WO2002001203A1 - Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede - Google Patents
Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede Download PDFInfo
- Publication number
- WO2002001203A1 WO2002001203A1 PCT/EP2001/005984 EP0105984W WO0201203A1 WO 2002001203 A1 WO2002001203 A1 WO 2002001203A1 EP 0105984 W EP0105984 W EP 0105984W WO 0201203 A1 WO0201203 A1 WO 0201203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prism
- measuring beam
- measuring
- radiation
- ratio
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005259 measurement Methods 0.000 title claims abstract description 14
- 230000007774 longterm Effects 0.000 title claims abstract description 9
- 239000000126 substance Substances 0.000 title claims description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 9
- 239000008103 glucose Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims description 18
- 230000010363 phase shift Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims description 7
- 238000011088 calibration curve Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 230000005670 electromagnetic radiation Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 2
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 2
- 239000007864 aqueous solution Substances 0.000 abstract 1
- 239000000470 constituent Substances 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 description 17
- 229960001031 glucose Drugs 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 4
- 239000012491 analyte Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000711 polarimetry Methods 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 241000935974 Paralichthys dentatus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
Definitions
- the invention relates to a method with the features of claim 1 and a miniaturizable device with the features of claim 16 for performing this method, for long-term stable and accurate measurements, in particular very low concentration substances in solutions.
- the determinant can include be the concentration, content determinations are particularly necessary, for example, in the continuous monitoring and control of biotechnological processes or large-scale chemical plants. This requires a simple, robust and low-maintenance, but often also very sensitive detection method.
- microreactors in which "conventional" detection methods cannot be used due to dimensional reasons and due to a lack of sensitivity.
- Years of developing measuring methods for determining the content of individual substances for example glucose in body water.
- a miniaturized device probe
- a suitable process in a first phase within the hospital, for example, as an insertable into a tissue "puncture probe", in a subsequent phase, then as a telemetric long-term implant for 'the continuous determination of glucose concentration at all
- a further development could be such an implant probe, coupled to an also implanted insulin pump, which then together form a technical "beta cell", with the help of which an exact stabilization of the Glucose level is possible for months and years and thus helps prevent the serious sequelae of the diabetic disease.
- the invention is based on the object of developing a suitable method and a miniaturizable device for carrying out this method for long-term stable and accurate measurements for determining very low-concentration components in solution.
- This device should have the characteristics of a probe with a compact and simple construction, i.e. the number of their components should be as small as possible.
- a special part of the task is to design the device so that it can be used for both in vitro and in vivo applications.
- a physical, method for measuring concentrations is the determination of the refractive index (refractometry).
- a typical cuvette for differential refractometry normally has two chambers that are separated by an inclined wall, ⁇ being the angle between this partition and the side of the cuvette.
- the resulting deflection y of the measuring light beam (laser) can be detected at a distance x from the cuvette by suitable position-sensitive transducers for intensities of electromagnetic waves. The following applies mathematically (for large x):
- Another physical method for determining concentrations of dissolved analytes is, for example, polarimetry. If a solution of an optically active substance is irradiated with linearly polarized light, its plane of vibration is rotated. The angle of rotation ⁇ is proportional to the length of the light path in the material to be measured, in the case of solutions it is also proportional to the concentration of the optically active substance. If ⁇ is the specified angle between the preferred directions of the polarizer and analyzer, the result for a "conventional" polarization analysis at the output of the analyzer is:
- I I Q - cos 2 ( ⁇ ⁇ ⁇ )
- the object is achieved in that the polarized measuring beam emanating from a radiation source is placed in a prism made of radiation-transmissive material which is in the solution to be measured.
- the object is achieved in that the polarized measuring beam emanating from a radiation source is irradiated into a prism made of radiation-permeable material which is in the solution to be measured, and the measuring beam emerging from the latter after multiple total reflection inside the prism is emitted by a optical phase shifter and an analyzer arranged behind a detector of the radiation intensity and the concentration determined using a calibration curve.
- the refractive index of the solution containing the analyte which is directly proportional to the concentration of the analyte, is determined by influencing the refraction of a polarized measuring beam at the interface with an optically denser medium.
- the four FRESNEL formulas contain the complete theory of reflection, refraction and polarization of light rays in and on isotropic media.
- the orthogonal components E pa raiiei and E s e nkrec h t of the electric field vector E of a polarized light beam are phase locked.
- Their temporal phase difference ⁇ after total reflection at the boundary layer mentioned with n 2 / n- ⁇ ⁇ 1 is generally different from zero, the polarization state of the light is then elliptical.
