o Cπ φ fr P- <! Cd öd α < SD N SX ö u p:
P- CD P P p- H- P- O P P Φ cu ≥ f 01 t er P rt φ tr
P P P P - su Φ P 01 P rt tr 01 SD φ φ P Φ Φ (X P ω SD Z Cd Φ su: tr P 1 P
P P- 3 P- P Φ P φ SX P P Φ ex P- rt
03 P Φ öd P 03 ιq P Φ CU iQ oi SD iq P φ σ φ tr φ Hi SD SD rt 3 P ex P- o P fr CU
P- fu 3 P 03 O tr CΛ P tr φ P φ iQ P SX φ ιq rt er Φ O P Φ Ω iQ CD P P P ^, SX P- P- Φ
03 Φ TJ P P 3 P tr Φ P rt et Φ Φ 01 rt P
P- SD Φ sx SD pj: P - Φ Φ tr P- P P- 01
(X P P φ et ≤ et Φ P P O: rt φ φ P- φ z rt P- Φ N P Φ tr Φ P P ö
P p- P- U tr O P φ 01 P- P- Φ P z rt Hi P-
P rt P Φ P p- P Cd P φ P φ Φ O φ
CΛ (X P- Hl P- Φ iq P- 01 <q Φ N P- P P
I-1 O φ rt P φ P- φ φ P P 03 3 i-fl
P- P P P- P 01 ex P- Φ P rt ö SU SU
Ω SU p- P tr 03 rt Φ P ex hd Φ Φ rt P φ Ω φ SD φ P- fr P Φ P P- l_l- Ω P- er tr P P 01 P o P P φ < P P- P φ O O P-
P- Hl rt ex et ex sx 3 P Φ o φ P P
P o Φ Φ Φ • P- 01 ιq P P hd P P Φ Φ Pi
P P tr φ o φ P P- P P o ex ιq Hi rt P 01 o P- rt tr P SU p φ Φ öd P Φ φ Ω P- P O pj: O: P- P1 Ω 3
3 P P- sx Hl P tr φ φ P rt tr φ tr SD ex sQ SD Hi Hi (D: P P- 03 Φ x O ιq rt o Φ P P- O rt < φ rt fr P P Φ P- tr SX P P- N N φ P CU: Φ p- rt 01 o
Φ o cu P- P P- ιq rt P rt su P ιq P rt P
P P rt φ *«» Φ P 01 01 φ SD Φ rt Φ P P φ z o -> fr CΛ hd P P- Z tr Φ P rt P- φ P CU φ P hd 01 P-
Φ P- 01 £ SD — - Ω P Φ 01 SU H- P TJ rt P oi et SU 01 tr ex P Oi 01 < O P- SD
Ω tr P Ω 01 SX φ Φ Φ Φ 03 φ P O P d: tr (U P P p- P P Φ P P- P φ er x
P Hi 3 O Φ φ * CΛ **. rt p- P Φ Φ
P- rt er P- ^ P rt o pj: rt rt P P
Φ tr P" P φ x Ξ Pi Φ P rt pj: rt tr SU Φ O: φ P- φ Φ o tr P- φ oi rt Φ P
Φ P P Ω P Oi P P φ Φ P fr 01 P SU
P iq p: fr N N et P 3 P fT r >q
Φ Φ Ω φ P Φ P P cu ^* P- SU l-1 P Φ
P sQ fr P 03 P rt P 01 oi SU CU P
Φ 03 CD P fr P- P P- 01 01 Ω tr p- . — . s Φ P Ω O P- g P Φ 01 tr φ Ω CΛ P P P O P Ω ex φ rt P
P tr P" φ P P tr tr CD • O
^ et P- P φ Ω fr et pj: SU d rt
P- Ω Hi Φ cu P P Hl Hi
Z sQ φ SD P- SD P 3 ιp Ω • CU
P- rt 03 φ 1— ' P φ P- tr P1 φ 03 P 3 tr ^q o
Z SU P rt φ cu P fr α φ oi
Φ P P Φ P P Φ su pr
P Ω ιq P rt 01 P- rt Φ P- sx tr _: rt φ P 01
Φ — P rt
P •
Figure imgf000013_0001
Partitionierungsverfahren adressierbar bleibt und andererseits für die Adressierung möglichst wenig Speicherplatz erforderlich ist.
Eine gewöhnliche Anordnung von Slice-Headern in
Bilddatenströmen (ohne Partitionierung) sieht wie folgt aus:
| PSYNC | PTYPE |
| SLICE | MBTYPE1 | DCT-Coeff1 | MBTYPE2 | DCT-Coeff2 | | SLICE | MBTYPE1 | ...
wobei
SLICE = Sliceheader
SLICETABLE = Sliceadressierung als Tabelle DCT-Cceff = Alle DCT-Koeffizienten in einem Macroblocks bezeichnen.
