+

WO2002003452A1 - Apparatus for producing and inspecting semiconductor - Google Patents

Apparatus for producing and inspecting semiconductor Download PDF

Info

Publication number
WO2002003452A1
WO2002003452A1 PCT/JP2001/005564 JP0105564W WO0203452A1 WO 2002003452 A1 WO2002003452 A1 WO 2002003452A1 JP 0105564 W JP0105564 W JP 0105564W WO 0203452 A1 WO0203452 A1 WO 0203452A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
plate
heating element
resistance heating
metal
Prior art date
Application number
PCT/JP2001/005564
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2002003452A1 publication Critical patent/WO2002003452A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • the present invention relates to a semiconductor manufacturing / inspection apparatus mainly used for manufacturing or inspecting a semiconductor, such as a hot plate unit, an electrostatic chuck, and a wafer prober.
  • a semiconductor manufacturing / inspection apparatus mainly used for manufacturing or inspecting a semiconductor, such as a hot plate unit, an electrostatic chuck, and a wafer prober.
  • heaters and wafer probers using metal base materials such as stainless steel and aluminum alloys have been used in semiconductor manufacturing / inspection equipment including etching equipment and chemical vapor deposition equipment.
  • metal base materials such as stainless steel and aluminum alloys
  • the thickness of the heater plate since it is made of metal, the thickness of the heater plate must be as thick as about 15 mm. This is because, in a thin metal plate, warpage, distortion, and the like occur due to thermal expansion caused by heating, and the silicon wafer placed on the metal plate is damaged or tilted. However, when the thickness of the heater plate is increased, there is a problem that the weight of the heater increases and the heater becomes bulky.
  • the heating temperature is controlled by changing the voltage or current applied to the heating element.However, the thickness of the metal plate causes the temperature of the heater plate to quickly change with changes in voltage or current. There was also a problem that it was difficult to control the temperature without following.
  • Japanese Patent Application Laid-Open No. 4-324276 proposes a hot plate using aluminum nitride, which is a non-oxide ceramic having high thermal conductivity and high strength, as a substrate. Have been.
  • a ceramic substrate having a resistance heating element is disposed in a cylindrical support container having an insole plate. It functions as a hot plate by connecting a resistance heating element to an external power supply.
  • the ceramic substrate when cooling the ceramic substrate once heated, usually, the ceramic substrate is cooled by introducing a refrigerant into the space formed by the support container, the ceramic substrate, and the midsole plate and circulating it.
  • the hot plate unit had low cooling efficiency.
  • the present inventors have conducted intensive studies with the aim of obtaining a hot plate unit having excellent heating efficiency and cooling efficiency of a ceramic substrate.
  • One of the causes of defects such as temperature efficiency and cooling efficiency is that the surface roughness of the ceramic plate side of the plate-shaped body provided under the ceramic substrate is large, and the surface roughness is not more than a certain value.
  • the present inventors have found that the temperature rise efficiency and the cooling efficiency of a semiconductor manufacturing / inspection apparatus having a heater such as a hot plate unit can be improved, and the present invention has been completed.
  • the present invention relates to a semiconductor manufacturing / inspection apparatus in which a heating substrate such as a ceramic substrate having a conductor formed on the surface or inside thereof is disposed in a supporting container having a plate-like body,
  • Semiconductor manufacturing and inspection equipment such as hot plate units generate heat when current is applied to a resistance heating element provided on a heating substrate such as a ceramic substrate or a metal substrate (hereinafter also referred to as a “ceramic substrate or the like”) to generate heat.
  • a heating substrate such as a ceramic substrate or a metal substrate (hereinafter also referred to as a “ceramic substrate or the like”)
  • an object to be heated such as a silicon wafer placed or separated from the heating surface or supported thereon can be heated.
  • the heat released from the resistance heating element is naturally transmitted to the opposite side of the heating surface of the ceramic substrate or the like. Since the heat released in this direction is not used for heating the ceramic substrate or the like, the efficiency of raising the temperature of the ceramic substrate or the like is not so good.
  • a plate-like body is provided on the opposite side of the heating surface of a ceramic substrate or the like to reflect the heat emitted from the resistance heating element to improve the thermal efficiency during temperature rise or heating.
  • this plate-shaped member also has a purpose of protecting these wirings and external devices from heat.
  • the efficiency of temperature rise of the ceramic substrate or the like is reduced. This is because the heat emitted from the resistance heating element is diffusely reflected by the midsole, reducing the reflectivity of the heat rays, reducing the amount of heat reflected back to the ceramic substrate, etc., and increasing the amount of heat dissipation However, it is considered that the heating efficiency and the heat retention efficiency are reduced.
  • the cooling efficiency of a hot plate cut or the like is not very good. This is because when introducing and circulating a coolant to cool a semiconductor manufacturing / inspection device such as a hot plate unit, a turbulence occurs in the airflow of the coolant circulating near the surface of the plate-like body. This turbulence in the airflow hinders the circulation of the entire refrigerant, and it is not possible to uniformly cool the ceramic substrate and the like, which may reduce the cooling efficiency of the semiconductor manufacturing and inspection equipment.
  • the refrigerant may be either a liquid or a gas. It is desirable to use a gas from the viewpoint of preventing short circuit.
  • the gas include an inert gas such as nitrogen, argon, helium, and gas, and air.
  • the liquid include water and ethylene glycol.
  • an opening is formed in the plate-like body.
  • the opening preferably has a diameter of 1 to 100 mm. If the thickness is less than 1 mm, it is difficult to discharge the cooling medium satisfactorily. If the thickness exceeds 100 mm, the effect of shielding the heat from the heater is greatly reduced.
  • the aperture ratio is preferably 3% or more. If the aperture ratio is less than 3%, the heat capacity becomes too large to shorten the cooling time.
  • a protrusion or a depression is formed in the plate-like body.
  • the projections and depressions distortion of the plate-like body can be eliminated. If the plate is distorted, the support container itself will be distorted, and as a result, the ceramic substrate will also be distorted.
  • the distance between the semiconductor wafer and the heating substrate such as the ceramic substrate becomes uneven, and the semiconductor wafer cannot be heated uniformly, or the ceramic substrate or the like does not adhere to the semiconductor wafer. Again, uniform heating of the semiconductor wafer becomes difficult. Furthermore, when the plate is distorted, the reflected heat is unequally applied to the ceramic substrate and the like, so that the semiconductor wafer cannot be uniformly heated. It is desirable that the projections and depressions are arranged in a matrix like a grid.
  • the definition of the surface roughness of the plate-like body in the present invention relates to a portion without such projections, depressions, and openings. This is because the turbulence of the air flow of the refrigerant and the liquid flow is generated by the surface contact between the refrigerant and the plate-like body, and the local protrusions and dents do not significantly affect the turbulence of the air flow. Also, since the refrigerant fluid is discharged from the opening, it does not contribute to the turbulence of the air flow.
  • the height of such projections and the depth of the depressions are desirably 5 mm or less. If the depressions and projections are too large, the plate It is because it goes out.
  • FIG. 1 is a plan view schematically showing a hot plate unit which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
  • FIG. 2 is a longitudinal sectional view of the hot plate unit shown in Fig. 1.
  • FIG. 3 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
  • FIG. 4 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
  • FIG. 5 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
  • FIG. 6 (a) is a longitudinal sectional view schematically showing a ceramic substrate constituting the electrostatic chuck according to the present invention, and (b) is a cross-sectional view of the electrostatic chuck shown in (a).
  • FIG. 3 is a sectional view taken along line A.
  • FIG. 7 is a horizontal sectional view schematically showing an example of an electrostatic electrode embedded in the electrostatic chuck according to the present invention.
  • FIG. 8 is a horizontal sectional view schematically showing another example of the electrostatic electrode embedded in the electrostatic chuck.
  • FIG. 9 is a cross-sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
  • FIG. 10 is a plan view schematically showing the ceramic substrate shown in FIG.
  • FIG. 11 is a cross-sectional view of the ceramic substrate taken along line AA of FIG.
  • FIG. 12 (a) to (d) are cross-sectional views schematically showing a method of manufacturing a ceramic substrate constituting a hot plate cut as an example of the semiconductor manufacturing / inspection apparatus of the present invention. .
  • FIG. 13 (a) is a cross-sectional view schematically showing another embodiment of a hot plate unit which is an example of a semiconductor manufacturing / inspection apparatus of the present invention, and (b) is a cross section of a hot plate unit. It is a perspective view which shows typically the bottom plate which comprises a support container.
  • FIG. 14 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate with the depression formed therein and a graph showing the result of measuring the surface shape with a laser displacement meter.
  • FIG. 15 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the result of measuring the surface shape with a laser displacement meter.
  • FIG. 16 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the result of measuring the surface shape with a laser displacement meter. Explanation of reference numerals
  • the semiconductor manufacturing / inspection apparatus of the present invention is a semiconductor manufacturing / inspection apparatus in which a heating substrate such as a ceramic substrate having a conductor formed on its surface or inside is disposed in a supporting container having a plate-like body. ,
  • the plate-shaped body may be a bottom plate of a support container, or may be an intermediate bottom plate disposed between the bottom plate and the ceramic substrate.
  • the semiconductor manufacturing and inspection apparatus of the present invention will be described using a ceramic substrate as a heating substrate and an insole plate as an example, but the present invention is not limited to this.
  • a metal substrate is used. Specifically, it is desirable to use a metal substrate made of at least one metal selected from aluminum, copper, stainless steel, and iron.
  • a screw or the like to fix the heat-generating wire with an insulating seal, or for some V, use a heating element that is sandwiched between silicon wrappers and fixed to the metal substrate with a screw or the like. it can.
  • the resistance heating element is provided on the ceramic substrate constituting the semiconductor manufacturing and inspection apparatus of the present invention.
  • it has a function as a hot plate, and can heat an object to be heated such as a silicon wafer to a predetermined temperature.
  • FIG. 1 is a bottom view schematically showing an example of a hot plate unit which is an embodiment of a semiconductor manufacturing and inspection apparatus according to the present invention.
  • FIG. 2 is a vertical sectional view schematically showing the hot plate unit.
  • the ceramic substrate 21 is formed in a disk shape, and the resistance heating elements 22 are formed in a concentric pattern on the bottom surface of the ceramic substrate 21.
  • the resistance heating elements 22 are connected such that double concentric circles close to each other form a single line as a set of circuits.
  • a plurality of through holes 25 for inserting lifter pins used for carrying a silicon wafer, etc. are formed in a portion near the center, and communicate with the through holes 25 immediately below the through holes 25.
  • a guide tube 19 is provided, and a through hole communicating with these is formed in the bottom plate 14 of the support container 12.
  • a bottomed hole 24 for inserting a temperature measuring element 28 such as a thermocouple is formed on the bottom surface of the ceramic substrate 21, and a wiring 18 is led out from the temperature measuring element 28 to form a bottom plate 1. 4 through hole 14a is drawn out to the outside.
  • the ceramic substrate 21 having such a configuration is fitted into the cylindrical support container 12 via the heat insulating ring 11, and is connected to the heat insulating ring by the connecting members 130 such as bolts and the holding metal fittings 140. It is pressed down and fixed to the support container 12 by this.
  • An intermediate bottom plate 15 is attached to the middle of the support container 12, and a bottom plate 14 is attached to the lower portion of the support container 12.
  • support container 12 and the bottom plate 14 may be formed integrally.
  • the ceramic substrate 21 is fitted into the support container 12 via the heat insulating ring 11, but the ceramic substrate is placed on the support container.
  • a hot plate unit may be configured by using a connecting member such as a bolt or the like and fixing it to the upper surface of the supporting container via a heat insulating member or the like.
  • an external terminal 13 having a T-shaped cross section is connected to the end 22 a of the resistance heating element 22, and this external terminal 13 is drawn out of a through hole provided in the inner bottom ⁇ 15, It is connected to the lead wire 17 via the socket 16 and this lead wire 17 is connected to the bottom plate 14 It is drawn out from the through-hole 1 4 a, a power supply c connection (not shown) is attained supporting container 1 2 of the bottom plate 1 a refrigerant inlet pipe 2 7 4 are fixed, the supporting container 1 2 Cooling air can be flowed into the interior.
  • a through hole is formed in the middle bottom plate 15 so as not to obstruct the guide tube 19 and the refrigerant introduction tube 29 provided in the bottom plate 14.
  • the ceramic substrate 21 is provided with a plurality of through holes 25 through which lifter pins are inserted.
  • the silicon wafer can be placed in a state where the silicon wafer is separated, and heating can be performed.
  • a through hole and a concave portion are formed in the ceramic substrate 21, and a pin having a spike or a hemispherical tip is slightly inserted into and fixed to the through hole or the like in a state of protruding from the ceramic substrate 21.
  • the midsole plate constituting the semiconductor manufacturing / inspection apparatus of the present invention
  • the midsole plate reflects heat radiated from the resistance heating element to improve the heat retaining effect of the ceramic substrate, or to provide wiring and external devices provided below the ceramic substrate. It is formed for the purpose of so-called heat shielding, which protects the heat from heat.
  • the surface is not a uniform flat surface but irregularities are formed, and the irregularities usually have a size of more than 20 ⁇ in Ra. Therefore, the following inconvenience occurs.
  • the midsole plate 15 reflects heat rays from the resistance heating element well, and the ceramic substrate 11 has excellent heat-up efficiency and heat-retention efficiency.
  • the refrigerant can be circulated satisfactorily even after cooling after the temperature rise, and the cooling efficiency of the ceramic substrate 11 is excellent. It becomes Also, wiring can be fixed to the midsole plate.
  • the surface roughness Ra of the midsole plate 15 exceeds 20 ⁇ in, the heat radiated from the resistance heating element 22 is irregularly reflected on the surface of the midsole plate 15 and the heat ray reflectance is reduced. However, as the radiant heat increases, the heating efficiency and the heat retention efficiency of the ceramic substrate 11 decrease. Further, since the airflow of the refrigerant introduced from the refrigerant introduction pipe 27 is disturbed near the surface of the midsole plate, the ceramic substrate 11 cannot be uniformly cooled, and the cooling efficiency of the ceramic substrate 11 decreases. .
  • the same adjustment of the surface roughness may be performed on the bottom plate. Also in this case, by adjusting the surface roughness of the bottom plate, the same effect as when adjusting the surface roughness of the midsole plate 15 is produced. When the surface roughness of the bottom plate is adjusted, in order for the effects of the present invention to be produced, it is desirable that the middle bottom plate does not exist.
  • the surface roughness of the midsole plate 15 (bottom plate) be adjusted to a range of 500 ⁇ or less in Rma. This is because if the surface roughness Rmax of the midsole plate 15 exceeds 500 m, the flow of the fluid tends to be turbulent, and the temperature falling time tends to vary.
  • FIGS. 15 and 16 are explanatory diagrams showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the surface state measured by a key displacement laser displacement meter.
  • the midsole plate shown in FIG. 15 has a substantially mirror surface, and the midsole plate shown in FIG. 16 has a slightly rough surface.
  • the method for adjusting the surface roughness of the midsole plate 15 (bottom plate) to 20 ⁇ or less is not particularly limited.
  • the surface of the midsole plate 15 (bottom plate) is polished using a diamond grindstone of # 50 to # 800.
  • the material forming the middle bottom plate 15 is not particularly limited, and examples thereof include metal, resin, and ceramic.
  • the metal is not particularly limited, and includes, for example, aluminum, SUS, copper, nickel, and the like.
  • a film of a noble metal such as gold or silver be formed on the surface on the ceramic substrate side. This is because the surface reflects heat rays and the like more efficiently by forming a noble metal film.
  • the method for forming the noble metal film of gold, silver, or the like on the metal surface is not particularly limited, and examples thereof include electrolytic plating, electroless plating, and sputtering.
  • the resin is not particularly limited, and examples thereof include a heat-resistant resin such as a polyimide resin, a polybenzoimidazole resin, and a fluororesin. Among these resins, polyimide resins are desirable. Thermal stability is extremely high, and mechanical and electrical properties are also excellent.
  • the ceramic is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
  • the surface on the ceramic substrate side is coated with a noble metal in order to increase the heat reflection efficiency.
  • the midsole plate 15 (bottom plate) be substantially disk-shaped, but its diameter is not particularly limited, and is appropriately adjusted according to the size of the ceramic substrate. Also, the thickness is not particularly limited, and is appropriately adjusted according to the material to be used.
  • an opening 260a may be formed in the midsole plate as shown in FIG. 13 (b).
  • the cooling medium can be discharged well. Further, by providing the opening, the heat capacity of the midsole plate can be reduced, and the cooling rate can be improved.
  • the diameter of the opening 260a is desirably l to 100 mm. If it is less than 1 mm, the cooling medium cannot be sufficiently discharged, and if it exceeds 100 mm, there is no effect of shielding heat from the heater.
  • a protrusion or a depression is formed in the plate-like body. Protrusions and This is because the depression can eliminate distortion of the plate-like body. If the plate is distorted, the support container itself will be distorted, and as a result, the ceramic substrate will be distorted.
  • the distance between the semiconductor wafer and the ceramic substrate will be uneven, making it impossible to heat the semiconductor wafer uniformly. Becomes difficult. Furthermore, when the plate is distorted, the reflected heat is unequally applied to the ceramic substrate, so that the semiconductor wafer cannot be uniformly heated. It is desirable that the protrusions and depressions are arranged in a matrix like a grid pattern.
  • FIG. 14 is an explanatory diagram showing a combination of a micrograph of the depression and a graph showing the shape (depth and position) of the depression.
  • the white part seen above is the depression, and has a depth of about 117 ⁇ .
  • the flatness can be adjusted to 1 mm or less by forming dents and projections on the plate-like body.
  • the definition of the surface roughness of the present invention is the surface roughness of a portion without such projections, depressions, and openings.
  • the turbulence of the air flow and liquid flow of the refrigerant is considered to be caused by the surface contact between the refrigerant and the plate-like body, and local protrusions and depressions do not have a significant effect on the turbulence of the air flow.
  • the refrigerant fluid is discharged from the opening, it does not contribute to the turbulence of the air flow.
  • the height of such projections and the depth of the depressions are desirably 5 mm or less. If the dents and projections are too large, the plate-like body will be distorted.
  • the protrusions and depressions may be formed for mounting a power control component such as a thermostat, for example.
  • the midsole plate does not need to be connected to the outer frame of the support container, and for example, as shown in FIG. 13, the midsole plate may be supported by a panel provided on the bottom plate. By supporting with a panel panel, the midsole plate can be supported without contacting the outer frame of the support container, and the support container is not distorted due to thermal expansion or contraction of the midsole plate.
  • FIG. 13 (a) is a cross-sectional view schematically showing a semiconductor manufacturing / inspection apparatus (hot plate unit) according to another embodiment of the present invention, and (b) is a sectional view shown in (a). It is the perspective view which showed typically the bottom plate which comprises a hot plate cutout.
  • the supporting container is composed of an outer frame 270 and a bottom plate 260, and a recess of about 100 to 200 ⁇ is formed inside the bottom plate 260.
  • 60 k ' is formed in a grid pattern.
  • a plurality of openings 260a are formed in the bottom plate 260, and exhaust is performed from the openings 260a.
  • exhaust may be performed by providing an exhaust pipe (exhaust port). In such a case, the inside of the container is generally sealed.
  • an inner bottom plate 256 having a plurality of openings 256 a is provided in the support container, and the inner bottom plate 256 is provided with a leaf spring 25 4 provided on the bottom plate 260.
  • Supported by The bottom plate 260 is provided with a refrigerant supply pipe (supply port) 258 that fits into the opening 256 a of the midsole plate 256, and from the refrigerant supply pipe 258, the midsole plate 2 The refrigerant is supplied to the space partitioned by 56.
  • the diameter of the opening formed in the bottom plate 260 or the middle bottom plate 256 does not need to be one type, but may be two or more types.
  • a sleeve 2 5 7 is provided Immediately below the through-holes 2 15 of the ceramic substrate 2 1 1, a sleeve 2 5 7 is provided so that one pin of the lifter can be passed through. 1 9 can be moved up and down.
  • a heat insulating ring 252 is provided at the upper part of the support container, and a pin 251 is fitted into the heat insulating ring 252 and fixed to the outer frame 270 of the support container.
  • a ceramic substrate 2 11 is mounted on the heat insulating ring 2 52, and the ceramic substrate 2 1 1 is pressed and fixed by a fixing plate 2 53.
  • the ceramic substrate 211 has an insulating layer 218 formed on the front surface, and a resistance heating element 212 formed on the bottom surface via the insulating layer 218, thereby functioning as a heater. ing.
  • Support pins 259 are formed on the heating surface for heating the silicon wafer 219 so that the silicon wafer can be supported at a fixed distance from the heating surface.
  • a power supply terminal 2 13 is fixed to the end of the heating element 2 1 by soldering, and a socket 2 5 5 having a wiring 26 2 is fitted into the power supply terminal 2 13 to be connected to a power supply. It is supposed to connect.
  • the material of the ceramic substrate is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
  • nitride ceramic examples include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, and the like.
  • oxide ceramic examples include metal oxide ceramics, for example, alumina, zirconia, cordierite, and mullite.
  • These ceramics may be used alone or in combination of two or more.
  • nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
  • Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 O W / m ⁇ K.
  • the ceramic material may contain a sintering aid.
  • the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides.
  • C a O, Y 2 0 3, N a 2 0, L i 2 0, R b 2 0 is preferable. These content from 0.1 to 1 0 weight 0/0 are preferred. Further, it may contain alumina.
  • the brightness of the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention is N6 or less as a value based on the provisions of JISZ8721. This is because those having such brightness have excellent radiation heat quantity and concealing property.
  • such a ceramic substrate can accurately measure the surface temperature by using a thermoviewer.
  • the lightness N is defined as 0 for the ideal black lightness, 10 for the ideal white lightness, and the lightness of the color between these black lightness and white lightness.
  • Each color is divided into 10 so that the perception is at the same rate, and displayed by the symbols N0 to N10.
  • the actual measurement is performed by comparing the color charts corresponding to N0 to N10. In this case, the first decimal place is 0 or 5.
  • a ceramic substrate having such characteristics can be obtained by including 100 to 500 ppm of carbon in the ceramic substrate.
  • carbon There are two types of carbon, amorphous and crystalline 1.Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at high temperatures. Since the decrease in the thermal conductivity of the substrate at high temperatures can be suppressed, the type of carbon can be appropriately selected according to the purpose of the substrate to be manufactured.
  • the amorphous carbon can be obtained, for example, by sintering a hydrocarbon consisting of only C, H, and O, preferably a saccharide, in the air. Powder or the like can be used.
  • carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then heating and pressurizing it.
  • an inert atmosphere nitriding gas, argon gas
  • the degree of crystallinity amorphousness
  • the ceramic substrate has a disk shape, preferably has a diameter of 20 mm or more, and most preferably has a diameter of 250 mm or more.
  • the thickness of the ceramic substrate is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 5 mm is optimal.
  • the thickness is too thin, warping at high temperatures is likely to occur, and if it is too thick, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
  • the porosity of the ceramic substrate is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed.
  • the ceramic substrate used in the semiconductor manufacturing inspection apparatus of the present invention can be used at 150 ° C. or higher, but is preferably used at 200 ° C. or higher.
  • thermocouple can be embedded in a ceramic substrate as needed.
  • the temperature of the resistance heating element is measured with a thermocouple, and the voltage and current are The temperature can be controlled by changing the amount.
  • the size of the joining portion of the metal wires of the thermocouple is preferably equal to or larger than the wire diameter of each metal wire and 0.5 mm or less.
  • thermocouple examples include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples as described in JIS-C-162 (1980). Can be
  • FIG. 3 shows another embodiment of the present invention, and is a partially enlarged sectional view schematically showing the vicinity of a resistance heating element of a ceramic substrate in which a resistance heating element is disposed inside a ceramic substrate. .