- the shape depends in a known manner on the phase difference ⁇ . If one calculates the phase difference ⁇ in the area of total reflection using the " ..FRESNEL equations, the following results:
- the output intensity of the light beam to be analyzed I is a function of the phase position ⁇ of the two orthogonal components to one another:
- the sensitivity that can theoretically be achieved with this method is the first derivative of the " output intensity according to the relative refractive index (dl / dn re ⁇ ). For ⁇ > ⁇ g :
- n re ⁇ is the relative refractive index
- angle of incidence of the radiation measured towards the incident perpendicular is the input intensity
- the angle of incidence ⁇ should be greater than the critical angle of the total reflection ( ⁇ g ), so that no radiation energy is lost due to refraction and the " change in the phase shift is as large as possible, but at the same time is chosen to be as small as possible to be as large as possible To enable the number of reflections of the measuring light beam in the smallest of spaces.
- the angle of incidence ⁇ should preferably not be greater than ⁇ g + 1 °.
- this solution defines the refractive index n 2 ; according to the invention, it forms the “external” medium.
- the refractive index of the "inner” medium is selected by the material used (for example a glass). It follows that the refractive index of the "inner” medium must be chosen as large as possible in the range of what is technically possible, so that the desired condition with respect to re ⁇ is observed.
- the glass type SF 31 (heaviest flint) with a refractive index ⁇ of 1.885 (at a wavelength of the measuring light ⁇ of 546.1 nm) has proven to be sufficiently suitable, for example.
- aqueous glucose solution with a concentration of 500 mg / dL has a refractive index n 2 of 1.3337.
- the relative refractive index n re ⁇ is then calculated to be 0.708, the critical angle of total reflection ⁇ g to 45.0 °.
- the angle of incidence ⁇ must be chosen to be greater than or at least 45.0 ' °.
- phase shifter ⁇ 0
- the phase shifter can also be omitted, namely if the number of total reflections is selected such that the sum of the phase shift occurring in the system corresponds to that of the optimal working point ( ⁇ close to 90 °).
- Figure 1 is a schematic representation of a device according to the invention
- Figure 2 is a schematic representation of a further embodiment
- Figure 3 is a schematic representation of a further embodiment
- Figure 4 is a schematic representation of three possible extensions (4.a - 4.c)
- Figure 5 is a schematic representation of a further embodiment
- Figure 6 is a schematic representation of a further embodiment
- Figure 7 shows the diagram of an exemplary structure and the arrangement of the
- FIG. 8 shows the measured values of the output signal above the glucose concentration, measured with the device described in FIG. 7
- FIG. 1 shows an elongated, quadrilateral, five-sided, mirror-symmetrical in the longitudinal direction prism (1), for example a glass prism, with two plane-parallel side surfaces.
- the two end faces (F) which are arranged on a narrow side of the prism at a double angle of incidence 2- ⁇ , serve to couple the measuring beam in and out.
- the measuring beam emanating from the radiation source (2) e.g. a laser diode
- the polarizer (3) e.g. a film polarizer
- the measuring body prism Its course in the measuring body prism is indicated by dotted and arrowed lines.
- the measuring light beam emerges from the second end face (F) and penetrates an optical phase shifter (4), for example a phase shifter. With this phase shifter, the device-specific phase shift can be changed and the greatest possible sensitivity can be set.
- the measuring beam changed in its polarization state then penetrates an analyzer (5), for example a film polarizer, the preferred direction of which is perpendicular to the spatial orientation of the main vibration plane of the emerging measurement light.
- a photosensitive detector (6) for example a photodiode, arranged in the connection converts the incident radiation energy into a current proportional to the intensity, which in the simplest case is transformed into a voltage for further electronic processing by a current-voltage converter (7) and amplified, which is then displayed by a suitable measuring device (8), for example a voltmeter.
- FIG. 2 shows a design of the prism similar to FIG. 1, but in which only one end face (F) is arranged on a narrow side - at the angle of incidence ⁇ with respect to a plane-parallel side face. This end face serves both for the Einais and the coupling of the measuring beam.
- FIG. 3 shows a design of the prism similar to FIGS. 1 and 2, but in which an equilateral (mirror-symmetrical) trapezoidal glass prism (1a) - with an inclination angle of ⁇ - is attached to one of the plane-parallel narrow sides.
- the basis of the equiangular (mirror-symmetrical) prism serves both for the Einais and the coupling of the measuring beam.
- FIG. 4 shows in 4.a to 4.c designs similar to FIGS. 1, 2 and 3, in which the vertical end face as well as the two plane-parallel faces of the
- FIG. 5 shows an embodiment similar to FIG. 1, but in which a beam splitter (10), for example a dielectric beam splitter cube, is arranged after the radiation source (2), for example a laser diode, instead of the polarizer (3).
