+

WO2002001203A1 - Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede - Google Patents

Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede Download PDF

Info

Publication number
WO2002001203A1
WO2002001203A1 PCT/EP2001/005984 EP0105984W WO0201203A1 WO 2002001203 A1 WO2002001203 A1 WO 2002001203A1 EP 0105984 W EP0105984 W EP 0105984W WO 0201203 A1 WO0201203 A1 WO 0201203A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
measuring beam
measuring
radiation
ratio
Prior art date
Application number
PCT/EP2001/005984
Other languages
German (de)
English (en)
Inventor
Kai Zirk
Harald Pötzschke
Original Assignee
Glukomeditech Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glukomeditech Ag filed Critical Glukomeditech Ag
Priority to AU2001276346A priority Critical patent/AU2001276346A1/en
Priority to EP01953958A priority patent/EP1295108A1/fr
Publication of WO2002001203A1 publication Critical patent/WO2002001203A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Definitions

  • the invention relates to a method with the features of claim 1 and a miniaturizable device with the features of claim 16 for performing this method, for long-term stable and accurate measurements, in particular very low concentration substances in solutions.
  • the determinant can include be the concentration, content determinations are particularly necessary, for example, in the continuous monitoring and control of biotechnological processes or large-scale chemical plants. This requires a simple, robust and low-maintenance, but often also very sensitive detection method.
  • microreactors in which "conventional" detection methods cannot be used due to dimensional reasons and due to a lack of sensitivity.
  • Years of developing measuring methods for determining the content of individual substances for example glucose in body water.
  • a miniaturized device probe
  • a suitable process in a first phase within the hospital, for example, as an insertable into a tissue "puncture probe", in a subsequent phase, then as a telemetric long-term implant for 'the continuous determination of glucose concentration at all
  • a further development could be such an implant probe, coupled to an also implanted insulin pump, which then together form a technical "beta cell", with the help of which an exact stabilization of the Glucose level is possible for months and years and thus helps prevent the serious sequelae of the diabetic disease.
  • the invention is based on the object of developing a suitable method and a miniaturizable device for carrying out this method for long-term stable and accurate measurements for determining very low-concentration components in solution.
  • This device should have the characteristics of a probe with a compact and simple construction, i.e. the number of their components should be as small as possible.
  • a special part of the task is to design the device so that it can be used for both in vitro and in vivo applications.
  • a physical, method for measuring concentrations is the determination of the refractive index (refractometry).
  • a typical cuvette for differential refractometry normally has two chambers that are separated by an inclined wall, ⁇ being the angle between this partition and the side of the cuvette.
  • the resulting deflection y of the measuring light beam (laser) can be detected at a distance x from the cuvette by suitable position-sensitive transducers for intensities of electromagnetic waves. The following applies mathematically (for large x):
  • Another physical method for determining concentrations of dissolved analytes is, for example, polarimetry. If a solution of an optically active substance is irradiated with linearly polarized light, its plane of vibration is rotated. The angle of rotation ⁇ is proportional to the length of the light path in the material to be measured, in the case of solutions it is also proportional to the concentration of the optically active substance. If ⁇ is the specified angle between the preferred directions of the polarizer and analyzer, the result for a "conventional" polarization analysis at the output of the analyzer is:
  • I I Q - cos 2 ( ⁇ ⁇ ⁇ )
  • the object is achieved in that the polarized measuring beam emanating from a radiation source is placed in a prism made of radiation-transmissive material which is in the solution to be measured.
  • the object is achieved in that the polarized measuring beam emanating from a radiation source is irradiated into a prism made of radiation-permeable material which is in the solution to be measured, and the measuring beam emerging from the latter after multiple total reflection inside the prism is emitted by a optical phase shifter and an analyzer arranged behind a detector of the radiation intensity and the concentration determined using a calibration curve.
  • the refractive index of the solution containing the analyte which is directly proportional to the concentration of the analyte, is determined by influencing the refraction of a polarized measuring beam at the interface with an optically denser medium.
  • the four FRESNEL formulas contain the complete theory of reflection, refraction and polarization of light rays in and on isotropic media.
  • the orthogonal components E pa raiiei and E s e nkrec h t of the electric field vector E of a polarized light beam are phase locked.
  • Their temporal phase difference ⁇ after total reflection at the boundary layer mentioned with n 2 / n- ⁇ ⁇ 1 is generally different from zero, the polarization state of the light is then elliptical.
  • the shape depends in a known manner on the phase difference ⁇ . If one calculates the phase difference ⁇ in the area of total reflection using the " ..FRESNEL equations, the following results:
  • the output intensity of the light beam to be analyzed I is a function of the phase position ⁇ of the two orthogonal components to one another:
  • the sensitivity that can theoretically be achieved with this method is the first derivative of the " output intensity according to the relative refractive index (dl / dn re ⁇ ). For ⁇ > ⁇ g :
  • n re ⁇ is the relative refractive index
  • angle of incidence of the radiation measured towards the incident perpendicular is the input intensity
  • the angle of incidence ⁇ should be greater than the critical angle of the total reflection ( ⁇ g ), so that no radiation energy is lost due to refraction and the " change in the phase shift is as large as possible, but at the same time is chosen to be as small as possible to be as large as possible To enable the number of reflections of the measuring light beam in the smallest of spaces.
  • the angle of incidence ⁇ should preferably not be greater than ⁇ g + 1 °.
  • this solution defines the refractive index n 2 ; according to the invention, it forms the “external” medium.
  • the refractive index of the "inner” medium is selected by the material used (for example a glass). It follows that the refractive index of the "inner” medium must be chosen as large as possible in the range of what is technically possible, so that the desired condition with respect to re ⁇ is observed.
  • the glass type SF 31 (heaviest flint) with a refractive index ⁇ of 1.885 (at a wavelength of the measuring light ⁇ of 546.1 nm) has proven to be sufficiently suitable, for example.
  • aqueous glucose solution with a concentration of 500 mg / dL has a refractive index n 2 of 1.3337.
  • the relative refractive index n re ⁇ is then calculated to be 0.708, the critical angle of total reflection ⁇ g to 45.0 °.
  • the angle of incidence ⁇ must be chosen to be greater than or at least 45.0 ' °.
  • phase shifter ⁇ 0
  • the phase shifter can also be omitted, namely if the number of total reflections is selected such that the sum of the phase shift occurring in the system corresponds to that of the optimal working point ( ⁇ close to 90 °).
  • Figure 1 is a schematic representation of a device according to the invention
  • Figure 2 is a schematic representation of a further embodiment
  • Figure 3 is a schematic representation of a further embodiment
  • Figure 4 is a schematic representation of three possible extensions (4.a - 4.c)
  • Figure 5 is a schematic representation of a further embodiment
  • Figure 6 is a schematic representation of a further embodiment
  • Figure 7 shows the diagram of an exemplary structure and the arrangement of the
  • FIG. 8 shows the measured values of the output signal above the glucose concentration, measured with the device described in FIG. 7
  • FIG. 1 shows an elongated, quadrilateral, five-sided, mirror-symmetrical in the longitudinal direction prism (1), for example a glass prism, with two plane-parallel side surfaces.
  • the two end faces (F) which are arranged on a narrow side of the prism at a double angle of incidence 2- ⁇ , serve to couple the measuring beam in and out.
  • the measuring beam emanating from the radiation source (2) e.g. a laser diode
  • the polarizer (3) e.g. a film polarizer
  • the measuring body prism Its course in the measuring body prism is indicated by dotted and arrowed lines.
  • the measuring light beam emerges from the second end face (F) and penetrates an optical phase shifter (4), for example a phase shifter. With this phase shifter, the device-specific phase shift can be changed and the greatest possible sensitivity can be set.
  • the measuring beam changed in its polarization state then penetrates an analyzer (5), for example a film polarizer, the preferred direction of which is perpendicular to the spatial orientation of the main vibration plane of the emerging measurement light.
  • a photosensitive detector (6) for example a photodiode, arranged in the connection converts the incident radiation energy into a current proportional to the intensity, which in the simplest case is transformed into a voltage for further electronic processing by a current-voltage converter (7) and amplified, which is then displayed by a suitable measuring device (8), for example a voltmeter.
  • FIG. 2 shows a design of the prism similar to FIG. 1, but in which only one end face (F) is arranged on a narrow side - at the angle of incidence ⁇ with respect to a plane-parallel side face. This end face serves both for the Einais and the coupling of the measuring beam.
  • FIG. 3 shows a design of the prism similar to FIGS. 1 and 2, but in which an equilateral (mirror-symmetrical) trapezoidal glass prism (1a) - with an inclination angle of ⁇ - is attached to one of the plane-parallel narrow sides.
  • the basis of the equiangular (mirror-symmetrical) prism serves both for the Einais and the coupling of the measuring beam.
  • FIG. 4 shows in 4.a to 4.c designs similar to FIGS. 1, 2 and 3, in which the vertical end face as well as the two plane-parallel faces of the
  • FIG. 5 shows an embodiment similar to FIG. 1, but in which a beam splitter (10), for example a dielectric beam splitter cube, is arranged after the radiation source (2), for example a laser diode, instead of the polarizer (3).
  • This beam splitter generates a linearly polarized measuring beam on the one hand, and a reference beam on the other.
  • This reference beam strikes a photosensitive detector (11), for example a photodiode, which converts the incident radiation energy into a proportional one Electricity is changing.
  • the currents generated by the photosensitive detectors (6 and 11) are transformed into voltages by two current-voltage converters (7 and 12), which are then suitably related by a ratio generator (13). In this way, fluctuations in the intensity of the radiation source can be eliminated and, at the same time, the sensitivity can be increased by optoelectronic amplification if the ratio is selected appropriately.