  • the ceramic substrate 31 is formed in a disk shape as in the case of FIG. 1, and the resistance heating elements 22 are: A concentric pattern is formed inside the lamic substrate 31. Is formed. Further, in these resistance heating elements 22, through holes 38 are formed directly below both ends of the circuit, and through holes 37 are formed to expose the through holes 38 to the outside.
  • the external terminal 13 is bonded to the through hole 38 exposed to the blind hole 37 using solder or brazing material, and the external terminal 13 is connected to the external terminal 13 via the through hole 38 '. Electrical connection with the resistance heating element 22 is achieved.
  • the through hole 38 is formed so as to be exposed on the bottom surface of the ceramic substrate 31, and the through hole may not be formed.
  • a non-oxidizable metal layer 39 consisting of a Ni layer 39 a and an Au layer 39 b is formed on the surface of the through hole 38. 9 may be connected.
  • the non-oxidizing metal layer 39 can be formed by sputtering, plating, or the like. It is desirable to remove such factors.
  • the through hole 38 is made of a metal such as tungsten or molybdenum, or a carbide thereof, and preferably has a diameter of 0.1 to 1 O mm. This is because cracks and distortion can be prevented while preventing disconnection.
  • the size of the blind hole 37 is not particularly limited, and may be any size as long as the head portion of the external terminal 13 can be inserted.
  • the resistance heating element is made of a metal such as a noble metal (gold, silver, platinum, or palladium), lead, tungsten, molybdenum, nickel, or a conductive ceramic such as a carbide of tungsten or molybdenum.
  • a noble metal gold, silver, platinum, or palladium
  • lead tungsten
  • molybdenum nickel
  • a conductive ceramic such as a carbide of tungsten or molybdenum.
  • the resistance heating element is preferably a concentric pattern as shown in FIG. 1 or a combination of a concentric pattern and a bent line pattern. .
  • the thickness of the resistance heating element is
  • ⁇ 50 ⁇ is desirable, and the width is desirably 5 ⁇ 2 Omm.
  • the resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical.
  • the resistance value of the resistance heating element becomes thinner and becomes larger as it becomes thinner.
  • the distance between the heating surface 21a and the resistance heating element 22 becomes short, and the uniformity of the surface temperature decreases, so that the width of the resistance heating element 22 itself is increased. Need to be In addition, since the resistance heating element 22 is provided inside the ceramic substrate, there is no need to consider adhesion to nitride ceramics or the like.
  • the resistance heating element may have a cross section of any of a square, an ellipse, a spindle, and a spheroid, but is desirably flat. This is because the flattened surface tends to radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased and the temperature distribution on the heated surface is difficult to achieve.
  • the resistance heating element may have a spiral shape.
  • a conductor paste made of metal or conductive ceramic.
  • a resistance heating element is formed on the surface of the ceramic substrate 21 as shown in FIGS. 1 and 2, the ceramic paste is usually fired to produce the ceramic substrate 21, and then the conductive paste is applied to the surface.
  • a resistance heating element is produced by forming a layer and firing the layer.
  • the conductive paste is not particularly limited, but is preferably a conductive paste containing a metal particle or a conductive ceramic particle, a resin, a solvent, a thickener, or the like in order to secure conductivity.
  • the material of the metal particles and the conductive ceramic particles include those described above.
  • the metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 m. If it is too small, less than 0.1 m, it is liable to be oxidized, while if it exceeds 100 / m, sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the resistance heating element and the ceramic substrate is ensured. This is advantageous because the resistance value can be increased.
  • the resin used for the conductor paste include an epoxy resin and a phenol resin.
  • the solvent include isopropyl alcohol.
  • the thickener include cellulose and the like.
  • a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to have it. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
  • the metal oxide for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, least one selected from the group consisting of yttria Contact Yopi titania is preferred.
  • the adhesion to the ceramic substrate can be particularly improved.
  • the amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight. Further, when the resistance heating element is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 45 ⁇ .
  • the area resistivity exceeds 45 ⁇ , the amount of heat generated becomes too large for the applied voltage, and it is difficult to control the amount of heat generated on a ceramic substrate provided with a resistance heating element on the surface. . If the addition amount of the metal oxide is 10% by weight or more, the area resistivity exceeds 5 ⁇ / port, the calorific value becomes too large, and the temperature control becomes difficult. Uniformity decreases.
  • a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body.
  • the thickness of the metal coating layer to be formed is
  • 0.1 to 10 ⁇ ⁇ is preferable.
  • the metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples thereof include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • the resistance heating element When the resistance heating element is formed inside the ceramic substrate, no coating is required since the surface of the resistance heating element is not oxidized.
  • the material of the external terminal 13 connected to the resistance heating element 22 or the through hole 38 is not particularly limited, and examples thereof include metals such as nickel and kovar.
  • the external terminal 13 preferably has a T-shaped cross section in order to increase the area of the contact surface.
  • the size thereof is not particularly limited because it is appropriately adjusted depending on the size of the ceramic substrate 21 used, the size of the resistance heater 22 and the like, but the diameter of the shaft portion is 0.5 to 10 mm.
  • the length of the shaft portion is preferably 3 to 20 mm.
  • semiconductor manufacturing / inspection apparatus of the present invention include, for example, an electrostatic chuck, a wafer prober, a hot plate, and a susceptor.
  • the hot plate unit is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, whereby an object to be heated such as a silicon wafer can be heated to a predetermined temperature.
  • a resistance heating element is provided on the surface or inside the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, and when an electrostatic electrode is provided inside the ceramic substrate, it functions as an electrostatic chuck.
  • the electrostatic electrode examples include a metal such as a noble metal (gold, silver, platinum, and palladium), lead, tungsten, molybdenum, and nickel, and a conductive ceramic such as a carbide of tungsten and molybdenum. . These may be used alone or in combination of two or more.
  • a metal such as a noble metal (gold, silver, platinum, and palladium), lead, tungsten, molybdenum, and nickel, and a conductive ceramic such as a carbide of tungsten and molybdenum. . These may be used alone or in combination of two or more.
  • FIG. 6A is a longitudinal sectional view schematically showing a ceramic substrate constituting the electrostatic chuck
  • FIG. 6B is a sectional view taken along line AA of the ceramic substrate shown in FIG.
  • chuck positive and negative electrostatic layers 62 and 63 are embedded inside a ceramic substrate 61 and connected to through holes 680, respectively, and a ceramic dielectric film 64 is formed on the electrode. Are formed.
  • a resistance heating element 66 and a through hole 68 are provided inside the ceramic substrate 61 so that the silicon wafer 29 can be heated.
  • an RF electrode may be embedded in the ceramic substrate 61 as necessary.
  • a through hole is provided below the through hole 68 to expose the through hole 68, and the ceramic substrate 61 is attached to the support container 12 shown in FIG.
  • the electrostatic chuck 60 is usually formed in a circular shape in plan view, and inside the ceramic substrate 61, the semi-circular portion 62 shown in (b) is formed.
  • the positive side of the DC power supply and one side of the DC power supply are connected to the chuck positive electrostatic layer 62 and the chuck negative electrostatic layer 63, respectively, and a DC voltage is applied.
  • the silicon wafer placed on the electrostatic chuck is electrostatically attracted.
  • FIG. 7 and 8 are horizontal cross-sectional views schematically showing electrostatic electrodes in another electrostatic chuck.
  • a semicircular shape is formed inside the ceramic substrate 71.
  • a chuck positive electrode electrostatic layer 72 and a chuck negative electrode electrostatic layer 73 are formed.
  • the electrostatic chuck 80 shown in FIG. Electric layers 82a and 82b and chuck negative electrode electrostatic layers 83a and 83b are formed.
  • the two positive electrode electrostatic layers 82a and 82b and the two negative electrode electrostatic layers 83a and 83b are formed to intersect, respectively.
  • the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector.
  • a resistance heating element is provided on or on the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, a check top conductor layer is provided on the surface of the ceramic substrate, and a guard electrode and a ground electrode are provided inside. In addition, it functions as a wafer proper.
  • FIG. 9 is a cross-sectional view schematically showing one embodiment of the ceramic substrate constituting the wafer prober
  • FIG. 10 is a plan view thereof
  • FIG. 11 is the ceramic substrate shown in FIG.
  • FIG. 2 is a sectional view taken along line A-A in FIG.
  • concentric circular grooves 8 are formed on the surface of a ceramic substrate 3 having a circular shape in plan view, and a plurality of suction holes 9 for sucking a silicon wafer are provided in a part of the grooves 8.
  • a chuck top conductor layer 2 for connecting to an electrode of a silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including the groove 8.
  • a resistance heating element 51 having a concentric circular shape in plan view as shown in FIG. 1 is provided in order to control the temperature of the silicon wafer.
  • the wafer prober When this wafer prober is arranged in the support container 12 shown in FIG. 2, the wafer prober has excellent temperature rising efficiency and cooling efficiency as well as the hot plate unit 20 described above. Becomes
  • a guard electrode 6 and a ground electrode 7 (not shown) having a lattice shape as shown in FIG. 11 are provided inside the ceramic substrate 3 for removing stray capacitor noise.
  • Reference numeral 52 indicates an electrode non-formed portion. The reason why such a rectangular electrode non-formed portion 52 is formed inside the guard electrode 6 is to firmly adhere the upper and lower ceramic substrates 3 sandwiching the guard electrode 6.
  • a wafer prober a silicon wafer on which an integrated circuit is formed is placed on a ceramic substrate housed in a supporting container, and a probe card having test pins is pressed against the silicon wafer, followed by heating and cooling.
  • the continuity test can be performed by applying a voltage while applying the voltage.
  • the slurry After preparing a slurry by blending a sintering aid such as yttria or a binder as necessary with the above-mentioned ceramic powder such as aluminum nitride, the slurry is granulated by a method such as spray-drying. The granules are placed in a mold or the like and pressurized to form a plate or the like to produce a green body. When preparing the slurry, amorphous / crystalline carbon may be added. Next, the formed body is heated, fired and sintered to produce a ceramic plate. After that, the ceramic substrate 21 is manufactured by processing into a predetermined shape, but may be a shape that can be used as it is after firing. By performing heating and firing while applying pressure, it is possible to manufacture a ceramic substrate 21 having no pores. Heating and sintering may be performed at a temperature equal to or higher than the sintering temperature.
  • a through hole for inserting a support pin for supporting the silicon wafer and a through hole for inserting a lifter pin for carrying the silicon wafer, etc. And a portion with a bottomed hole for embedding a temperature measuring element such as a thermocouple.
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, resin, and a solvent.
  • the conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer.
  • the resistance heating element needs to keep the entire temperature of the ceramic substrate at a uniform temperature, for example, the resistance heating element should be printed in a concentric shape or a pattern combining the concentric shape and the bent line shape. Is preferred.
  • the conductive paste layer is preferably formed so that the cross section of the resistance heating element 22 after firing has a rectangular and flat shape.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 21 is heated and fired to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the ceramic substrate 21 to form the resistance heating element 22.
  • the heating and firing temperature is preferably from 500 to 100 ° C.
  • the metal particles, the ceramic substrate and the metal oxide are sintered and integrated, so that the adhesion between the resistance heating element and the ceramic substrate is improved. I do.
  • the metal coating layer can be formed by electrolytic plating, electroless plating, sputtering, or the like. However, considering mass productivity, electroless plating is optimal.
  • the external terminal 13 is attached to the end 22 a of the circuit of the resistance heating element 22 by soldering or the like. Also, a temperature measuring element 28 such as a thermocouple is inserted into the bottomed hole 24 and sealed with a heat-resistant resin such as polyimide, ceramic or the like.
  • the support container 12 is prepared, and the ceramic substrate having the resistance heating element 22 is fitted into the support container 12 via the heat insulating ring 11.
  • a precious metal layer may be formed on the surface by plating or sputtering.
  • the midsole plate 15 was attached to the support container 12 and the external terminal 13 was formed in the midsole plate 15: drawn out from the R through hole, and connected to the lead wire 17.
  • the external terminal 13 and the lead 17 are connected by inserting the socket 16 into the external terminal 13.
  • an electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface, and the inside of the ceramic substrate is provided.
  • a wafer prober can be manufactured by providing a guard electrode and a duland electrode.
  • a metal foil or the like may be embedded inside the ceramic substrate.
  • FIGS. 12 (a) to 12 (d) are cross-sectional views schematically showing a method of manufacturing a ceramic substrate having a resistance heating element inside a hot plate unit.
  • a paste is prepared by mixing a nitride ceramic powder with a binder, a solvent, and the like, and a green sheet is produced using the paste.
  • ceramic powder aluminum nitride or the like can be used. If necessary, a sintering aid such as yttria may be added. Further, when producing the green sheet, crystalline or amorphous carbon may be added.
  • the binder at least one selected from an acrylic binder, ethyl cellulose, butylace resin-soluble solvent, and polybutyl alcohol is desirable.
  • the solvent at least one selected from terbineol and glycol is preferable.
  • a paste obtained by mixing these is formed into a sheet by a doctor blade method to produce a green sheet 50.
  • the thickness of the green sheet 50 is preferably 0.1 to 5 mm.
  • the obtained green sheet will have a through hole for inserting a support pin for supporting the silicon wafer, and a through hole for inserting a lifter pin for transporting the silicon wafer.
  • a part, a bottomed hole for embedding a temperature measuring element such as a thermocouple, and a through hole for connecting a resistance heating element to an external terminal are formed.
  • the above processing may be performed after forming a green sheet laminate described later.
  • a conductor paste containing a metal paste or a conductive ceramic is printed on the green sheet 50 to form a conductor paste layer 420, and a portion to be a through hole is filled with the conductor paste, and a filling layer 49 is formed. Form a 0.
  • These conductive pastes contain metal particles or conductive ceramic particles.
  • the average particle diameter of the metal particles is preferably from 0: to 5 ⁇ . If the average particle size is less than 0.1 l / m, and if it exceeds 5 ⁇ , it is difficult to print the conductor cost.
  • Examples of such a conductive paste include 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder 1.5 selected from acryl-based, ethylcellulose, butylcellosonolev, and polyvinyl alcohol. To 10 parts by weight; and a composition (paste) obtained by mixing 1.5 to 10 parts by weight with at least one solvent selected from ⁇ -terbineol and dalicol.
  • the green sheet 50 on which the conductor paste prepared in the above step (1) is not printed is laminated on and under the green sheet 50 on which the conductor paste layer 420 produced in the above step (2) is printed (see FIG. 12 (a)).
  • the number of green sheets 50 stacked on the upper side is made larger than the number of green sheets 50 stacked on the lower side, and the formation position of the conductive paste layer 420 is eccentric toward the bottom.
  • the number of stacked green sheets 50 on the upper side is preferably 20 to 50, and the number of stacked green sheets 50 on the lower side is preferably 5 to 20.
  • the green sheet laminate is heated and pressed to sinter the green sheet 50 and the conductive paste therein, thereby producing a ceramic substrate 4%.
  • the heating temperature is preferably from 1000 to 2000 ° C, and the pressure is preferably from 10 to 20 MPa. Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen, or the like can be used.
  • the obtained ceramic substrate 41 is provided with a bottomed hole 44 for inserting a temperature measuring element and a through hole 45 for inserting a lifter pin (FIG. 12 (b)). Then, an external terminal is inserted. For example, a bag hole 48 is provided (Fig. 12 (c)).
  • the bottomed hole 44, the through hole 45 and the blind hole 48 are used for drilling or sandblasting after polishing the surface. It can be formed by performing a strike process.
  • the external terminals 43 are attached to the through holes 49 exposed from the blind holes 48 by soldering or the like (FIG. 12 (d)).
  • a thermocouple such as a thermocouple is inserted into the bottomed hole, and sealed with a heat-resistant resin such as a polyimide or ceramic.
  • the support container 12 is prepared, and the ceramic substrate having the resistance heating element 22 is fitted into the support container 12 via the heat insulating ring 11.
  • the midsole plate 15 is attached to the support container 12, and the external terminals 13 are pulled out from the through holes formed in the midsole plate 15, and the socket connected to the lead wire 17 By connecting 16 to the external terminal 33, the external terminal 33 and the lead wire 17 are connected.
  • an electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface, and a guard is provided inside the ceramic substrate.
  • a wafer prober can be manufactured.
  • a conductive paste layer may be formed on the surface of the green sheet.
  • a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination.
  • the roughness Ra and Rmax of the plate-like body surface were measured by a shape measuring instrument (Surfcom 92 OA manufactured by Tokyo Seimitsu Co., Ltd.).
  • the photograph shows the result of measurement and observation using a Keyence laser displacement meter.
  • a disk having a diameter of 21 Omm or 310 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate 21).
  • this plate is drilled to form a through hole 25 for inserting a lifter pin of a silicon wafer, and a bottomed hole 24 (diameter: 1.1 mm, depth: 2 mm) for embedding a thermocouple. Formed.
  • Solvent PS603D manufactured by Tokuka Chemical Laboratory which is used for forming through holes in printed wiring boards, was used.
  • This conductor paste is a silver-lead lead paste, and based on 100 parts by weight of silver, lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and oxide Boron It contained 7.5 parts by weight of a metal oxide consisting of f (25% by weight) and alumina (5% by weight).
  • the silver particles had a mean particle size of 4.5 ⁇ and were scaly.
  • the sintered body on which the conductor paste is printed is heated and fired at 780 ° C to sinter the silver and lead in the conductor paste and to bake the sintered body, thereby forming the resistance heating element 22.
  • the silver-lead lead resistance heating element 22 had a thickness of 5 ⁇ , a width of 2.4 mm, and an area resistivity of 7.7 ⁇ .
  • Electroless nickel plating consisting of an aqueous solution with a concentration of nickel sulfate 80 g / 1, sodium hypophosphite 24 g / 1, sodium acetate 12 g / 1, boric acid 8 g / 1, and ammonium chloride 6 g / 1
  • the sintered body prepared in (5) above was immersed in the bath to deposit a 1 ⁇ m thick metal coating layer 220 (nickel layer) (not shown) on the surface of the resistance heating element 22 made of silver-lead.
  • a silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the portion where the external terminals 13 were to be attached to form a solder paste layer.
  • an external terminal 13 made of Kovar was placed on the solder paste layer, and heated and reflowed at 420 ° C., and the external terminal 13 was attached to an end of the resistance heating element 22 via the solder layer 130.
  • thermocouple for temperature control was inserted into the bottomed hole, filled with a polyimide resin, and cured at 190 ° C for 2 hours.
  • the inner bottom plate 15 is attached to the support container 12, the external terminal 13 is pulled out from a through hole formed in the inner bottom plate 15, and the socket 16 connected to the lead wire 17 is connected to the external terminal 13.
  • the external terminals 13 and the lead wires 17 were connected by inserting them into the holes.
  • the bottom plate 14 having other jigs was attached to the support container 12 as shown in FIGS. 1 and 2, and the production of the hot plate was completed.
  • the green sheet 50 was dried at 80 ° C. for 5 hours, and a portion to be a through hole was formed by punching.
  • Conductive paste B was prepared by mixing 9 parts by weight and 3.7 parts by weight of a monoterpineol solvent with 0.2 part by weight of a dispersant.
  • This conductor paste A was printed on the green sheet 50 by screen printing to form a conductor paste layer 220 for the resistance heating element 22.
  • the printing pattern is a concentric pattern as shown in Fig. 1, and the width of the conductor paste layer is 1 Omm and its thickness is 1 2
  • the conductive paste B is filled in the portions that will become through holes,
  • the obtained laminate was degreased in nitrogen gas at 600 ° C for 5 hours, and hot-pressed at 1890 ° C and a pressure of 15 MPa for 10 hours to obtain a 3 mm-thick aluminum nitride.
  • a sintered compact was obtained. This was cut out into a 23 Omm disk shape, and a 6 ⁇ thick, 1 Omm wide (act ratio: 1666) resistance heating element 42 and through hole 49 were cut inside. (FIG. 12 (b)).
  • the plate obtained in (4) is polished with a diamond grindstone, a mask is placed on the plate, and a plasting process using SiC or the like is performed to pass through the lifter pins.
  • a hole 45 and a bottomed hole 44 for burying a thermocouple in the surface were provided.
  • thermocouples for temperature control were embedded in the bottomed holes 44, filled with a polyimide resin, and cured at 190 ° C for 2 hours.
  • the support container 12 was prepared, and the ceramic substrate 41 having the resistance heating element 42 was fitted into the support container 12 via the heat insulating ring 11.
  • the midsole plate 15 is attached to the support container 12, the external terminal 13 is pulled out from a through hole formed in the midsole plate 15, and the socket 16 connected to the lead wire 17 is externally connected. External terminal 13 was connected to lead 17 by inserting it into terminal 13.
  • a hot plate was manufactured in the same manner as in Example 1 except that the inner bottom plate 15 was polished in the same manner as in Example 2, and then subjected to nickel plating and gold plating under the following conditions.
  • potassium cyanide 2 gZl, ammonium chloride 75 gZ1, sodium citrate 50 gZ1, sodium hypophosphite l It was immersed in an electroless plating bath containing Og / 1 at 93 for 23 seconds at 93 to form a plating layer 39b having a thickness of 0.03 / in.
  • This disc was used as the bottom plate and welded to an outer frame made of SUS to form a support vessel.
  • the disk has 5 openings with a diameter of 30 mm, 80 openings with a diameter of 8 mm, and 10 openings with a diameter of 10 mm, with an opening ratio of 10%.
  • This support container and a ceramic substrate manufactured under the same conditions as in Example 1 were combined as shown in FIGS. 1 and 2 to obtain a hot plate unit.
  • This disc was used as a bottom plate and integrally welded to an outer frame made of SUS to form a support container.
  • This support container and a ceramic substrate manufactured under the same conditions as in Example 1 were combined as shown in FIGS. 1 and 2 to form a hot plate unit.
  • Example 6 The thickness 1. polished by 1 kg / cm 2 load to 5 mm alumina base plate 1 5 of the ceramic substrate surface in at # 2 2 0 diamond grindstone, surface roughness based on JISB 0 6 0 1
  • this midsole plate was placed on plate panels 254 provided at three places of the support container, and was fixed with screws.
  • Resin has a higher coefficient of thermal expansion than metal, so if it is fixed as it is, the support container will be distorted. Therefore, the difference in the coefficient of thermal expansion was absorbed by the panel panel using the panel panel 254, and the outer frame 270 was not distorted.
  • Example 1 As the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
  • a polyimide substrate was manufactured by applying a pressure of 100 kg / cm 2 to obtain a disc having a diameter of 23 Omm and a thickness of 2 mm.
  • this midsole plate was placed on a plate panel 254 provided at three locations in the support container, and was fixed with screws.
  • Example 1 As the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
  • a heater sandwiching the heating wire with silicon rubber was fixed with screws and used as a heating plate.
  • This heating plate was attached to the support container of Example 1.
  • a hot plate was manufactured in the same manner as in Example 1 except that the inner bottom plate 15 was not subjected to any polishing treatment and was attached to the support container 12 as it was.
  • this midsole plate was placed on a plate panel 254 provided at three places in the support container and fixed with screws.
  • Example 1 As the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
  • This heating plate was attached to the support container of Comparative Example 1.
  • the hot plate units according to Examples 1 to 9 and Comparative Examples 1 to 3 thus obtained were energized and heated to 300 ° C., and then room temperature air was used as a refrigerant. Air was blown from the refrigerant inlet tube 27 at a flow rate of lm 3 / min to cool.
  • the hot plate unit was evaluated based on the following criteria.
  • the time required for the hotplate to rise to 300 ° C is about 300-250.
  • the time to cool to C was measured.
  • the time required to increase the temperature to 200 ° C and the time required to decrease the temperature to 200 to 150 ° C were measured.
  • the cooling time was measured by the above method (1), and the variation of the cooling time for 10 times represented by the following formula (1) was calculated.
  • thermopure IR 62 012-00 12 by Nippon Datum
  • Example 1 the provision of the opening can further reduce the temperature lowering time. Further, as can be seen from the comparative power between Example 4 and Example 5, the temperature of the silicon wafer can be made uniform by increasing the flatness.
  • the semiconductor wafer can be uniformly heated, the variation in the temperature lowering time can be reduced, and a semiconductor-related product such as a silicon wafer having good characteristics can be manufactured. Can be manufactured stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An apparatus for producing and inspecting a semiconductor in which elevation of temperature or heat insulation can be carried out efficiently even when a resistance heater is heated and cooling can be carried out efficiently even when the temperature is lowered. In the apparatus for producing and inspecting a semiconductor, a ceramic substrate (21) having a conductor layer (22) formed internally or on the surface is placed in a supporting container (12) having planar bodies (14, 15). The planar bodies (14, 15) have a surface roughness Ra=20 νm or less based on JIS B 0601.