- This beam splitter generates a linearly polarized measuring beam on the one hand, and a reference beam on the other.
- This reference beam strikes a photosensitive detector (11), for example a photodiode, which converts the incident radiation energy into a proportional one Electricity is changing.
- the currents generated by the photosensitive detectors (6 and 11) are transformed into voltages by two current-voltage converters (7 and 12), which are then suitably related by a ratio generator (13). In this way, fluctuations in the intensity of the radiation source can be eliminated and, at the same time, the sensitivity can be increased by optoelectronic amplification if the ratio is selected appropriately.
- Figure 6 shows an embodiment similar to Figure 5, but in which after the optical phase shifter (4), e.g. a Soleil-Babinet compensator, a beam splitter (14), e.g. an optical plane plate, preferably at an angle of 45 ° with respect to the incident beam, is arranged.
- This beam splitter generates another "reference beam” by reflection.
- This beam hits a photosensitive detector (15), for example a photodiode, which converts the incident radiation energy into a proportional current.
- the currents generated by the photosensitive detectors (6 and 15) become transformed into voltages by two current-voltage converters (7 and 16), which are then converted in a suitable manner by a ratio or difference generator (17) into a ratio or difference signal, which is the primary measurement signal Voltages as the input signal of a sum generator (18), the output signal of which is set in relation to the output signal of the current-voltage converter (12) of the first reference beam signal by a ratio generator (19) become.
- Another generally known possibility of increasing the sensitivity results from modulating the intensity of the radiation source (for example the amplitude or the frequency of the amplitude and the frequency) before entering the prism (1), with corresponding demodulation (for example by a ,, lock -ln "amplifier) of the ratio or difference signal of the ratio or difference generator (17).
- the intensity of the radiation source for example the amplitude or the frequency of the amplitude and the frequency
- demodulation for example by a ,, lock -ln "amplifier
- An advantage of the method according to the invention is the synergistic effect between the number of total reflections and the preferred miniaturized design, because the narrower and thus overall smaller the prism, the greater the number of total reflections per unit length, which in turn increases the sensitivity Has. Further advantages lie in the compact as well as simple and robust construction: only a few components are required for a very sensitive device.
- FIG. This shows the top view diagram of a modified arrangement of components according to the device shown in FIG. 1.
- the radiation source (2) was a green helium-neon laser ("Model 1652", UNIPHASE, Kunststoff) with a wavelength of 543.5 nm and an optical output power of 0.25 mW.
- the polarization filter (3), ( "PW 44", B + W-FILTERFABRIK, Bad Kreuznach) was set to an angle of 45 ° to the plane of incidence.
- the laser beam entered parallel to the surface normal of a surface of an end face (F) of a rhombus prism, (1), ("special prism made of SF 4", JENAER MEßTECHNIK, Jena), the long sides of which were in a temperature-controlled trough (20) (a special design by STROMBOLI, Bochum) in which the solutions to be measured were located.
- the laser beam emerging from the opposite end face (F) penetrated an optical phase shifter (4) ("Soleil Babinet Compensator", LINOS HOLDING, Göttingen) and then an analyzer ( 5) (PW 44 ", B + W-FILTERFABRIK, Bad Kreuznach) with a position of the preferred direction of 90 ° in relation to the polarizer (3).
- a silicon photodiode (“ S 3399 “, HAMAMATSU, Herrsching), whose photo current was amplified by a downstream current amplifier (7) ("DLPCA-1000", FEMTO, Berlin). The signal was recorded and displayed by a voltmeter (8) ("Model 89-4", FLUKE, Berlin).
- FIG. 7 shows very precise measurement results even for material to be measured with a low concentration of the substance to be analyzed.