Bei der Partitionierung ergibt sich einmal die Möglichkeit, die Slice-Header derart anzugeben, dass ihnen alle in dem Slice enthaltenen Macroblock-Typen nachgestellt sind:
| PSYNC | PTYPE |
| SLICE | MBTYPE1 | MBTYPE2 |
I SLICE I MBTYPE3 I MBTYPE4 I ... =>
=> DCT-Coeffl DCT-Coeff2 DCT-Coeff3 DCT-Coeff4
Hierbei ist die Slice-Header-Infor ation in der Prioritätsklasse 2 des obigen Beispiels (Macroblock-Typ) eingeordnet.
Alternativ kann die Adressierung des Slice-Headers als Tabelle erfolgen, wobei die Elemente der Tabelle ausweisen, welche Macroblöcke zu welchem Slice gehören (Spalten-/Zeilen- Zuordnung) . Eine solche Slice-Adressierung sieht wie folgt aus : | PSYNC | PTYPE |
| SLICETABLE | MBTYPE1 | MBTYPE2 | MBTYPE3 | MBTYPE4 | ...
Eine andere Alternative besteht darin, dass die Adressierung der Slice-Header innerhalb der eigentlichen Bilddaten, das heißt der DCT-Koeffizienten erfolgt. In diesem Fall ist die Slice-Information beispielsweise den Chrominanzwerten, das heißt der Prioritätsklasse 5 nach obigem Schema, zugeordnet.
Nachfolgend ist hierfür ein Beispiel gezeigt:
| PSYNC | PTYPE |
| MBTYPE1 | MBTYPE2 | MBTYPE3 | MBTYPE4 | ... =>
=> | SLICE | DCT-Coeffl | DCT-Coeff2 |
| SLICE | DCT-Coeff3 | DCT-Coeff4 I ... I
Bei Einsatz der Slice-Adressierung über eine Tabelle bzw. innerhalb der Macroblock-Typ-Partition ist es möglich, signifikant Speicherplatz einzusparen. Ferner kann in der Anpassungsschicht des Empfänger bei Einigung auf eine bestimmte Art der Adressierung ein für den Decoder 110 transparente und effiziente Umsetzung vorgenommen werden.
Literaturverzeichnis :
[1] J. D. Villasenor: "Proposed Draft Text for the H.263 Annex V Data Partitioned Slice Mode", ITU, Study Group 16, Video Experts Group, Document: Q15-I-14, Red Bank Meeting, Oct . 18-21, 1999
[2] H.-D. Cho, Y.-S. Saw, "A New Error Resiliant Coding Method using Data Partitioning with Reed-Solomon Protection", ITU, Study Group 16, Video Experts Group, Document: Q15-H-25, Berlin Meeting, Aug. 3-6, 1999
[3] M. Lutrell, "Simulatin Results for Modified Error
Resilient Syntax with Data Partitioning and RVLC" ITU, Study Group 16, Video Experts Group, Document: Q15-F-29, Seoul Meeting, Nov. 2-6, 1998
[4] D. Hof ann, G. Fernando: „RTP Payload Format for MPEG1/MPEG2 Video*, IETF-Doc. RFC 2250, http: //www.ietf .org/rfc.html .
[5] C. Zhu: „RTP Payload Format for H.263 Video Streams* IETF-Doc. RFC 2190, http://www.ietf.org/rfc.html.
[6] ITU-Recommendation H.263 Annex K.