Description

半導体製造 ·検査装置  Semiconductor manufacturing and inspection equipment
技術分野  Technical field
本発明は、 主に、 ホットプレートユニット、 静電チャック、 ウェハプローバな ど、 半導体の製造用や検査用として用いられる半導体製造 ·検査装置に関する。 景技術  The present invention relates to a semiconductor manufacturing / inspection apparatus mainly used for manufacturing or inspecting a semiconductor, such as a hot plate unit, an electrostatic chuck, and a wafer prober. Landscape technology
エッチング装置や、 化学的気相成長装置等を含む半導体製造 ·検査装置等にお いては、 従来、 ステンレス鋼やアルミニウム合金などの金属製基材を用いたヒー タゃウェハプローバ等が用いられてきた。  Conventionally, heaters and wafer probers using metal base materials such as stainless steel and aluminum alloys have been used in semiconductor manufacturing / inspection equipment including etching equipment and chemical vapor deposition equipment. Was.
ところが、 このような金属製のヒータは、 以下のような問題があった。  However, such a metal heater has the following problems.
まず、 金属製であるため、 ヒータ板の厚みは、 1 5 mm程度と厚くしなければ ならない。 なぜなら、 薄い金属板では、 加熱に起因する熱膨張により、 反り、 歪 み等が発生してしまい、 金属板上に载置したシリコンウェハが破損したり傾いた りしてしまうからである。 しかしながら、 ヒータ板の厚みを厚くすると、 ヒータ の重量が重くなり、 また、 嵩張ってしまうという問題があった。  First, since it is made of metal, the thickness of the heater plate must be as thick as about 15 mm. This is because, in a thin metal plate, warpage, distortion, and the like occur due to thermal expansion caused by heating, and the silicon wafer placed on the metal plate is damaged or tilted. However, when the thickness of the heater plate is increased, there is a problem that the weight of the heater increases and the heater becomes bulky.
また、 発熱体に印加する電圧や電流量を変えることにより、 加熱温度を制御す るのであるが、 金属板が厚いために、 電圧や電流量の変化に対してヒータ板の温 度が迅速に追従せず、 温度制御しにくいという問題もあった。  In addition, the heating temperature is controlled by changing the voltage or current applied to the heating element.However, the thickness of the metal plate causes the temperature of the heater plate to quickly change with changes in voltage or current. There was also a problem that it was difficult to control the temperature without following.
そこで、 例えば、 特開平 4 - 3 2 4 2 7 6号公報では、 基板として、 熱伝導率 が高く、 強度も大きい非酸化物セラミックである窒化アルミニウムをセラミック 基板として使用したホットプレ^"トが提案されている。  Thus, for example, Japanese Patent Application Laid-Open No. 4-324276 proposes a hot plate using aluminum nitride, which is a non-oxide ceramic having high thermal conductivity and high strength, as a substrate. Have been.
通常、 このような抵抗発熱体が形成されたセラミック基板を用いてホットプレ ートュニットを構成する場合、 中底板を有する筒状の支持容器に抵抗発熱体を有 するセラミック基板を配設し、 セラミック基板の抵抗発熱体と外部電源等とを接 続することによりホットプレートとして機能させる。 発明の要約  Usually, when a hot plate is formed using a ceramic substrate on which such a resistance heating element is formed, a ceramic substrate having a resistance heating element is disposed in a cylindrical support container having an insole plate. It functions as a hot plate by connecting a resistance heating element to an external power supply. Summary of the Invention
しかしながら、 このような構成からなるホットプレートユニットに通電し、 抵 抗発熱体を発熱させてセラミック基板を昇温させると、 抵抗発熱体の発熱量に対 して、 セラミック基板の温度が迅速に追従せず、 セラミック基板が効率よく昇温 しないことがあった。 これは、 特に、 セラミック基板の底面に抵抗発熱体を設け たセラミック基板において顕著であった。 However, when the hot plate unit having such a configuration is energized, When the temperature of the ceramic substrate was raised by generating heat from the anti-heating element, the temperature of the ceramic substrate did not quickly follow the amount of heat generated by the resistance heating element, and the temperature of the ceramic substrate did not rise efficiently in some cases. This was particularly noticeable in a ceramic substrate having a resistance heating element provided on the bottom surface of the ceramic substrate.
また、 一定温度を維持する場合において、 必要な電力量が大きくなつてしまう 場合があった。  In addition, when maintaining a constant temperature, the required amount of power was sometimes increased.
さらに、 一旦昇温したセラミック基板を冷却する場合、 通常、 支持容器、 セラ ミック基板および中底板で形成された空間内に冷媒を導入し、 循環させることに よりにセラミック基板を冷却するが、 従来のホットプレートユニットでは、 その 冷却効率が低いものであった。  Furthermore, when cooling the ceramic substrate once heated, usually, the ceramic substrate is cooled by introducing a refrigerant into the space formed by the support container, the ceramic substrate, and the midsole plate and circulating it. The hot plate unit had low cooling efficiency.
本発明者らは、 上述した問題点に鑑み、 セラミック基板の昇温効率および冷却 効率等に優れるホットプレートュニットを得ることを目的に鋭意研究を行った結 果、 このホットプレートュニットの昇温効率および冷却効率等の不良の一因は、 セラミック基板の下部に設けた板状体のセラミック ¾板側の表面の面粗度が大き いことにあり、 その面粗度を一定の値以下に収めることにより、 ホットプレート ュニット等のヒータを有する半導体製造 ·検査装置の昇温効率および冷却効率等 を向上させることができることを見い出し、 本発明を完成するに至った。  In view of the problems described above, the present inventors have conducted intensive studies with the aim of obtaining a hot plate unit having excellent heating efficiency and cooling efficiency of a ceramic substrate. One of the causes of defects such as temperature efficiency and cooling efficiency is that the surface roughness of the ceramic plate side of the plate-shaped body provided under the ceramic substrate is large, and the surface roughness is not more than a certain value. The present inventors have found that the temperature rise efficiency and the cooling efficiency of a semiconductor manufacturing / inspection apparatus having a heater such as a hot plate unit can be improved, and the present invention has been completed.
また、 このような効果はセラミック基板を加熱基板とする場合に限らず、 金属 基板を加熱基板とする場合でも同様であることを見出した。  Further, it has been found that such an effect is not limited to the case where the ceramic substrate is used as the heating substrate, but is the same when the metal substrate is used as the heating substrate.
すなわち本発明は、 その表面または内部に導体が形成されたセラミック基板な どの加熱用基板が板状体を有する支持容器に配設されてなる半導体製造 ·検査装 置であって、  That is, the present invention relates to a semiconductor manufacturing / inspection apparatus in which a heating substrate such as a ceramic substrate having a conductor formed on the surface or inside thereof is disposed in a supporting container having a plate-like body,
上記板状体の J I S B 0 6 0 1に基づく面粗度が R a = 2 0 /z m以下であ ることを特徴とする半導体製造 ·検査装置である。  A semiconductor manufacturing / inspection apparatus, characterized in that the plate-like body has a surface roughness based on JIS B 0601 of Ra = 20 / zm or less.
ホッ トプレートユニット等の半導体製造 ·検査装置は、 セラミック基板や金属 基板 (以下 「セラミック基板等」 ともいう) の加熱基板に設けられた抵抗発熱体 に電流を流して発熱させた際、 熱がセラミック基板等の中を伝搬して加熱面に到 達することにより、 該加熱面上に載置または離間して支持したシリコンウェハ等 の被加熱物を加熱することができる。 しカ し、 抵抗発熱体から放出された熱は、 当然に、 セラミック基板等の加熱面 の反対側にも伝わる。 該方向に放出された熱はセラミック基板等の加熱に供する ことがないため、 セラミック基板等の昇温効率があまり良くならない。 このため、 セラミック基板等の加熱面の反対側に板状体を設けて、 抵抗発熱体から放出され た熱を反射させて昇温時や加熱時の熱効率の向上を図っている。 Semiconductor manufacturing and inspection equipment such as hot plate units generate heat when current is applied to a resistance heating element provided on a heating substrate such as a ceramic substrate or a metal substrate (hereinafter also referred to as a “ceramic substrate or the like”) to generate heat. By propagating through the ceramic substrate or the like and reaching the heating surface, an object to be heated such as a silicon wafer placed or separated from the heating surface or supported thereon can be heated. However, the heat released from the resistance heating element is naturally transmitted to the opposite side of the heating surface of the ceramic substrate or the like. Since the heat released in this direction is not used for heating the ceramic substrate or the like, the efficiency of raising the temperature of the ceramic substrate or the like is not so good. For this reason, a plate-like body is provided on the opposite side of the heating surface of a ceramic substrate or the like to reflect the heat emitted from the resistance heating element to improve the thermal efficiency during temperature rise or heating.
また、 通常、 セラミック基板等の下部に設けた配線や外部機器等は熱に弱いも のであるため、 この板状体は、 これらの配線や外部機器等を熱から保護する目的 も担っている。  Usually, the wiring and external devices provided below the ceramic substrate and the like are vulnerable to heat. Therefore, this plate-shaped member also has a purpose of protecting these wirings and external devices from heat.
この板状体のセラミック基板等加熱基板側の表面の面粗度が大きいと、 セラミ ック基板等の昇温効率が低下する。 これは、 抵抗発熱体から放出された熱が中底 板で乱反射するために熱線の反射率が低下し、 セラミック基板等に反射して戻つ てくる熱量が減少し、 放熱量が多くなるため、 昇温効率や保温効率等が低下する ものと考えられる。  When the surface roughness of the plate-like body on the side of the heating substrate such as a ceramic substrate is large, the efficiency of temperature rise of the ceramic substrate or the like is reduced. This is because the heat emitted from the resistance heating element is diffusely reflected by the midsole, reducing the reflectivity of the heat rays, reducing the amount of heat reflected back to the ceramic substrate, etc., and increasing the amount of heat dissipation However, it is considered that the heating efficiency and the heat retention efficiency are reduced.
また、 同様に板状体のセラミック基板等加熱基板側の表面の面粗度が大きいと、 ホットプレートュ-ット等の冷却効率が余りよくない。 これは、 冷媒を導入し循 環させてホットプレートュニット等の半導体製造 ·検査装置を冷却する際、 板状 体の表面付近を循環する冷媒の気流に乱れが生じる。 この気流の乱れが冷媒全体 の循環を妨害し、 セラミック基板等を均一に冷却することができず、 半導体製造 •検査装置の冷却効率が低下するものと考えられる。  Similarly, if the surface roughness of the surface of the plate-like body on the side of the heating substrate such as a ceramic substrate is large, the cooling efficiency of a hot plate cut or the like is not very good. This is because when introducing and circulating a coolant to cool a semiconductor manufacturing / inspection device such as a hot plate unit, a turbulence occurs in the airflow of the coolant circulating near the surface of the plate-like body. This turbulence in the airflow hinders the circulation of the entire refrigerant, and it is not possible to uniformly cool the ceramic substrate and the like, which may reduce the cooling efficiency of the semiconductor manufacturing and inspection equipment.
しかしながら、 本発明の半導体製造 ·検查装置は、 上記の通り、 板状体の J I S B 0 6 0 1に基づく面粗度を R a = 2 0 μ m以下としているので、 この板状 体は、 抵抗発熱体からの熱線を良好に反射し、 放射冷却等の放熱による温度の低 下が少ないため、 ホットプレートュエツト等の昇温効率や一定の温度を維持する 際の保温効率が優れたものとなる。  However, as described above, the semiconductor manufacturing / inspection apparatus of the present invention has a surface roughness of Ra = 20 μm or less based on JISB 0601 of the plate-like body. Good reflection of the heat rays from the resistance heating element and low temperature drop due to heat radiation such as radiant cooling, so it has excellent heat-up efficiency such as hot plate jet and heat retention efficiency when maintaining a constant temperature. Becomes
また、 一旦昇温した後、 冷媒を導入して半導体製造 ·検査装置を冷却させる際、 板状体の表面付近での冷媒の気流 ·液流に乱れが殆ど発生しないため、 良好に冷 媒を循環させることができ、 半導体製造 ·検査装置の冷却効率も優れたものとな る。  In addition, when cooling the semiconductor manufacturing / inspection equipment by introducing a refrigerant after the temperature has been raised once, the turbulence of the air current and liquid flow of the refrigerant near the surface of the plate-like body hardly occurs. It can be circulated, and the cooling efficiency of semiconductor manufacturing and inspection equipment becomes excellent.
冷媒は、 上記したように、 液体、 気体のどちらであってもよいが、 抵抗発熱体 の短絡を防止する観点から気体であることが望ましい。 気体としては、 例えば、 窒素、 アルゴン、 ヘリウム、 フ Gンなどの不活性気体、 空気などが挙げられる。 また、 液体としては、 例えば、 水、 エチレングリコールなどが挙げられる。 本発明の半導体製造 ·検査装置において、 上記板状体の J I S B 0 6 0 1 に基づく面粗度は、 R a = 0 . 0 5〜2 0 であることが望ましい。 As described above, the refrigerant may be either a liquid or a gas. It is desirable to use a gas from the viewpoint of preventing short circuit. Examples of the gas include an inert gas such as nitrogen, argon, helium, and gas, and air. Examples of the liquid include water and ethylene glycol. In the semiconductor manufacturing / inspection apparatus of the present invention, it is preferable that the plate-like body has a surface roughness based on JISB 0601 of Ra = 0.05 to 20.
また、 上記板状体には、 開口が形成されてなることが望ましい。 開口を設ける ことにより、 冷却媒体の排出を良好にすることができるとともに、 熱容量を小さ くすることができ、 冷却速度を向上させることができる。  Further, it is desirable that an opening is formed in the plate-like body. By providing the openings, the cooling medium can be discharged well, the heat capacity can be reduced, and the cooling rate can be improved.
上記開口は、 直径が 1〜 1 0 0 mmが望ましい。 1 mm未満では、 冷却媒体の 排出を良好に行うことが困難となり、 1 0 O 'mmを超えるとヒータからの熱を遮 蔽する効果が大きく減少するからである。  The opening preferably has a diameter of 1 to 100 mm. If the thickness is less than 1 mm, it is difficult to discharge the cooling medium satisfactorily. If the thickness exceeds 100 mm, the effect of shielding the heat from the heater is greatly reduced.
開口率は 3 %以上が好ましい。 開口率が 3 %未満では、 熱容量が大きくなつて 降温時間を短くすることができないからである。  The aperture ratio is preferably 3% or more. If the aperture ratio is less than 3%, the heat capacity becomes too large to shorten the cooling time.
上記板状体には、 突起もしくは窪みが形成されてなることが望ましい。 突起や 窪みを形成することにより、 板状体の歪みをなくすことができるからである。 板 状体が歪んでいると支持容器自体を歪ませることになり、 その結果、 セラミック 基板等をも歪ませることにもなつてしまう。  It is desirable that a protrusion or a depression is formed in the plate-like body. By forming the projections and depressions, distortion of the plate-like body can be eliminated. If the plate is distorted, the support container itself will be distorted, and as a result, the ceramic substrate will also be distorted.
セラミック基板等が歪むと半導体ウェハとセラミック基板等の加熱基板との距 離が不均一になり、 半導体ウェハを均一に加熱することができなくなったり、 セ ラミック基板等と半導体ウェハとが密着せず、 やはり半導体ウェハの均一加熱が 困難になる。 さらに、 板状体が歪むと反射熱がセラミック基板等に不均一に照射 されるため、 やはり、 半導体ウェハの均一加熱ができない。 突起や窪みは、 碁盤 の目のように、 マトリック状に配列されてなることが望ましい。  If the ceramic substrate or the like is distorted, the distance between the semiconductor wafer and the heating substrate such as the ceramic substrate becomes uneven, and the semiconductor wafer cannot be heated uniformly, or the ceramic substrate or the like does not adhere to the semiconductor wafer. Again, uniform heating of the semiconductor wafer becomes difficult. Furthermore, when the plate is distorted, the reflected heat is unequally applied to the ceramic substrate and the like, so that the semiconductor wafer cannot be uniformly heated. It is desirable that the projections and depressions are arranged in a matrix like a grid.
なお、 言うまでもないが、 本発明における上記板状体の面粗度の規定は、 この ような突起、 窪み、 開口のない部分に関するものである。 冷媒の気流 '液流の乱 れは、 冷媒と板状体の面接触により発生するものであり、 局所的な突起や窪みは 気流の乱れに大きな影響を与えないからである。 また、 開口からは冷媒流体が排 出されてしまうため、 気流の乱れには関与しない。 このような突起の高さや窪み の深さは、 5 mm以下が望ましい。 窪みや突起が大きすぎると、 逆に板状体が歪 んでしまうからである。 図面の簡単な説明 Needless to say, the definition of the surface roughness of the plate-like body in the present invention relates to a portion without such projections, depressions, and openings. This is because the turbulence of the air flow of the refrigerant and the liquid flow is generated by the surface contact between the refrigerant and the plate-like body, and the local protrusions and dents do not significantly affect the turbulence of the air flow. Also, since the refrigerant fluid is discharged from the opening, it does not contribute to the turbulence of the air flow. The height of such projections and the depth of the depressions are desirably 5 mm or less. If the depressions and projections are too large, the plate It is because it goes out. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の半導体製造 ·検査装置の一例であるホットプレートユニット を模式的に示す平面図である。  FIG. 1 is a plan view schematically showing a hot plate unit which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
― 図 2は、 図 1に示したホットプレートユニットの縦断面図である。  -Fig. 2 is a longitudinal sectional view of the hot plate unit shown in Fig. 1.
図 3は、 内部に抵抗発熱体が形成されたセラミック基板における抵抗発熱体端 部と外部端子との接続方法の一例を模式的に示す部分拡大断面図である。  FIG. 3 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
図 4は、 内部に抵抗発熱体が形成されたセラミック基板における抵抗発熱体端 部と外部端子との接続方法の一例を模式的に示す部分拡大断面図である。  FIG. 4 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
図 5は、 内部に抵抗発熱体が形成されたセラミック基板における抵抗発熱体端 部と外部端子との接続方法の一例を模式的に示す部分拡大断面図である。  FIG. 5 is a partially enlarged cross-sectional view schematically showing an example of a method of connecting an end of a resistance heating element to an external terminal on a ceramic substrate having a resistance heating element formed therein.
図 6において、 (a ) は、 本発明に係る静電チャックを構成するセラミック基 板を模式的に示す縦断面図であり、 (b ) は、 (a ) に示した静電チャックの A — A線断面図である。  In FIG. 6, (a) is a longitudinal sectional view schematically showing a ceramic substrate constituting the electrostatic chuck according to the present invention, and (b) is a cross-sectional view of the electrostatic chuck shown in (a). FIG. 3 is a sectional view taken along line A.
図 7は、 本発明に係る静電チヤックに埋設されている静電電極の一例を模式的 に示す水平断面図である。  FIG. 7 is a horizontal sectional view schematically showing an example of an electrostatic electrode embedded in the electrostatic chuck according to the present invention.
図 8は、 静電チヤックに埋設されている静電電極の更に別の一例を模式的に示 す水平断面図である。  FIG. 8 is a horizontal sectional view schematically showing another example of the electrostatic electrode embedded in the electrostatic chuck.
図 9は、 本発明の半導体製造 ·検査装置の一例であるウェハプローバを構成す るセラミック基板を模式的に示す断面図である。  FIG. 9 is a cross-sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
図 1 0は、 図 9に示したセラミック基板を模式的に示す平面図である。  FIG. 10 is a plan view schematically showing the ceramic substrate shown in FIG.
図 1 1は、 図 9に示したセラミック基板の A— A線断面図である。  FIG. 11 is a cross-sectional view of the ceramic substrate taken along line AA of FIG.
図 1 2において、 (a ) 〜 (d ) は、 本発明の半導体製造 ·検査装置の一例で あるホットプレートュ-ットを構成するセラミック基板の製造方法を模式的に示 す断面図である。  In FIG. 12, (a) to (d) are cross-sectional views schematically showing a method of manufacturing a ceramic substrate constituting a hot plate cut as an example of the semiconductor manufacturing / inspection apparatus of the present invention. .
図 1 3において、 (a ) は、 本発明の半導体製造'検査装置一例であるホット プレートユニットの別の実施形態を模式的に示す断面図であり、 (b ) は、 ホッ トプレートュニットの支持容器を構成する底板を模式的に示す斜視図である。 図 14は、 窪みが形成された中底板の表面を示す顕微鏡写真と、 表面形状をレ 一ザ変位計で測定した結果を示すグラフとを組み合わせて表示した説明図である。 図 1 5は、 中底板の表面を示す顕微鏡写真と、 表面形状をレーザ変位計で測定 した結果を示すグラフとを組み合わせて表示した説明図である。 In FIG. 13, (a) is a cross-sectional view schematically showing another embodiment of a hot plate unit which is an example of a semiconductor manufacturing / inspection apparatus of the present invention, and (b) is a cross section of a hot plate unit. It is a perspective view which shows typically the bottom plate which comprises a support container. FIG. 14 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate with the depression formed therein and a graph showing the result of measuring the surface shape with a laser displacement meter. FIG. 15 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the result of measuring the surface shape with a laser displacement meter.
図 1 6は、 中底板の表面を示す顕微鏡写真と、 表面形状をレーザ変位計で測定 した結果を示すグラフとを組み合わせて表示した説明図である。 符号の説明  FIG. 16 is an explanatory diagram showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the result of measuring the surface shape with a laser displacement meter. Explanation of reference numerals
2 チャックトップ導体層  2 Chuck top conductor layer
' 6 ガード電極 '' 6 Guard electrode
7 グランド電極  7 Ground electrode
8 溝  8 grooves
9 吸引口  9 Suction port
1 1 断熱リング  1 1 Insulation ring
1 2 支持容器  1 2 Support vessel
1 3, 4 3 外部端子  1 3, 4 3 External terminal
1 4 底板  1 4 Bottom plate
14 a 貫通孔  14a through hole
1 5 中底板 ' 1 7 リード線  1 5 Middle bottom plate '1 7 Lead wire
1 8 配線  1 8 Wiring
1 9 ガイド管  1 9 Guide tube
20 セラミックヒータ  20 Ceramic heater
2 1、 3 1、 6 1、 7 1、 8 1 セラミック基板  2 1, 3 1, 6 1, 7 1, 8 1 Ceramic substrate
2 1 a、 3 1 a 加熱面  2 1a, 3 1a heating surface
2 1 b、 3 1 b 底面  2 1 b, 3 1 b Bottom
22、 42、 5 1、 6 6 抵抗発熱体  22, 42, 5 1, 6 6 Resistance heating element
24, 44 有底孔  24, 44 Bottom hole
25, 4 5 貫通孔 2 7 冷却管 25, 4 5 Through hole 2 7 Cooling pipe
2 8 測温素子  2 8 Temperature sensor
2 9 シリコンウェハ  2 9 Silicon wafer
3 7 , 4 8 袋孔  3 7, 4 8
3 8、 4 9、 6 8 スノレーホール  3 8, 49, 6 8 Snoray Hall
6 2、 7 2、 8 2 a、 8 2 b チャック正極静電層  6 2, 7 2, 8 2a, 8 2b Chuck positive electrode electrostatic layer
6 3、 7 3、 8 3 a、 8 3 b チャック負極静電層  6 3, 7 3, 8 3 a, 8 3 b Chuck negative electrode electrostatic layer
6 4 誘電体膜  6 4 Dielectric film
1 3 0 連結部材  1 3 0 Connecting member
1 4 0 押さえ用金具 発明の詳細な開示  1 40 Hold-down bracket Detailed disclosure of the invention
本発明の半導体製造 ·検査装置は、 その表面または内部に導体が形成されたセ ラミック基板等の加熱基板が板状体を有する支持容器に配設されてなる半導体製 造 '検査装置であって、  The semiconductor manufacturing / inspection apparatus of the present invention is a semiconductor manufacturing / inspection apparatus in which a heating substrate such as a ceramic substrate having a conductor formed on its surface or inside is disposed in a supporting container having a plate-like body. ,
上記板状体の J I S B 0 6 0 1に基づく面粗度が R a = 2 0 μ m以下であ ることを特徵とする。  It is characterized in that the plate-like body has a surface roughness based on JIS B 0601 of Ra = 20 μm or less.
上記板状体は、 支持容器の底板でもよく、 底板とセラミック基板の間に配置さ れた中底板でもよい。  The plate-shaped body may be a bottom plate of a support container, or may be an intermediate bottom plate disposed between the bottom plate and the ceramic substrate.
以下、 セラミック基板を加熱基板とし、 中底板を例にして本発明の半導体製造 ,検查装置の説明を行うが、 本発明は、 これに限定されるものではない。  Hereinafter, the semiconductor manufacturing and inspection apparatus of the present invention will be described using a ceramic substrate as a heating substrate and an insole plate as an example, but the present invention is not limited to this.
なお、 上述したように、 セラミック基板を使用しない場合には、 金属基板を使 用する。 具体的には、 アルミニウム、 銅、 ステンレス、 鉄から選ばれる少なくと も 1種以上の金属からなる金属基板を使用することが望ましい。  As described above, when a ceramic substrate is not used, a metal substrate is used. Specifically, it is desirable to use a metal substrate made of at least one metal selected from aluminum, copper, stainless steel, and iron.
金属基板には、 絶縁性のシールを施した発熱線をネジなどで固定するか、 ある V、は発熱体をシリコンラパーで挟んでこれをネジ等で金属基板に固定したものを 使用することができる。  For the metal substrate, use a screw or the like to fix the heat-generating wire with an insulating seal, or for some V, use a heating element that is sandwiched between silicon wrappers and fixed to the metal substrate with a screw or the like. it can.
まず、 本発明の半導体製造 ·検査装置について、 図面に基づいて説明する。 本発明の半導体製造 ·検査装置を構成するセラミック基板に抵抗発熱体のみが 設けられた場合には、 ホットプレートとしての機能を有し、 シリコンウェハ等の 被加熱物を所定の温度に加熱することができる。 First, a semiconductor manufacturing / inspection apparatus of the present invention will be described with reference to the drawings. Only the resistance heating element is provided on the ceramic substrate constituting the semiconductor manufacturing and inspection apparatus of the present invention. When provided, it has a function as a hot plate, and can heat an object to be heated such as a silicon wafer to a predetermined temperature.
図 1は、 本発明の半導体製造 .検査装置の一実施形態であるホットプレートュ ニットの一例を模式的に示す底面図であり、 図 2は、 このホットプレートュニッ トを模式的に示す縦断面図である。  FIG. 1 is a bottom view schematically showing an example of a hot plate unit which is an embodiment of a semiconductor manufacturing and inspection apparatus according to the present invention. FIG. 2 is a vertical sectional view schematically showing the hot plate unit. FIG.
セラミック基板 2 1は、 円板状に形成されており、 抵抗発熱体 2 2は、 セラミ ック基板 2 1の底面に同心円状のパターンに形成されている。 また、 これら抵抗 発熱体 2 2は、 互いに近い二重の同心円同士が 1組の回路として、 1本の線にな るように接続されている。  The ceramic substrate 21 is formed in a disk shape, and the resistance heating elements 22 are formed in a concentric pattern on the bottom surface of the ceramic substrate 21. The resistance heating elements 22 are connected such that double concentric circles close to each other form a single line as a set of circuits.
また、 中央に近い部分には、 シリコンウェハの運搬等に用いるリフターピンを 挿入するための複数の貫通孔 2 5が形成されるとともに、 この貫通孔 2 5の直下 に貫通孔 2 5に連通するガイド管 1 9が設置され、 支持容器 1 2の底板 1 4にも、 これらに連通する貫通孔が形成されている。  A plurality of through holes 25 for inserting lifter pins used for carrying a silicon wafer, etc. are formed in a portion near the center, and communicate with the through holes 25 immediately below the through holes 25. A guide tube 19 is provided, and a through hole communicating with these is formed in the bottom plate 14 of the support container 12.
一方、 セラミック基板 2 1の底面には、 熱電対等の測温素子 2 8を挿入するた めの有底孔 2 4が形成され、 この測温素子 2 8より配線 1 8が導出され、 底板 1 4の貫通孔 1 4 aより外部に引き出されている。  On the other hand, a bottomed hole 24 for inserting a temperature measuring element 28 such as a thermocouple is formed on the bottom surface of the ceramic substrate 21, and a wiring 18 is led out from the temperature measuring element 28 to form a bottom plate 1. 4 through hole 14a is drawn out to the outside.
このような構成のセラミック基板 2 1は、 断熱リング 1 1を介して円筒形状の 支持容器 1 2に嵌め込まれ、 ボルト等の連結部材 1 3 0と押さえ用金具 1 4 0に より断熱リング方向に押さえ付けられ、 これにより支持容器 1 2に固定されてい る。 また、 この支持容器 1 2のなかほどには、 中底板 1 5が取り付けられ、 さら に支持容器 1 2の下部に、 底板 1 4が取り付けられている。  The ceramic substrate 21 having such a configuration is fitted into the cylindrical support container 12 via the heat insulating ring 11, and is connected to the heat insulating ring by the connecting members 130 such as bolts and the holding metal fittings 140. It is pressed down and fixed to the support container 12 by this. An intermediate bottom plate 15 is attached to the middle of the support container 12, and a bottom plate 14 is attached to the lower portion of the support container 12.
なお、 支持容器 1 2と底板 1 4とは一体に形成されていてもよい。  Note that the support container 12 and the bottom plate 14 may be formed integrally.
なお、 図 1、 2に示したホットプレートユニット 2 0では、 セラミック基板 2 1を断熱リング 1 1を介して支持容器 1 2に嵌め込んでいるが、 セラミック基板 を支持容器の上に載置し、 ボルト等の連結部材を用い、 断熱部材等を介して支持 容器の上面に固定することにより、 ホットプレートユニットを構成してもよい。 一方、 抵抗発熱体 2 2の端部 2 2 aには、 断面視 T字型の外部端子 1 3が接続 され、 この外部端子 1 3は中底扳 1 5に設けた貫通孔より引き出され、 ソケット 1 6を介してリード線 1 7と接続されており、 このリード線 1 7は、 底板 1 4の 貫通孔 1 4 aより外部に引き出され、 電源 (図示せず) との接続が図られている c 支持容器 1 2の底板 1 4には冷媒導入管 2 7が固定され、 支持容器 1 2の内部 に冷却用のエアー等を流し込むことができるようになつている。 なお、 中底板 1 5には、 底板 1 4に設けるガイド管 1 9、 冷媒導入管 2 9等の邪魔にならないよ うに、 貫通孔が形成されている。 In the hot plate unit 20 shown in FIGS. 1 and 2, the ceramic substrate 21 is fitted into the support container 12 via the heat insulating ring 11, but the ceramic substrate is placed on the support container. A hot plate unit may be configured by using a connecting member such as a bolt or the like and fixing it to the upper surface of the supporting container via a heat insulating member or the like. On the other hand, an external terminal 13 having a T-shaped cross section is connected to the end 22 a of the resistance heating element 22, and this external terminal 13 is drawn out of a through hole provided in the inner bottom 扳 15, It is connected to the lead wire 17 via the socket 16 and this lead wire 17 is connected to the bottom plate 14 It is drawn out from the through-hole 1 4 a, a power supply c connection (not shown) is attained supporting container 1 2 of the bottom plate 1 a refrigerant inlet pipe 2 7 4 are fixed, the supporting container 1 2 Cooling air can be flowed into the interior. In addition, a through hole is formed in the middle bottom plate 15 so as not to obstruct the guide tube 19 and the refrigerant introduction tube 29 provided in the bottom plate 14.
なお、 セラミック基板 2 1には、 リフターピンを挿通するための貫通孔 2 5が 複数個設けられているが、 この複数のリフターピンでシリコンウェハを支持する ことにより、 セラミック基板の上面より一定の距離離間させた状態でシリコンゥ ェハを载置し、 加熱等を行うことができる。  The ceramic substrate 21 is provided with a plurality of through holes 25 through which lifter pins are inserted. By supporting the silicon wafer with the plurality of lifter pins, a certain distance from the upper surface of the ceramic substrate is maintained. The silicon wafer can be placed in a state where the silicon wafer is separated, and heating can be performed.
また、 セラミック基板 2 1に貫通孔ゃ凹部を形成し、 この貫通孔等に先端が尖 塔状または半球状の支持ピンをセラミック基板 2 1よりわずかに突出させた状態 で挿入、 固定し、 この上にシリコンウェハを载置することにより、 シリコンゥェ ハをセラミック基板 2 1の上面より一定の距離離間させた状態で載置することが できる。  Further, a through hole and a concave portion are formed in the ceramic substrate 21, and a pin having a spike or a hemispherical tip is slightly inserted into and fixed to the through hole or the like in a state of protruding from the ceramic substrate 21. By placing the silicon wafer on the top, the silicon wafer can be placed with a certain distance from the upper surface of the ceramic substrate 21.
次に、 本発明の半導体製造 ·検査装置を構成する中底板について詳しく説明す る。 - 本発明の半導体製造 ·検査装置において、 中底板は、 抵抗発熱体から放射され た熱を反射して、 セラミック基板の保温効果を向上させたり、 セラミック基板の 下方に設けた配線や外部機器等を熱から保護する、 所謂、 遮熱の目的で形成され ている。  Next, the midsole plate constituting the semiconductor manufacturing / inspection apparatus of the present invention will be described in detail. -In the semiconductor manufacturing / inspection apparatus of the present invention, the midsole plate reflects heat radiated from the resistance heating element to improve the heat retaining effect of the ceramic substrate, or to provide wiring and external devices provided below the ceramic substrate. It is formed for the purpose of so-called heat shielding, which protects the heat from heat.
中底板 1 5に何の処理も施さない場合には、 表面は一様な平坦面ではなく凹凸 が形成されており、 この凹凸は、 通常、 R aで 2 0 μ πιを超える程度の大きさと なっているため、 以下に説明するような不都合が生ずる。  When the midsole plate 15 is not subjected to any treatment, the surface is not a uniform flat surface but irregularities are formed, and the irregularities usually have a size of more than 20 μπι in Ra. Therefore, the following inconvenience occurs.
しかしながら、'本発明の半導体製造 ·検査装置 1 0においては、 研磨等を行う ことにより、 中底板 1 5の J I S B 0 6 0 1に基づく面粗度 (以下、 単に面 粗度ともいう) を R a = 2 0 m以下に調整している。 —  However, in the semiconductor manufacturing / inspection apparatus 10 of the present invention, the surface roughness based on JISB 0601 (hereinafter, also simply referred to as surface roughness) of the midsole plate 15 is reduced by polishing or the like. a = 20 m or less. —
従って、 中底板 1 5は、 抵抗発熱体からの熱線を良好に反射し、 セラミック基 板 1 1の昇温効率や保温効率は優れたものとなる。 また、 昇温後の冷却時にも、 良好に冷媒を循環させることができ、 セラミック基板 1 1の冷却効率も優れたも のとなる。 また、 中底板に配線を固定させることもできる。 Therefore, the midsole plate 15 reflects heat rays from the resistance heating element well, and the ceramic substrate 11 has excellent heat-up efficiency and heat-retention efficiency. In addition, the refrigerant can be circulated satisfactorily even after cooling after the temperature rise, and the cooling efficiency of the ceramic substrate 11 is excellent. It becomes Also, wiring can be fixed to the midsole plate.
中底板 15の面粗度 R aが 20 μ inを超えたものであると、 抵抗発熱体 22か ら放射された熱が中底板 15の表面で乱反射し、 熱線の反射率が低下してしまい、 放射熱が大きくなつて、 セラミック基板 1 1の昇温効率や保温効率が低下する。 また、 冷媒導入管 27から導入された冷媒の気流が、 中底板の表面付近で乱され るため、 セラミック基板 1 1を均一に冷却することができず、 セラミック基板 1 1の冷却効率が低下する。  If the surface roughness Ra of the midsole plate 15 exceeds 20 μin, the heat radiated from the resistance heating element 22 is irregularly reflected on the surface of the midsole plate 15 and the heat ray reflectance is reduced. However, as the radiant heat increases, the heating efficiency and the heat retention efficiency of the ceramic substrate 11 decrease. Further, since the airflow of the refrigerant introduced from the refrigerant introduction pipe 27 is disturbed near the surface of the midsole plate, the ceramic substrate 11 cannot be uniformly cooled, and the cooling efficiency of the ceramic substrate 11 decreases. .
なお、 同様の面粗度の調整は、 底板に対して行ってもよい。 この場合にも、 底 板の面粗度を調整することにより、 中底板 1 5の面粗度を調整した場合と同様の 効果が発生する。 底板の面粗度を調整した場合に、 本発明の効果が発生するため には、 中底板が存在しないことが望ましい。  The same adjustment of the surface roughness may be performed on the bottom plate. Also in this case, by adjusting the surface roughness of the bottom plate, the same effect as when adjusting the surface roughness of the midsole plate 15 is produced. When the surface roughness of the bottom plate is adjusted, in order for the effects of the present invention to be produced, it is desirable that the middle bottom plate does not exist.
中底板 15 (底板) の面粗度は、 Ra = 0. 05〜20 mの範囲に調整され ていることが望ましい。 中底板 1 5の面粗度 R aが 0. 05 /zm未満であっても、 昇温特性等に関しては、 特に不都合は生じない。 し力 し、 これ以上面粗度を小さ くするためには、 長時間の研磨処理等が必要になり、 時間的、 経済的に不利であ る。  It is desirable that the surface roughness of the midsole plate 15 (bottom plate) be adjusted to Ra = 0.05 to 20 m. Even if the surface roughness Ra of the midsole plate 15 is less than 0.05 / zm, no particular inconvenience occurs with respect to the temperature rise characteristics and the like. In order to further reduce the surface roughness, a long polishing process is required, which is disadvantageous in terms of time and economy.
また、 中底板 15 (底板) の面粗度は、 Rma で 500 μπα以下の範囲に調 整されていることが望ましい。 中底板 15の面粗度 Rm a xが 500 mを超え ると、 流体の流れに乱れが発生しやすくなり、 降温時間にばらつきが発生しやす くなるからである。  It is desirable that the surface roughness of the midsole plate 15 (bottom plate) be adjusted to a range of 500 μπα or less in Rma. This is because if the surface roughness Rmax of the midsole plate 15 exceeds 500 m, the flow of the fluid tends to be turbulent, and the temperature falling time tends to vary.
図 1 5、 図 16は、 中底板の表面を示す顕微鏡写真と、 表面状態をキーエンス 社製のレーザ変位計で測定した結果を示すグラフとを組み合わせて表示した説明 図である。 図 1 5に示す中底板は、 Rma x = 0. 8 μ m、 R a =0. 1 μ m、 図 16に示す中底板は、 Rma x = 3. 8 μ m、 R a = 0. 6 μκιである。 図 1 5に示す中底板は、 ほぼ鏡面であり、 図 16に示す中底板は、 若干粗い面が形成 されている。  FIGS. 15 and 16 are explanatory diagrams showing a combination of a micrograph showing the surface of the midsole plate and a graph showing the surface state measured by a key displacement laser displacement meter. The insole shown in Fig. 15 has Rmax = 0.8 μm and Ra = 0.1 μm, and the insole shown in Fig. 16 has Rmax = 3.8 μm and Ra = 0.6. μκι. The midsole plate shown in FIG. 15 has a substantially mirror surface, and the midsole plate shown in FIG. 16 has a slightly rough surface.
中底板 15 (底板) の面粗度を 20 μπι以下に調整する方法としては特に限定 されず、 例えば、 # 50〜# 800のダイヤモンド砥石を使用して、 中底板 15 (底板) の表面を研磨する方法の他、 ダイヤモンド砥粒を用いて鏡面処理を施す 方法等が挙げられる。 The method for adjusting the surface roughness of the midsole plate 15 (bottom plate) to 20 μπι or less is not particularly limited. For example, the surface of the midsole plate 15 (bottom plate) is polished using a diamond grindstone of # 50 to # 800. Mirror treatment using diamond abrasive grains Method and the like.
中底板 1 5 (底板) を構成する材料は特に限定されず、 例えば、 金属、 樹脂、 セラミック等が挙げられる。  The material forming the middle bottom plate 15 (bottom plate) is not particularly limited, and examples thereof include metal, resin, and ceramic.
上記金属としては特に限定されず、 例えば、 アルミニウム、 S U S、 銅、 ニッ ケル等が挙げられる。 また、 これらの金属材料で中底板 1 5を形成する場合は、 セラミック基板側の表面に金、 銀等の貴金属の膜が形成されていることが望まし レ、。 貴金属の膜を形成することにより、 表面が熱線等をさらに効率よく反射する からである。  The metal is not particularly limited, and includes, for example, aluminum, SUS, copper, nickel, and the like. When the midsole plate 15 is formed of such a metal material, it is desirable that a film of a noble metal such as gold or silver be formed on the surface on the ceramic substrate side. This is because the surface reflects heat rays and the like more efficiently by forming a noble metal film.
上記金、 銀等の貴金属膜を金属表面に形成する方法としては特に限定されず、 例えば、 電解めつき、 無電解めつき、 スパッタリング等の方法が挙げられる。 上記樹脂としては特に限定されず、 例えば、 ポリイミ ド樹脂、 ポリべンゾイミ ダゾール樹脂、 フッ素樹脂等の耐熱性樹脂が挙げられる。 これらの樹脂の中では ポリイミ ド樹脂が望ましい。 熱安定性が極めて高く、 機械的性質、 電気的特性も 優れたものであるからである。  The method for forming the noble metal film of gold, silver, or the like on the metal surface is not particularly limited, and examples thereof include electrolytic plating, electroless plating, and sputtering. The resin is not particularly limited, and examples thereof include a heat-resistant resin such as a polyimide resin, a polybenzoimidazole resin, and a fluororesin. Among these resins, polyimide resins are desirable. Thermal stability is extremely high, and mechanical and electrical properties are also excellent.
上記セラミックとしては特に限定されず、 例えば、 窒化物セラミック、 炭化物 セラミック、 酸化物セラミック等が挙げられる。  The ceramic is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
上記樹脂や上記セラミックを用いて中底板を形成した場合にも、 熱反射効率を 上げるために、 セラミック基板側の表面が貴金属で被覆されていることが望まし レ、。  Even when the midsole plate is formed using the above resin or the above ceramic, it is desirable that the surface on the ceramic substrate side is coated with a noble metal in order to increase the heat reflection efficiency.
また、 中底板 1 5 (底板) は略円板状であることが望ましいが、 その直径は特 に限定されず、 セラミック基板の大きさに合わせて適宜調整される。 また、 その 厚さについても特に限定されず、 使用する材料に合わせて適宜調整される。  It is desirable that the midsole plate 15 (bottom plate) be substantially disk-shaped, but its diameter is not particularly limited, and is appropriately adjusted according to the size of the ceramic substrate. Also, the thickness is not particularly limited, and is appropriately adjusted according to the material to be used.
さらに、 中底板には、 図 1 3 ( b ) に示すように開口 2 6 0 aが形成されてい てもよい。 開口 2 6 0 aを設けることにより冷却媒体を良好に排出することがで きる。 また、 開口を設けることにより、 中底板の熱容量を小さくすることができ、 冷却速度を向上させることができる。 開口 2 6 0 aの直径は、 l〜1 0 0 mmが 望ましい。 1 mm未満では、 冷却媒体の排出を充分に行うことができず、 1 0 0 mmを超えると、 ヒータからの熱を遮蔽する効果がないからである。  Further, an opening 260a may be formed in the midsole plate as shown in FIG. 13 (b). By providing the opening 260a, the cooling medium can be discharged well. Further, by providing the opening, the heat capacity of the midsole plate can be reduced, and the cooling rate can be improved. The diameter of the opening 260a is desirably l to 100 mm. If it is less than 1 mm, the cooling medium cannot be sufficiently discharged, and if it exceeds 100 mm, there is no effect of shielding heat from the heater.
上記板状体には、 突起もしくは窪みが形成されてなることが望ましい。 突起や 窪みによつて板状体の歪みをなくすことができるからである。 板状体が歪んでい ると支持容器自体を歪ませることになり、 その結果、 セラミック基板が歪んでし まう。 It is desirable that a protrusion or a depression is formed in the plate-like body. Protrusions and This is because the depression can eliminate distortion of the plate-like body. If the plate is distorted, the support container itself will be distorted, and as a result, the ceramic substrate will be distorted.
セラミック基板が歪むと半導体ウェハとセラミック基板との距離が不均一にな り、 半導体ウェハを均一に加熱することがができなくなったり、 セラミック基板 と半導体ウェハとが密着せず、 半導体ウェハの均一加熱が困難になる。 さらに、 板状体が歪むと反射熱がセラミック基板に不均一に照射されるため、 やはり、 半 導体ウェハの均一加熱ができない。 突起や窪みは、 碁盤の目のように、 マトリツ ク状に配列されてなることが望ましい。  If the ceramic substrate is distorted, the distance between the semiconductor wafer and the ceramic substrate will be uneven, making it impossible to heat the semiconductor wafer uniformly. Becomes difficult. Furthermore, when the plate is distorted, the reflected heat is unequally applied to the ceramic substrate, so that the semiconductor wafer cannot be uniformly heated. It is desirable that the protrusions and depressions are arranged in a matrix like a grid pattern.
図 1 4は、 窪みの顕微鏡写真と窪みの形状 (深さと位置) を示すグラフを組み 合わせた表示した説明図である。 上方に見える白い部分が窪みであり、 約 1 1 7 μ ιηの深さを持つ。 このような窪みが、 図 1 3 ( b ) に示すように、 碁盤の目の ように配列されることにより、 板状態の平面度を高くすることができる。  FIG. 14 is an explanatory diagram showing a combination of a micrograph of the depression and a graph showing the shape (depth and position) of the depression. The white part seen above is the depression, and has a depth of about 117 μιη. By arranging such depressions like a grid, as shown in FIG. 13 (b), the flatness of the plate state can be increased.
実測では、 板状体に窪みや突起を形成することにより、 平坦度を l mm以下に 調整することができる。  In the actual measurement, the flatness can be adjusted to 1 mm or less by forming dents and projections on the plate-like body.
また、 言うまでもないが、 本発明の面粗度の規定は、 このような突起、 窪み、 開口のない部分の面粗度である。 冷媒の気流 ·液流の乱れは、 冷媒と板状体の面 接触により発生するものと思われ、 局所的な突起や窪みは気流の乱れに大きな影 響を与えないからである。 また、 開口からは冷媒流体が排出されてしまうため、 気流の乱れには関与しない。 このような突起の高さや窪みの深さは、 5 mm以下 が望ましい。 窪みや突起が大きすぎると、 逆に板状体が歪んでしまうからである。 突起や窪みは、 例えばサーモスタツトのような電源制御部品を装着するために 形成されたものであってもよい。  Needless to say, the definition of the surface roughness of the present invention is the surface roughness of a portion without such projections, depressions, and openings. The turbulence of the air flow and liquid flow of the refrigerant is considered to be caused by the surface contact between the refrigerant and the plate-like body, and local protrusions and depressions do not have a significant effect on the turbulence of the air flow. Also, since the refrigerant fluid is discharged from the opening, it does not contribute to the turbulence of the air flow. The height of such projections and the depth of the depressions are desirably 5 mm or less. If the dents and projections are too large, the plate-like body will be distorted. The protrusions and depressions may be formed for mounting a power control component such as a thermostat, for example.
中底板は、 支持容器の外枠と連結されている必要はなく、 例えば図 1 3に示す ように、 中底板を底板に設けた板パネで支持しててもよい。 板パネで支持するこ とにより、 支持容器の外枠と非接触で中底板を支持することができ、 中底板の熱 膨張や収縮により支持容器が歪むことがない。  The midsole plate does not need to be connected to the outer frame of the support container, and for example, as shown in FIG. 13, the midsole plate may be supported by a panel provided on the bottom plate. By supporting with a panel panel, the midsole plate can be supported without contacting the outer frame of the support container, and the support container is not distorted due to thermal expansion or contraction of the midsole plate.
図 1 3 ( a ) は、 本発明の別の実施形態に係る半導体製造 ·検査装置 (ホット プレートユニット) を模式的に示した断面図であり、 (b ) は、 (a ) に示した ホットプレートュ-ットを構成する底板を模式的に示した斜視図である。 FIG. 13 (a) is a cross-sectional view schematically showing a semiconductor manufacturing / inspection apparatus (hot plate unit) according to another embodiment of the present invention, and (b) is a sectional view shown in (a). It is the perspective view which showed typically the bottom plate which comprises a hot plate cutout.
このホットプレートュニット 2 5 0では、 支持容器は、 外枠 2 7 0と底板 2 6 0から構成され、 底板 2 6 0の内側には、 約 1 0 0〜 2 0 0 μ ιηの窪み 2 6 0 k ' が碁盤目状に形成されている。  In this hot plate unit 250, the supporting container is composed of an outer frame 270 and a bottom plate 260, and a recess of about 100 to 200 μιη is formed inside the bottom plate 260. 60 k 'is formed in a grid pattern.
また、 底板 2 6 0には、 開口 2 6 0 aが複数形成されており、 この開口 2 6 0 aより排気が行われる。 なお、 図示はしないが、 排気は排気管 (排気ポート) を 設けて行ってもよい。 その場合には、 概ね容器内は密封されることになる。  A plurality of openings 260a are formed in the bottom plate 260, and exhaust is performed from the openings 260a. Although not shown, exhaust may be performed by providing an exhaust pipe (exhaust port). In such a case, the inside of the container is generally sealed.
さらに支持容器内には、 複数の開口 2 5 6 aを有する中底板 2 5 6が設けられ てているが、 この中底板 2 5 6は、 底板 2 6 0に設けられた板バネ 2 5 4により 支持されている。 底板 2 6 0には、 中底板 2 5 6の開口 2 5 6 aに嵌合する冷媒 供給管 (供給ポート) 2 5 8が配置されており、 この冷媒供給管 2 5 8より、 中 底板 2 5 6により仕切られた空間に冷媒が供給されるようになっている。  Further, an inner bottom plate 256 having a plurality of openings 256 a is provided in the support container, and the inner bottom plate 256 is provided with a leaf spring 25 4 provided on the bottom plate 260. Supported by The bottom plate 260 is provided with a refrigerant supply pipe (supply port) 258 that fits into the opening 256 a of the midsole plate 256, and from the refrigerant supply pipe 258, the midsole plate 2 The refrigerant is supplied to the space partitioned by 56.
底板 2 6 0や中底板 2 5 6に形成 "る開口の直径は 1種類である必要はなく、 2種類以上であってもよい。  The diameter of the opening formed in the bottom plate 260 or the middle bottom plate 256 does not need to be one type, but may be two or more types.
セラミック基板 2 1 1の貫通孔 2 1 5の直下には、 スリーブ 2 5 7が設置され、 リフタ一ピンが揷通されるようになつており、 このリフターピンを上下すること により、 シリコンウェハ 2 1 9を上下させることができるようになつている。 一方、 支持容器の上部には断熱リング 2 5 2が設置されており、 断熱リング 2 5 2には、 ピン 2 5 1が嵌め込まれて支持容器の外枠 2 7 0に固定されている。 また、 断熱リング 2 5 2には、 セラミック基板 2 1 1が装着されており、 このセ • ラミック基板 2 1 1は、 固定板 2 5 3により押さえられ、 固定されている。  Immediately below the through-holes 2 15 of the ceramic substrate 2 1 1, a sleeve 2 5 7 is provided so that one pin of the lifter can be passed through. 1 9 can be moved up and down. On the other hand, a heat insulating ring 252 is provided at the upper part of the support container, and a pin 251 is fitted into the heat insulating ring 252 and fixed to the outer frame 270 of the support container. A ceramic substrate 2 11 is mounted on the heat insulating ring 2 52, and the ceramic substrate 2 1 1 is pressed and fixed by a fixing plate 2 53.
このセラミック基板 2 1 1は、 表面に絶縁層 2 1 8が形成され、 底面には、 こ の絶縁層 2 1 8を介して抵抗発熱体 2 1 2が形成され、 ヒータとして機能するよ うになっている。  The ceramic substrate 211 has an insulating layer 218 formed on the front surface, and a resistance heating element 212 formed on the bottom surface via the insulating layer 218, thereby functioning as a heater. ing.
また、 シリコンウェハ 2 1 9を加熱する加熱面には、 支持ピン 2 5 9が形成さ れ、 シリコンウェハを加熱面より一定離間させた状態で支持することができるよ うになっている。  Support pins 259 are formed on the heating surface for heating the silicon wafer 219 so that the silicon wafer can be supported at a fixed distance from the heating surface.
さらに、 発熱体 2 1 2の端部には、 給電端子 2 1 3が半田で固定されており、 この給電端子 2 1 3に配線 2 6 2を有するソケット 2 5 5が嵌め込まれ、 電源と 接続するようになっている。 Further, a power supply terminal 2 13 is fixed to the end of the heating element 2 1 by soldering, and a socket 2 5 5 having a wiring 26 2 is fitted into the power supply terminal 2 13 to be connected to a power supply. It is supposed to connect.
次に、 本発明の半導体製造 ·検査装置を構成するセラミック基板について詳し く説明する。  Next, the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention will be described in detail.
上記セラミック基板の材料はとしては特に限定されないが、 例えば、 窒化物セ ラミック、 炭化物セラミック、 酸化物セラミック等が挙げられる。  The material of the ceramic substrate is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
上記窒化物セラミックとしては、 金属窒化物セラミック、 例えば、 窒化アルミ 二ゥム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等が挙げられる。  Examples of the nitride ceramic include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭化 ケィ素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タングステン等が 挙げられる。  Examples of the carbide ceramic include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, and the like.
上記酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 アルミナ、 ジルコユア、 コージェライト、 ムライ ト等が挙げられる。  Examples of the oxide ceramic include metal oxide ceramics, for example, alumina, zirconia, cordierite, and mullite.
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよレ、。  These ceramics may be used alone or in combination of two or more.
これらのセラミックの中では、 窒化物セラミック、 炭化物セラミックの方が酸 化物セラミックに比べて望ましい。 熱伝導率が高いからである。  Among these ceramics, nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
また、 窒化物セラミックの中では窒化アルミニウムが最も好適である。 熱伝導 率が 1 8 O W/m · Kと最も高いからである。  Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 O W / m · K.
また、 上記セラミック材料は、 焼結助剤を含有していてもよい。 上記焼結助剤 としては、 例えば、 アルカリ金属酸化物、 アルカリ土類金属酸化物、 希土類酸化 物等が挙げられる。 これらの焼結助剤のなかでは、 C a O、 Y 20 3、 N a 2 0、 L i 2 0、 R b 2 0が好ましい。 これらの含有量としては、 0 . 1〜 1 0重量0 /0 が好ましい。 また、 アルミナを含有していてもよい。 Further, the ceramic material may contain a sintering aid. Examples of the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides. Among these sintering aids, C a O, Y 2 0 3, N a 2 0, L i 2 0, R b 2 0 is preferable. These content from 0.1 to 1 0 weight 0/0 are preferred. Further, it may contain alumina.
本発明の半導体製造 ·検査装置を構成するセラミック基板は、 明度が J I S Z 8 7 2 1の規定に基づく値で N 6以下のものであることが望ましい。 このよう な明度を有するものが輻射熱量、 隠蔽性に優れるからである。 また、 このような セラミック基板は、 サーモビユアにより、 正確な表面温度測定が可能となる。 ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0と し、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度とな るように各色を 1 0分割し、 N 0〜N 1 0の記号で表示したものである。 そして、 実際の測定は、 N 0〜N 1 0に対応する色票と比較して行う。 この場 合の小数点 1位は 0または 5とする。 It is preferable that the brightness of the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention is N6 or less as a value based on the provisions of JISZ8721. This is because those having such brightness have excellent radiation heat quantity and concealing property. In addition, such a ceramic substrate can accurately measure the surface temperature by using a thermoviewer. Here, the lightness N is defined as 0 for the ideal black lightness, 10 for the ideal white lightness, and the lightness of the color between these black lightness and white lightness. Each color is divided into 10 so that the perception is at the same rate, and displayed by the symbols N0 to N10. The actual measurement is performed by comparing the color charts corresponding to N0 to N10. In this case, the first decimal place is 0 or 5.