- FIG. 8 shows a calibration curve for D (+) glucose created with this device. For a concentration of 100 mg / dL, the measurement results in an absolute error of about 5 mg / dL.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001276346A AU2001276346A1 (en) | 2000-06-24 | 2001-05-25 | Refractometric method for carrying out long-term stable accurate measurement of the concentrations of dissolved substances and miniaturizable device for carrying out said method |
EP01953958A EP1295108A1 (fr) | 2000-06-24 | 2001-05-25 | Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10030927.5 | 2000-06-24 | ||
DE10030927A DE10030927C1 (de) | 2000-06-24 | 2000-06-24 | Refraktometrisches Verfahren zur langzeitstabilen genauen Messung der Konzentrationen gelöster Stoffe sowie eine miniaturisierbare Vorrichtung zu seiner Durchführung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002001203A1 true WO2002001203A1 (fr) | 2002-01-03 |
Family
ID=7646737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/005984 WO2002001203A1 (fr) | 2000-06-24 | 2001-05-25 | Procede refractometrique de mesure precise durable des concentrations de substances dissoutes et dispositif miniaturisable destine a la mise en oeuvre de ce procede |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1295108A1 (fr) |
AU (1) | AU2001276346A1 (fr) |
DE (1) | DE10030927C1 (fr) |
WO (1) | WO2002001203A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482300A4 (fr) * | 2002-03-06 | 2007-04-25 | Matsushita Electric Ind Co Ltd | Dispositif de mesure de concentration |
WO2017114770A1 (fr) * | 2015-12-30 | 2017-07-06 | Blue Ocean Nova AG | Dispositif d'analyse d'un produit à analyser se trouvant dans une chambre de produit |
WO2020169827A1 (fr) * | 2019-02-22 | 2020-08-27 | Technische Universität Wien | Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006022878B3 (de) | 2006-05-15 | 2007-09-06 | Sartorius Biotech Gmbh | Verfahren und Detektionsvorrichtung zur bildgebenden Erfassung einer Probe |
DE202006007867U1 (de) * | 2006-05-15 | 2007-09-20 | Sartorius Biotech Gmbh | Probengefäß |
DE102007032849A1 (de) * | 2007-03-16 | 2008-09-18 | Biocomfort Diagnostics Gmbh | Messeinrichtung und Verfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen |
DE102010006161B3 (de) * | 2010-01-21 | 2011-01-13 | Technische Universität Dresden | Verfahren und Vorrichtung zur Bestimmung des Geschlechtes von befruchteten und nicht bebrüteten Vogeleiern |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5170056A (en) * | 1991-02-28 | 1992-12-08 | Galileo Electro-Optics Corporation | Optical fiber coupled devices for remote spectroscopy in the infrared |
WO1994028395A1 (fr) * | 1993-06-02 | 1994-12-08 | Hoechst Aktiengesellschaft | Capteur optique de detection de substances chimiques |
US5483346A (en) * | 1994-04-11 | 1996-01-09 | Butzer; Dane C. | Polarization based optical sensor utilizing total internal reflection |
US5491556A (en) * | 1992-01-11 | 1996-02-13 | Fisons, Plc | Analytical device with variable angle of incidence |
US5926269A (en) * | 1995-06-14 | 1999-07-20 | Dystar Textilfarben Gmbh & Co. | Optical probe with sensor made of optical polymer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3393603A (en) * | 1965-04-01 | 1968-07-23 | Philips Corp | Vertical double-pass multiple reflection cell for internal reflection spectroscopy |
DE19815932C2 (de) * | 1998-04-09 | 2000-06-21 | Glukomeditech Ag | Verfahren zur Miniaturisierung eines Polarimeters zur Analyse niedrig konzentrierter Komponenten im flüssigen Meßgut auf optischer Basis sowie Vorrichtung zu seiner Durchführung |
DE19856591C2 (de) * | 1998-12-08 | 2001-03-08 | Basf Ag | Vorrichtung zur spektroskopischen Analyse eines fluiden Mediums mittels abgeschwächter Reflexion |
-
2000
- 2000-06-24 DE DE10030927A patent/DE10030927C1/de not_active Expired - Fee Related
-
2001
- 2001-05-25 AU AU2001276346A patent/AU2001276346A1/en not_active Abandoned
- 2001-05-25 EP EP01953958A patent/EP1295108A1/fr not_active Withdrawn
- 2001-05-25 WO PCT/EP2001/005984 patent/WO2002001203A1/fr not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5170056A (en) * | 1991-02-28 | 1992-12-08 | Galileo Electro-Optics Corporation | Optical fiber coupled devices for remote spectroscopy in the infrared |
US5491556A (en) * | 1992-01-11 | 1996-02-13 | Fisons, Plc | Analytical device with variable angle of incidence |
WO1994028395A1 (fr) * | 1993-06-02 | 1994-12-08 | Hoechst Aktiengesellschaft | Capteur optique de detection de substances chimiques |