Claims

Patentansprüche
1. Verfahren zur Übertragung digitalisierter Bewegtbilder von einem Sender zu einem Empfänger, a) bei dem die digitalisierten Bewegtbilder beim Sender als ein Bilddatenstrom vorliegen; b) bei dem der Bilddatenstrom in Prioritätsklassen unterteilt wird; c) bei dem anhand einer Anpassungsschicht beim Sender der in Prioritätsklassen unterteilte Bilddatenstrom mittels eines vorgegebenen Protokolls zu dem Empfänger übertragen wird; d) bei dem anhand einer Anpassungsschicht des Empfängers Übertragungsfehler bestimmt werden; e) bei dem für die Übertragungsfehler beim Empfänger eine Fehlerbehandlung durchgeführt wird und f) bei dem der übertragene fehlerbehandelte
Bilddatenstrom einem Bilddecoder zugeführt wird.
2. Verfahren nach Anspruch 1, bei dem mehrere Empfänger als Adressaten für den Bilddatenstrom vorgesehen sind.
3. Verfahren nach Anspruch 1 oder 2, bei dem anhand der Prioritätsklassen eine Sortierung der Daten der Bewegtbilder derart erfolgt, dass diejenigen Daten mit dem größten Informationsgehalt zuerst innerhalb des Bilddatenstroms von dem Sender zu dem Empfänger übertragen werden.
Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Anpassungsschicht unterschiedliche Protokolle für die Übertragung von dem Sender zu dem Empfänger nutzt.
Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Anpassungsschicht den Dienst der Übertragung zwischen Sender und Empfänger erbringt, indem vorgegebene Dienstgütemerkmale bei der Übertragung berücksichtigt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem Übertragungsfehler bestimmt werden, indem von der Anpassungsschicht ein fehlersensitives Protokoll eingesetzt wird.
7. Verfahren nach Anspruch 6, bei dem das fehlersensitive Protokoll ein RTP-Protokoll ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Übertragung über eine oder mehrere
Funkschnittstellen erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Übertragung paketvermittelt und/oder verbindungsorientiert durchgeführt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Bilddecoder die erhaltenen Bewegtbilder darstellt.
11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine Gruppe von zusammenhängenden Makroblöcken durch eine Headerinformation in einer Prioritätsklasse adressierbar wird.
12. Verfahren nach Anspruch 11, bei dem die Headerinformation für die Gruppe von zusammenhängenden Makroblöcken in Form einer Tabelle zusammengefasst werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Bilddecoder ein standardisierter Bilddecoder nach einem MPEG-Standard oder einem H.26x-Standard ist.
14. Verfahren zur Decodierung digitalisierter Bewegtbilder in einem Empfänger, a) bei dem die digitalisierten Bewegtbilder als ein Bilddatenstrom vorliegen; b) bei dem der Bilddatenstrom in Prioritätsklassen unterteilt wird; c) bei dem anhand einer Anpassungsschicht des Empfängers Übertragungsfehler bestimmt werden; d) bei dem für die Übertragungsfehler beim Empfänger eine Fehlerbehandlung durchgeführt wird und e) bei dem der übertragene fehlerbehandelte
Bilddatenstrom einem Bilddecoder zugeführt wird.
15. Bilddecoder mit einer Prozessoreinheit, die derart ausgeführt ist, dass a) die digitalisierten Bewegtbilder als ein Bilddatenstrom vorliegen; b) der Bilddatenstrom in Prioritätsklassen unterteilt ist; c) anhand einer Anpassungsschicht des Empfängers Übertragungsfehler bestimmbar sind; d) für die Übertragungsfehler beim Empfänger eine Fehlerbehandlung durchführbar ist und e) der übertragene fehlerbehandelte Bilddatenstrom einem Bilddecoder zuführbar ist.
16. System zur Übertragung digitalisierter Bewegtbilder mit einem Sender und einem Empfänger, a) bei dem die digitalisierten Bewegtbilder beim Sender als ein Bilddatenstrom vorliegen; b) bei dem der Sender den Bilddatenstrom in Prioritätsklassen unterteilt; c) bei dem der Sender anhand einer Anpassungsschicht den in Prioritätsklassen unterteilten Bilddatenstro mittels eines vorgegebenen Protokolls zu dem Empfänger überträgt; d) bei dem der Empfänger anhand einer Anpassungsschicht Übertragungsfehler bestimmt; e) bei dem der Empfänger für die Übertragungsfehler eine Fehlerbehandlung durchführt und f) bei dem beim Empfänger der übertragene fehlerbehandelte Bilddatenstrom einem Bilddecoder zugeführt wird.
PCT/DE2001/002491 2000-07-07 2001-07-05 Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder WO2002005540A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01953868A EP1299998A2 (de) 2000-07-07 2001-07-05 Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder
JP2002509274A JP2004503185A (ja) 2000-07-07 2001-07-05 ディジタル動画を送信機から受信機へ伝送するための方法及びシステムならびに関連するデコーダ
AU2001276309A AU2001276309A1 (en) 2000-07-07 2001-07-05 Method and system for transmitting digitized moving images from a transmitter to a receiver and a corresponding decoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10033110A DE10033110B4 (de) 2000-07-07 2000-07-07 Verfahren, und System zur Übertragung digitalisierter Bewegtbilder von einem Sender zu einem Empfänger und zugehöriger Decoder
DE10033110.6 2000-07-07

Publications (2)

