WO2002003811A2 - Apparatus and method for the manufacture of rice-based food additive - Google Patents
Apparatus and method for the manufacture of rice-based food additive Download PDFInfo
- Publication number
- WO2002003811A2 WO2002003811A2 PCT/US2001/020813 US0120813W WO0203811A2 WO 2002003811 A2 WO2002003811 A2 WO 2002003811A2 US 0120813 W US0120813 W US 0120813W WO 0203811 A2 WO0203811 A2 WO 0203811A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rice
- water
- cheese
- mixture
- weight
- Prior art date
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 87
- 235000009566 rice Nutrition 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 235000013373 food additive Nutrition 0.000 title description 2
- 239000002778 food additive Substances 0.000 title description 2
- 240000007594 Oryza sativa Species 0.000 title 1
- 241000209094 Oryza Species 0.000 claims abstract description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 235000013305 food Nutrition 0.000 claims abstract description 20
- 235000013351 cheese Nutrition 0.000 claims description 74
- 239000000203 mixture Substances 0.000 claims description 67
- 235000015927 pasta Nutrition 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 13
- 235000013339 cereals Nutrition 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 235000012041 food component Nutrition 0.000 claims description 4
- 239000005417 food ingredient Substances 0.000 claims description 4
- 235000013580 sausages Nutrition 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 230000003190 augmentative effect Effects 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 235000013372 meat Nutrition 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 238000007790 scraping Methods 0.000 claims description 2
- 229920002774 Maltodextrin Polymers 0.000 claims 2
- 239000005913 Maltodextrin Substances 0.000 claims 2
- 229920002472 Starch Polymers 0.000 claims 2
- 240000008042 Zea mays Species 0.000 claims 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims 2
- 235000005822 corn Nutrition 0.000 claims 2
- 229940035034 maltodextrin Drugs 0.000 claims 2
- 235000019698 starch Nutrition 0.000 claims 2
- 239000008107 starch Substances 0.000 claims 2
- 239000006188 syrup Substances 0.000 claims 2
- 235000020357 syrup Nutrition 0.000 claims 2
- 238000010923 batch production Methods 0.000 claims 1
- 239000011874 heated mixture Substances 0.000 claims 1
- 238000010411 cooking Methods 0.000 abstract description 2
- 238000004898 kneading Methods 0.000 description 21
- 235000004213 low-fat Nutrition 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 240000002129 Malva sylvestris Species 0.000 description 3
- 235000006770 Malva sylvestris Nutrition 0.000 description 3
- 238000009937 brining Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101001005200 Drosophila melanogaster Protein limb expression 1 homolog Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 235000014059 processed cheese Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C19/00—Cheese; Cheese preparations; Making thereof
- A23C19/06—Treating cheese curd after whey separation; Products obtained thereby
- A23C19/068—Particular types of cheese
- A23C19/08—Process cheese preparations; Making thereof, e.g. melting, emulsifying, sterilizing
- A23C19/084—Treating the curd, or adding substances thereto, after melting
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C19/00—Cheese; Cheese preparations; Making thereof
- A23C19/06—Treating cheese curd after whey separation; Products obtained thereby
- A23C19/09—Other cheese preparations; Mixtures of cheese with other foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
- A23L29/225—Farinaceous thickening agents other than isolated starch or derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
- A23L29/35—Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
Definitions
- the invention relates generally to an apparatus and method for the production of high moisture food items, and in particular, to an apparatus and process for incorporating rice-stabilized water into food items including cheese and sausage.
- the parent application to the present case describes a method of making of low fat pasta filata cheese by incorporating a water-rice mixture into the cheese at the kneading stage. It was found that this rice mixture allowed significant amounts of moisture to be added to cheese, thereby displacing fat, without adversely affecting the texture for which such cheeses including mozzarella cheese are prized.
- the rice mixture may be used to significantly increase the water content of a variety of foods, not only pasta filata cheeses, but also process cheeses, sausages and the like.
- the food retains its sense of moistness without fat.
- the present invention provides a commercially practical method of high percentage augmentation of the moisture in food products.