US5483346A (en) * | 1994-04-11 | 1996-01-09 | Butzer; Dane C. | Polarization based optical sensor utilizing total internal reflection |
US5926269A (en) * | 1995-06-14 | 1999-07-20 | Dystar Textilfarben Gmbh & Co. | Optical probe with sensor made of optical polymer |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482300A4 (fr) * | 2002-03-06 | 2007-04-25 | Matsushita Electric Ind Co Ltd | Dispositif de mesure de concentration |
WO2017114770A1 (fr) * | 2015-12-30 | 2017-07-06 | Blue Ocean Nova AG | Dispositif d'analyse d'un produit à analyser se trouvant dans une chambre de produit |
CN108603832A (zh) * | 2015-12-30 | 2018-09-28 | 蓝海新星股份有限公司 | 用于分析位于产品室中的待分析物品的设备 |
US11156561B2 (en) | 2015-12-30 | 2021-10-26 | Blue Ocean Nova AG | Device for analyzing a product to be analyzed located in a product space |
WO2020169827A1 (fr) * | 2019-02-22 | 2020-08-27 | Technische Universität Wien | Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau |
EP3928080A1 (fr) * | 2019-02-22 | 2021-12-29 | Technische Universität Wien | Procédé ainsi que dispositif pour déterminer les propriétés optiques d'un échantillon de matériau |
Also Published As
Publication number | Publication date |
---|---|
EP1295108A1 (fr) | 2003-03-26 |
AU2001276346A1 (en) | 2002-01-08 |
DE10030927C1 (de) | 2002-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68927097T2 (de) | Differentieller refraktometer | |
DE69307547T2 (de) | Temperaturfühler für medizinische Anwendung | |
DE69933193T2 (de) | Integrierter optischer Sensor und Verfahren zum integrierten optischen Nachweis einer Substanz | |
DE4128458C2 (de) | Verfahren und Vorrichtung zur Bestimmung der Konzentration einer Komponente, insbesondere von Glucose, einer flüssigen optisch aktiven Substanz, insbesondere der Körperflüssigkeit eines Patienten, durch Polarimetrie | |
DE69313768T2 (de) | Verfahren und Vorrichtung zur Messung optischer Informationen in einem streuenden Medium | |
DE69330732T2 (de) | Vorrichtung und Verfahren zur Messung der Absorption in einem dispergierenden Medium | |
DE69527390T2 (de) | Vorrichtung und Verfahren zur intrakavitären Messung der makroskopischen Eigenschaften von Chemikalien | |
DE69531125T2 (de) | Nachweis einer Zielsubstanz in einer Probe | |
DE69106067T2 (de) | Verfahren, Vorrichtung und Zelle zum Detektieren des Winkels der optischen Drehung in einer Lösung mit zeitabhängiger Konzentration. | |
DE112015005218T5 (de) | System und Verfahren zur Erfassung von Stoffen unter Verwendung von Bahndrehimpuls-Signaturen | |
DE2014530A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Konzentration suspendierter Teilchen mittels polarisiertem Licht | |
DE112012001415T5 (de) | Verfahren und Gerät zur Brechungsindexmessung | |
AT512291A4 (de) | Verfahren und vorrichtung zur bestimmung des co2-gehalts in einer flüssigkeit | |
EP0515623A1 (fr) | Procede et dispositif pour la mesure continue et reversible de la concentration d'une espece chimique | |
DE10030927C1 (de) | Refraktometrisches Verfahren zur langzeitstabilen genauen Messung der Konzentrationen gelöster Stoffe sowie eine miniaturisierbare Vorrichtung zu seiner Durchführung | |
EP1295107B1 (fr) | Dispositif permettant l'utilisation combinee et simultanee de plusieurs methodes physiques de mesure pour l'analyse des constituants d'un melange liquide de plusieurs substances | |
DE2355148C3 (de) | Vorrichtung zur Untersuchung der Zusammensetzung einer strömenden FlUs- | |
AT406912B (de) | Optische messanordnung zur bestimmung der transmissions- und streustrahlung | |
DE19817843B4 (de) | Verfahren zum Ableiten sonnenangeregten Fluoreszenzlichts aus Strahldichtemessungen | |
DE102008014335B4 (de) | Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts | |
DE1927330A1 (de) | Gemischdurchflussanalysator | |
DE2744168B2 (de) | Magnetoptisches Spektralphotometer | |
DE60022963T2 (de) | Verfahren und Vorrichtung zur Messung von Streulicht | |
DE112021001987T5 (de) | Bewertung von Strömungseigenschaften in physischen Medien | |
DE10007818A1 (de) | Hochdruckfester kompakter Präzionsmeßkopf für hochgenaue optische Brechungsindexmessungen in ruhenden und strömenden Flüssigkeiten und Gasen, insbesondere geeignet für den massenhaften Einsatz in Einwegsonden für in situ-Untersuchungen in der Tiefsee |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001953958 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001953958 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001953958 Country of ref document: EP |