  • Figure 6 shows an embodiment similar to Figure 5, but in which after the optical phase shifter (4), e.g. a Soleil-Babinet compensator, a beam splitter (14), e.g. an optical plane plate, preferably at an angle of 45 ° with respect to the incident beam, is arranged.
  • This beam splitter generates another "reference beam” by reflection.
  • This beam hits a photosensitive detector (15), for example a photodiode, which converts the incident radiation energy into a proportional current.
  • the currents generated by the photosensitive detectors (6 and 15) become transformed into voltages by two current-voltage converters (7 and 16), which are then converted in a suitable manner by a ratio or difference generator (17) into a ratio or difference signal, which is the primary measurement signal Voltages as the input signal of a sum generator (18), the output signal of which is set in relation to the output signal of the current-voltage converter (12) of the first reference beam signal by a ratio generator (19) become.
  • Another generally known possibility of increasing the sensitivity results from modulating the intensity of the radiation source (for example the amplitude or the frequency of the amplitude and the frequency) before entering the prism (1), with corresponding demodulation (for example by a ,, lock -ln "amplifier) of the ratio or difference signal of the ratio or difference generator (17).
  • the intensity of the radiation source for example the amplitude or the frequency of the amplitude and the frequency
  • demodulation for example by a ,, lock -ln "amplifier
  • An advantage of the method according to the invention is the synergistic effect between the number of total reflections and the preferred miniaturized design, because the narrower and thus overall smaller the prism, the greater the number of total reflections per unit length, which in turn increases the sensitivity Has. Further advantages lie in the compact as well as simple and robust construction: only a few components are required for a very sensitive device.
  • FIG. This shows the top view diagram of a modified arrangement of components according to the device shown in FIG. 1.
  • the radiation source (2) was a green helium-neon laser ("Model 1652", UNIPHASE, Kunststoff) with a wavelength of 543.5 nm and an optical output power of 0.25 mW.
  • the polarization filter (3), ( "PW 44", B + W-FILTERFABRIK, Bad Kreuznach) was set to an angle of 45 ° to the plane of incidence.
  • the laser beam entered parallel to the surface normal of a surface of an end face (F) of a rhombus prism, (1), ("special prism made of SF 4", JENAER MEßTECHNIK, Jena), the long sides of which were in a temperature-controlled trough (20) (a special design by STROMBOLI, Bochum) in which the solutions to be measured were located.
  • the laser beam emerging from the opposite end face (F) penetrated an optical phase shifter (4) ("Soleil Babinet Compensator", LINOS HOLDING, Göttingen) and then an analyzer ( 5) (PW 44 ", B + W-FILTERFABRIK, Bad Kreuznach) with a position of the preferred direction of 90 ° in relation to the polarizer (3).
  • a silicon photodiode (“ S 3399 “, HAMAMATSU, Herrsching), whose photo current was amplified by a downstream current amplifier (7) ("DLPCA-1000", FEMTO, Berlin). The signal was recorded and displayed by a voltmeter (8) ("Model 89-4", FLUKE, Berlin).
  • FIG. 7 shows very precise measurement results even for material to be measured with a low concentration of the substance to be analyzed.
  • FIG. 8 shows a calibration curve for D (+) glucose created with this device. For a concentration of 100 mg / dL, the measurement results in an absolute error of about 5 mg / dL.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé de mesure précise et durable des concentrations des constituants de solutions, en particulier de la concentration de glucose dans des solutions aqueuses. Selon ce procédé, un faisceau de mesure électromagnétique polarisé linéairement est guidé par réflexion totale dans un prisme (1) dont les côtés longs et un côté court sont au contact de la solution à mesurer, ledit faisceau entrant ainsi en interaction avec la substance à mesurer au niveau de l'interface. Après sortie hors du prisme (1), le faisceau est guidé au travers d'un déphaseur optique réglable (4) et d'un analyseur (5), l'intensité lumineuse étant éventuellement mesurée de manière adaptée après amplification correspondante. Dans un mode de réalisation préféré, le faisceau de mesure est divisé en deux faisceaux partiels au moyen d'un diviseur de faisceau (10). Un faisceau partiel est guidé au travers du prisme, ce faisceau partiel est divisé après sortie hors du déphaseur optique réglable (4), et un rapport ou une différence et simultanément une somme sont formés à partir des signaux de ces deux faisceaux partiels. Un rapport est formé à partir du signal de somme et du signal provenant du faisceau de référence sortant du diviseur de faisceau (10). L'invention concerne également un dispositif pouvant en particulier être miniaturisé, destiné à la mise en oeuvre du procédé selon l'invention.
PCT/EP2001/005984 2000-06-24 2001-05-25 Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede WO2002001203A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001276346A AU2001276346A1 (en) 2000-06-24 2001-05-25 Refractometric method for carrying out long-term stable accurate measurement of the concentrations of dissolved substances and miniaturizable device for carrying out said method
EP01953958A EP1295108A1 (fr) 2000-06-24 2001-05-25 Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10030927.5 2000-06-24
DE10030927A DE10030927C1 (de) 2000-06-24 2000-06-24 Refraktometrisches Verfahren zur langzeitstabilen genauen Messung der Konzentrationen gelöster Stoffe sowie eine miniaturisierbare Vorrichtung zu seiner Durchführung