Publication Number Publication Date
WO2002005540A2 true WO2002005540A2 (de) 2002-01-17
WO2002005540A3 WO2002005540A3 (de) 2002-07-18

Family

ID=7648164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002491 WO2002005540A2 (de) 2000-07-07 2001-07-05 Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder

Country Status (7)

Country Link
US (1) US20030174774A1 (de)
EP (1) EP1299998A2 (de)
JP (1) JP2004503185A (de)
CN (1) CN1235407C (de)
AU (1) AU2001276309A1 (de)
DE (1) DE10033110B4 (de)
WO (1) WO2002005540A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360251B2 (en) 2000-06-30 2008-04-15 Hitwise Pty, Ltd. Method and system for monitoring online behavior at a remote site and creating online behavior profiles
EP1473939A4 (de) * 2002-12-11 2011-10-05 Sony Corp Sende-empfangssystem, sendevorrichtung, sendeverfahren, empfangsvorrichtung, empfangsverfahren, aufzeichnungsmedium und programm

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284844B2 (en) 2002-04-01 2012-10-09 Broadcom Corporation Video decoding system supporting multiple standards
US20040057465A1 (en) * 2002-09-24 2004-03-25 Koninklijke Philips Electronics N.V. Flexible data partitioning and packetization for H.26L for improved packet loss resilience
KR100865034B1 (ko) 2002-07-18 2008-10-23 엘지전자 주식회사 모션 벡터 예측 방법
US20040203624A1 (en) * 2002-09-12 2004-10-14 Teh Jin Teik Technique for sharing of files with minimal increase of storage space usage
TW200509081A (en) * 2003-06-30 2005-03-01 Matsushita Electric Ind Co Ltd Recording medium, reproduction device, recording method, program, and reproduction method
US7386316B2 (en) * 2003-08-17 2008-06-10 Omnivision Technologies, Inc. Enhanced video streaming using dual network mode
WO2006077621A1 (ja) * 2005-01-18 2006-07-27 Mitsubishi Denki Kabushiki Kaisha 多重化装置及び受信装置
US8888592B1 (en) 2009-06-01 2014-11-18 Sony Computer Entertainment America Llc Voice overlay
US8147339B1 (en) 2007-12-15 2012-04-03 Gaikai Inc. Systems and methods of serving game video
US8613673B2 (en) 2008-12-15 2013-12-24 Sony Computer Entertainment America Llc Intelligent game loading
US8968087B1 (en) 2009-06-01 2015-03-03 Sony Computer Entertainment America Llc Video game overlay
US8926435B2 (en) 2008-12-15 2015-01-06 Sony Computer Entertainment America Llc Dual-mode program execution
US9723319B1 (en) 2009-06-01 2017-08-01 Sony Interactive Entertainment America Llc Differentiation for achieving buffered decoding and bufferless decoding
US8676591B1 (en) 2010-08-02 2014-03-18 Sony Computer Entertainment America Llc Audio deceleration
KR101956639B1 (ko) 2010-09-13 2019-03-11 소니 인터랙티브 엔터테인먼트 아메리카 엘엘씨 비디오 서버 및 게임 서버를 포함하는 컴퓨터 게임 시스템에서 컴퓨터 게임을 제공하는 방법 및 시스템
US9878240B2 (en) 2010-09-13 2018-01-30 Sony Interactive Entertainment America Llc Add-on management methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897921B2 (ja) * 1988-09-27 1999-05-31 富士通株式会社 画像符号化伝送装置
JPH0322736A (ja) * 1989-06-20 1991-01-31 Matsushita Electric Ind Co Ltd 優先パケット多重回路と映像パケット伝送システム
US5140417A (en) * 1989-06-20 1992-08-18 Matsushita Electric Co., Ltd. Fast packet transmission system of video data
US5515377A (en) * 1993-09-02 1996-05-07 At&T Corp. Adaptive video encoder for two-layer encoding of video signals on ATM (asynchronous transfer mode) networks
GB2332116B (en) * 1997-12-01 1999-10-20 Samsung Electronics Co Ltd Video codec method in error resilient mode and apparatus therefor
US6134243A (en) * 1998-01-15 2000-10-17 Apple Computer, Inc. Method and apparatus for media data transmission
US6075561A (en) * 1998-02-20 2000-06-13 Tektronix, Inc. Low duty-cycle transport of video reference images
JP2000078573A (ja) * 1998-09-03 2000-03-14 Hitachi Ltd 階層符号化データ配信装置
US6246435B1 (en) * 1998-09-08 2001-06-12 Tektronix, Inc. In-service realtime picture quality analysis
US6430159B1 (en) * 1998-12-23 2002-08-06 Cisco Systems Canada Co. Forward error correction at MPEG-2 transport stream layer
DE19860531C1 (de) * 1998-12-30 2000-08-10 Univ Muenchen Tech Verfahren zur Übertragung codierter digitaler Signale
US6683853B1 (en) * 1999-12-01 2004-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic upgrade of quality of service in a packet switched network
US6601209B1 (en) * 2000-03-17 2003-07-29 Verizon Laboratories Inc. System and method for reliable data transmission over fading internet communication channels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360251B2 (en) 2000-06-30 2008-04-15 Hitwise Pty, Ltd. Method and system for monitoring online behavior at a remote site and creating online behavior profiles
US7971260B2 (en) 2000-06-30 2011-06-28 Hitwise Pty. Ltd. Matching session records of network users with corresponding transaction data
EP1473939A4 (de) * 2002-12-11 2011-10-05 Sony Corp Sende-empfangssystem, sendevorrichtung, sendeverfahren, empfangsvorrichtung, empfangsverfahren, aufzeichnungsmedium und programm