このような特性を有するセラミック基板は、 セラミック基板中にカーボンを 1 0 0〜5 0 0 0 p p m含有させることにより得られる。 カーボンには、 非晶質の ものと結晶質 1ものとがあり、 非晶質のカーボンは、 セラミック基板の高温にお ける体積抵抗率の低下を抑制することでき、 結晶質のカーボンは、 セラミック基 板の高温における熱伝導率の低下を抑制することができるため、 その製造する基 板の目的等に応じて適宜カーボンの種類を選択することができる。  A ceramic substrate having such characteristics can be obtained by including 100 to 500 ppm of carbon in the ceramic substrate. There are two types of carbon, amorphous and crystalline 1.Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at high temperatures. Since the decrease in the thermal conductivity of the substrate at high temperatures can be suppressed, the type of carbon can be appropriately selected according to the purpose of the substrate to be manufactured.
非晶質のカーボンとしては、 例えば、 C、 H、 Oだけからなる炭化水素、 好ま しくは、 糖類を、 空気中で焼成することにより得ることができ、 結晶質のカーボ ンとしては、 グラフアイ ト粉末等を用いることができる。  The amorphous carbon can be obtained, for example, by sintering a hydrocarbon consisting of only C, H, and O, preferably a saccharide, in the air. Powder or the like can be used.
また、 アクリル系樹脂を不活性雰囲気 (窒化ガス、 アルゴンガス) 下で熱分解 させた後、 加熱加圧することによりカーボンを得ることができるが、 このアタリ ル系樹脂の酸価を変化させることにより、 結晶性 (非晶性) の程度を調整するこ とができる。  In addition, carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then heating and pressurizing it. By changing the acid value of this acryl resin, The degree of crystallinity (amorphousness) can be adjusted.
上記セラミック基板は、 円板形状であり、 直径 2 0 O mm以上が望ましく、 2 5 0 mm以上が最適である。  The ceramic substrate has a disk shape, preferably has a diameter of 20 mm or more, and most preferably has a diameter of 250 mm or more.
半導体装置に用いられる円板形状のセラミック基板は、 温度の均一性が要求さ れる力 直径の大きな基板ほど、 温度が不均一になりやすいからである。  This is because the temperature of a disk-shaped ceramic substrate used in a semiconductor device tends to be non-uniform as a substrate having a large force diameter that requires temperature uniformity.
上記セラミック基板の厚さは、 5 0 mm以下が好ましく、 2 0 mm以下がより 好ましい。 また、 1〜 5 mmが最適である。  The thickness of the ceramic substrate is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 5 mm is optimal.
厚みは、 薄すぎると高温での反りが発生しやすく、 厚すぎると熱容量が大きく なり過ぎて昇温降温特性が低下するからである。  If the thickness is too thin, warping at high temperatures is likely to occur, and if it is too thick, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
また、 上記セラミック基板の気孔率は、 0または 5 %以下が望ましい。 高温で の熱伝導率の低下、 反りの発生を抑制できるからである。  The porosity of the ceramic substrate is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed.
本発明の半導体製造♦検查装置で用いるセラミック基板は、 1 5 0 °C以上で使 用することができるが、 2 0 0 °C以上で使用することが望ましい。  The ceramic substrate used in the semiconductor manufacturing inspection apparatus of the present invention can be used at 150 ° C. or higher, but is preferably used at 200 ° C. or higher.
本発明では、 必要に応じてセラミック基板に熱電対を埋め込んでおくことがで きる。 熱電対により抵抗発熱体の温度を測定し、 そのデータをもとに電圧、 電流 量を変えて、 温度を制御することができるからである。 In the present invention, a thermocouple can be embedded in a ceramic substrate as needed. The temperature of the resistance heating element is measured with a thermocouple, and the voltage and current are The temperature can be controlled by changing the amount.
上記熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 もし くは、 それよりも大きく、 かつ、 0 . 5 mm以下がよい。 このような構成によつ て、 接合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に変換 されるのである。 このため、 温度制御性が向上してウェハの加熱面の温度分布が 小さくなるのである。  The size of the joining portion of the metal wires of the thermocouple is preferably equal to or larger than the wire diameter of each metal wire and 0.5 mm or less. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. Therefore, the temperature controllability is improved and the temperature distribution on the heated surface of the wafer is reduced.
上記熱電対としては、 例えば、 J I S—C— 1 6 0 2 ( 1 9 8 0 ) に挙げられ るように、 K型、 R型、 B型、 E型、 J型、 T型熱電対が挙げられる。  Examples of the thermocouple include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples as described in JIS-C-162 (1980). Can be
図 3は、 本発明の他の実施形態を示すもので、 セラミック基板の内部に抵抗発 熱体が配設されたセラミック基板の抵抗発熱体の近傍を模式的に示した部分拡大 断面図である。  FIG. 3 shows another embodiment of the present invention, and is a partially enlarged sectional view schematically showing the vicinity of a resistance heating element of a ceramic substrate in which a resistance heating element is disposed inside a ceramic substrate. .
図示はしていないが、 セラミック基板 3 1は、 図 1の場合と同様に、 円板状に 形成されており、 抵抗発熱体 2 2は、 : ラミック基板 3 1の内部に同心円状のパ ターンに形成されている。 また、 これら抵抗発熱体 2 2は、 その回路の両端の真 下にスルーホール 3 8が形成され、 袋孔 3 7が形成されることによりスルーホー ル 3 8が外部に露出している。  Although not shown, the ceramic substrate 31 is formed in a disk shape as in the case of FIG. 1, and the resistance heating elements 22 are: A concentric pattern is formed inside the lamic substrate 31. Is formed. Further, in these resistance heating elements 22, through holes 38 are formed directly below both ends of the circuit, and through holes 37 are formed to expose the through holes 38 to the outside.
そして、 この袋孔 3 7に露出したスルーホール 3 8に、 半田またはろう材等を 用いて外部端子 1 3がスルーホール 3 8に接着され、 スルーホール 3 8'を介して 外部端子 1 3と抵抗発熱体 2 2との電気的な接続が図られている。  The external terminal 13 is bonded to the through hole 38 exposed to the blind hole 37 using solder or brazing material, and the external terminal 13 is connected to the external terminal 13 via the through hole 38 '. Electrical connection with the resistance heating element 22 is achieved.
スルーホール 3 8は、 図 4に示すように、 セラミック基板 3 1の底面に露出す るように形成され、 袋孔が形成されていなくてもよい。 また、 図 5に示すように、 スルーホール 3 8の表面に N i層 3 9 aと A u層 3 9 bとからなる非酸化性金属 層 3 9を形成し、 この非酸化性金属層 3 9を介して接続させてもよい。 この場合.、 非酸化性金属層 3 9は、 スパッタリングやめつき処理等により形成することがで きるが、 このようなめっき処理等を施す前に、 スルーホール表面の研磨等を行い、 酸化物層等を除去することが望ましい。 ■ スルーホール 3 8は、 タングステン、 モリブデン等の金属、 または、 これらの 炭化物等からなり、 その直径は、 0 . 1〜1 O mmが望ましい。 断線を防止しつ つ、 クラックや歪みを防止することができるからである。 袋孔 3 7のサイズとしては特に限定されず、 丁度、 外部端子 1 3の頭の部分を 揷入することができる大きさであればよい。 As shown in FIG. 4, the through hole 38 is formed so as to be exposed on the bottom surface of the ceramic substrate 31, and the through hole may not be formed. As shown in FIG. 5, a non-oxidizable metal layer 39 consisting of a Ni layer 39 a and an Au layer 39 b is formed on the surface of the through hole 38. 9 may be connected. In this case, the non-oxidizing metal layer 39 can be formed by sputtering, plating, or the like. It is desirable to remove such factors. ■ The through hole 38 is made of a metal such as tungsten or molybdenum, or a carbide thereof, and preferably has a diameter of 0.1 to 1 O mm. This is because cracks and distortion can be prevented while preventing disconnection. The size of the blind hole 37 is not particularly limited, and may be any size as long as the head portion of the external terminal 13 can be inserted.
本発明において、 抵抗発熱体は、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリブデン、 ニッケル等の金属、 または、 タングステン、 モリブ デンの炭化物等の導電性セラミックからなるものであることが望ましい。 抵抗値 を高くすることが可能となり、 断線等を防止する目的で厚み自体を厚くすること ができるとともに、 酸ィ匕しにくく、 熱伝導率が低下しにくいからである。 これら は、 単独で用いてもよく、 2種以上を併用してもよい。  In the present invention, the resistance heating element is made of a metal such as a noble metal (gold, silver, platinum, or palladium), lead, tungsten, molybdenum, nickel, or a conductive ceramic such as a carbide of tungsten or molybdenum. Is desirable. This is because the resistance value can be increased, and the thickness itself can be increased for the purpose of preventing disconnection and the like, and it is difficult to oxidize and the thermal conductivity does not easily decrease. These may be used alone or in combination of two or more.
また、 抵抗発熱体は、 セラミック基板全体の温度を均一にする必要があること から、 図 1に示すような同心円形状のパターンや同心円形状のパターンと屈曲線 形状のパターンとを組み合わせたものが好ましい。 また、 抵抗発熱体の厚さは、 In addition, since it is necessary to make the temperature of the entire ceramic substrate uniform, the resistance heating element is preferably a concentric pattern as shown in FIG. 1 or a combination of a concentric pattern and a bent line pattern. . The thickness of the resistance heating element is
:!〜 5 0 μ ιηが望ましく、 その幅は、 5〜 2 O mmが望ましい。 :! ~ 50μιη is desirable, and the width is desirably 5 ~ 2 Omm.
抵抗発熱体の厚さや幅を変化させることにより、 その抵抗値を変化させること ができるが、 この範囲が最も実用的だからである。 抵抗発熱体の抵抗値は、 薄く、 また、 細くなるほど大きくなる。  The resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical. The resistance value of the resistance heating element becomes thinner and becomes larger as it becomes thinner.
なお、 抵抗発熱体を内部に設けると、 加熱面 2 1 aと抵抗発熱体 2 2との距離 が近くなり、 表面の温度の均一性が低下するため、 抵抗発熱体 2 2自体の幅を広 げる必要がある。 また、 セラミック基板の内部に抵抗発熱体 2 2を設けるため、 窒化物セラミック等との密着性を考慮する必要性がなくなる。  When a resistance heating element is provided inside, the distance between the heating surface 21a and the resistance heating element 22 becomes short, and the uniformity of the surface temperature decreases, so that the width of the resistance heating element 22 itself is increased. Need to be In addition, since the resistance heating element 22 is provided inside the ceramic substrate, there is no need to consider adhesion to nitride ceramics or the like.
抵抗発熱体は、 断面が方形、 楕円形、 紡錘形、 蒲鋅形状のいずれでもよいが、 偏平なものであることが望ましい。 偏平の方が加熱面に向かって放熱しやすいた め、 加熱面への熱伝搬量を多くすることができ、 加熱面の温度分布ができにく,い からである。  The resistance heating element may have a cross section of any of a square, an ellipse, a spindle, and a spheroid, but is desirably flat. This is because the flattened surface tends to radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased and the temperature distribution on the heated surface is difficult to achieve.
なお、 抵抗発熱体は螺旋形状でもよい。  Note that the resistance heating element may have a spiral shape.
セラミック基板の表面または内部に抵抗発熱体を形成するためには、 金属や導 電性セラミックからなる導体ペーストを用いることが好ましい。  In order to form a resistance heating element on the surface or inside of the ceramic substrate, it is preferable to use a conductor paste made of metal or conductive ceramic.
即ち、 図 1、 2に示すようにセラミック基板 2 1の表面に抵抗発熱体を形成す る場合には、 通常、 焼成を行って、 セラミック基板 2 1を製造した後、 その表面 に上記導体ペースト層を形成し、 焼成することより、 抵抗発熱体を作製する。 一 方、 図 3〜 5に示すようにセラミック基板 3 1の内部に抵抗発熱体を形成する場 合には、 グリーンシート上に上記導体ペースト層を形成した後、 グリーンシート を積層、 焼成することにより、 内部に抵抗発熱体を作製する。 That is, when a resistance heating element is formed on the surface of the ceramic substrate 21 as shown in FIGS. 1 and 2, the ceramic paste is usually fired to produce the ceramic substrate 21, and then the conductive paste is applied to the surface. A resistance heating element is produced by forming a layer and firing the layer. one On the other hand, when forming a resistance heating element inside the ceramic substrate 31 as shown in FIGS. 3 to 5, after forming the above-mentioned conductor paste layer on the green sheet, the green sheet is laminated and fired. Create a resistance heating element inside.
上記導体ペーストとしては特に限定されないが、 導電性を確保するため金属粒 子または導電性セラミック粒子が含有されているほ力、 樹脂、 溶剤、 増粘剤など を含むものが好ましい。  The conductive paste is not particularly limited, but is preferably a conductive paste containing a metal particle or a conductive ceramic particle, a resin, a solvent, a thickener, or the like in order to secure conductivity.
上記金属粒子や導電性セラミック粒子の材料としては、 上述したものが挙げら れる。 これら金属粒子または導電性セラミック粒子の粒径は、 0 . 1〜1 0 0 mが好ましい。 0 . 1 m未満と微細すぎると、 酸化されやすく、 一方、 1 0 0 / mを超えると、 焼結しにくくなり、 抵抗値が大きくなるからである。  Examples of the material of the metal particles and the conductive ceramic particles include those described above. The metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 m. If it is too small, less than 0.1 m, it is liable to be oxidized, while if it exceeds 100 / m, sintering becomes difficult and the resistance value becomes large.
上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は、 金属粒子間の金属酸化物を保持しやすくなり、 抵抗発熱体とセラミック基板との 密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利である。 上記導体ペーストに使用される樹脂としては、 例えば、 エポキシ樹脂、 フエノ ール樹脂等が挙げられる。 また、 溶剤としては、 例えば、 イソプロピルアルコー ル等が挙げられる。 増粘剤としては、 セルロース等が挙げられる。  The shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the resistance heating element and the ceramic substrate is ensured. This is advantageous because the resistance value can be increased. Examples of the resin used for the conductor paste include an epoxy resin and a phenol resin. Examples of the solvent include isopropyl alcohol. Examples of the thickener include cellulose and the like.
抵抗発熱体用の導体ペーストをセラミック基板の表面に形成する際には、 上記 導体ペースト中に上記金属粒子のほかに金属酸化物を添加し、 上記金属粒子およ ぴ上記金属酸化物を焼結させたものとすることが好ましい。 このように、 金属酸 化物を金属粒子とともに焼結させることにより、 セラミック基板と金属粒子とを より密着させることができる。  When forming a conductor paste for a resistance heating element on the surface of a ceramic substrate, a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to have it. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
上記金属酸化物を混合することにより、 セラミック基板との密着性が改善され る理由は明確ではないが、 金属粒子表面や非酸化物からなるセラミック基板の表 面は、 その表面がわずかに酸化されて酸化膜が形成されており、 この酸化膜同士 が金属酸化物を介して焼結して一体化し、 金属粒子とセラミックとが密着するの ではないかと考えられる。 また、 セラミック基板を構成するセラミックが酸化物 の場合は、 当然に表面が酸化物からなるので、 密着性に優れた導体層が形成され る。 It is not clear why mixing the above metal oxide improves the adhesion to the ceramic substrate, but the surface of metal particles and the surface of a ceramic substrate made of non-oxide are slightly oxidized. It is considered that the oxide film is formed by sintering and integrating the oxide films via the metal oxide, and the metal particles and the ceramic adhere to each other. Also, when the ceramic constituting the ceramic substrate is an oxide, since the surface is naturally made of an oxide, a conductor layer having excellent adhesion is formed. You.
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B 20 3) 、 アルミナ、 イットリアおょぴチタニアからなる群から選ばれる少な くとも 1種が好ましい。 The metal oxide, for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, least one selected from the group consisting of yttria Contact Yopi titania is preferred.
これらの酸化物は、 抵抗発熱体の抵抗値を大きくすることなく、 金属粒子とセ ラミック基板との密着性を改善することができるからである。 '  This is because these oxides can improve the adhesion between the metal particles and the ceramic substrate without increasing the resistance value of the resistance heating element. '
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 203) 、 アルミナ、 イット リア、 チタユアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量比 で、 酸化鉛が 1〜1 0、 シリカが 1〜 3 0、 酸化ホゥ素が 5〜 5 0、 酸化亜 &が 2 0〜7 0、 アルミナが 1〜1 0、 イットリアが 1〜5 0、 チタニアが 1〜5 0 であって、 その合計が 1 0 0重量部を超えない範囲で調整されていることが好ま しレ、。 The lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, yttria, the proportion of Chitayua, when a 1 0 0 parts by weight of the total amount of the metal oxide, by weight, lead oxide 1-10, silica 1-30, boron oxide 5-5, oxygen oxide & 20-70, alumina 1-110, yttria 1-50, titania 1-5 0, and the total is preferably adjusted so as not to exceed 100 parts by weight.
これらの範囲で、 これらの酸化物の量を調整することにより、 特にセラミック 基板との密着性を改善することができる。  By adjusting the amounts of these oxides in these ranges, the adhesion to the ceramic substrate can be particularly improved.
上記金属酸化物の金属粒子に対する添加量は、 0 . 1重量%以上1 0重量%未 満が好ましい。 また、 このような構成の導体ペーストを使用して抵抗発熱体を形 成した際の面積抵抗率は、 1〜4 5 πι ΩΖ口が好ましい。  The amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight. Further, when the resistance heating element is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 45 πιΩΩ.
面積抵抗率が 4 5 πι ΩΖ口を超えると、 印加電圧量に対して発熱量は大きくな りすぎて、 表面に抵抗発熱体を設けたセラミック基板では、 その発熱量を制御し にくいからである。 なお、 金属酸化物の添加量が 1 0重量%以上であると、 面積 抵抗率が 5 Ο πι Ω /口を超えてしまい、 発熱量が大きくなりすぎて温度制御が難 しくなり、 温度分布の均一性が低下する。  If the area resistivity exceeds 45 πιΩΖ, the amount of heat generated becomes too large for the applied voltage, and it is difficult to control the amount of heat generated on a ceramic substrate provided with a resistance heating element on the surface. . If the addition amount of the metal oxide is 10% by weight or more, the area resistivity exceeds 5ΟπιΩ / port, the calorific value becomes too large, and the temperature control becomes difficult. Uniformity decreases.
抵抗発熱体がセラミック基板の表面に形成される場合には、 抵抗発熱体の表面 部分に、 金属被覆層が形成されていることが好ましい。 内部の金属焼結体が酸化 されて抵抗値が変化するのを防止するためである。 形成する金属被覆層の厚さは、 When the resistance heating element is formed on the surface of the ceramic substrate, a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body. The thickness of the metal coating layer to be formed is
0 . 1〜1 0 μ ΐηが好ましレヽ。 0.1 to 10 μ μη is preferable.
上記金属被覆層を形成する際に使用される金属は、 非酸化性の金属であれば特 に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッケル 等が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよレ、。 これらのなかでは、 ニッケルが好ましい。 The metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples thereof include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
なお、 抵抗発熱体をセラミック基板の内部に形成する場合には、 抵抗発熱体表 面が酸化されることがないため、 被覆は不要である。  When the resistance heating element is formed inside the ceramic substrate, no coating is required since the surface of the resistance heating element is not oxidized.
また、 抵抗発熱体 2 2またはスルーホール 3 8に接続する外部端子 1 3の材料 としては特に限定されず、 例えば、 ニッケル、 コバール等の金属が挙げられる。 また、 外部端子 1 3の形状は、 接触面の面積を大きくするため、 断面視 T字型 のものが好ましい。 また、 そのサイズは、 使用するセラミック基板 2 1の大きさ、 抵抗^熱体 2 2の大きさ等によって適宜調整されるため特に限定されないが、 軸 部分の直径は 0 . 5〜1 0 mm、 軸部分の長さは 3〜 2 0 mmが好ましい。  The material of the external terminal 13 connected to the resistance heating element 22 or the through hole 38 is not particularly limited, and examples thereof include metals such as nickel and kovar. The external terminal 13 preferably has a T-shaped cross section in order to increase the area of the contact surface. The size thereof is not particularly limited because it is appropriately adjusted depending on the size of the ceramic substrate 21 used, the size of the resistance heater 22 and the like, but the diameter of the shaft portion is 0.5 to 10 mm. The length of the shaft portion is preferably 3 to 20 mm.
本発明の半導体製造 ·検査装置の具体例としては、 例えば、 静電チャック、 ゥ ェハプローバ、 ホットプレート、 サセプタ等が挙げられる。  Specific examples of the semiconductor manufacturing / inspection apparatus of the present invention include, for example, an electrostatic chuck, a wafer prober, a hot plate, and a susceptor.
上記ホットプレートュニットは、 セラミック基板の表面または内部に抵抗発熱 体のみが設けられた装置であり、 これにより、 シリコンウェハ等の被加熱物を所 定の温度に加熱することができる。  The hot plate unit is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, whereby an object to be heated such as a silicon wafer can be heated to a predetermined temperature.
本発明の半導体製造 ·検査装置を構成するセラミック基板の表面または内部に 抵抗発熱体を設けるとともに、 セラミック基板の内部に静電電極を設けた場合に は静電チヤックとして機能する。  When a resistance heating element is provided on the surface or inside the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, and when an electrostatic electrode is provided inside the ceramic substrate, it functions as an electrostatic chuck.
上記静電電極は、 例えば、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タンダ ステン、 モリブデン、 ニッケル等の金属、 または、 タングステン、 モリブデンの 炭化物等の導電性セラミックからなるもの等が挙げられる。 これらは、 単独で用 いてもよく、 2種以上を併用してもよレ、。  Examples of the electrostatic electrode include a metal such as a noble metal (gold, silver, platinum, and palladium), lead, tungsten, molybdenum, and nickel, and a conductive ceramic such as a carbide of tungsten and molybdenum. . These may be used alone or in combination of two or more.
図 6 ( a ) は、 静電チャックを構成するセラミック基板を模式的に示す縦断面 図であり、 (b ) は、 (a ) に示したセラミック基板の A— A線断面図である。 この静電チャック 6 0では、 セラミック基板 6 1の内部にチャック正負極静電 層 6 2、 6 3が埋設され、 それぞれスルーホール 6 8 0と接続され、 その電極上 にセラミック誘電体膜 6 4が形成されている。  FIG. 6A is a longitudinal sectional view schematically showing a ceramic substrate constituting the electrostatic chuck, and FIG. 6B is a sectional view taken along line AA of the ceramic substrate shown in FIG. In this electrostatic chuck 60, chuck positive and negative electrostatic layers 62 and 63 are embedded inside a ceramic substrate 61 and connected to through holes 680, respectively, and a ceramic dielectric film 64 is formed on the electrode. Are formed.
また、 セラミック基板 6 1の内部には、 抵抗発熱体 6 6とスルーホール 6 8と が設けられ、 シリコンウェハ 2 9を加熱することができるようになつている。 な お、 セラミック基板 6 1には、 必要に応じて、 R F電極が埋設されていてもよい。 また、 図示はしていないが、 スルーホール 6 8の下部には、 スルーホール 6 8 を露出させる袋孔が設けられており、 このセラミック基板 6 1を図 2に示した支 持容器 1 2に配設した場合には、 上述したホットプレートユニット 2 0と同様に 静電チャック 6 0の昇温効率およぴ冷却効率等に優れたものとなる。 Further, a resistance heating element 66 and a through hole 68 are provided inside the ceramic substrate 61 so that the silicon wafer 29 can be heated. Note that an RF electrode may be embedded in the ceramic substrate 61 as necessary. Although not shown, a through hole is provided below the through hole 68 to expose the through hole 68, and the ceramic substrate 61 is attached to the support container 12 shown in FIG. When the electrostatic chuck 60 is provided, the electrostatic chuck 60 is excellent in the temperature rising efficiency, the cooling efficiency, and the like, like the above-described hot plate unit 20.
また、 (b ) に示したように、 静電チャック 6 0は、 通常、 平面視円形状に形 成されており、 セラミック基板 6 1の内部に (b ) に示した半円弧状部 6 2 aと 櫛歯部 6 2 bとからなるチャック正極静電層 6 2と、 同じく半円弧状部 6 3 aと 櫛歯部 6 3 bとからなるチャック負極静電層 6 3と力 S、 互いに櫛歯部 6 2 b、 6 3 bを交差するように対向して配置されている。  Also, as shown in (b), the electrostatic chuck 60 is usually formed in a circular shape in plan view, and inside the ceramic substrate 61, the semi-circular portion 62 shown in (b) is formed. a and the comb-teeth portion 6 2 b, and the chuck negative-electrode electrostatic layer 6 3, which also comprises a semicircular-shaped portion 63 a and the comb-teeth portion 63 b, and the force S, They are arranged to face each other so as to intersect with the comb teeth portions 6 2 b and 6 3 b.
この静電チャックを使用する場合には、 チャック正極静電層 6 2とチャック負 極静電層 6 3とにそれぞれ直流電源の +側と一側を接続し、 直流電圧を印加する。 これにより、 この静電チャック上に载置されたシリコンウェハが静電的に吸着さ れることになる。  When this electrostatic chuck is used, the positive side of the DC power supply and one side of the DC power supply are connected to the chuck positive electrostatic layer 62 and the chuck negative electrostatic layer 63, respectively, and a DC voltage is applied. Thus, the silicon wafer placed on the electrostatic chuck is electrostatically attracted.
図 7および図 8は、 他の静電チヤックにおける静電電極を模式的に示した水平 断面図であり、 図 7に示す静電チヤック 7 0では、 セラミック基板 7 1の内部に 半円形状のチャック正極静電層 7 2とチャック負極静電層 7 3が形成されており、 図 8に示す静電チャック 8 0では、 セラミック基板 8 1の内部に円を 4分割した' 形状のチャック正極静電層 8 2 a、 8 2 bとチャック負極静電層 8 3 a、 8 3 b が形成されている。 また、 2枚の正極静電層 8 2 a、 8 2 bおよび 2枚のチヤッ ク負極静電層 8 3 a、 8 3 bは、 それぞれ交差するように形成されている。  7 and 8 are horizontal cross-sectional views schematically showing electrostatic electrodes in another electrostatic chuck. In the electrostatic chuck 70 shown in FIG. 7, a semicircular shape is formed inside the ceramic substrate 71. A chuck positive electrode electrostatic layer 72 and a chuck negative electrode electrostatic layer 73 are formed. The electrostatic chuck 80 shown in FIG. Electric layers 82a and 82b and chuck negative electrode electrostatic layers 83a and 83b are formed. The two positive electrode electrostatic layers 82a and 82b and the two negative electrode electrostatic layers 83a and 83b are formed to intersect, respectively.
なお、 円形等の電極が分割された形態の電極を形成する場合、 その分割数は特 に限定されず、 5分割以上であってもよく、 その形状も扇形に限定されない。 本発明の半導体製造 ·検査装置を構成するセラミック基板の表面または内部に 抵抗発熱体を設け、 さらに、 セラミック基板の表面にチヤックトップ導体層を設 け、 内部にガード電極やグランド電極を設けた場合には、 ウェハプローパとして 機能する。  When an electrode in the form of a circular or divided electrode is formed, the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector. When a resistance heating element is provided on or on the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, a check top conductor layer is provided on the surface of the ceramic substrate, and a guard electrode and a ground electrode are provided inside. In addition, it functions as a wafer proper.