- the invention combines rice grains and heated water and subjects the mixture to high shear to liquefy it without substantial release of water. This mixture is added to the desired food product while in liquefied form.
- this high shear method of producing a liquefied rice mixture is believed to preserve the structure of rice necessary to its water holding capacity. Further this method is readily adapted to large process volumes and may use low cost rice as opposed to more expensive rice flours.
- the present invention provides a method of manufacturing an augmented moisture food product using the steps of combining rice grains and heated water in a ratio allowing substantially complete absorption of the water within the rice grains.
- the mixture is then subjected to a high shear to liquefy the mixture without substantial release of water from the rice and then combined with the low moisture food ingredient.
- the step of shearing the mixture of rice may include circulating the rice and water in a vessel with a high shear mixer and pumping the rice and water through a shear pump.
- the shear pump may recirculate the rice mixture to keep it liquefied and may be used to easily transport the rice mixture through standard pipes in liquefied form to where it will be needed.
- the vessel may have heated walls and the method may include the step of scraping the inner surface of the walls of the heated vessel during the processing of the rice mixture.
- it is another object of the invention to provide for a simplified preparation of the rice mixture in a single vessel.
- the food ingredient to which the rice mixture is added may be pasta filata cheese, feta cheese, processed cheese, cheese spread or sausage meat.
- the rice grains and water may stand in the ratio of substantially one to two by weight.
- FIG. 1 is a simplified perspective view of the apparatus of the present invention for producing a reduced and low-fat pasta filata cheese showing a multiple auger heating system for the rice-based cheese substitute and a spray nozzle positioned over a hopper receiving standard pasta filata cheese and communicating with an upwardly extending kneading vessel;
- Fig. 2 is a cross sectional view of the kneading vessel and spray nozzle of Fig. 1 taken along lines 2—2 of Fig. 1 showing the internal auger and the path of standard pasta filata cheese into the upwardly opening hopper;
- Fig. 3 is a detailed fragmentary cross-sectional view taken along lines 3—3 of Fig. 1 showing two kneading augers within the kneading chamber of Fig. 2 in intermeshed counter-rotating configuration;
- Fig. 4 is a block diagram of the apparatus of Figs. 1-3 showing the path of the rice cheese substitute and standard pasta filata cheese during the process;
- Fig. 5 is a cross-sectional view of a preparation vessel that provides an alternative method for the manufacture of the rice cheese substitute
- Fig. 6 shows an arrangement of a manufacturing line employing two kneading vessels of Fig. 2, two of the manufacturing vessels of Fig. 5 and two modified vessels similar to that of Fig. 5 providing holding tanks, together allowing for continuous manufacture of the pasta filata cheese of the present invention
- Fig. 7 is a perspective view of a cheese volume flow meter such as may be used with the present invention for determining the flow rate of cheese or other material so as to provide a basis for automatic control of the ratio of the rice/cheese blend and cheese in the auger system of Figs. 1 and 6; and
- Fig. 8 is a simplified cross-sectional view along lines 8—8 of Fig. 7 showing the pin wheel for measuring linear flow of the cheese and thiclcness gauge for gauging its cross-sectional area to determine total volume.
- a reduced and low-fat cheese manufacturing apparatus 10 includes a motor-driven grinder 12 of conventional design having a hopper 14 sized to receive blocks of a rice mixture 16 whose preparation will be described in detail below.
- An auger 18 (shown in Fig. 4) is positioned within the grinder 12 and driven by motor 20 to force the semi-solid rice mixture 16 past a cutter head 21 so as to be macerated and extruded as indicated by arrow 22 for receipt by a second hopper 24.
- the second hopper 24 opens into one end of a tubular heating chamber 26 which includes a second auger 28 driven by motor 30 to move the macerated rice mixture 16 along the length of the tubular heating chamber 26 from the hopper 24 to an exit port 31 at the opposite end of the tubular heating chamber 26.
- the tubular heating chamber 26 is jacketed by a concentric hot water jacket 32 through which heated water 34 is passed.
- the heated water 34 is given a temperature so as to heat the macerated rice mixture 16 to approximately 120 degrees Fahrenheit as it passes along tubular heating chamber 26.