Also Published As

Publication number Publication date
EP1299998A2 (de) 2003-04-09
WO2002005540A3 (de) 2002-07-18
AU2001276309A1 (en) 2002-01-21
CN1449627A (zh) 2003-10-15
DE10033110B4 (de) 2005-06-16
JP2004503185A (ja) 2004-01-29
US20030174774A1 (en) 2003-09-18
DE10033110A1 (de) 2002-01-17
CN1235407C (zh) 2006-01-04

Similar Documents

Publication Publication Date Title
WO2002005540A2 (de) Verfahren, und system zur übertragung digitalisierter bewegtbilder von einem sender zu einem empfänger und zugehöriger decoder
DE60130944T2 (de) Verfahren zur Datenübertragung
DE69430711T2 (de) Vorrichtung zum Speichern und Wiedergewinnen von Bilddaten
DE69318446T2 (de) Verfahren und Vorrichtung zur Datenkompression und -dekompression für eine Übertragungsanordnung
DE60026577T2 (de) Einrichtung zum senden/empfangen eines bitstroms in einem netzwerk, sowie verfahren dazu
DE60110303T2 (de) Verfahren und Vorrichtung zur Paketübertragung mit Paketenkopfkompression
DE60131890T2 (de) Dynamische Delta-Kopierung für Kabelmodemkopffeldunterdrückung
DE69425010T2 (de) Prioritätsverarbeitung von kodierten Bildsignalen
DE69333982T2 (de) Verfahren zum Anordnen komprimierter Videodaten zur Übertragung über einen verrauschten Kanal
DE69217921T2 (de) Komprimierungsanlage für hochauflösendes fernsehen
DE60316094T2 (de) Verfahren, Vorrichtung und System für die Komprimierung von verlängerten Kopffeldern
DE69331606T2 (de) Datenwortindikator in einem system zur zusammenstellung von transportdatenpaketen.
DE602004010254T2 (de) Burst-übertragung
DE20023164U1 (de) Vorrichtung zum Austauschen von Daten variabler Länge entsprechend einem Funkverbindungsprotokoll in einem mobilen Kommunikationssystem
DE69931513T2 (de) Datentransport
DE19882497B4 (de) Multimedia Multiplexverfahren
DE4205898A1 (de) Anordnung zum rekombinieren von fernsehdaten, die entsprechend einer rangordnung zerteilt sind
DE60018927T2 (de) Verfahren und Vorrichtung zur Datenpaketenübertragung
DE69426219T2 (de) System und Verfahren zur hocheffizienten Bildübertragung
DE112008002042A1 (de) Digitale Sende- und Empfangseinrichtungen zum Senden und Empfangen von Datenströmen sowie deren Verarbeitungsverfahren
DE69935819T2 (de) Mobilkommunikationsnetzwerk mit Faltungskodierung zwischen Basisstation und Vermittlungszentrale
DE60308195T2 (de) Optimierte Übertragung von Textbeispiel-Formatbeschreibungen für &#34;streaming timed text&#34;
DE102006061880A1 (de) Verfahren zur Fehlerreduktion im Daten-Streaming über eine drahtlose Verbindung
EP1236372A2 (de) Verfahren zum betreiben eines mobilfunknetzes
WO2009141106A1 (de) Vorrichtungen und verfahren zum verarbeiten von datenpaketen eines datenstroms, sowie eine verwendung der vorrichtungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001953868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10332346

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018147143

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001953868

Country of ref document: EP

ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载