図 9は、 上記ウェハプローバを構成するセラミック基板の一実施形態を模式的 に示した断面図であり、 図 1 0は、 その平面図であり、 図 1 1は、 図 9に示した セラミック基板における A— A線断面図である。 このウェハプローバでは、 平面視円形状のセラミック基板 3の表面に同心円形 状の溝 8が形成されるとともに、 溝 8の一部にシリコンウェハを吸引するための 複数の吸引孔 9が設けられており、 溝 8を含むセラミック基板 3の大部分にシリ コンウェハの電極と接続するためのチャックトップ導体層 2が円形状に形成され ている。 FIG. 9 is a cross-sectional view schematically showing one embodiment of the ceramic substrate constituting the wafer prober, FIG. 10 is a plan view thereof, and FIG. 11 is the ceramic substrate shown in FIG. FIG. 2 is a sectional view taken along line A-A in FIG. In this wafer prober, concentric circular grooves 8 are formed on the surface of a ceramic substrate 3 having a circular shape in plan view, and a plurality of suction holes 9 for sucking a silicon wafer are provided in a part of the grooves 8. In addition, a chuck top conductor layer 2 for connecting to an electrode of a silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including the groove 8.
一方、 セラミック基板 3の底面には、 シリコンウェハの温度をコントロールす るために、 図 1に示したような平面視同心円形状の抵抗発熱体 5 1が設けられて いる。 このウェハプローバを図 2に示した支持容器 1 2に配設した場合には、 上 述したホットプレートュニット 2 0と同様にこのウェハプローバの昇温効率およ び冷却効率等も優れたものとなる。  On the other hand, on the bottom surface of the ceramic substrate 3, a resistance heating element 51 having a concentric circular shape in plan view as shown in FIG. 1 is provided in order to control the temperature of the silicon wafer. When this wafer prober is arranged in the support container 12 shown in FIG. 2, the wafer prober has excellent temperature rising efficiency and cooling efficiency as well as the hot plate unit 20 described above. Becomes
また、 セラミック基板 3の内部には、 ストレイキャパシタゃノイズを除去する ために図 1 1に示したような格子形状のガード電極 6とグランド電極 7 (図示せ ず) とが設けられている。 なお、 符号 5 2は、 電極非形成部を示している。 この ような矩形状の電極非形成部 5 2をガード電極 6の内部に形成しているのは、 ガ ード電極 6を挟んだ上下のセラミック基板 3をしつかりと接着させるためである。 このような構成のウェハプローバでは、 支持容器に収められたセラミック基板 の上に集積回路が形成されたシリコンウェハを載置し、 このシリコンウェハにテ スタピンを持つプローブカードを押しつけ、 加熱、 冷却しながら電圧を印加して 導通テストを行うことができる。  Further, a guard electrode 6 and a ground electrode 7 (not shown) having a lattice shape as shown in FIG. 11 are provided inside the ceramic substrate 3 for removing stray capacitor noise. Reference numeral 52 indicates an electrode non-formed portion. The reason why such a rectangular electrode non-formed portion 52 is formed inside the guard electrode 6 is to firmly adhere the upper and lower ceramic substrates 3 sandwiching the guard electrode 6. In such a wafer prober, a silicon wafer on which an integrated circuit is formed is placed on a ceramic substrate housed in a supporting container, and a probe card having test pins is pressed against the silicon wafer, followed by heating and cooling. The continuity test can be performed by applying a voltage while applying the voltage.
次に、 本発明の半導体製造.検查装置の製造方法の一例として、 ホットプレー トュニットの製造方法について説明する。  Next, a method of manufacturing a hot plate unit will be described as an example of a method of manufacturing a semiconductor manufacturing and inspection apparatus of the present invention.
まず、 底面に抵抗発熱体を有するセラミック基板を備えたホットプレートュニ ットの製造方法について説明する (図 1、 2参照) 。  First, a method for manufacturing a hot plate unit having a ceramic substrate having a resistance heating element on the bottom surface will be described (see FIGS. 1 and 2).
( 1 ) セラミック基板の製造工程  (1) Ceramic substrate manufacturing process
上述した窒化アルミニウム等のセラミック粉末に必要に応じてイツトリア等の 焼結助剤やバインダ等を配合してスラリ一を調製した後、 このスラリ一をスプレ 一ドライ等の方法で顆粒状にし、 この顆粒を金型などに入れて加圧することによ り板状などに成形し、 生成形体 (グリーン) を作製する。 スラリー調整時に、 非 晶質ゃ結晶質のカーボンを添加してもよい。 次に、 この生成形体を加熱、 焼成して焼結させ、 セラミック製の板状体を製造 する。 この後、 所定の形状に加工することにより、 セラミック基板 2 1を製造す るが、 焼成後にそのまま使用することができる形状としてもよい。 加圧しながら 加熱、 焼成を行うことにより、 気孔のないセラミック基板 2 1を製造することが 可能となる。 加熱、 焼成は、 焼結温度以上であればよいが、 窒化物セラミックで は、 1 0 0 0〜2 5 0 0 °Cである。 After preparing a slurry by blending a sintering aid such as yttria or a binder as necessary with the above-mentioned ceramic powder such as aluminum nitride, the slurry is granulated by a method such as spray-drying. The granules are placed in a mold or the like and pressurized to form a plate or the like to produce a green body. When preparing the slurry, amorphous / crystalline carbon may be added. Next, the formed body is heated, fired and sintered to produce a ceramic plate. After that, the ceramic substrate 21 is manufactured by processing into a predetermined shape, but may be a shape that can be used as it is after firing. By performing heating and firing while applying pressure, it is possible to manufacture a ceramic substrate 21 having no pores. Heating and sintering may be performed at a temperature equal to or higher than the sintering temperature.
次に、 セラミック基板に、 必要に応じて、 図示はしないが、 シリコンウェハを 支持するための支持ピンを挿入する貫通孔となる部分、 シリコンウェハを運搬等 するためのリフターピンを挿入する貫通孔となる部分、 熱電対などの測温素子を 埋め込むための有底孔となる部分等を形成する。  Next, though not shown, a through hole for inserting a support pin for supporting the silicon wafer and a through hole for inserting a lifter pin for carrying the silicon wafer, etc. , And a portion with a bottomed hole for embedding a temperature measuring element such as a thermocouple.
( 2 ) セラミック基板に導体ペーストを印刷する工程  (2) Process of printing conductive paste on ceramic substrate
導体ペース トは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体を設けようと する部分に印刷を行うことにより、 導体ペースト層を形成する。 また、 抵抗発熱 体は、 セラミック基板全体を均一な温度にする必要があることから、 例えば、 同 心円形状とするか、 または、 同心円形状と屈曲線形状とを組合わせたパターンに 印刷することが好ましい。  The conductor paste is generally a high-viscosity fluid composed of metal particles, resin, and a solvent. The conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer. In addition, since the resistance heating element needs to keep the entire temperature of the ceramic substrate at a uniform temperature, for example, the resistance heating element should be printed in a concentric shape or a pattern combining the concentric shape and the bent line shape. Is preferred.
導体ペース ト層は、 焼成後の抵抗発熱体 2 2の断面が、 方形で、 偏平な形状と なるように形成することが好ましい。  The conductive paste layer is preferably formed so that the cross section of the resistance heating element 22 after firing has a rectangular and flat shape.
( 3 ) 導体ペース トの焼成  (3) Firing the conductor paste
セラミック基板 2 1の底面に印刷した導体ペースト層を加熱焼成して、 樹脂、 溶剤を除去するとともに、 金属粒子を焼結させ、 セラミック基板 2 1の底面に焼 き付け、 抵抗発熱体 2 2を形成する。 加熱焼成の温度は、 5 0 0〜1 0 0 0 °Cが 好ましい。  The conductor paste layer printed on the bottom surface of the ceramic substrate 21 is heated and fired to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the ceramic substrate 21 to form the resistance heating element 22. Form. The heating and firing temperature is preferably from 500 to 100 ° C.
導体ペース ト中に上述した金属酸化物を添加しておくと、 金属粒子、 セラミツ ク基板および金属酸化物が焼結して一体化するため、 抵抗発熱体とセラミック基 板との密着性が向上する。  If the above-mentioned metal oxide is added to the conductor paste, the metal particles, the ceramic substrate and the metal oxide are sintered and integrated, so that the adhesion between the resistance heating element and the ceramic substrate is improved. I do.
( 4 ) 金属被覆層の形成  (4) Formation of metal coating layer
抵抗発熱体 2 2表面には、 金属被覆層 (図示せず) を設けることが望ましい。 上記金属被覆層は、 電解めつき、 無電解めつき、 スパッタリング等により形成 することができるが、 量産性を考慮すると、 無電解めつきが最適である。 It is desirable to provide a metal coating layer (not shown) on the surface of the resistance heating element 22. The metal coating layer can be formed by electrolytic plating, electroless plating, sputtering, or the like. However, considering mass productivity, electroless plating is optimal.
( 5 ) 端子等の取り付け  (5) Installation of terminals, etc.
抵抗発熱体 2 2の回路の端部 2 2 aに、 外部端子 1 3を半田等により取り付け る。 また、 有底孔 2 4に熱電対等の測温素子 2 8を挿入し、 ポリイミ ド等の耐熱 樹脂、 セラミック等で封止する。  The external terminal 13 is attached to the end 22 a of the circuit of the resistance heating element 22 by soldering or the like. Also, a temperature measuring element 28 such as a thermocouple is inserted into the bottomed hole 24 and sealed with a heat-resistant resin such as polyimide, ceramic or the like.
( 6 ) 次に、 支持容器 1 2を用意し、 抵抗発熱体 2 2を有するセラミック基板 を、 断熱リング 1 1を介して支持容器 1 2に嵌め込む。  (6) Next, the support container 12 is prepared, and the ceramic substrate having the resistance heating element 22 is fitted into the support container 12 via the heat insulating ring 11.
( 7 ) 板状体の研磨  (7) Polishing of plate
支持容器 1 2に取り付けられる板状体 (中底板 1 5 ) のセラミック基板側の表 面をダイヤモンド砲粒で鏡面処理、 又は、 # 5 0〜 # 8 0 0のダイヤモンド砥石 を使用して研磨等を行うことにより、 J I S B 0 6 0 1に基づく面粗度が R a = 2 0 i m以下となるように研磨する。 また、 刻印板等を板状体の表面に押し 付けることにより、 窪みや突起を形成してもよい。 また、 パンチング等により、 開口を形成してもよレ、。  The surface of the plate-like body (middle bottom plate 15) attached to the support container 12 is mirror-finished with diamond cannonballs, or polished using a # 500 to # 800 diamond whetstone. Is performed so that the surface roughness based on JISB 0601 is Ra = 20 im or less. Further, depressions and projections may be formed by pressing an engraving plate or the like against the surface of the plate-like body. Also, the opening may be formed by punching or the like.
この後、 めっきやスパッタリング等を施すことにより、 表面に貴金属の層を形 成してもよレ、。  After this, a precious metal layer may be formed on the surface by plating or sputtering.
次に、 図 2に示したように、 この中底板 1 5を支持容器 1 2に取り付け、 外部 端子 1 3を中底板 1 5に形成した: R通孔から引出し、 リード線 1 7と接続された ソケット 1 6を外部端子 1 3に挿入することで、 外部端子 1 3とリード線 1 7と を接続する。  Next, as shown in FIG. 2, the midsole plate 15 was attached to the support container 12 and the external terminal 13 was formed in the midsole plate 15: drawn out from the R through hole, and connected to the lead wire 17. The external terminal 13 and the lead 17 are connected by inserting the socket 16 into the external terminal 13.
( 8 ) この後、 その他の治具を有する底板 1 4を図 1、 2に示すように支持容 器 1 2に取り付けることにより、 半導体製造♦検査装置の製造を終了する。 上記ホットプレートュニットを製造する際に、 セラミック基板の内部に静電電 極を設けることにより静電チャックを製造することができ、 また、 加熱面にチヤ ックトップ導体層を設け、 セラミック基板の内部にガード電極やダランド電極を 設けることによりウェハプローバを製造することができる。  (8) Thereafter, the bottom plate 14 having other jigs is attached to the support container 12 as shown in FIGS. When manufacturing the above hot plate unit, an electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface, and the inside of the ceramic substrate is provided. A wafer prober can be manufactured by providing a guard electrode and a duland electrode.
セラミック基板の内部に電極を設ける場合には、 金属箔等をセラミック基板の 内部に埋設すればよい。 また、 セラミック基板の表面に導体層を形成する場合に は、 スパッタリング法やめつき法を用いることができ、 これらを併用してもよい。 次に、 本発明の半導体製造 ·検査装置の製造方法の他の一例として、 上記ホッ トプレートュニットとは構成の異なるホットプレートュニットの製造方法につい て説明する。 When an electrode is provided inside the ceramic substrate, a metal foil or the like may be embedded inside the ceramic substrate. Also, when forming a conductor layer on the surface of a ceramic substrate, Can be used by a sputtering method or a plating method, and these may be used in combination. Next, as another example of the method of manufacturing a semiconductor manufacturing / inspection apparatus of the present invention, a method of manufacturing a hot plate unit having a different configuration from the above-described hot plate unit will be described.
図 1 2 ( a ) 〜 (d ) は、 ホッ トプレートユニットを構成する内部に抵抗発熱 体を有するセラミック基板の製造方法を模式的に示した断面図である。  FIGS. 12 (a) to 12 (d) are cross-sectional views schematically showing a method of manufacturing a ceramic substrate having a resistance heating element inside a hot plate unit.
( 1 ) グリーンシートの作製工程  (1) Green sheet manufacturing process
まず、 窒化物セラミックの粉末をバインダ、 溶剤等と混合してペーストを調製 し、 これを用いてグリーンシートを作製する。  First, a paste is prepared by mixing a nitride ceramic powder with a binder, a solvent, and the like, and a green sheet is produced using the paste.
上述したセラミック粉末としては、 窒化アルミユウム等を使用することができ、 必要に応じて、 イットリア等の焼結助剤を加えてもよい。 また、 グリーンシート を作製する際、 結晶質や非晶質のカーボンを添加してもよい。  As the above-mentioned ceramic powder, aluminum nitride or the like can be used. If necessary, a sintering aid such as yttria may be added. Further, when producing the green sheet, crystalline or amorphous carbon may be added.
また、 バインダとしては、 アクリル系バインダ、 ェチルセルロース、 ブチノレセ 口ソルブ、 ポリ 'ビュルアルコールから選ばれる少なくとも 1種が望ましい。  Also, as the binder, at least one selected from an acrylic binder, ethyl cellulose, butylace resin-soluble solvent, and polybutyl alcohol is desirable.
さらに溶媒としては、 一テルビネオール、 グリコールから選ばれる少なくと も 1種が望ましい。  Further, as the solvent, at least one selected from terbineol and glycol is preferable.
これらを混合して得られるペーストをドクターブレード法でシート状に成形し てグリーンシート 5 0を作製する。  A paste obtained by mixing these is formed into a sheet by a doctor blade method to produce a green sheet 50.
グリーンシート 5 0の厚さは、 0 . 1〜 5 mmが好ましい。  The thickness of the green sheet 50 is preferably 0.1 to 5 mm.
次に、 得られたグリーンシートに、 必要に応じて、 シリコンウェハを支持する ための支持ピンを挿入する貫通孔となる部分、 シリコンウェハを運搬等するため のリフターピンを挿入する貫通孔となる部分、 熱電対などの測温素子を埋め込む ための有底孔となる部分、 抵抗発熱体を外部端子と接続するためのスルーホール となる部分等を形成する。 後述するグリーンシート積層体を形成した後に、 上記 加工を行ってもよい。  Next, if necessary, the obtained green sheet will have a through hole for inserting a support pin for supporting the silicon wafer, and a through hole for inserting a lifter pin for transporting the silicon wafer. A part, a bottomed hole for embedding a temperature measuring element such as a thermocouple, and a through hole for connecting a resistance heating element to an external terminal are formed. The above processing may be performed after forming a green sheet laminate described later.
( 2 ) ダリーンシート上に導体ペーストを印刷する工程  (2) Step of printing conductor paste on daline sheet
グリーンシート 5 0上に、 金属ペーストまたは導電性セラミックを含む導体べ 一ストを印刷し、 導体ペースト層 4 2 0を形成し、 スルーホールとなる部分に導 体ペーストを充填し、 充填層 4 9 0を形成する。 これらの導電ペースト中には、 金属粒子または導電性セラミック粒子が含まれ ている。 A conductor paste containing a metal paste or a conductive ceramic is printed on the green sheet 50 to form a conductor paste layer 420, and a portion to be a through hole is filled with the conductor paste, and a filling layer 49 is formed. Form a 0. These conductive pastes contain metal particles or conductive ceramic particles.
上記金属粒子であるタングステン粒子またはモリブデン粒子等の平均粒子径は、 0. :!〜 5 μκιが好ましい。 平均粒子が 0. l //m未満である力、 5 μπιを超え ると、 導体ぺ一ストを印刷しにくいからである。  The average particle diameter of the metal particles, such as tungsten particles or molybdenum particles, is preferably from 0: to 5 μκι. If the average particle size is less than 0.1 l / m, and if it exceeds 5 μπι, it is difficult to print the conductor cost.
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミック 粒子 85〜87重量部;ァクリル系、 ェチルセルロース、 ブチルセロソノレブ、 ポ リビュルアルコールから選ばれる少なくとも 1種のパインダ 1. 5〜10重量部 ;および、 α—テルビネオール、 ダリコールから選ばれる少なくとも 1種の溶媒 を 1. 5〜 10重量部を混合した組成物 (ペース ト) が挙げられる。  Examples of such a conductive paste include 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder 1.5 selected from acryl-based, ethylcellulose, butylcellosonolev, and polyvinyl alcohol. To 10 parts by weight; and a composition (paste) obtained by mixing 1.5 to 10 parts by weight with at least one solvent selected from α-terbineol and dalicol.
(3) グリーンシートの積層工程  (3) Green sheet lamination process
上記 ( 1 ) の工程で作製した導体ペーストを印刷していないグリーンシート 5 0を、 上記 (2) の工程で作製した導体ペースト層 420を印刷したグリーンシ ート 50の上下に積層する (図 12 (a) ) 。  The green sheet 50 on which the conductor paste prepared in the above step (1) is not printed is laminated on and under the green sheet 50 on which the conductor paste layer 420 produced in the above step (2) is printed (see FIG. 12 (a)).
このとき、 上側に積層するグリーンシート 50の数を下側に積層するグリーン シート 50の数よりも多くして、 導体ペースト層 420の形成位置を底面の方向 に偏芯させる。  At this time, the number of green sheets 50 stacked on the upper side is made larger than the number of green sheets 50 stacked on the lower side, and the formation position of the conductive paste layer 420 is eccentric toward the bottom.
具体的には、 上側のグリーンシート 50の積層数は 20〜50枚が、 下側のグ リーンシート 50の積層数は 5〜20枚が好ましい。  Specifically, the number of stacked green sheets 50 on the upper side is preferably 20 to 50, and the number of stacked green sheets 50 on the lower side is preferably 5 to 20.
(4) グリーンシート積層体の焼成工程  (4) Firing process of green sheet laminate
グリーンシート積層体の加熱、 加圧を行い、 グリーンシート 50および内部の 導体ペーストを焼結させ、 セラミック基板 4 Γを作製する。  The green sheet laminate is heated and pressed to sinter the green sheet 50 and the conductive paste therein, thereby producing a ceramic substrate 4%.
加熱温度は、 1000〜 2000 °Cが好ましく、 加圧の圧力は、 10〜 20 M P aが好ましい。 加熱は、 不活性ガス雰囲気中で行う。 不活性ガスとしては、 例 えば、 アルゴン、 窒素などを使用することができる。  The heating temperature is preferably from 1000 to 2000 ° C, and the pressure is preferably from 10 to 20 MPa. Heating is performed in an inert gas atmosphere. As the inert gas, for example, argon, nitrogen, or the like can be used.
得られたセラミック基板 41に、 測温素子を挿入するための有底孔 44ゃリフ ターピンを挿通するための貫通孔 45を設け (図 12 (b) ) 、 続いて、 外部端 子を挿入するための袋孔 48等を設ける (図 12 (c) ) 。 有底孔 44、 貫通孔 45およぴ袋孔 48は、 表面研磨後に、 ドリル加工やサンドプラストなどのブラ スト処理を行うことにより形成することができる。 The obtained ceramic substrate 41 is provided with a bottomed hole 44 for inserting a temperature measuring element and a through hole 45 for inserting a lifter pin (FIG. 12 (b)). Then, an external terminal is inserted. For example, a bag hole 48 is provided (Fig. 12 (c)). The bottomed hole 44, the through hole 45 and the blind hole 48 are used for drilling or sandblasting after polishing the surface. It can be formed by performing a strike process.
袋孔 4 8より露出したスルーホール 4 9に、 外部端子 4 3を半田等により取り 付ける (図 1 2 ( d ) ) 。 また、 有底孔に熱電対等の測温素子を挿入し、 ポリイ ミド等の耐熱樹脂、 セラミック等で封止する。  The external terminals 43 are attached to the through holes 49 exposed from the blind holes 48 by soldering or the like (FIG. 12 (d)). In addition, a thermocouple such as a thermocouple is inserted into the bottomed hole, and sealed with a heat-resistant resin such as a polyimide or ceramic.
( 5 ) 次に、 支持容器 1 2を用意し、 抵抗発熱体 2 2を有するセラミック基板 を、 断熱リング 1 1を介して支持容器 1 2に嵌め込む。  (5) Next, the support container 12 is prepared, and the ceramic substrate having the resistance heating element 22 is fitted into the support container 12 via the heat insulating ring 11.
( 6 ) 板状体の研磨  (6) Polishing of plate
支持容器 1 2に取り付けられる板状体 (中底板 1 5 ) の表面をダイヤモンド砥 粒で鏡面処理、 又は、 # 5 0〜# 8 0 0のダイヤモンド砥石を使用して研磨をす ることにより、 J I S B 0 6 0 1に基づく面粗度が R a = 2 0 μ πι以下とな るように研磨する。 また、 刻印板等を板状体の表面に押し付けることにより、 窪 みや突起を形成してもよい。 また、 パンチング等により、 開口を形成してもよい。 この後、 めっきやスパッタリングにより、 セラミック基板側の表面に貴金属層を 形成してもよい。  The surface of the plate-like body (middle bottom plate 15) attached to the support container 12 is mirror-finished with diamond abrasive, or polished using a diamond grindstone of # 50 to # 800. Polish so that the surface roughness based on JISB 0601 becomes Ra = 20 μπι or less. Further, depressions and projections may be formed by pressing a stamping plate or the like against the surface of the plate-like body. The opening may be formed by punching or the like. Thereafter, a noble metal layer may be formed on the surface on the ceramic substrate side by plating or sputtering.
そして、 図 2に示したように、 中底板 1 5を支持容器 1 2に取り付け、 外部端 子 1 3を中底板 1 5に形成した貫通孔から引出し、 リード線 1 7と接続されたソ ケット 1 6を外部端子 3 3に挿入することで、 外部端子 3 3とリード線 1 7とを 接続する。  Then, as shown in Fig. 2, the midsole plate 15 is attached to the support container 12, and the external terminals 13 are pulled out from the through holes formed in the midsole plate 15, and the socket connected to the lead wire 17 By connecting 16 to the external terminal 33, the external terminal 33 and the lead wire 17 are connected.
( 7 ) この後、 その他の治具を有する底板 1 4を図 1、 2に示すように支持容 器 1 2に取り付けることにより、 ホットプレートユニット (半導体製造.検查装 置) の製造が終了する。 ·  (7) After that, the bottom plate 14 with other jigs is attached to the support container 12 as shown in Figs. 1 and 2, and the production of the hot plate unit (semiconductor production. Inspection equipment) is completed. I do. ·
上記ホットプレートュニットでは、 その上にシリコンウェハ等を載置するか、 または、 シリコンウェハ等を支持ピンで保持させた後、 シリコンウェハ等の加熱 や冷却を行レ、ながら、 種々の操作を行うことができる。  In the above hot plate unit, various operations are performed while placing a silicon wafer or the like on the hot plate unit or holding the silicon wafer or the like with support pins and then heating or cooling the silicon wafer or the like. It can be carried out.
上記ホットプレートユニットを製造する際に、 セラミック基板の内部に静電電 極を設けることにより静電チャックを製造することができ、 また、 加熱面にチヤ ックトツプ導体層を設け、 セラミック基板の内部にガード電極やグランド電極を 設けることによりウェハプローバを製造することができる。  When manufacturing the hot plate unit, an electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface, and a guard is provided inside the ceramic substrate. By providing electrodes and ground electrodes, a wafer prober can be manufactured.
セラミック基板の内部に電極を設ける場合には、 抵抗発熱体を形成する場合と 同様にグリーンシートの表面に導体ペースト層を形成すればよい。 また、 セラミ ック基板の表面に導体層を形成する場合には、 スパッタリング法やめつき法を用 いることができ、 これらを併用してもよレ、。 発明を実施するための最良の形態 When an electrode is provided inside a ceramic substrate, the case where a resistance heating element is formed Similarly, a conductive paste layer may be formed on the surface of the green sheet. When a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
なお、 板状体表面の粗度 R a、 Rma xは、 形状測定器 (東京精密社製 サー フコム 9 2 OA) により測定した。  In addition, the roughness Ra and Rmax of the plate-like body surface were measured by a shape measuring instrument (Surfcom 92 OA manufactured by Tokyo Seimitsu Co., Ltd.).
写真は、 キーエンス社製のレーザ変位計により測定、 観察した結果である。  The photograph shows the result of measurement and observation using a Keyence laser displacement meter.
(実施例 1) ホッ トプレートユニッ トの製造 (図 1、 2参照)  (Example 1) Manufacture of hot plate unit (see Figs. 1 and 2)
( 1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μ α) 1 0 0重 量^、 酸化ィットリウム (Υ 2 Ο 3:イットリア、 平均粒径: 0. 4 /i m) 4重 量部、 ァクリルバインダ 1 2重量部おょぴアルコールからなる組成物のスプレー ドライを行い、 顆粒状の粉末を作製した。 (1) the aluminum nitride powder (Tokuyama Corp., average particle size 1. 1 mu alpha) 1 0 0 by weight ^ oxide Ittoriumu (Υ 2 Ο 3: yttria, average particle size: 0. 4 / im) 4 by weight , A composition consisting of 12 parts by weight of acrylyl binder and alcohol was spray-dried to prepare a granular powder.
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。  (2) Next, the granular powder was placed in a mold and molded into a flat plate to obtain a green compact.
(3) 加工処理の終わった生成形体を温度: 1 8 0 0°C、 圧力: 2 0 MP aで ホットプレスし、 厚さが 3 mmの窒化アルミニウム焼結体を得た。  (3) The green compact after the processing was hot-pressed at a temperature of 180 ° C. and a pressure of 20 MPa to obtain an aluminum nitride sintered body having a thickness of 3 mm.
次に、 この焼結体から直径 2 1 Ommまたは 3 1 0 mmの円板体を切り出し、 セラミック性の板状体 (セラミック基板 2 1) とした。  Next, a disk having a diameter of 21 Omm or 310 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate 21).
次に、 この板状体にドリル加工を施し、 シリコンウェハのリフターピンを挿入 する貫通孔 2 5、 熱電対を埋め込むための有底孔 24 (直径: 1. 1 mm、 深さ : 2mm) を形成した。  Next, this plate is drilled to form a through hole 25 for inserting a lifter pin of a silicon wafer, and a bottomed hole 24 (diameter: 1.1 mm, depth: 2 mm) for embedding a thermocouple. Formed.
(4) 上記 (3) で得た焼結体の底面に、 スクリーン印刷にて導体ペーストを 印刷した。 印刷パターンは、 図 1に示したような同心円状とした。  (4) Conductive paste was printed on the bottom of the sintered body obtained in (3) by screen printing. The printing pattern was concentric as shown in FIG.
導体ペーストとしては、 プリント配線板のスルーホール形成に使用されている 徳カ化学研究所製のソルべスト P S 6 0 3 Dを使用した。  As the conductor paste, Solvent PS603D manufactured by Tokuka Chemical Laboratory, which is used for forming through holes in printed wiring boards, was used.
この導体ペーストは、 銀一鉛ペーストであり、 銀 1 0 0重量部に対して、 酸化 鉛 (5重量。/。) 、 酸化亜鉛 (5 5重量%) 、 シリカ (1 0重量%) 、 酸化ホウ素 f(25重量%) およびアルミナ (5重量%) からなる金属酸化物を 7. 5重量部 含むものであった。 また、 銀粒子は、 平均粒径が 4. 5 μπιで、 リン片状のもの であった。 This conductor paste is a silver-lead lead paste, and based on 100 parts by weight of silver, lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and oxide Boron It contained 7.5 parts by weight of a metal oxide consisting of f (25% by weight) and alumina (5% by weight). The silver particles had a mean particle size of 4.5 μπι and were scaly.
(5) 次に、 導体ペーストを印刷した焼結体を 780°Cで加熱、 焼成して、 導 体ペース ト中の銀、 鉛を焼結させるとともに焼結体に焼き付け、 抵抗発熱体 22 を形成した。 銀一鉛の抵抗発熱体 22は、 厚さが 5 μπι、 幅 2. 4mm、 面積抵 抗率が 7. 7πιΩノロであった。  (5) Next, the sintered body on which the conductor paste is printed is heated and fired at 780 ° C to sinter the silver and lead in the conductor paste and to bake the sintered body, thereby forming the resistance heating element 22. Formed. The silver-lead lead resistance heating element 22 had a thickness of 5 μπι, a width of 2.4 mm, and an area resistivity of 7.7πιΩ.
(6) 硫酸ニッケル 80 g/1、 次亜リン酸ナトリウム 24 g/1、 酢酸ナト リウム 12 g/ 1、 ほう酸 8 g/1、 塩化アンモユウム 6 g/1の濃度の水溶液 からなる無電解ニッケルめっき浴に上記 (5) で作製した焼結体を浸漬し、 銀一 鉛の抵抗発熱体 22の表面に厚さ 1 μ mの金属被覆層 220 (二ッケル層) (図 示せず) を析出させた。  (6) Electroless nickel plating consisting of an aqueous solution with a concentration of nickel sulfate 80 g / 1, sodium hypophosphite 24 g / 1, sodium acetate 12 g / 1, boric acid 8 g / 1, and ammonium chloride 6 g / 1 The sintered body prepared in (5) above was immersed in the bath to deposit a 1 μm thick metal coating layer 220 (nickel layer) (not shown) on the surface of the resistance heating element 22 made of silver-lead. Was.
(7) 外部端子 13を取り付ける部分に、 スクリーン印刷により、 銀一鉛半田 ペース ト (田中貴金属社製) を印刷して、 半田ペース ト層を形成した。  (7) A silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the portion where the external terminals 13 were to be attached to form a solder paste layer.
次いで、 半田ペースト層の上にコバール製の外部端子 13を载置して、 420 °Cで加熱リフローし、 外部端子 13を半田層 130を介して抵抗発熱体 22の端 部に取り付けた。  Next, an external terminal 13 made of Kovar was placed on the solder paste layer, and heated and reflowed at 420 ° C., and the external terminal 13 was attached to an end of the resistance heating element 22 via the solder layer 130.
(8) 温度制御のための熱電対を有底孔に挿入し、 ポリイミド樹脂を充填し、 190 °Cで 2時間硬化させた。  (8) A thermocouple for temperature control was inserted into the bottomed hole, filled with a polyimide resin, and cured at 190 ° C for 2 hours.
(9) 次に、 支持容器 12を用意し、 抵抗発熱体 22を有するセラミック基板 (9) Next, the support container 12 is prepared, and the ceramic substrate having the resistance heating element 22 is provided.
21を、 断熱リング 11を介して支持容器 12に嵌め込んだ。 21 was fitted into the support container 12 via the heat insulating ring 11.
(10) 中底板の研磨  (10) Polishing the midsole plate
次に、 支持容器 12に取り付けられる SUS製の中底板 15のセラミック基板 側の表面のバフ研磨を行い、 J I S B 0601に基づく面粗度が R a = 0. 1 μ m Rm a x = 0. 8 μπιとなるよつにした。  Next, the surface on the ceramic substrate side of the SUS middle bottom plate 15 attached to the support container 12 is buffed, and the surface roughness based on JISB0601 is Ra = 0.1 μm Rmax = 0.8 μπι. It became a yotsu.
次に、 図 2に示したように、 この中底板 15を支持容器 12に取り付け、 外部 端子 13を中底板 15に形成した貫通孔から引出し、 リード線 17と接続された ソケット 16を外部端子 13に挿入することで、 外部端子 13とリード線 17と を接続した。 (1 1) この後、 その他の治具を有する底板 14を図 1、 2に示すように支持 容器 1 2に取り付け、 ホッ トプレートの製造を終了した。 Next, as shown in FIG. 2, the inner bottom plate 15 is attached to the support container 12, the external terminal 13 is pulled out from a through hole formed in the inner bottom plate 15, and the socket 16 connected to the lead wire 17 is connected to the external terminal 13. The external terminals 13 and the lead wires 17 were connected by inserting them into the holes. (11) Thereafter, the bottom plate 14 having other jigs was attached to the support container 12 as shown in FIGS. 1 and 2, and the production of the hot plate was completed.
(実施例 2) ホットプレートユニット (図 3、 12参照)  (Embodiment 2) Hot plate unit (See Figs. 3 and 12)
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径: 1. 1.um) 100 重量部、 酸化ィットリウム (Y203:イットリア、 平均粒径: 0. 4 μ m) 4 重量部、 アタリルバインダ 1 1. 5重量部、 分散剤 0. 5重量部おょぴ 1ーブタ ノールとエタノールとからなるアルコール 53重量部を混合したペーストを用い、 ドクターブレード法により成形を行って、 厚さ 0. 47mmのグリーンシート 5 0を作製した。 (1) the aluminum nitride powder (Tokuyama Corp., average particle size: 1. 1.um) 100 parts by weight, oxide Ittoriumu (Y 2 0 3: yttria, average particle size: 0. 4 μ m) 4 parts by weight, Atari Lubinder 11.5 parts by weight, dispersant 0.5 part by weight 1 1 Using a paste containing a mixture of 53 parts by weight of alcohol consisting of ethanol and ethanol, molding by the doctor blade method to a thickness of 0 A 47 mm green sheet 50 was produced.
(2) 次に、 このグリーン ート 50を 80°Cで 5時間乾燥させた後、 スルー ホールとなる部分等をパンチングにより形成した。  (2) Next, the green sheet 50 was dried at 80 ° C. for 5 hours, and a portion to be a through hole was formed by punching.
(3) 平均粒子径 1 μπιのタングステンカーバイト粒子 100重量部、 アタリ ル系パインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量部おょぴ分散剤 0. 3重量部を混合して導体ペース ト Αを調製した。  (3) 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 μπι, 3.0 parts by weight of an atalyl-based binder, 3.5 parts by weight of an α-terbineol solvent, and 0.3 part by weight of a dispersant are mixed. A conductor paste was prepared.
平均粒子径 3 μ mのタンダスデン粒子 100重量部、 アタリル系バインダ 1. 100 parts by weight of tandasdene particles having an average particle size of 3 μm, ataryl-based binder 1.
9重量部、 ひ一テルビネオール溶媒 3. 7重量部おょぴ分散剤 0. 2重量部を混 合して導体ペースト Bを調製した。 Conductive paste B was prepared by mixing 9 parts by weight and 3.7 parts by weight of a monoterpineol solvent with 0.2 part by weight of a dispersant.
この導体ペースト Aをグリーンシート 50上にスクリーン印刷で印刷し、 抵抗 発熱体 22用の導体ペースト層 220を形成した。 印刷パターンは、 図 1に示し たような同心円パターンとし、 導体ペースト層の幅を 1 Omm、 その厚さを 1 2 This conductor paste A was printed on the green sheet 50 by screen printing to form a conductor paste layer 220 for the resistance heating element 22. The printing pattern is a concentric pattern as shown in Fig. 1, and the width of the conductor paste layer is 1 Omm and its thickness is 1 2
/ mとした。 また、 スルーホールとなる部分に導体ペースト Bを充填し、 充填層/ m. In addition, the conductive paste B is filled in the portions that will become through holes,
490を形成した。 490 was formed.
上記処理の終わったグリーンシート 50に、 タングステンペーストを印刷しな いグリーンシート 50を上側 (加熱面) に 37枚、 下側に 13枚、 130°C、 8 MP aの圧力で積層した (図 12 (a) ) 。  On the green sheet 50 after the above treatment, 37 green sheets 50 without tungsten paste were laminated on the upper side (heating surface) and 13 on the lower side at 130 ° C and 8 MPa pressure (Fig. 12 (a)).
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 189 0°C、 圧力 1 5MP aで 10時間ホットプレスし、 厚さ 3 mmの窒化アルミ-ゥ ム焼結体を得た。 これを 23 Ommの円板状に切り出し、 内部に厚さ 6 μιη、 幅 1 Omm (ァスぺクト比: 1666) の抵抗発熱体 42およびスル^"ホール 49 を有するセラミック基板 41とした (図 1 2 (b) ) 。 (4) Next, the obtained laminate was degreased in nitrogen gas at 600 ° C for 5 hours, and hot-pressed at 1890 ° C and a pressure of 15 MPa for 10 hours to obtain a 3 mm-thick aluminum nitride. A sintered compact was obtained. This was cut out into a 23 Omm disk shape, and a 6 μιη thick, 1 Omm wide (act ratio: 1666) resistance heating element 42 and through hole 49 were cut inside. (FIG. 12 (b)).
(5) 次に、 (4) で得られた板状体を、 ダイヤモンド砥石で研磨した後、 マ スクを載置し、 S i C等によるプラスト処理で、 リフターピンを揷通するための 貫通孔 45および表面に熱電対を埋設するための有底孔 44を設けた。  (5) Next, the plate obtained in (4) is polished with a diamond grindstone, a mask is placed on the plate, and a plasting process using SiC or the like is performed to pass through the lifter pins. A hole 45 and a bottomed hole 44 for burying a thermocouple in the surface were provided.
(6) さらに、 スルーホール 49の真下を、 ドリルでえぐり取って直径 3. 0 mm, 深さ 0. 5 mmの袋孔 48を形成し、 スルーホール 48を露出させた (図 1 2 (c) ) 。 そして、 この袋孔 48に N i— Auからなる金ろうを用レ、、 70 0°Cで加熱リフローさせ、 コバール製の外部端子を接続した (図 12 (c) ) 。  (6) Further, a hole immediately under the through hole 49 was drilled to form a blind hole 48 having a diameter of 3.0 mm and a depth of 0.5 mm, and the through hole 48 was exposed (FIG. 12 (c )). Then, a brazing filler metal made of Ni—Au was used in the blind hole 48, heated and reflowed at 700 ° C., and an external terminal made of Kovar was connected (FIG. 12 (c)).
(7) 温度制御のための複数の熱電対を有底孔 44に埋め込み、 ポリイミド樹 脂を充填し、 1 90 °Cで 2時間硬化させた。  (7) A plurality of thermocouples for temperature control were embedded in the bottomed holes 44, filled with a polyimide resin, and cured at 190 ° C for 2 hours.
(8) 次に、 支持容器 12を用意し、 抵抗発熱体 42を有するセラミック基板 41を、 断熱リング 1 1を介して支持容器 12に嵌め込んだ。  (8) Next, the support container 12 was prepared, and the ceramic substrate 41 having the resistance heating element 42 was fitted into the support container 12 via the heat insulating ring 11.
(9) 中底板の研磨  (9) Polishing the midsole plate
支持容器 1 2に取り付けられる厚さ 1. 5 mmのアルミナ製の中底板 1 5のセ ラミック基板側の表面を 10 μ mの粒径の S i C砥粒で 1 k g Z c m 2に荷重で 研磨し、 J I S B 0601に基づく面粗度が R a = 10 μπι、 Rma x= 1 O O /zmとなるようにした。 The surface on the ceramic substrate side of the 1.5-mm-thick alumina mid-bottom plate 15 attached to the support vessel 1 2 was loaded with a SiC abrasive with a particle size of 10 μm to 1 kg Z cm 2 . Polishing was performed so that the surface roughness based on JISB 0601 was Ra = 10 μπι and Rmax = 1OO / zm.
次に、 図 2に示したように、 この中底板 15を支持容器 1 2に取り付け、 外部 端子 1 3を中底板 15に形成した貫通孔から引出し、 リード線 17と接続された ソケット 16を外部端子 1 3に挿入することで、 外部端子 1 3とリード線 17と を接続した。  Next, as shown in FIG. 2, the midsole plate 15 is attached to the support container 12, the external terminal 13 is pulled out from a through hole formed in the midsole plate 15, and the socket 16 connected to the lead wire 17 is externally connected. External terminal 13 was connected to lead 17 by inserting it into terminal 13.
(10) この後、 その他の治具を有する底板 14を図 1、 2に示すように支持 容器 1 2に取り付け、 ホットプレートの製造を終了した。  (10) Thereafter, the bottom plate 14 having other jigs was attached to the support container 12 as shown in FIGS. 1 and 2, and the production of the hot plate was completed.
(実施例 3 )  (Example 3)
中底板 15に実施例 2と同様にして研磨処理を施した後、 以下の条件でニッケ ルめっき、 金めつきを施したほかは、 実施例 1と同様にして、 ホットプレートを 製造した。  A hot plate was manufactured in the same manner as in Example 1 except that the inner bottom plate 15 was polished in the same manner as in Example 2, and then subjected to nickel plating and gold plating under the following conditions.
中底板 15を、 塩化ニッケル 30 g/l、 次亜リン酸ナトリウム 10 gZl、 タエン酸ナトリウム 10 gZlを含む pHが 5の無電解ニッケルめっき液に 20 分間浸漬して、 表面に厚さが 5 μηαの-ッケルめっき層 39 aを形成し、 さらに、 シアン金カリウム 2 gZl、 塩化アンモニゥム 75 gZ 1、 クェン酸ナトリウム 50 gZ 1、 次亜リン酸ナトリウム l O g/1を含む無電解めつき浴に 93でで 23秒間浸漬し、 厚さ 0. 03 / inの金めつき層 39 bを形成した。 Insole 15 with electroless nickel plating solution with pH 5 containing 30 g / l nickel chloride, 10 gZl sodium hypophosphite, 10 gZl sodium taenoate 20 Immersion for 5 minutes to form a nickel plating layer 39a with a thickness of 5 μηα on the surface.Additionally, potassium cyanide 2 gZl, ammonium chloride 75 gZ1, sodium citrate 50 gZ1, sodium hypophosphite l It was immersed in an electroless plating bath containing Og / 1 at 93 for 23 seconds at 93 to form a plating layer 39b having a thickness of 0.03 / in.
このときの中底板 1 5の表面粗度は、 Ra = l /zm、 Rma x = 10 imであ つた。  At this time, the surface roughness of the midsole plate 15 was Ra = l / zm and Rmax = 10 im.
(実施例 4 )  (Example 4)
厚さ 1. 5mm、 直径 32 Ommの SUS製の円板の表面を # 220のダイヤ モンド砥石で 1 k gZc m2の荷重で研磨し、 表面の面粗度を R a = 0. 6 m、 Rma x= 3. 8 mとした。 次に、 パンチングによって開口を形成し、 さらに 表面に直径 0. 3 mm程度のピンが形成された刻印板を 1 O k gZcm2の圧力 で、 S US製の円板に押しつけ、 図 13に示すように、 表面に深さ 1 30 μΐη程 度の窪みを碁盤の目のように縦横に形成した。 The thickness 1. 5 mm, polished with 1 k load of GZC m 2 with diamond grindstone surface # 220 of SUS steel discs with a diameter of 32 Omm, the surface roughness of the surface R a = 0. 6 m, Rmax = 3.8 m. Next, to form an opening through punching, further engraved plate a pin having a diameter of about 0. 3 mm were formed in 1 O k pressure GZcm 2 on the surface, pressed into a disc made of S US, 13 In this way, a depression with a depth of about 130 μΐη was formed vertically and horizontally on the surface like a grid.
この円板を底板として S US製の外枠とを溶接して一体化し、 支持容器とした。 円板には、 直径 30mmの開口が 5個、 8mmの開口が 80個、 10mmの開口 が 10個形成され、 開口率が 10%となっている。  This disc was used as the bottom plate and welded to an outer frame made of SUS to form a support vessel. The disk has 5 openings with a diameter of 30 mm, 80 openings with a diameter of 8 mm, and 10 openings with a diameter of 10 mm, with an opening ratio of 10%.
この支持容器と実施例 1と同じ条件で製造したセラミック基板を図 1、 2に示 すように組み合わせ、 ホットプレートユニットとした。  This support container and a ceramic substrate manufactured under the same conditions as in Example 1 were combined as shown in FIGS. 1 and 2 to obtain a hot plate unit.
(実施例 5)  (Example 5)
厚さ 1. 5 mmで直径 320mmの S US製の円板の表面を # 80のダイヤモ ンド砥石で 1 k g/ cm2の荷重で研磨し、 表面の面粗度を R a = 1 8 /ζπι、 R ma x = 210 μπιとした。 次に、 表面に直径 0. 3 mm程度のピンが形成され た刻印板を 10 k gZcm2の圧力で、 S US製の円板に押しつけ、 図 1 3に示 すように、 その表面に深さ 1 30 μπι程度の窪みを碁盤の目のように縦横に形成 した。 The surface of an S US disk with a thickness of 1.5 mm and a diameter of 320 mm is polished with a # 80 diamond whetstone with a load of 1 kg / cm 2 , and the surface roughness R a = 18 / ζπι , R max = 210 μπι. Then, the engraving plate diameter pins 0.5 about 3 mm on the surface was formed at a pressure of 10 k gZcm 2, pressed against the disc-made S US, as shown in Figure 1 3, the depth on the surface thereof A depression of about 130 μπι was formed vertically and horizontally like a grid.
この円板を底板として S US製の外枠とを一体化溶接して支持容器とした。 こ の支持容器と実施例 1と同じ条件で製造したセラミック基板を図 1、 2に示すよ うに組み合わせ、 ホットプレートユニットとした。  This disc was used as a bottom plate and integrally welded to an outer frame made of SUS to form a support container. This support container and a ceramic substrate manufactured under the same conditions as in Example 1 were combined as shown in FIGS. 1 and 2 to form a hot plate unit.
(実施例 6) 厚さ 1. 5 mmのアルミナ製の中底板 1 5のセラミック基板側の表面を # 2 2 0のダイヤモンド砥石で 1 k g/ c m2の荷重で研磨し、 J I S B 0 6 0 1 に基づく面粗度が R a = 0. 5 ^ m, Rm a x = 6 παとなるようにしたほかは、 実施例 1と同様にしてホットプレートュニットを製造した。 (Example 6) The thickness 1. polished by 1 kg / cm 2 load to 5 mm alumina base plate 1 5 of the ceramic substrate surface in at # 2 2 0 diamond grindstone, surface roughness based on JISB 0 6 0 1 The hot plate unit was manufactured in the same manner as in Example 1 except that R a = 0.5 ^ m and Rmax = 6πα.
(実施例 7)  (Example 7)
ガラス布にポリイミ ド樹脂を含浸させたプリプレダを 5層積層し、 両面を; R a = 0. 0 1 ;z mの鏡面ステンレス板で挟みこみ、 2 2 0°C、 1 0 0 k g/ c m2 で加圧してポリイミ ド基板を製造し、 直径 2 3 0mm、 厚さ 2 mmの円板とした。 この円板にパンチングにより、 直径 1 Ommの孔を 2 0個開けて開口率 5%とし た。 The Puripureda impregnated with polyimide resin to a glass cloth laminated five layers, the two-sided; R a = 0. 0 1; zm nipping specular stainless steel plate, 2 2 0 ° C, 1 0 0 kg / cm 2 Then, a polyimide substrate was manufactured by pressurizing to obtain a disc having a diameter of 230 mm and a thickness of 2 mm. Twenty holes having a diameter of 1 Omm were formed in this disc by punching to have an aperture ratio of 5%.
上記工程により、 ポリイミ ド板の表面も鏡面ステンレス板の表面が転写され、 R a = 0. 0 1 μ χι, Rm a x = 0. 1 5 μ mの粗度を有する面が形成されてい た。  Through the above steps, the surface of the polyimide plate was transferred to the surface of the mirror-finished stainless steel plate, and a surface having a roughness of R a = 0.01 μm, Rmax = 0.15 μm was formed.
この中底板を、 図 1 3に示すように、 支持容器の 3箇所に設けた板パネ 2 54 上に載置し、 ネジで固定した。  As shown in FIG. 13, this midsole plate was placed on plate panels 254 provided at three places of the support container, and was fixed with screws.
樹脂は金属よりも熱膨張率が大きいため、 そのまま固定すると支持容器に歪み が発生する。 そこで、 板パネ 2 54を使用して熱膨張率差を板パネで吸収し、 か つ、 外枠 2 7 0が歪まないようにしたのである。  Resin has a higher coefficient of thermal expansion than metal, so if it is fixed as it is, the support container will be distorted. Therefore, the difference in the coefficient of thermal expansion was absorbed by the panel panel using the panel panel 254, and the outer frame 270 was not distorted.
また、 抵抗発熱体を有するセラミック基板としては、 実施例 1と同様の条件で 製造したものを使用した。  Further, as the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
(実施例 8)  (Example 8)
ガラス布にポリイミ ド樹脂を含浸させたプリプレダを 5層積層し、 表面が粒径 2 0 111の3 i C粒子を用いたサンドブラスト処理でエンボス加工されたステン レス板で挟みこみ、 2 2 0°C、 1 0 0 k g/ c m2で加圧してポリイミ ド基板を 製造し、 直径 2 3 Omm, 厚さ 2 mmの円板とした。 Five layers of pre-preda impregnated with polyimide resin are laminated on a glass cloth and sandwiched between stainless steel plates embossed by sandblasting using 3iC particles with a particle size of 20111, 220 ° C, a polyimide substrate was manufactured by applying a pressure of 100 kg / cm 2 to obtain a disc having a diameter of 23 Omm and a thickness of 2 mm.
上記工程により、 ポリイミ ド板の表面もエンボス加工されたステンレス板の表 面が転写され、 R a - l O ^ nu Rma x = 9 5 w inの粗度を有する面が形成さ れていた。  Through the above steps, the surface of the polyimide plate was transferred to the surface of the embossed stainless steel plate, and a surface having a roughness of Ra-lO ^ nuRmax = 95 win was formed.
この円板にパンチングにより、 直径 1 Ommの孔を 20個開けて開口率 5 %と した。 By punching this disc, 20 holes with a diameter of 1 Omm were made and the aperture ratio was 5%. did.
この中底板を、 図 1 3に示すように、 支持容器の 3箇所にもうけた板パネ 25 4上に載置し、 ネジで固定した。  As shown in FIG. 13, this midsole plate was placed on a plate panel 254 provided at three locations in the support container, and was fixed with screws.
また、 抵抗発熱体を有するセラミック基板としては、 実施例 1と同様の条件で 製造したものを使用した。  Further, as the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
(実施例 9)  (Example 9)
厚さ 15mm、 直径 30 Ommのアルミニウム円板の片面に、 シリコンラバー で発熱線を挟んだヒータをネジで固定して加熱板とした。  On one side of an aluminum disk with a thickness of 15 mm and a diameter of 30 Omm, a heater sandwiching the heating wire with silicon rubber was fixed with screws and used as a heating plate.
この加熱板を実施例 1の支持容器に取り付けた。  This heating plate was attached to the support container of Example 1.
(比較例 1 )  (Comparative Example 1)
中底板 1 5に研磨処理を全く施さず、 そのまま支持容器 12に取り付けたほか は、 実施例 1と同様にして、 ホットプレートを製造した。  A hot plate was manufactured in the same manner as in Example 1 except that the inner bottom plate 15 was not subjected to any polishing treatment and was attached to the support container 12 as it was.
このときの中底板 1 5の表面粗度は、 _& = 25 μπι Rma x = 250 m であづた。 ' (比較例 2)  At this time, the surface roughness of the midsole plate 15 was _ & = 25 μπι Rmax = 250 m. '(Comparative Example 2)
' ガラス布にポリイミ ド樹脂を含浸させたプリプレダを 5層積層し、 表面が粒径 30 111の3 i C粒子を用いたサンドブラスト処理でエンボス加工されたステン レス板で挟みこみ、 220°C 100 k g/ cm2で加圧してポリイミ ド基板を 製造し、 直径 230mm、 厚さ 2 mmの円板とした。 '' Five layers of pre-preda impregnated with polyimide resin are laminated on a glass cloth, sandwiched between stainless steel plates embossed by sandblasting using 3iC particles with a particle size of 30111, and 220 ° C 100 A polyimide substrate was manufactured by applying a pressure of kg / cm 2 , and was made into a disk with a diameter of 230 mm and a thickness of 2 mm.
上記工程により、 ポリイミド板の表面もエンボス加工されたステンレス板の表 面が転写され、 1 & = 25 111 Rma x = 260 /imの粗度を有する面が形成 されていた。  Through the above steps, the surface of the embossed stainless steel plate was transferred to the surface of the polyimide plate, and a surface having a roughness of 1 & = 25 111 Rmax = 260 / im was formed.
この円板にパンチングにより、 直径 1 Ommの孔を 20個開けて開口率 5%と し / o  Punching 20 holes with a diameter of 1 Omm by punching this disc to obtain an aperture ratio of 5% / o
この中底板を図 13に示すように、 支持容器の 3箇所にもうけた板パネ 254 上に載置してネジで固定した。  As shown in FIG. 13, this midsole plate was placed on a plate panel 254 provided at three places in the support container and fixed with screws.
また、 抵抗発熱体を有するセラミック基板としては、 実施例 1と同様の条件で 製造したものを使用した。  Further, as the ceramic substrate having the resistance heating element, a substrate manufactured under the same conditions as in Example 1 was used.
(比較例 3 ) 厚さ 15mm、 直径 30 Ommのアルミニウム円板の片面に、 シリコンラバー で発熱線を挟んだヒータをネジで固定して加熱板とした。 (Comparative Example 3) On one side of an aluminum disk with a thickness of 15 mm and a diameter of 30 Omm, a heater sandwiching the heating wire with silicon rubber was fixed with screws and used as a heating plate.
この加熱板を比較例 1の支持容器に取り付けた。  This heating plate was attached to the support container of Comparative Example 1.
このようにして得られた実施例 1〜 9およぴ比較例 1〜 3に係るホットプレー トユニットに通電し、 300°Cまで昇温した後、 冷媒として室温の空気を用い、 0. 0 lm3/分の流速で冷媒導入管 27から空気を吹き込み、 冷却した。 The hot plate units according to Examples 1 to 9 and Comparative Examples 1 to 3 thus obtained were energized and heated to 300 ° C., and then room temperature air was used as a refrigerant. Air was blown from the refrigerant inlet tube 27 at a flow rate of lm 3 / min to cool.
そして、 このホットプレートユニットにっき、 以下のような基準で評価を行つ た。  The hot plate unit was evaluated based on the following criteria.
評価方法  Evaluation method
( 1 ) 昇温時間および降温時間の測定  (1) Measurement of heating time and cooling time
ホッ トプレ トが 300 °Cまで昇温する時間おょぴ 300〜 250。Cまで降温 する時間を測定した。 ただし、 樹脂板を使用する場合は、 200°Cまで昇温する 時間おょぴ 200〜1 50°Cまで降温する時間を測定した。  The time required for the hotplate to rise to 300 ° C is about 300-250. The time to cool to C was measured. However, when a resin plate was used, the time required to increase the temperature to 200 ° C and the time required to decrease the temperature to 200 to 150 ° C were measured.
(2) 降温時間のばらつき  (2) Variation in cooling time
上記 (1) の方法で降温時間を測定し、 下記の (1) 式で表される 10回の降 温時間のばらつきを計算した。  The cooling time was measured by the above method (1), and the variation of the cooling time for 10 times represented by the following formula (1) was calculated.
降温時間のばらつき (%) = 〔 (最も長い時間一最も短い時間) /平均時間〕 Variation in cooling time (%) = [(longest time-shortest time) / average time]
X 100 · · · ( 1 ) X 100
(3) シリコンウェハの温度の均一性  (3) Silicon wafer temperature uniformity
加熱中のシリコンウェハの温度をサーモピュア (日本データム社製 I R 62 012-00 1 2) で測定し、 最大温度と最低温度の差で表した。  The temperature of the silicon wafer during heating was measured with a thermopure (IR 62 012-00 12 by Nippon Datum) and expressed as the difference between the maximum temperature and the minimum temperature.
(4) 板状体の平坦度  (4) Flatness of plate
1点を 0 (基点) とし、 他の任意の 7箇所が基点からどれだけ変位しているか をレーザ変位計でしらべてその平均を平坦度とした。 h-1 One point was set to 0 (base point), and how much other 7 points were displaced from the base point was examined with a laser displacement meter, and the average was defined as flatness. h- 1
Figure imgf000038_0001
Figure imgf000038_0001
显に要した時間 •30 ο° こ要した^^: 300~250°Cとした。  Time required for 显 • 30 ο ° Cost required ^^: 300 to 250 ° C.
但し、樹脂については. ?显に要した!! ^:暂显〜 200°C、 βに要した^ P : 200- 150°Cとした。 However, for the resin, it took me a while! ! ^: 暂 显 ~ 200 ° C, ^ P required for β: 200-150 ° C.
上記表 1に示したように、 実施例 1〜 9に係るホットプレートユニットでは、 短時間で昇温降温を行うことができ、 昇温降温効率が高いことがわかった。 また、 同じ温度を保持するのに対しても、 少量の電力が済むことがわかった。 As shown in Table 1 above, in the hot plate units according to Examples 1 to 9, it was found that the temperature could be raised and lowered in a short time, and the temperature raising and cooling efficiency was high. It was also found that a small amount of power was required to maintain the same temperature.
一方、 比較例 1〜3に係るホットプレートユニットでは、 中底板の粗度が大き いことに起因して、 加熱効率や冷却効率が悪く、 実施例に比べて、 昇温降温に長 い時間を要している。  On the other hand, in the hot plate units according to Comparative Examples 1 to 3, the heating efficiency and the cooling efficiency were poor due to the large roughness of the midsole plate, and the time required for heating and cooling was longer than that of the Examples. I need it.
また、 実施例 1と実施例 4との比較から分かるように、 開口を設けることによ り降温時間をさらに短縮することができる。 また、 実施例 4と実施例 5との比較 力 ら分かるように、 平坦度を高くすることで、 シリコンウェハの温度を均一化す ることができる。  Further, as can be seen from a comparison between Example 1 and Example 4, the provision of the opening can further reduce the temperature lowering time. Further, as can be seen from the comparative power between Example 4 and Example 5, the temperature of the silicon wafer can be made uniform by increasing the flatness.
また、 実施例 2と実施例 5との比較から分かるように、 R m a xが  Also, as can be seen from the comparison between Example 2 and Example 5, R max is
を超えると降温時間がばらつく。 産業上利用の可能性 If it exceeds, the cooling time varies. Possibility of industrial use
以上説明したように本発明の半導体製造 ·検查装置によれば、 板状体の J I S B 0 6 0 1に基づく面粗度が R a = 2 0 μ m以下であるので、 抵抗発熱体等 による昇温、 保温を効率よく行うことができ、 降温時においても、 効率よく冷却 することができる。  As described above, according to the semiconductor manufacturing / inspecting apparatus of the present invention, the surface roughness of the plate-shaped body based on JISB 0601 is Ra = 20 μm or less, and the Heating and heat retention can be performed efficiently, and cooling can be performed efficiently even when the temperature drops.
さらに、 本発明の半導体製造 ·検查装置によれば、 半導体ウェハを均一に加熱 することができ、 降温時間のばらつきもすくなくすることができ、 良好な特性を 有するシリコンウェハ等の半導体関連製品を安定して製造するこどができる。  Further, according to the semiconductor manufacturing / inspection apparatus of the present invention, the semiconductor wafer can be uniformly heated, the variation in the temperature lowering time can be reduced, and a semiconductor-related product such as a silicon wafer having good characteristics can be manufactured. Can be manufactured stably.

Claims

請求の範囲 The scope of the claims
1 . その表面または内部に導体が形成された基板が板状体を有する支持容器に' 配設されてなる半導体製造 ·検査装置であって、 1. A semiconductor manufacturing / inspection apparatus comprising: a substrate having a conductor formed on its surface or inside is disposed in a support container having a plate-like body;
前記板状体の J I S B 0 6 0 1に基づく面粗度が、 R a = 2 0 μ m以下で あることを特徴とする半導体製造 ·検査装置。  A semiconductor manufacturing / inspection apparatus, wherein the plate-like body has a surface roughness based on JIS B 0601 of Ra = 20 μm or less.
2 . 前記板状体の J I S B 0 6 0 1に基づく面粗度が R a = 0 . 0 5〜 2 0 μ mである請求の範囲 1に記載の半導体製造 ·検査装置。 2. The semiconductor manufacturing / inspection apparatus according to claim 1, wherein the surface roughness of the plate-like body based on JISB0601 is Ra = 0.05 to 20 µm.
3 . 前記板状体は、 支持容器の底板または中底板である請求の範囲 1または 2 に記載の半導体製造 ·検査装置。 3. The semiconductor manufacturing / inspection apparatus according to claim 1, wherein the plate is a bottom plate or an intermediate bottom plate of a support container.
4 . 前記板状体には、 開口が形成されてなる請求の範囲 1〜3のいずれか 1に 記載の半導体製造 ·検査装置。 4. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 3, wherein an opening is formed in the plate-like body.
5 . 前記板状体には、 突起もしくは窪みが形成されてなる請求の範囲 1〜4の いずれか 1に記載の半導体製造 ·検査装置。 5. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 4, wherein a projection or a depression is formed on the plate-like body.
6 . 前記基板は、 セラミック基板である請求の範囲 1〜5のいずれか 1に記載 の半導体製造 ·検査装置。 6. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 5, wherein the substrate is a ceramic substrate.
7 . 前記基板は、 金属基板である請求の範囲 1〜 5のいずれか 1に記載の半導 体製造 ·検査装置。 7. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 5, wherein the substrate is a metal substrate.
PCT/JP2001/005564 2000-07-03 2001-06-27 Apparatus for producing and inspecting semiconductor WO2002003452A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000201221 2000-07-03
JP2000-201221 2000-07-03
JP2000-297464 2000-09-28
JP2000297464A JP2002083848A (en) 2000-07-03 2000-09-28 Semiconductor manufacturing and inspecting apparatus

Publications (1)

Publication Number Publication Date
WO2002003452A1 true WO2002003452A1 (en) 2002-01-10

Family

ID=26595269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005564 WO2002003452A1 (en) 2000-07-03 2001-06-27 Apparatus for producing and inspecting semiconductor

Country Status (2)

Country Link
JP (1) JP2002083848A (en)
WO (1) WO2002003452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002260A (en) * 2021-11-04 2022-02-01 江苏富乐华半导体科技股份有限公司 DPC ceramic copper-plated substrate binding force detection method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150538A (en) * 2002-10-30 2004-05-27 Tadahiro Omi Insulation panel and heating device
JP4276882B2 (en) 2003-04-30 2009-06-10 日本圧着端子製造株式会社 Multilayer printed wiring board connection structure
JP4776156B2 (en) * 2003-10-27 2011-09-21 京セラ株式会社 Ceramic heater
JP4776157B2 (en) * 2003-11-26 2011-09-21 京セラ株式会社 Ceramic heater
US8071916B2 (en) 2004-06-28 2011-12-06 Kyocera Corporation Wafer heating apparatus and semiconductor manufacturing apparatus
JP2006332410A (en) * 2005-05-27 2006-12-07 Kyocera Corp Wafer heating apparatus and semiconductor manufacturing apparatus using the same
JP4658913B2 (en) * 2006-12-01 2011-03-23 京セラ株式会社 Wafer support member
JP4789790B2 (en) * 2006-12-13 2011-10-12 京セラ株式会社 Wafer support member
KR101444711B1 (en) * 2008-05-23 2014-09-26 주성엔지니어링(주) Temperature control system for substrate manufacturing equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102436A (en) * 1999-05-07 2001-04-13 Applied Materials Inc Electrostatic chuck and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102436A (en) * 1999-05-07 2001-04-13 Applied Materials Inc Electrostatic chuck and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002260A (en) * 2021-11-04 2022-02-01 江苏富乐华半导体科技股份有限公司 DPC ceramic copper-plated substrate binding force detection method

Also Published As

Publication number Publication date
JP2002083848A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3381909B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
WO2001082366A1 (en) Ceramic substrate for semiconductor fabricating device
WO2001041508A1 (en) Ceramic heater
WO2002019399A1 (en) Ceramic substrate for semiconductor production and inspection
WO2001097264A1 (en) Hot plate
WO2002003435A1 (en) Hot plate for semiconductor manufacture and testing
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
WO2001080307A1 (en) Ceramic substrate
WO2001078455A1 (en) Ceramic board
WO2002045138A1 (en) Ceramic heater for semiconductor manufacturing and inspecting devices
WO2002003452A1 (en) Apparatus for producing and inspecting semiconductor
JP2005026585A (en) Ceramic joined body
JP2001237301A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2001223257A (en) Ceramic substrate for semiconductor production and inspection device
JP2001332560A (en) Semiconductor manufacturing and inspecting device
JP2001345370A (en) Semiconductor manufacturing and inspecting apparatus
JP2004253799A (en) Semiconductor manufacturing/inspecting device
JP2001319964A (en) Semiconductor manufacturing and inspection device
JP2002260829A (en) Hotplate unit
JP2001358205A (en) Apparatus for manufacturing and inspecting semiconductor
JP2002252270A (en) Hot plate unit
JP2001308163A (en) Ceramic substrate for semiconductor manufacturing and inspecting apparatus
JP2001338747A (en) Ceramic heater for semiconductor manufacturing and inspection apparatus
JP2001130982A (en) Ceramic plate for semiconductor manufacturing apparatus
JP2002372351A (en) Supporting container and semiconductor manufacturing/ inspecting equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载