- Second tubular heating chamber 40 is similar in construction to tubular heating chamber 26 having a generally cylindrical lumen holding a third auger 42 driven by a motor 44 to move the liquefied cheese rice substitute from connecting pipe 38 to an exit port 46.
- second tubular heating chamber 40 has a hot water jacket 48 regulated to adjust the rice mixture 16 to a temperature from 185-190 degrees Fahrenheit.
- the heated and liquefied rice mixture 16 exits port 46 to valve 50 which may recirculate the rice mixture 16 through recirculation pipe 52 back to hopper 24 so as to constantly keep the rice mixture 16 flowing and heated, even if cheese is not actively being processed.
- the rice mixture 16 passes through tube 56 to a spray nozzle 58.
- the nozzle 58 is a length of pipe having a plurality of holes drilled in its lower surface to provide an orifice through which a rice mixture 16 may exit.
- the reduced and low-fat cheese manufacturing apparatus 10 may be positioned to receive standard pasta filata cheese 60 directly from a stretching machine, but prior to its molding, chilling, or brining.
- the pasta filata cheese 60 is delivered from the stretcher (not shown) at a temperature of approximately 140 degrees Fahrenheit and has a fully formed fiber structure.
- the pasta filata cheese 60 drops into hopper 62 at the base of an upwardly sloping kneading chamber 64.
- the kneading chamber 64 is j acketed with a concentric steam j acket 74 adjusted to a temperature of approximately 140 degrees Fahrenheit, but beneath the melting point of the cheese mixture 72.
- the spray nozzle 58 is positioned above the hopper so that the liquefied and heated rice mixture 16 may be sprayed upon the surface of the pasta filata cheese 60 as it enters the hopper 62.
- the flow rate of the pasta filata cheese 60 and the rice mixture 16 from nozzle 58 may be adjusted so that the combined pasta filata cheese 60 and rice mixture 16 (cheese mixture 72) is as high as 10-25% rice mixture 16 by weight.
- twin augers 66 positioned within the kneading chamber 64 are twin augers 66 having helical vanes 68 passing in helixes of opposite "hand" around shafts 70 so that the vanes 68 may intermesh while the shafts 70 turn in opposite directions.
- a motor 76 turns the augers 66 through a conventional gear drive as will be understood to those of ordinary skill in the art.
- the augers 66 so turning provide a generally upward motion to the mixture of the pasta filata cheese 60 and the rice mixture 16 through the kneading chamber 64.
- the clearance between the vanes 68 and the walls of the kneading chamber 64 and the pitch and speed of the augers 66 is adjusted so that the cheese mixture 72 is stretched and folded between the augers and the inside of the kneading chamber 64 without cutting, so that the fibers of the cheese are preserved, yet coated uniformly with the rice mixture 16.
- the augers 66 provide a similar action to hand kneading in which the palm of the hand is pressed against a lump of dough of cheese to roll it along a hard surface, stretching and compressing the cheese back upon itself.
- the cheese mixture 72 exits as a reduced and low-fat pasta filata cheese. It may then be received by a molder chiller or brining tank of conventional design.
- the reduced and low-fat cheese manufacturing apparatus 10 is generally instrumented and controlled through a control panel 80 providing control for the speed of the metering pump 36 of the motors 30, 44, and 76 and of valves necessary to hold the temperatures of the hot water jackets 74, 48, and 32 within the range as described.
- the heated water 34 may be provided by a steam heat exchanger 82 shown in Fig. 4 which provides heated water 34 directly to hot water jacket 48 which may then be cooled and transmitted to jackets 74 and 32 by metering valve 84.
- the Rice Mixture The rice mixture 16 is formed principally of rice and water mixed and heated until it reaches a gel-like consistency.
- the rice may be crushed in a grinder to a consistency of approximately two millimeter particle size.
- a ribbon blender may then be used to mix the rice with approximately twenty five percent water by weight while it is heated to 160 degrees Fahrenheit for at least thirty seconds.
- the rice is then allowed to cool for approximately one hour with blending while other ingredients are added until it has reached approximately 70 degrees Fahrenheit. It is then molded into forty-pound blocks and refrigerated. The blocks are fed into the hopper 14 of the reduced and low- fat cheese manufacturing apparatus 10 as they are needed.