Publications (1)

Publication Number Publication Date
WO2002001203A1 true WO2002001203A1 (fr) 2002-01-03

Family

ID=7646737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005984 WO2002001203A1 (fr) 2000-06-24 2001-05-25 Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede

Country Status (4)

Country Link
EP (1) EP1295108A1 (fr)
AU (1) AU2001276346A1 (fr)
DE (1) DE10030927C1 (fr)
WO (1) WO2002001203A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482300A4 (fr) * 2002-03-06 2007-04-25 Matsushita Electric Ind Co Ltd Dispositif de mesure de concentration
WO2017114770A1 (fr) * 2015-12-30 2017-07-06 Blue Ocean Nova AG Dispositif d'analyse d'un produit à analyser se trouvant dans une chambre de produit
WO2020169827A1 (fr) * 2019-02-22 2020-08-27 Technische Universität Wien Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022878B3 (de) 2006-05-15 2007-09-06 Sartorius Biotech Gmbh Verfahren und Detektionsvorrichtung zur bildgebenden Erfassung einer Probe
DE202006007867U1 (de) * 2006-05-15 2007-09-20 Sartorius Biotech Gmbh Probengefäß
DE102007032849A1 (de) * 2007-03-16 2008-09-18 Biocomfort Diagnostics Gmbh Messeinrichtung und Verfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen
DE102010006161B3 (de) * 2010-01-21 2011-01-13 Technische Universität Dresden Verfahren und Vorrichtung zur Bestimmung des Geschlechtes von befruchteten und nicht bebrüteten Vogeleiern

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170056A (en) * 1991-02-28 1992-12-08 Galileo Electro-Optics Corporation Optical fiber coupled devices for remote spectroscopy in the infrared
WO1994028395A1 (fr) * 1993-06-02 1994-12-08 Hoechst Aktiengesellschaft Capteur optique de detection de substances chimiques
US5483346A (en) * 1994-04-11 1996-01-09 Butzer; Dane C. Polarization based optical sensor utilizing total internal reflection
US5491556A (en) * 1992-01-11 1996-02-13 Fisons, Plc Analytical device with variable angle of incidence
US5926269A (en) * 1995-06-14 1999-07-20 Dystar Textilfarben Gmbh & Co. Optical probe with sensor made of optical polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393603A (en) * 1965-04-01 1968-07-23 Philips Corp Vertical double-pass multiple reflection cell for internal reflection spectroscopy
DE19815932C2 (de) * 1998-04-09 2000-06-21 Glukomeditech Ag Verfahren zur Miniaturisierung eines Polarimeters zur Analyse niedrig konzentrierter Komponenten im flüssigen Meßgut auf optischer Basis sowie Vorrichtung zu seiner Durchführung
DE19856591C2 (de) * 1998-12-08 2001-03-08 Basf Ag Vorrichtung zur spektroskopischen Analyse eines fluiden Mediums mittels abgeschwächter Reflexion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170056A (en) * 1991-02-28 1992-12-08 Galileo Electro-Optics Corporation Optical fiber coupled devices for remote spectroscopy in the infrared
US5491556A (en) * 1992-01-11 1996-02-13 Fisons, Plc Analytical device with variable angle of incidence
WO1994028395A1 (fr) * 1993-06-02 1994-12-08 Hoechst Aktiengesellschaft Capteur optique de detection de substances chimiques
US5483346A (en) * 1994-04-11 1996-01-09 Butzer; Dane C. Polarization based optical sensor utilizing total internal reflection
US5926269A (en) * 1995-06-14 1999-07-20 Dystar Textilfarben Gmbh & Co. Optical probe with sensor made of optical polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482300A4 (fr) * 2002-03-06 2007-04-25 Matsushita Electric Ind Co Ltd Dispositif de mesure de concentration
WO2017114770A1 (fr) * 2015-12-30 2017-07-06 Blue Ocean Nova AG Dispositif d'analyse d'un produit à analyser se trouvant dans une chambre de produit
CN108603832A (zh) * 2015-12-30 2018-09-28 蓝海新星股份有限公司 用于分析位于产品室中的待分析物品的设备
US11156561B2 (en) 2015-12-30 2021-10-26 Blue Ocean Nova AG Device for analyzing a product to be analyzed located in a product space
WO2020169827A1 (fr) * 2019-02-22 2020-08-27 Technische Universität Wien Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau
EP3928080A1 (fr) * 2019-02-22 2021-12-29 Technische Universität Wien Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau

Also Published As

Publication number Publication date
EP1295108A1 (fr) 2003-03-26
AU2001276346A1 (en) 2002-01-08
DE10030927C1 (de) 2002-05-23

Similar Documents

Publication Publication Date Title
DE68927097T2 (de) Differentieller refraktometer
DE69307547T2 (de) Temperaturfühler für medizinische Anwendung
DE69933193T2 (de) Integrierter optischer Sensor und Verfahren zum integrierten optischen Nachweis einer Substanz
DE4128458C2 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration einer Komponente, insbesondere von Glucose, einer flüssigen optisch aktiven Substanz, insbesondere der Körperflüssigkeit eines Patienten, durch Polarimetrie
DE69313768T2 (de) Verfahren und Vorrichtung zur Messung optischer Informationen in einem streuenden Medium
DE69330732T2 (de) Vorrichtung und Verfahren zur Messung der Absorption in einem dispergierenden Medium
DE69527390T2 (de) Vorrichtung und Verfahren zur intrakavitären Messung der makroskopischen Eigenschaften von Chemikalien
DE69531125T2 (de) Nachweis einer Zielsubstanz in einer Probe
DE69106067T2 (de) Verfahren, Vorrichtung und Zelle zum Detektieren des Winkels der optischen Drehung in einer Lösung mit zeitabhängiger Konzentration.
DE112015005218T5 (de) System und Verfahren zur Erfassung von Stoffen unter Verwendung von Bahndrehimpuls-Signaturen
DE2014530A1 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration suspendierter Teilchen mittels polarisiertem Licht
DE112012001415T5 (de) Verfahren und Gerät zur Brechungsindexmessung
AT512291A4 (de) Verfahren und vorrichtung zur bestimmung des co2-gehalts in einer flüssigkeit
EP0515623A1 (fr) Procede et dispositif pour la mesure continue et reversible de la concentration d'une espece chimique
DE10030927C1 (de) Refraktometrisches Verfahren zur langzeitstabilen genauen Messung der Konzentrationen gelöster Stoffe sowie eine miniaturisierbare Vorrichtung zu seiner Durchführung
EP1295107B1 (fr) Dispositif permettant l'utilisation combinee et simultanee de plusieurs methodes physiques de mesure pour l'analyse des constituants d'un melange liquide de plusieurs substances
DE2355148C3 (de) Vorrichtung zur Untersuchung der Zusammensetzung einer strömenden FlUs-
AT406912B (de) Optische messanordnung zur bestimmung der transmissions- und streustrahlung
DE19817843B4 (de) Verfahren zum Ableiten sonnenangeregten Fluoreszenzlichts aus Strahldichtemessungen
DE102008014335B4 (de) Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts
DE1927330A1 (de) Gemischdurchflussanalysator
DE2744168B2 (de) Magnetoptisches Spektralphotometer
DE60022963T2 (de) Verfahren und Vorrichtung zur Messung von Streulicht
DE112021001987T5 (de) Bewertung von Strömungseigenschaften in physischen Medien
DE10007818A1 (de) Hochdruckfester kompakter Präzionsmeßkopf für hochgenaue optische Brechungsindexmessungen in ruhenden und strömenden Flüssigkeiten und Gasen, insbesondere geeignet für den massenhaften Einsatz in Einwegsonden für in situ-Untersuchungen in der Tiefsee

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001953958

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001953958

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001953958

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载