- the rice mixture is compounded of the following ingredients:
- composition of the rice mixture 16 with respect to its minor ingredients may be varied, particularly with respect to emulsifiers and flavoring agents.
- the rice/cheese substitute may be formulated for a substantially higher percentage of water.
- the equipment described above with respect to Figs. 5 and 6 may be used with 650 lbs. of water added to the heated vessel 90 and brought to a boiling temperature of 212°F.
- Three hundred pounds of rice may be added to the heated vessel 90, the rice being generally intact or naturally broken rice kernels without grinding or similar preprocessing.
- Heat may be introduced into the vessel 90 and the rice may be cooked for 25 minutes after which the scraper blades 128 and high shear mixer head 116 are started. The remaining ingredients are then added and the mixture agitated and sheared for ten additional minutes.
- the rice mixture 16 is pumped through shear pump 132 to be circulated for 20 minutes. At this point, the product is ready for transfer to the auger hoppers 62.
- tubular heating chamber 26 and tubular heating chamber 40 are used to prepare a premanufactured semi-solid rice mixture 16, these components may be replaced and the need for premanufacturing avoided by using a batch operated heated vessel 90 on- site.
- the heated vessel 90 is a double-walled container having a cylindrical inner wall 92 sunounded coaxially by a cylindrical outer wall 94.
- the walls 92 and 94 continue around a lower base of their respective cylinders to culminate in an axial drain port 96 providing a passage from a mixing volume 98 surrounded by the inner wall 92.
- the inner wall 92 and outer wall 94 define between them a steam jacket volume
- the inner wall 92 may be heated to a controlled temperature so as to heat the material contained within the mixing volume 98.
- An upper cover 104 joins the inner wall 92 and outer wall 94 at their upper edges and covers the mixing volume 98. Cover 104 is breached by access hatch 106 into which ingredients as will be described may be introduced. A smaller entrance port 108 through cover 104 allows for the recirculation of material from inside the volume 98 out through the drain port 96 and back into the entrance port 108 as will also be described.
- a shear mixer motor 110 driving a shaft 112 piercing the cover 104 and terminating within the volume 98 at a high shear mixer head
- Such mixer heads 116 are well known in the art and are commercially available from Admix of Manchester, New Hampshire, United States under the tradename Rotosolver. During operation, the high shear mixer head 116 will rotate as indicated by arrow 118.
- the shaft 112 may be off center to the center axis of the cylindrical volume 98 to allow for the passage of a scraper shaft 120 through cover 104 along the center axis.
- the scraper shaft 120 is driven by scraper motor 122 also mounted on top of cover 104.
- the scraper shaft 120 terminates at its lower end at a bearing 124 axially aligned with the drain port 96 but supported above the drain port 96 so as to not obstruct it.
- Scraper shaft 120 rotates about its extent as driven by the scraper motor 122 and as indicated by arrow 121.
- scraper arms 126 Extending symmetrically and radially outward from the lower end of the scraper shaft 120, above the bearing 124, are scraper arms 126 which follow along and above the portion of the inner wall 92 forming the lower base and along and inside the portion of the inner wall 92 forming cylindrical vertical walls.
- Scraper blades 128 are attached along the arms 126 between the anns and the inner wall 92 so as to scrape along the inner wall 92 preventing overheating of material immediately adjacent to the heated inner walls 92.
- Scraper blades 128 are staggered with respect to the opposing arm 126 so as to provide essentially uniform coverage of the inner wall 92 adjacent to steam jacket volume 100.
- rice grains and heated water may be introduced through access hatch 106.
- the rice grains are unground rice comprising whole grains and broken grains such as naturally occur during grain shipping and handling.
- Other ingredients according to the table provided above may also be added at this time.
- Steam introduced into the steam jacket volume 100 maintains the mixture at between 185 and 190° F. while it is blended with the high shear mixer head 116 and prevented from caking to the inner wall 92 by scraper blades 128.
- the mixture may be extracted from drain port 96 to be pumped by positive displacement pump 130 and then by shear pump 132 through valve 134 back into entrance port 108 providing additional shearing of the mixture and its constant recirculation.
- two such vessels 90 and 90' may be arranged to operate in tandem so that one vessel may be cleaned or refitted while the other vessel is creating the rice water blend.
- valve 134 or valve 134' on tank 90'
- the contents of the vessels 90 and 90', respectively may be pumped to a pasteurizing tank 136 (or 136') being identical to vessels 90 and 90' except for the absence of the shear mixer motor 110, shaft 112, and high shear mixer head 116.
- Tanks 136 and 136' include inlet ports 137, 137' connected each to an outlet of valves 134 or 134'.
- the pasteurizing tanks 136, 136' may each have a positive feed pump 140 (or 140') receiving mixture from the tank 136 or 136' through drain ports 139 or 139', respectively, corresponding generally to drain port 96 as pumped by the pumps 140 or 140' to valves 142 or 142' for recirculation back into the tanks 136, 136'.
- Valves 142 and 142' provide the rice water mixture to two way valves 146 and 146' which may direct the mixture either of hopper 62 or 62' of two corresponding kneading chambers 64 or 64' or to a second inlet on the other valve 146, 146'.
- vessels 90 and 90' may be operated on a batch or intennittent basis with their product shunted to respective pasteurizing tanks 136 or 136' for pasteurizing and holding.
- Tanks 136 and 136' may hold the cheese rice substitute until it is needed and then via valves 142 and 142' set to provide either of the kneading chambers 164 or 164' with the mixture.
- each kneading chamber 164 or 164' includes an auger 66 or 66' for kneading the rice water mixture into pasta filata cheese.
- the kneading chambers 64 and 64' may be operated on an essentially continuous basis with the rice cheese substitute being manufactured in batches in vessels in 90 and 90'. Further the operation of the equipment need not be halted for cleaning operations of the vessels 90, 90', 136 or 136' as dual flow paths exist to either of the kneading chambers 64 or 64' .
- a cheese flow meter 170 useful for metering the rice mixture 16 into the cheese 60 or other food base includes an entrance aperture 172 through which cheese 60 may be introduced prior to the introduction of the rice mixture 16.
- the cheese 60 travels along guiding trough 174 which terminates at an end lip 176 which may communicate with the hopper 62 shown in Figs. 1, 2 and 6 of the kneading chamber 64.
- the trough 174 provides a generally rectangular cross-section defined between a bottom horizontal wall and upstanding sidewalls.
- An open upper face of the trough 174 is partially covered by a pivoting gauge plate 178 hinging about an axis 180 generally perpendicular to the longitudinal extent of the trough 174 and the travel of the cheese 60.
- the gauge plate 178 may have one end follower 182 resting lightly upon the surface of the cheese 60 as it moves through the trough 174, the gauge plate 178 angularly pivoting with movement of the follower end 182 up and down as the height of the mass of cheese 60 changes.
- a sensor end of the gauge plate 178 opposite the follower end 182 with respect to the axis 160 may include a proximity sensing target 184 adjacent to a proximity sensor 186 positioned thereabove.
- the operation of the proximity sensor target 184 and proximity sensor 186 is to provide a measure of the height of follower end 182 above the bottom of the trough 174 and thus an electronic measurement of the height of the cross- section of cheese 60 flowing through the trough 174.
- the follower end 182 of the gauge plate 178 may support rotatable pinwheels 188 being disks generally mounted for rotation along axis 190 parallel to axis 180.
- the periphery of the disks including radially extending pins 192 that may engage the surface of the cheese 60 as it passes above the lip 176 but beneath the follower end 182.
- the pin wheels 188 are free to rotate as the cheese 60 moves thus measuring in their rotation, a linear distance or velocity of cheese 60 passing over the lip 176.
- the rotation of the pin wheels 188 may be detected by an electronic rotation sensor 196 of conventional design and provided to a microprocessor or microcontroller (not shown) together with the signal from the proximity sensor 186 to provide a volume rate or total volume of cheese flowing past lip 176.
- This volumetric rate may be used to control a metering valve 50 prior to nozzle 58 to, in turn, control the ratio or rice mixture 16 to cheese 60 on an automatic basis. It will be understood that the cheese flow meter 170 may be used for a variety of materials other than pasta filata cheese where such metering is required.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Cereal-Derived Products (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001270264A AU2001270264A1 (en) | 2000-07-07 | 2001-06-29 | Apparatus and method for the manufacture of rice-based food additive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61146400A | 2000-07-07 | 2000-07-07 | |
US09/611,464 | 2000-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002003811A2 true WO2002003811A2 (en) | 2002-01-17 |
WO2002003811A3 WO2002003811A3 (en) | 2002-09-19 |
Family
ID=24449127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/020813 WO2002003811A2 (en) | 2000-07-07 | 2001-06-29 | Apparatus and method for the manufacture of rice-based food additive |
Country Status (3)
Country | Link |
---|---|
AR (1) | AR029577A1 (en) |
AU (1) | AU2001270264A1 (en) |
WO (1) | WO2002003811A2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110484A (en) * | 1976-09-10 | 1978-08-29 | Scm Corporation | Flow process for production of imitation cheese |
JPS6131049A (en) * | 1984-07-23 | 1986-02-13 | Hiyozo Konno | Preparation of artificial rice |
US5108773A (en) * | 1991-02-19 | 1992-04-28 | Kraft General Foods, Inc. | Method of making a non-fat cream cheese product |
US5952030A (en) * | 1997-06-04 | 1999-09-14 | Jakob Nelles | Method for the manufacture of reduced and low-fat pasta filata cheese |
CA2353852C (en) * | 1998-12-03 | 2008-07-29 | Jakob Nelles | Apparatus and method for the manufacture of reduced and low fat pasta filata cheese |
-
2001
- 2001-06-29 AU AU2001270264A patent/AU2001270264A1/en not_active Abandoned
- 2001-06-29 WO PCT/US2001/020813 patent/WO2002003811A2/en active Application Filing
- 2001-07-06 AR ARP010103233A patent/AR029577A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
AR029577A1 (en) | 2003-07-02 |
WO2002003811A3 (en) | 2002-09-19 |
AU2001270264A1 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6648501B2 (en) | System for homogeneously mixing plural incoming product streams of different composition | |
EP0986297B1 (en) | Apparatus and method for the manufacture of reduced and low-fat pasta filata cheese | |
US6645542B2 (en) | Method for the manufacture of rice-based food additive | |
US20040136261A1 (en) | System for homogeneously mixing plural incoming product streams of different composition | |
US8221816B1 (en) | Process for preparing low moisture filata cheese | |
AU756667B2 (en) | Method for producing an animal feed or food item and a product produced according to said method | |
JP7581519B2 (en) | A continuous process for automated meat analogue production. | |
CN108835688B (en) | Production system and method for producing high-proportion fresh meat puffed food for pets | |
CN107101515A (en) | Device for viscous material to be heated or cooled | |
CA2353852C (en) | Apparatus and method for the manufacture of reduced and low fat pasta filata cheese | |
Saravacos et al. | Mechanical processing equipment | |
WO2002003811A2 (en) | Apparatus and method for the manufacture of rice-based food additive | |
JP7526898B2 (en) | Progressive Hydration System | |
JP2001275630A (en) | Apparatus for producing roux and method for producing roux | |
US4084013A (en) | Process for forming simulated nut-like foods | |
DK171263B1 (en) | Mixing machine for mixing meat raw materials | |
NZ511851A (en) | Manufacture of reduced and low fat cheese where a mixture of rice grains and water is combined with a finished cheese product | |
Deshmukh et al. | Mechanization of Manufacturing Processes for Traditional Indian Dairy Products | |
JP3523155B2 (en) | Food cooking apparatus and method | |
CN110167340A (en) | Freeze butter process for subsequent treatment | |
CN115590158A (en) | Processing method of sandwich shredded sausage | |
Saravacos et al. | Mechanical processing equipment | |
MXPA99011243A (en) | Apparatus and method for the manufacture of reduced and low-fat pasta filata cheese | |
CN1728947A (en) | Shelf stable meltable particulate food product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |