+

WO2002066661A1 - Verfahren zur erzeugung und transformation von mitochondrien-konglomeraten - Google Patents

Verfahren zur erzeugung und transformation von mitochondrien-konglomeraten Download PDF

Info

Publication number
WO2002066661A1
WO2002066661A1 PCT/EP2002/001737 EP0201737W WO02066661A1 WO 2002066661 A1 WO2002066661 A1 WO 2002066661A1 EP 0201737 W EP0201737 W EP 0201737W WO 02066661 A1 WO02066661 A1 WO 02066661A1
Authority
WO
WIPO (PCT)
Prior art keywords
mitochondrial
mitochondria
accession
protein
transformation
Prior art date
Application number
PCT/EP2002/001737
Other languages
English (en)
French (fr)
Inventor
Jens-Otto Giese
Uwe Sonnewald
Original Assignee
Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung filed Critical Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung
Publication of WO2002066661A1 publication Critical patent/WO2002066661A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8214Plastid transformation

Definitions

  • the invention relates to a method for producing mitochondrial conglomerates to facilitate the subsequent transformation of the mitochondria, wherein the production of the mitochondrial conglomerates involves the expression of a first protein component which is capable of being anchored in the outer mitochondrial membrane and a second protein component capable of sterically shielding determinants on the surface of mitochondria in which the cells containing mitochondria are comprised.
  • Mitochondria like plastids, are organelles from eukaryotic cells. Both the mitochondria and the plastids, especially chloroplasts, contain their own DNA. Generally are
  • mitochondria and chloroplasts divide by constriction.
  • a ring of tubulin-related proteins is formed, which constricts with GTP consumption.
  • this ring consists of FtsZ.
  • FtsZ FtsZ.
  • no ftsz homologues were found that could be responsible for mitochondrial division, but in the unicellular algae Mallomonas splendens and the unicellular red algae Cyanidioschyzon merolae.
  • yeast and animals the mitochondria are constricted with the participation by Dynamin. Dynamins were previously known to be associated with endocytosis, where they lead to constriction of the endocytosis vesicles.
  • the mitochondrion is surrounded by two highly specialized membranes, the outer membrane and the inner membrane, which are crucial for its activity.
  • Each of the two lipid bilayers contains a unique protein pattern, and together they enclose and define two separate mitochondrial compartments: the inner matrix space and the narrow space between the two membrane systems (intermembrane space).
  • mitochondria would also offer the advantage that they are also productive in large quantities in seeds.
  • transformation processes that are used for the transfer of Foreign genes on mitochondria are suitable, for example micromanipulation or bombardment with DNA.
  • a (fusion) protein which comprises two components, namely a first, which causes the protein to be anchored in the outer mitochondrial membrane, and a second, which is able to determine determinants on the Sterically shielding the surface of mitochondria, which causes the formation of mitochondrial conglomerates.
  • the phenomenon now observed for the first time is not a random event, but a reproducible way of providing larger mitochondrial structures that can be genetically manipulated using conventional transformation methods due to their size.
  • Manufacturing shielding component is described here for the first time.
  • Mitochondrial lumps were developed by Rubino et al. (2001, Journal of General Virology 82: 29-34) after transient expression of the 36K viral protein, fused to GFP, described in Nicotiana benthamicana, but the size changes referred to there as "dumping" are not genetically manipulable conglomerates in the The meaning of the present invention by Rubino et al. (2001, vide supra) EM recordings only show that individual mitochondria get bigger, change their structure and can clump together, with a maximum of two clumped mitochondria being shown.
  • the method according to the invention effects a conglomeration of several (usually at least 3 or more) mitochondria, as is necessary for the use of the mitochondria for genetic manipulation.
  • CIRV Carnation Italian Ringspot Virus
  • MVBs multivesicular bodies
  • the fusion proteins used in the context of the invention do not destroy the mitochondrial membrane.
  • the transgenic plants in which the mitochondrial conglomeration takes place preferably do not show any visible phenotype. Without wishing to be bound by any hypothesis, it is currently assumed that the expression of the protein components according to the invention inhibits mitochondrial division, which results in mitochondrial conglomerates which could be termed “giant mitochondria” and which can be genetically manipulated due to their size .
  • the ("giants") mitochondria produced according to the invention are significantly larger than the naturally occurring mitochondria and consist of several mitochondria.
  • the mitochondria according to the invention preferably have a size of at least 2 ⁇ m, 3 ⁇ m, more preferably at least 4 ⁇ m, 6 ⁇ m and particularly preferably of at least 7 ⁇ m, 8 ⁇ m Most preferably, the mitochondria have a size of at least 9 ⁇ m, 10 ⁇ m or more in diameter, and the particularly preferred mitochondria are therefore comparable in size to the cell nucleus.
  • the anchoring component is the enzyme hexokinase (HK) or parts of this enzyme which are capable of anchoring in the outer mitochondrial membrane.
  • HK hexokinase
  • Other preferred anchoring components are porins or parts thereof which are capable of anchoring in the outer mitochondrial membrane.
  • any protein or part of a protein is suitable which has a cytoplasmic localization with anchoring in the outer mitochondrial membrane.
  • Hxk 1 from Nicotiana tabacum, for example, is an anchoring component.
  • the sequence of Hxk 1 was published under accession no.
  • Hxk 1 is a chloroplast protein.
  • the sequence of the hexokinase from tobacco was obtained by using a previously characterized hexokinase from spinach (Accession No. AF 118132) a cDNA library from tobacco was screened (Wiese et al. (1999) FEBS Lett. 461: 13-18).
  • the tobacco hexokinase obtained was obviously not subsequently characterized, but only the description of the spinach hexokinase was taken over, which indicates a localization of the hexokinase I in the outer envelope membrane.
  • hexokinases can also be used in the context of the invention, sequences suitable for creating suitable expression vectors can be found in the gene database, for example, under the keyword “hexokinase” (for example, at the filing date, there were over 1300 nucleic acid sequences for hexokinases recorded in the NCBI library) partially overlap).
  • Anchorage domain can be used, known.
  • Various proteins that are anchored in the outer mitochondrial membrane are listed below. The person skilled in the art can, using the references below, use conventional cloning methods to prepare suitable fusion proteins and use them to generate the desired mitochondrial conglomerates.
  • MMM1_YEAST Accession No. P41800: Burgess S.M., Delannoy M., Jensen R.E. "MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria.”
  • MOM22 is a receptor for mitochondrial targeting sequences and cooperates with MOM19.
  • a yeast mitochondrial outer membrane protein essential for protein import and cell viability is essential for protein import and cell viability.
  • the person skilled in the art can also use the proteins described in the prior art, which have a cytoplasmic localization with anchoring in the outer mitochondrial membrane, in particular hexokinases and porins, to find other suitable proteins, for example by PCR using oligonucleotides that are of known nucleic acid sequences are derived, or by hybridization of cDNA or genomic libraries with gene probes which correspond to known nucleic acid sequences.
  • the second component of the protein, the expression of which in plant cells leads to the desired formation of mitochondrial conglomerates, is the so-called shielding component, which causes steric shielding of determinants on the mitochondrial surface.
  • GFP green fluorescent protein
  • Shielding component should have a size that corresponds to a molecular weight of about 20 kDa, preferably 25 kDa and particularly preferably at least 28 kDa.
  • the anchoring component and the steric components are preferably expressed in the form of a fusion protein in the plant cell, i.e. the fusion protein is encoded by a chimeric gene construct that is an artificial one
  • the promoter controlling the expression of the fusion protein is a constitutive promoter, such as the 35S RNA promoter from CaMV, or a leaf-specific promoter.
  • a large number of cloning vectors are available to prepare for the introduction of foreign genes into higher plants or their cells Replication signal for E. coli and a marker gene for the selection of transformed bacterial cells included.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence in this case the fusion of (i) sequences which code for the anchoring component with (ii) sequences which are for the steric Coding shielding component can be introduced into the vector at a suitable restriction interface.
  • the plasmid obtained is then used for the transformation of E. cob ' cells.
  • Transformed E. cob ' cells are grown in an appropriate medium and then harvested and lysed, and the plasmid is recovered.
  • plasmid DNA is used for restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods. After each manipulation, the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences.
  • a large number of techniques are available for introducing DNA into a plant host cell, and the person skilled in the art can determine the appropriate method in each case without difficulty. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as the transformation medium, the fusion of
  • Proplastics injection, electroporation, direct gene transfer of isolated DNA into protoplasts, the introduction of DNA using the biolistic method and other options that have been well established for several years and are part of the usual repertoire of the specialist in plant molecular biology or plant biotechnology .
  • plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements per se for the plasmids used. The same applies for direct gene transfer. Simple plasmids such as e.g. B. pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is recommended.
  • the usual selection markers are known to the person skilled in the art and it is not a problem for him to select a suitable marker.
  • DNA sequences may be required.
  • z. B. for the transformation of the plant cell uses the Ti or Ri plasmid, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti or Ri plasmid must be connected as a flank region with the genes to be introduced become.
  • Agrobacteria are used for the transformation, the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination.
  • Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation).
  • Binary vectors can replicate in E. coli as well as in Agrobacteria. They contain a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region. They can be transformed directly into the agrobacteria.
  • the agrobacterium serving as the host cell is said to contain a plasmid which carries a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes. Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
  • Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which shows the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin, methotrexate, glyphosate, streptomycin, sulfonylurea, gentamycin or phosphinotricin and the like. a. mediated.
  • the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • Alternative markers are also suitable for this, such as nutritive markers and screening markers.
  • selection markers can also be completely dispensed with, but this is associated with a fairly high need for screening. If marker-free transgenic plants are desired, strategies are available to the person skilled in the art which permit subsequent removal of the marker gene, e.g. B. cotransformation, sequence-specific recombinases.
  • the regeneration of the transgenic plants from transgenic plant cells is carried out according to customary regeneration methods using known nutrient media.
  • the plants thus obtained can then be prepared using conventional methods, including molecular biological methods, such as PCR, blot analyzes, for the presence of the introduced nucleic acid, which codes for the fusion protein, consisting of anchoring component and shielding component, are examined.
  • the transgenic plant or the transgenic plant cells can be any monocot or dicot plant or its plant cell. They are preferably useful plants or cells of useful plants. It is particularly preferably corn, rice, wheat, barley, oats, rye, soybean, rapeseed, potato, tomato, tobacco, sugar beet, pea, banana, pineapple, paprika, yams, cassava, cotton.
  • the plant cells transformed with the fusion gene construct coding for the fusion protein show the inventive phenomenon of the formation of mitochondrial conglomerates, due to an inhibition of the naturally occurring mitochondrial division. This inhibition is mediated by anchoring the fusion protein in the outer mitochondrial membrane, caused by the anchoring component of the fusion protein, and shielding determinants on the mitochondrial surface, caused by the steric component of the fusion protein.
  • the mitochondrial conglomerates of the transformed plant cells can be genetically modified due to their size using known transformation methods.
  • Particle bombardment or microinjection is particularly suitable as a transformation method, but other methods are also conceivable if they are suitable for the transformation of plastids or protoplasts, for example, or have proven them for these objects.
  • the invention thus also relates to plant cells and plants which have mitochondria which have been transformed by the method according to the invention, and to propagation material and harvest products of these plant cells or plants, for example fruits, seeds, tubers, rhizomes, seedlings, cuttings, etc.
  • Cloning methods such as restriction cleavage, DNA isolation, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. cob ' cells, cultivation of bacteria, recombinant sequence analysis DNA, were according to Sambrook et al. (1989, vide supra).
  • E. coli (XL-1 Blue) bacteria were purchased from Stratagene (La Jolla, California, USA).
  • the Agrobacterium strain used for the plant transformation (C58C1 with the plasmid pGV 3850kan) was developed by Debleare et al. (1985, Nucl. Acids Res. 13, 4777).
  • the vectors pCR-Blunt (Invitrogen, Carlsbad, California, USA), pBluescript SK- (Stratagene) and pBinAR (Höfgen and Willmitze (1990) Plant Sei. 66: 221-230) were used for the cloning.
  • the leaf disks were washed on MS medium with 100 mg / 1 kanamycin, 500 mg / 1 claforan, 1 mg / 1 benzylaminopurine (BAP), 0.2 mg / 1 naphthylacetic acid ( NAA), 1.6% glucose and 0.85 Bacto agar and the cultivation (16 h light / 8 h dark) continued.
  • Growing sprouts were transferred to hormone-free MS medium with 2% sucrose, 215 mg / 1 claforan and 0.8% Bacto agar.
  • Hxkl Two fusion constructs of hexokinase 1 (Hxkl, see above) were generated with the Green Fluorescent Protein (GFP), in which the Hxkl content was different.
  • the Hxkl and GFP fusion constructs are shown in Fig. 1.
  • HxklN GFP (N stands for N-terminus)
  • N stands for N-terminus
  • Hxkl the entire sequence coding for Hxkl was combined with that for GFP.
  • PCR Polymerase chain reaction
  • HK9GFP3 GAA TTC GGA CTT ATC TTC AAG
  • GTA HK9GFP5 GGA TCC C AA CTT TTA GCC AAC CTC C
  • HK9LGFP3 GAA TTC ACG AAG AAT AGC CAT AGC
  • HKI cDNA clone was used as a template for Hxkl and was isolated from a cDNA library which is identical to the one from which the one described by Wiese et al. published clone Hxkl was isolated (Wiese et al. (1999) FEBS Lett. 461: 13-8.).
  • the vector pBin-mGFP5-ER was used as the template for GFP (Siemering K.R. et al. (1996), Curr. Biol. 6: 1653-1663).
  • composition of the PCR reaction batches and the PCR program used in each case are given below.
  • nucleic acid sequences of the fusion constructs described above are given below, along with the amino acid sequences of the fusion proteins encoded by the fusion constructs.
  • Nucleic acid sequence of the HxklN : GFP fusion construct
  • the first 25 bases correspond to the sequence of the PCR primer HK9GFP5, including the BamHI restriction site (italic).
  • the Hxkl ATG start codon is highlighted.
  • the EcoRI restriction interface, via which the GFP fragment was connected to the Hxkl fragment, is also shown in italics.
  • the last 29 bases result from the PCR primer K76 used (counter strand, including Sall restriction site).
  • the EcoRI fusion results in amino acids 43-44, EF.
  • the EcoRI interface GAATTC is already in the GFP template pBin-mGFP5-ER, as a result of which an endoplasmic reticulum signal sequence (pBin-mGFP5-ER) was connected upstream.
  • this signal sequence was not used in the context of the invention and the EcoRI nucleotides are not necessary for the function of GFP (cf. access numbers U87974 with and U87973 without this restriction site).
  • the sequence of Hxkl at the relevant point is GAATTT, which is also translated to EF.
  • the amino acids EF can therefore still be included in the hexokinase sequence.
  • Hxkl GFP the Hxk stop codon TAG was mutated by EcoRI in GAA.
  • the amino acids EF are located at positions 498-499.
  • Epidermis was peeled off from the underside of a sheet and irradiated with light of the wavelengths 488 and 543 nm on the CLSM 410 from Zeiss (Jena, Germany). The emissions were limited to 510 to 525 nm by a bandpass filter. GFP protein became visible in light green.
  • the fusion constructs were transferred to tobacco cells as indicated above and transgenic plants were regenerated. Epidermis samples of the transgenic plants showed green glowing signals of the GFP in the fluorescence microscope. What was surprising at first, however, was that the two constructs had different distribution patterns from GFP showed. While the small construct caused several small glowing GFP signals, the larger construct marked significantly larger glowing areas, comparable in size to the cell nucleus. The electron microscopic examination of the plant tissue then showed that the large GFP-marked areas were accumulations of mitochondria that were aggregated to varying degrees. Peroxisomes were also associated with these aggregates. In the plants transformed with the smaller construct, HxklN:: GFP, the mitochondria also showed an affinity for one another, but to a lesser extent than with Hxkl :: GFP.
  • Oligomycin specifically inhibits the mitochondrial FoFj ATPase (hence the name FO for oligomycin-sensitive; this name was then retained for the chloroplastid ATPase, although it is not sensitive).
  • FO mitochondrial FoFj ATPase
  • 6 mutations were found in the gene for the subunit, which are probably for the
  • the first step towards a reproducible protocol is a mutated one
  • the second step is the production of a gene which contains a) oligomycin resistance as a marker and b) the biotechnologically or physiologically interesting gene under the control of a mitochondrial promoter (for the mitochondrial genome of Arabidopsis thaliana see, for example, Unseld et al. (1997) Nat. Genet. 15: 57-61).
  • the chimeric gene from oligomycin-resistant ATPase subunit, promoter and transgene is provided with mitochondrial DNA at both ends, which enables it to be homologously recombined into the target genome. Larger areas of the target genome may be exchanged. Here, the expert has to decide which areas of the original mitochondrial genome are unnecessary.
  • the original gene for ATPase subunit is replaced by the marker gene. Important genes may be replaced by the transgene that also integrates at this point.
  • the chimeric gene integrates at an unimportant location in the mitochondrial genome, which ensures the survival of the original genes.
  • the marker gene for oligomycin resistance does not replace the original gene for the ATPase subunit, but this also remains.
  • the transformed mitochondrial genome would have two genes for the ATPase subunit, with only one conferring oligomycin resistance. The disadvantage here would be reduced resistance.
  • GUS ß-glucuronidase
  • transgenic tobacco plants were also produced which expressed a fusion protein consisting of Hxkl and GUS ( ⁇ -glucuronidase).
  • the plasmid pCambia 1304 (Cambia, Canberra) was amplified from the plasmid GUS and NOS terminator and ligated into the vector pBinAR via Sall / Hindlll (the sequences for GUS and NOS, or another terminator, of course also from other common
  • the OCS terminator of the BinAR vector was replaced by the NOS termination sequences of the Cambia plasmid.
  • the vector's multiple cloning site has been expanded to include a Spel interface.
  • the new vector created in this way was named pGUS-AR.
  • Hxkl was amplified from the corresponding cDNA using the oligonucleotides HK9GFP5 and HK9-GFP-GUS_3 and ligated into the new vector pGUS-AR via BamHI / Spei.
  • the PCR was carried out under standard conditions using the following primers:
  • the Hxkl :: GUS construct was introduced into tobacco plants of the SNN variety by means of Agrobacterium-mediated transformation. Selection was carried out on medium containing kanamycin. Resistant plants were screened using qualitative GUS staining (see e.g. Jefferson (1987) Plant Mol. Biol. Rep. 5: 387-405; Jefferson et al. (1987) EMBO J. 6: 3901-3907). 21 GUS-positive plants were identified and analyzed for the presence of mitochondrial conglomerates.
  • Arabidopsis thaliana was also transformed with expression vectors which code for fusion proteins according to the invention.
  • the desired mitochondrial conglomeration was also observed in transgenic Arabidopsis pu zes.
  • transgenic tobacco and the transgenic Arabidops w plants show no visible phenotype.
  • SHAM Unlike by Ortega et al. described, SHAM also had an impact on callus growth alone. A clear effect was seen at more than 100 ⁇ M. At AA and Myx were already visible at 50 ⁇ M concentration inhibition, whereby Myx was somewhat stronger.
  • the concentration of SHAM should not exceed 100 ⁇ M at least in the initial stage.
  • the concentrations of AA and Myx should be at least 50 ⁇ M.
  • oligonucleotides were derived, with the aid of which the complete ORF of the cob gene was amplified from tobacco DNA. After ligation into the vector pCR blunt (Invitrogen), those mutations were introduced by means of PCR which should lead to resistance to AA or Myx.
  • the mutation of nucleotide gl28 to t leads to the amino acid exchange glycine-43 ⁇ valine.
  • Mutation of nucleotide t405 to a leads to the amino acid exchange phenylalanine-135 -> leucine.
  • nucleotide t423 was mutated to a in both plasmids, creating an Ncol cleavage site without changing the amino acid sequence.
  • the resulting plasmids were cobG43V + NcoI illustration. called cobF135L + NcoI.
  • the construction of the plasmids used for the selection of transgenic mitochondria is shown in Figure 5.
  • Tobacco plants of the Havana variety were transformed by means of Agrobacterium-mediated gene transfer with Hxkl :: GFP.
  • the positive plants selected on kanamycin showed the well-known phenomenon of large mitochondrial conglomerates.
  • the Havana variety was used because it has proven itself in plastid transformation.
  • Leaf discs were taken from the transgenic tobacco plants with mitochondrial conglomerates, as well as from wild types. Using a particle gun, these were washed one to three times with the plasmid cobG43V + NcoI entitled bombarded cobF135L + NcoI.
  • Leaf disks bombarded with cobG43 V + Ncol were designed for 50 ⁇ M AA after two days of rest, leaf disks bombarded with cobF135L + NcoI for 50 ⁇ M Myx. After one week, the concentration was increased to 100 ⁇ M each. After two weeks at 100 ⁇ M plus 50 ⁇ M SHAM. After three weeks, the promising callus approaches were transferred to 200 ⁇ M AA or Myx plus 100 ⁇ M SHAM. After five weeks, SHAM was also increased to 200 ⁇ M.
  • the selection marker could be further improved by introducing a further mutation into the plasmids used, whereby a Sphl interface present in the native cob gene is switched off, since this enables a PCR reaction to be used to distinguish between native cob and mutated cob.
  • the DNA isolated from the regenerated callus can then be digested completely with SphI.
  • the transgenic cob is retained and can still be amplified using PCR.
  • An exchange of nucleotide T264 for C would open this possibility.
  • FIG. 1 shows the fusion constructs of hexokinase 1 (Hxkl) with the green fluorescent protein (GFP), in which the Hxkl content was of different sizes.
  • HxklN the green fluorescent protein
  • HxklN the N-terminus of Hxkl, comprising the putative signal peptide, was fused to GFP.
  • Hxkl the entire sequence coding for Hxkl was combined with that for GFP.
  • HK1 stands for Hxkl and HK1N for HxklN.
  • Figure 2 shows an electron micrograph of Hxkl :: GFP organelles.
  • aggregated mitochondria can be seen in the middle, peroxisomes in the upper right corner.
  • peroxisomes in the upper right corner.
  • aggregated mitochondria In the right picture are aggregated mitochondria and
  • FIGS. 3 a and b (different magnifications) likewise show electron micrographs of Hxkl :: GFP organelles, it being clearly evident that the formation of the mitochondrial conglomerates appears to be due to a disturbed mitochondrial division.
  • FIG. 4 shows EM images of mitochondrial conglomerates.
  • the left complex has a size of at least 7 ⁇ m, the right one of at least 10 ⁇ m.
  • FIG. 5 shows the construction of the plasmids used for the selection of transgenic mitochondria.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erzeugung von Mitochondrien-Konglomeraten zur erleichterten Durchführung einer anschliessenden Transformation der Mitochondrien, worin die Erzeugung der Mitochondrien-Konglomerate die Expression einer ersten Proteinkomponente, die zu einer Verankerung in der äusseren Mitochondrien-Membran befähigt ist, und einer zweiten Proteinkomponente, die in der Lage ist, Determinanten auf der Oberfläche von Mitochondrien sterisch abzuschirmen, in den die Mitochondrien enthaltenden Zellen umfasst.

Description

Verfahren zur Erzeugung und Transformation von Mitochondrien-Konglomeraten
Die Erfindung betrifft ein Verfahren zur Erzeugung von Mitochondrien- Konglomeraten zur erleichterten Durchführung einer anschließenden Transformation der Mitochondrien, worin die Erzeugung der Mitochondrien-Konglomerate die Expression einer ersten Proteinkomponente, die zu einer Verankerung in der äußeren Mitochondrien-Membran befähigt ist, und einer zweiten Proteinkomponente, die in der Lage ist, Determinanten auf der Oberfläche von Mitochondrien sterisch abzuschirmen, in den die Mitochondrien enthaltenden Zellen umfaßt.
Die Expression der genannten Proteinkomponenten, die Bestandteile eines gemeinsamen Chimären (Fusions)Protein sind, führt zu der Bildung von Mitochondrien-Konglomeraten, die dank ihrer Größe im Vergleich zu einzeln vorliegenden Mitochondrien mit fremden Nukleinsäuren transformiert werden können.
Bei Mitochondrien handelt es sich wie bei Piastiden um Organellen von eukaryontischen Zellen. Sowohl die Mitochondrien als auch die Piastiden, insbesondere Chloroplasten, enthalten ihre eigene DNA. Im allgemeinen sind
Mitochondrien gestreckt zylindrisch, selten kugelförmig, bei einem Durchmesser von 0,5 bis 1 μm. Wie ihre prokaryontischen Vorfahren teilen sich Mitochondrien und Chloroplasten durch Einschnürung. Es bildet sich dabei ein Ring aus mit Tubulin verwandten Proteinen, der sich unter GTP- Verbrauch einschnürt. Bei Chloroplasten besteht dieser Ring aus FtsZ. Über die Teilung von Mitochondrien ist weniger bekannt. In den vollständig bekannten Genomen von Caenorhabditis elegans und Saccharomyces cerevisiae wurden keine ftsz-Homologen gefunden, die für eine mitochondriale Teilung zuständig sein könnten, wohl aber in der einzelligen Alge Mallomonas splendens und der einzelligen Rotalge Cyanidioschyzon merolae. In Hefe und Tieren geschieht die Einschnürung der Mitochondrien unter Mitwirkung von Dynamin. Dynamine waren vorher im Zusammenhang mit Endocytose bekannt, wo sie zu einer Abschnürung der Endocytose- Vesikel führen.
Das Mitochondrium ist von zwei hoch spezialisierten Membranen umgeben, die äußere Membran und die innere Membran, die für seine Aktvität entscheidend sind. Jede der beiden Lipid-Doppelschichten enthält ein einzigartiges Proteinmuster, und zusammen umschließen und definieren sie zwei getrennte Mitochondrien- kompartimente: den inneren Matrixraum und den engen Raum zwischen den beiden Membransystemen (Intermembranraum).
Veröffentlichungen über erfolgreich transformierte Pflanzen-Mitochondrien liegen bislang nicht vor. Die Transformation von Mitochondrien ist aber insbesondere für die pflanzliche Biotechnologie und molekulare Pflanzenzüchtung von großem Interesse, da die Transformation von Zellorganellen, die bereits bei größeren Chloroplasten möglich ist, gegenüber der Zellkern-Manipulation deutliche Vorteile bietet. So beobachtet man bei einer Organell-Transformation eine höhere Expression des Transgens, das in der Regel nur mütterlich vererbt wird, was einen weiteren Vorteil der Organell-Transformation darstellt, da beispielsweise eine Verbreitung des Transgens durch Pollen kaum stattfindet (Bogorad L. (2000) Trends Biotechnol. 18: 257 - 263; Daniell H. (1999) Nat. Biotechnol. 17: 855 - 856).
Gegenüber transgenen Piastiden würden die Mitochondrien außerdem den Vorteil bieten, dass sie auch in Samen in großer Stückzahl produktiv vorliegen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, vergrößerte Mitochondrien bzw. Mitochondrien-Konglomerate, also Zusammenballungen, Zusammenschlüsse oder Verbände von Mitochondrien, zu erzeugen, die Transformationsverfahren zugänglich sind. Bei Transformationsverfahren, die für die Übertragung von Fremdgenen auf Mitochondrien geeignet sind, handelt es sich beispielsweise um die Mikromanipulation oder den Beschuss (Bombardment) mit DNA.
Diese und weitere Aufgaben, die sich aus der nachfolgenden Beschreibung ergeben, werden durch das im Hauptanspruch definierte Verfahren gelöst. Bevorzugte Ausführungsformen sind in den Unteransprüchen angegeben.
Es wurde jetzt überraschend gefunden, dass die Expression eines (Fusions)Proteins, welches zwei Komponenten umfasst, nämlich eine erste, die eine Verankerung des Proteins in der äußeren Mitochondrien-Membran bewirkt, und eine zweite, die in der Lage ist, Determinanten auf der Oberfläche von Mitochondrien sterisch abzuschirmen, die Bildung von Mitochondrien-Konglomeraten bewirkt. Bei dem jetzt erstmals beobachteten Phänomen handelt es sich nicht etwa um ein zufälliges Ereignis, sondern um einen reproduzierbaren Weg zur Bereitstellung größerer Mitochondrien-Gebilde, die aufgrund ihrer Größe mittels herkömmlicher Transformationsmethoden genetisch manipuliert werden können.
Die Möglichkeit, größere Mitochondrien-Zusammenschlüsse durch gezielte Expression eines Proteins, umfassend eine Verankerungskomponente (targeting- Komponente) für die äußere Mitochondrienmembran sowie eine sterische
Abschirmungskomponente (shielding-Komponente) herzustellen, wird hier erstmals beschrieben.
Zwar wurden Mitochondrien- Verklumpungen von Rubino et al. (2001, Journal of General Virology 82:29-34) nach transienter Expression des viralen 36K-Proteins, fusioniert an GFP, in Nicotiana benthamicana beschrieben, doch handelt es sich bei den dort als „Verkumpungen" bezeichneten Größenveränderungen nicht um genetisch manipulierbare Konglomerate im Sinne der vorliegenden Erfindung. Die von Rubino et al. (2001, vide supra) gezeigten EM- Aufnahmen zeigen lediglich, dass einzelne Mitochondrien größer werden, ihre Struktur verändern und miteinander verklumpen können, wobei maximal zwei verklumpte Mitochondrien dargestellt sind.
Im Unterschied hierzu wird mit dem erfϊndungsgemäßen Verfahren eine Konglomeration von mehreren (in der Regel von mindestens 3 oder mehr) Mitochondrien erwirkt, wie sie für die Verwendung der Mitochondrien zur genetischen Manipulation notwendig ist.
Die EM- Aufnahmen von Rubino et al. (2001, vide supra) legen vielmehr den Schluss nahe, dass die Mitochondrien in ihrer Funktion und Struktur zerstört werden und dass diese Zerstörung auf die Expression des viralen 36K-Proteins zurückgeht. Im Gegensatz zu dem Fusionsprotein gemäß der vorliegenden Erfindung scheint das virale 36K-Protein eine Auflösung der Mitochonrienstruktur zu bewirken. So kommt es bei den Versuchen von Rubino et al. zu einer Aufweitung des Intermembran- raums, zu einem Eintritt von Cytosol in den Intermembranraum und erste Ansätze von Mutivesicular Bodies (MVB) sind zu beobachten. Dies ist angesichts der eigentlichen Funktion des viralen 36K-Proteins, die in der Auflösung der äußeren Mitochondrienmembran zu Multivesicular Bodies besteht, nicht überraschend. Dass bei Rubino et al. nur eine transiente, aber keine stabile Expression des 36K- Fusionsproteins in der Pflanzenzelle möglich ist, weist weiterhin daraufhin, dass die dort beobachteten Mitochondrien auch funktionell nicht mehr aktiv sind. Damit könnten solche Mitochondrien, selbst wenn sie vereinzelt aggregieren sollten, nicht für die Herstellung transgener Pflanzen eingesetzt werden. Die Verklumpungen von Rubino et al. (2001, vide supra) sind daher keine Konglomerate im Sinne der vorliegenden Erfindung. Betrachtet man die Veröffentlichung von Rubino et al. aus dem Jahr 2001 des weiteren im Kontext mit einer früheren Veröffentlichung der gleichen Autoren, nämlich Rubino et al. 2000, Journal of General Virology 81;279-286, so ), so geht hieraus klar hervor, dass der von Rubino et al. 2001, vide supra, geschilderte Effekt allein auf das Virusprotein 36K zurückgeht. So wird in der früheren Publikation bereits daraufhingewiesen, dass CIRV (Carnation Italian Ringspot Virus)-induzierte Multivesicular Bodies (MVBs) Ähnlichkeit aufweisen zu Strukturen, die von anderen Tombusviren erzeugt werden. Außerdem ist der Diskussion der früheren Veröffentlichung zu entnehmen, dass mit nicht-fusioniertem 36K-Protein identische Strukturen induziert wurden, wie mit dem Fusionsprotein 36K-GFP. In diesem Zusammenhang wird auch erwähnt, dass auch andere Tombusvirus-Proteine, wie 33K, MVBs erzeugen, u.a. aus Peroxisomen, also vollkommen anderen Membranen bzw. Organellen als Mitochondrien.
Somit ist klar, dass die im Stand der Technik beschriebenen Mitochondrien- Verklumpungen allein auf das virale Protein 36K oder andere Proteine von Tombusviren zurückgehen und der auf diesen viralen Proteinen beruhende Effekt eine Zerstörung von Membranen, sei es die äußere Mitochondrienmembran oder die von Peroxisomen, ist. Solche viralen Proteine, insbesondere Proteine der Familie der Tombusviren, die eine Auflösung und Zerstörung von Membranen bewirken, sind von dem Einsatz im Rahmen der vorliegenden Erfindung ausgeschlossen.
Die im Rahmen der Erfindung eingesetzten Fusionsproteine bewirken keine Zerstörung der Mitochondrienmembran.
Bevorzugt zeigen die transgenen Pflanzen, in denen die Mitochondrien- Konglomeration stattfindet, keinen sichtbaren Phänotyp. Ohne an eine Hypothese gebunden sein zu wollen, wird gegenwärtig davon ausgegangen, daß die Expression der erfindungsgemäßen Proteinkomponenten eine Hemmung der Mitochondrien-Teilung bewirkt, wodurch Mitochondrien- Konglomerate entstehen, die man als „Riesenmitochondrien" bezeichnen könnte und aufgrund ihrer Größe genetisch manipuliert werden können.
Die gemäß der Erfindung erzeugten („Riesen")Mitochondrien sind deutlich größer als die natürlicherweise vorkommenden Mitochondrien und bestehen aus mehreren Mitochondrien. Bevorzugt haben die erfindungsgemäßen Mitochondrien eine Größe von mindestens 2 μm, 3 μm, bevorzugter von mindestens 4 μm, 6 μm und besonders bevorzugt von mindestens 7μm, 8 μm. Am meisten bevorzugt haben die Mitochondrien eine Größe von mindestens 9 μm, 10 μm oder mehr im Durchmesser. Die besonders bevorzugten Mitochondrien sind somit in der Größe dem Zellkern vergleichbar.
In einer bevorzugten Ausführungsform handelt es sich bei der Verankerungskomponente um das Enzym Hexokinase (HK) oder Teile dieses Enzyms, die zu einer Verankerung in der äußeren Mitochondrienmembran befähigt sind. Andere bevorzugte Verankerungskomponenten sind Porine bzw. Teile davon, die zur Verankerung in der äußeren Mitochondrienmembran in der Lage sind. Grundsätzlich ist jedes Protein bzw. jeder Teil eines Proteins geeignet, der eine cytoplasmatische Lokalisierung mit Verankerung in der äußeren Mitochondrienmembran aufweist.
Als Verankerungskomponente bietet sich beispielsweise die Hexokinase Hxk 1 aus Nicotiana tabacum an. Die Sequenz von Hxk 1 wurde unter der Accession No.
AF 118133 veröffentlicht, wobei der Beschreibung der Sequenz in der Datenbank zu entnehmen ist, daß es sich bei Hxk 1 um ein Chloroplastenprotein handele. Die Sequenz der Hexokinase aus Tabak wurde gewonnen, indem mit einer vorher charakterisierten Hexokinase aus Spinat (Accession No. AF 118132) eine cDNA- Bank aus Tabak gescreent wurde (Wiese et al. (1999) FEBS Lett. 461: 13 - 18). Die erhaltene Tabak-Hexokinase wurde anschließend offensichtlich nicht weiter charakteriseirt, sondern es wurde nur die Beschreibung der Spinat-Hexokinase übernommen, die auf eine Lokasisierung der Hexokinase I in der äußeren Hüllmembran hinweist.
Auch andere Hexokinasen sind im Rahmen der Erfindung einsetzbar, für die Erstellung geeigneter Expressionsvektoren geeignete Sequenzen kann der Fachmann beispielsweise den Gendatenbanken unter dem Stichwort „Hexokinase" entnehmen (zum Anmeldetag waren z.B. in der NCBI-Genbank über 1300 Nukleinsäure- sequenzen für Hexokinasen verzeichnet, die sich allerdings teilweise überschneiden).
Dem Fachmann sind neben der in den beigefügten Beispielen erwähnten Hexokinase weitere geeignete Verankerungsproteine bzw. Teile von Proteinen, die als
Verankerungsdomäne eingesetzt werden können, bekannt. Im folgenden werden diverse Proteine, die in der äußeren Mitochondrienmembran verankert sind, aufgeführt. Der Fachmann kann anhand der untenstehenden Referenzen mittels üblicher Klonierungsverfahren geeignete Fusionsproteine herstellen und zur Erzeugung der gewünschten Mitochondrien-Konglomerate einsetzen.
- AKAPl, Accession No. Q92667; Accession No. Q13320: Trendelenburg G., Hummel M., Riecken E.-O., Hanski C;
"Molecular characterization of AKAPl 49, a novel A kinase anchor protein with a KH domain."
Biochem. Biophys. Res. Commun. 225:313-319(1996)
- CPT1_HUMAN, Accession No. P50416: Britton C.H., Schultz R.A., Zhang B., Esser V., Foster D.W., McGarry J.D. "Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene." Proc. Natl. Acad. Sei. U.S.A. 92:1984-1988(1995)
- CPTl_MOUSE; Accession No. P97742; Accession No. 035288: Cox K.B., Johnson K.R., Wood P.A."Chromosomal locations of the mouse fatty acid oxidation genes Cptla, Cptlb, Cpt2, Acadvl, and metabolically related Crat gene." Mamm. Genome 9:608-610(1998)
- CPT1_RAT, Accession No. P32198; Accession No. P97780: Esser V., Britton C.H., Weis B.C., Foster D.W., McGarry J.D.; "Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic funetion." J. Biol. Chem. 268:5817-5822(1993)
- CPTM_HUMAN, Accession No. Q92523; Accession No. Q13389; Accession No. Q99655: Yamazaki N., Shinohara Y., Shima A., Yamanaka Y., Terada H.'Tsolation and characterization of cDNA and genomic clones encoding human muscle type carnitine palmitoyltransferase I."
Biochim. Biophys. Acta 1307:157-161(1996)
- CPTM_RAT, Accession No. Q63704: Yamazaki N., Shinohara Y., Shima A., Terada H.
"High expression of a novel carnitine palmitoyltransferase I like protein in rat brown adipose tissue and heart: isolation and characterization of its cDNA clone." FEBS Lett. 363:41-45(1995)
- CYM5_HUMAN, Accession No. 043169 - CYM5_RAT, Accession No. P04166; Accession No. Q9QWG1 : Lederer F., Ghrir R., Guiard B., Cortial S., Ito A.; "Two homologous cytochromes b5 in a single cell." Eur. J. Biochem. 132:95-102(1983) - IM23_YEAST, Accession No. P32897: Emtage J.L.T., Jensen R.E."MAS6 encodes an essential inner membrane component of the yeast mitochondrial protein import pathway."
J. Cell Biol. 122:1003-1012(1993) - MD10_YEAST, Accession No. P18409: Fogo L.F., Yaffe M.P."Regulation of mitochondrial morphology and inheritance by MdmlOp, a protein of the mitochondrial outer membrane." J. Cell Biol. 126:1361-1373(1994)
- MD12_SCHPO, Accession No. Q92377: Berger K.H., Sogo L.F., Yaffe M.P."Mdml2p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast." J. Cell Biol. 136:545-553(1997)
- MD12_YEAST, Accession No. Q92328; Accession No. Q08064: Berger K.H., Sogo L.F., Yaffe M.P."Mdml2p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast." J. Cell Biol. 136:545-553(1997)
- MMM1_YEAST, Accession No. P41800: Burgess S.M., Delannoy M., Jensen R.E. "MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria."
J. Cell Biol. 126:1375-1391(1994) - MSP1_CAEEL, Accession No. P54815
- MSP1_YEAST, Accession No. P28737: Nakai M., Endo T., Hase T., Matsubara H. "Intramitochondrial protein sorting. Isolation and characterization of the yeast MSP1 gene which belongs to a novel family of putative ATPases."
J. Biol. Chem. 268:24262-24269(1993) - MTXN_MOUSE, Accession No. P47802: Bornstein P., McKinney C.E., Lamarca M.E., Winfield S., Shingu T., Devarayalu S., Vos H.L., Ginns E.I. "Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: implications for Gaucher disease."
Proc. Natl. Acad. Sei. U.S.A. 92:4547-4551(1995) - OM05_YEAST, Accession No. P80967: Dietmeier K., Hoenlinger A., Boemer U., Dekker P.J.T., Eckerskorn C, Lottspeich F., Kuebrich M., Pfanner N.; "Tom5 f nctionally links mitochondrial preprotein reeeptors to the general import pore.";
Nature 388:195-200(1997). - OM06_YEAST, Accession No. P33448: Kassenbrock C.K., Cao W., Douglas M.G. "Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex."; EMBO J. 12:3023-3034(1993
- OM07_CAEEL, Accession No. P34660: Wilson R. et al. "2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans."; Nature 368:32-38(1994)
- OM07_HUMAN, Accession No. Q9P0U1; Accession No. 095939: Hu R.-M. et al. "Gene expression profϊling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning." Proc. Natl. Acad. Sei. U.S.A. 97:9543-9548(2000).
- OM07_SCHPO, Accession No. 042999
- OM07_YEAST, Accession No. P53507: Hoenlinger A., Boemer U., Alconada A., Eckerskorn C, Lottspeich F., Dietmeier K., Pfanner N.;
"Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import." EMBO J. 15:2125-2137(1996)
- OM20_CAEEL, Accession No. Q 19766 - OM20_HUMAN, Accession No. Q15388: Seki N., Moczko M., Nagase T., Zufall N., Ehmann B., Dietmeier K., Schaefer E., Nomura N., Pfanner N.
"A human homolog of the mitochondrial protein import receptor Moml9 can assemble with the yeast mitochondrial receptor complex." FEBS Lett. 375:307-310(1995).
- OM20_NEUCR, Accession No. P35848: Mayer A., Nargans F.E., Neupert W., LiU R.
"MOM22 is a receptor for mitochondrial targeting sequences and cooperates with MOM19." EMBO J. 14:4204-4211(1995)
- OM20_RAT, Accession No. Q62760; Accession No. Q63804; Accession No. O08517
- OM20_YEAST, Accession No. P35180: Ramage L., Junne T., Hahne K., Lithgow T., Schatz G. "Functional cooperation of mitochondrial protein import receptors in yeast." EMBO J. 12:4115-4123(1993)
- OM22_NEUCR, Accession No. Q07335: Kiebler M., Keil P., Schneider H., van der Klei I.J., Pfanner N., Neupert W.
"The mitochondrial receptor complex: a central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore." Cell 74:483-492(1993)
- OM22 YEAST, Accession No. P49334; Accession No. Q36757: Hoenlinger A., Kuebrich M., Moczko M., Gaertner F., Mallet L., Bussereau F., Eckerskorn C, Lottspeich F., Dietmeier K., Jacquet M., Pfanner N. "The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins." Mol. Cell. Biol. 15:3382-3389(1995)
- OM25 HUMAN, Accession No. P57105 - OM25_RAT, Accession No. Q9WVJ4
- OM37_YEAST, Accession No. P50110: Gratzer S., Lithgow T., Bauer R.E., Lamping E., Paltauf F., Kohlwein S.D., Haucke V., Junne T., Schatz G., Horst M. "Mas37p, a novel receptor subunit for protein import into mitochondria."; J. Cell Biol. 129:25-34(1995
- OM40_CAEEL, Accession No. Q 18090
- OM40_DROME, Accession No. Q9U4L6; Accession No. Q9W3P9: Adams MD et al.
"The genome sequence of Drosophila melano gaster." Science 287:2185-2195(2000)
- OM40_HUMAN, Accession No. O96008: Freitas E.M., Zhang W.J., Lalonde J.P., Tay G.K., Gaudieri S.,
RA Ashworth L.K., Van Bockxmeer F.M., Dawkins R.L.
"Sequencing of 42kb of the APO E-C2 gene cluster reveals a new gene: PEREC1." DNA Seq. 9:89-101(1998)
- OM40_MOUSE, Accession No. Q9QYA2; Accession No. Q9Z2N1
- OM40_NEUCR, Accession No. P24391: Kiebler M., Pfaller R., Soellner T., Griffiths G., Horstmann H.,
RA Pfanner N., Neupert W. "Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins." Nature 348:610-616(1990)
- OM40_SCHPO, Accession No. 013656; Accession No. 013655
- OM40_YEAST, Accession No. P23644: Baker K.P., Schaniel A., Vestweber D., Schatz G.
"A yeast mitochondrial outer membrane protein essential for protein import and cell viability."
Nature 348:605-609(1990) - OM45_YEAST, Accession No. P16547: Yaffe M.P., Jensen R.E., Guido E.C. "The major 45-kDa protein of the yeast mitochondrial outer membrane is not essential for cell growth or mitochondrial function."
J. Biol. Chem. 264:21091-21096(1989) - OM70_NEUCR, Accession No. P23231 : Steger H.F., Soellner T., Kiebler M.,
Dietmeier K.A., Pfaller R.,
RA Truelzsch K.S., Tropschug M., Neupert W., Pfanner N.
"Import of ADP/ATP carrier into mitochondria: two receptors act in parallel."
J. Cell Biol. 111 :2353-2363(1990) - OM70_YEAST, Accession No. P07213: de Antoni A., D Angelo M., Dal Pero F.,
Sartorello F., Pandolfo D.,
RA Pallavicini A., Lanfranchi G., Valle G.
"The DNA sequence of cosmid 14- 13b from chromosome XIV of Saccharomyces cerevisiae reveals an unusually high number of overlapping open reading frames."; Yeast 13:261-266(1997)
- PORl_HUMAN, Accession No. P21796; Accession No. Q9UIQ5; Accession No. Q9UPL0: Blachly-Dyson E.G., Zambronicz E.B., Yu W.H., Adams V., McCabe E.R., Adelman J.P., Colombini M., Forte M.;
"Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane Channel, the voltage-dependent anion Channel."; J. Biol. Chem. 268:1835-1841(1993)
- PORl_MOUSE, Accession No. Q60932: Sampson M.J., Lovell R.S., Craigen W.J. "Isolation, characterization, and mapping of two mouse mitochondrial voltage- dependent anion Channel isoforms." Genomics 33:283-288(1996)
- PORl_RABIT, Accession No. Q9TT15
- PORl_RAT, Accession No. Q9Z2L0: Anflous K., Blondel O., Bernard A., Khrestchatisky M., Ventura-Clapier R. " Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region." Biochim. Biophys. Acta 1399:47-50(1998)
- PORl_WHEAT, Accession No. P46274 - PORl_YEAST, Accession No. P04840: Mihara K., Sato R.
"Molecular cloning and sequencing of cDNA for yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure." EMBO J. 4:769-774(1985)
- POR2_HUMAN, Accession No. P45880; Accession No. Q9Y5I6: Ha H., Hajek P., Bedwell D.M., Burrows P.D.
"A mitochondrial porin cDNA predicts the existence of multiple human porins." J. Biol. Chem. 268:12143-12149(1993)
- POR2_MELGA, Accession No. P82013
- POR2 MOUSE, Accession No. Q60930: Sampson M.J., Lovell R.S., Craigen W.J. "Isolation, characterization, and mapping of two mouse mitochondrial voltage- dependent anion Channel isoforms."
Genomics 33:283-288(1996)
- POR2_RABIT, Accession No. Q9TT14
- POR2_RAT, Accession No. P81155: Bureau M.H., Khrestchatisky M., Heeren M.A., Zambrowicz E.B., Kim H.,Grisar T.M., Colombini M., Tobin A.J., Olsen
R.W.
"Isolation and cloning of a voltage-dependent anion channel-like Mr 36,000 polypeptide from mammalian brain." J. Biol. Chem. 267:8679-8684(1992) - POR2_XENLA, Accession No. P81004: Steinacker P., Awni L.A., Becker S., Cole T., Reymann S., Hesse D., Kratzin H.D., Morris-Wortmann C, Schwarzer C, Thinnes F.P.,Hilschmann N. "The plasma membrane of Xenopus laevis oocytes contains voltage- dependent anion-selective porin Channels."
Int. J. Biochem. Cell Biol. 32:225-234(2000)
- POR2_YEAST, Accession No. P40478: Blachly-Dyson A., Song J., Colombini M., Forte M.
"Multicopy suppressors of phenotypes resulting frorn the absence of yeast NDAC encode a VDAC-like protein." Mol. Cell. Biol. 17:5727-5738(1997)
- POR3_HUMAΝ, Accession No. Q9Y277; Accession No. Q9UIS0: Mao M., Fu G., Wu J.-S., Zhang Q.-H., Zhou J., Kan L.-X., Huang Q.-H., He K.-L., Gu B.-W., Han
Z.-G., Shen Y., Gu J., Yu Y.-P., Xu S.-H.,Wang Y.-X., Chen S.-J., Chen Z.
"Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning."
Proc. Natl. Acad. Sei. U.S.A. 95:8175-8180(1998) - POR3_MOUSE, Accession No. Q60931 : Sampson M.J., Lovell R.S., Davison
D.B., Craigen W.J.
"A novel mouse mitochondrial voltage-dependent anion Channel gene localizes to chromosome 8."
Genomics 36:192-196(1996) - POR3_PIG, Accession No. Q29380: Winteroe A.K., Fredholm M., Davies W.
"Evaluation and characterization of a porcine small intestine cDNA library: analysis of839 clones."
Mamm. Genome 7:509-517(1996)
- POR3_RABIT, Accession No. Q9TT13 - POR3_RAT, Accession No. Q9R1Z0; Accession No. Q9WTU2: Anflous K., Blondel O., Bernard A., Khrestchatisky M., Ventura-Clapier R. "Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region." Biochim. Biophys. Acta 1399:47-50(1998)
- POR4_SOLTU, Accession No. P42055: Heins L., Mentzel H., Schmid A., Benz R., Schmitz U.K. "Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria." J. Biol. Chem. 269:26402-26410(1994)
- POR6_SOLTU, Accession No. P42056: Heins L., Mentzel H., Schmid A., Benz R., Schmitz U.K. "Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria."
J. Biol. Chem. 269:26402-26410(1994) - PORI_CAEEL, Accession No. Q21752
- PORI_DICDI, Accession No. Q01501: Troll H., Malchow D., Mueller- Taubenberger A., Humbel B., Lottspeich F., Ecke M., Gerisch G., Schmid A., Benz R.
"Purification, functional characterization, and cDNA sequencing of mitochondrial porin from Dictyostelium discoideum." J. Biol. Chem. 267:21072-21079(1992)
- PORI_DROM, Accession No. Q94920; Accession No. Q94997; Accession No. Q9VKP1: Caggese C, Ragone G., Perrini B., Moschetti R., De Pinto V., Caizzi R., Barsanti P. "Identification of nuclear genes encoding mitochondrial proteins: isolation of a collection of D. melanogaster cDNAs homologous to sequences in the Human Gene Index database." Mol. Gen. Genet. 261:64-70(1999)
- PORI_MAIZE, Accession No. P42057: Fischer K., Weber A., Brink S., Arbinger B., Schuenemann D., Borchert S., Heldt H.W., Popp B., Benz R., Link T., Eckerskorn C, Fluegge U.I.
"Porins from plants. Molecular cloning and functional characterization of two new members of the porin family."
J. Biol. Chem. 269:25754-25760(1994) - PORI_NEUCR, Accession No. P07144: Kleene R., Pfanner N., Pfaller R., Link T.A., Sebald W., Neupert W., Tropschug M.
"Mitochondrial porin of Neurospora crassa: cDNA cloning, in vitro expression and import into mitochondria/' EMBO J. 6:2627-2633(1987).
- PORI_PEA, Accession No. P42054: Fischer K., Weber A., Blink S., Arbinger B., Schuenemann D., Bordiert S., Heldt H.W., Popp B., Benz R., Link T., Eckerskorn C, Fluegge U.I.
"Porins from plants. Molecular cloning and functional characterization of two new members of the porin family."
J. Biol. Chem. 269:25754-25760(1994)
Der Fachmann kann durch Herstellung geeigneter Genkonstrukte und Übertragung auf Pflanzenzellen mittels Routineverfahren feststellen, welche Proteine bzw. Teile von Proteinen in der Lage sind, eine Verankerung in der äußeren
Mitochondrienmembran zu bewirken, und welche Proteine aufgrund ihrer Aminosäuresequenz oder auch aufgrund ihrer nicht ausreichenden Länge, insbesondere bei Teilen von Proteinen, keine Verankerung in der äußeren Mitochondrien-Membran vermitteln können.
Der Fachmann kann darüber hinaus anhand der im Stand der Technik beschriebenen Proteine, die eine cytoplasmatische Lokalisierung mit Verankerung in der äußeren Mitochondrien-Membran aufweisen, insbesondere Hexokinasen und Porinen, weitere geeignete Proteine auffinden, z.B. durch PCR unter Verwendung von Oligonukleotiden, die von bekannten Nukleinsäuresequenzen abgeleitet sind, oder durch Hybridisierung von cDNA- oder genomischen Bibliotheken mit Gensonden, die bekannten Nukleinsäuresequenzen entsprechen. Der zweite Bestandteil des Proteins, dessen Expression in Pflanzenzellen zu der gewünschten Bildung von Mitochondrien-Konglomeraten führt, ist die sog. shielding-Komponenten, die eine sterische Abschirmung von Determinanten auf der Mitochondrien-Oberfläche bewirkt.
In einer bevorzugten Ausführungsform handelt es sich um das unter UV-Bestrahlung grün leuchtende Protein Green Fluorescent Protein (GFP), das häufig als Reportergen bzw. als Selektionsmarker eingesetzt wird. Grundsätzlich ist aber jedes Protein bzw. jeder Teil eines Proteins geeignet, der in der Lage ist, eine sterische Abschirmung von Determinanten auf der Oberfläche der Mitochondrien, insbesondere von Rezeptoren, zu bewirken.
Auch im Falle dieser Abschirmungs- oder Maskierungskomponente ist der
Fachmann mittels Routineexperimenten problemlos in der Lage, die Eignung eines bestimmten Proteins bzw. eines Teils eines Proteins durch Expression in
Pflanzenzellen zu überprüfen. Wichtig ist dabei, dass der ins Cytosol ragende Teil in der Lage ist, die relevanten Determinanten auf der Oberfläche der Mitochondrien sterisch abzuschirmen. Es wird davon ausgegangen, dass die
Abschirmungskomponente eine Größe haben sollte, die einem Molekulargewicht von etwa 20 kDa, vorzugsweise von 25 kDa und besonders bevorzugt von mindestens 28 kDa entspricht.
Die Verankerungskomponente und die sterische Komponenten werden bevorzugt in Form eines Fusionsproteins in der Pflanzenzelle exprimiert, d.h. das Fusionsprotein wird von einem chimären Genkonstrukt kodiert, das eine künstliche
Zusammenfügung der für die Verankerungskomponente und die sterische Komponente kodierenden DNA-Sequenzen darstellt. Es ist aber grundsätzlich nicht ausgeschlossen, dass die Expression eines natürlich vorkommenden Proteins für das erfmdungsgemäße Verfahren zur Erzeugung von Mitochondrien-Konglomeraten geeignet ist. Darüber hinaus wird davon ausgegangen, daß die Expression von zwei interagierenden Proteinen, von denen eines als Abschirmungskomponente wirkt und das andere Protein die Aufgabe der Verankerungskomponente übernimmt, ebenfalls die gewünschte Konglomeration der Mitochondrien bewirkt.
Die Herstellung geeigneter Genkonstrukte, die für Fusionsproteine, umfassend die Verankerungskomponente und die sterische Komponente, kodieren, ist dem Fachmann geläufig und mittels molekularbiologischer Standardverfahren möglich, siehe bspw. Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Auch die diversen Methoden zur Übertragung von Genkonstrukten und Plasmiden auf Pflanzenzellen sind dem Fachmann bestens bekannt. Gleiches gilt für regulatorische Sequenzen, die für die Expression von Genen in Pflanzen geeignet sind, wie z. B. konstitutive Promotoren, gewebe- und entwicklungsspezifische Promotoren, induzierbare Promotoren, Enhancer-Sequenzen und andere regulatorische Sequenzen, die die Transkription und Translation einer mit einer Promotorregion operativ verknüpften kodierenden DNA-Sequenz in transformierten Pflanzenzellen steuern.
In einer bevorzugten Ausführungsform handelt es sich bei dem die Expression des Fusionsproteins kontrollierenden Promotor um einen konstitutiven Promotor, wie beispielsweise den 35S RNA-Promotor von CaMV, oder um einen blattspezifischen Promotor.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen bzw. deren Zellen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC- Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz, im vorliegenden Fall also die Fusion von (i) Sequenzen, die für die Verankerungskomponente kodieren, mit (ii) Sequenzen, die für die sterische Abschirmungskomponente kodieren, kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird dann für die Transformation von E. cob'-Zellen verwendet. Transformierte E. cob'-Zellen werden in einem geeigneten Medium gezüchtet und anschließend geerntet und lysiert, und das Plasmid wird wiedergewonnen. Als Analysenmethode zur Charakterisierung der gewonnenen
Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmedium, die Fusion von
Pro toplasten, die Injektion, die Elektroporation, den direkten Gentransfer isolierter DNA in Protoplasten, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten die bereits seit mehreren Jahren gut etabliert sind und zum üblichen Repertoire des Fachmanns in der pflanzlichen Molekularbiologie bzw. Pflanzenbiotechnologie gehören.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide, wie z. B. pUC-Derivate, verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens empfehlenswert. Dem Fachmann sind die gängigen Selektionsmarker bekannt, und es stellt für ihn kein Problem dar, einen geeigneten Marker auszuwählen.
Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z. B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muss mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- bzw. Ri- Plasmid enthaltenen T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden. Werden für die Transformation Agrobakterien verwendet, muss die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarkergen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA-Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden. Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in allseits bekannten Übersichtsartikeln und Handbüchern zur Pflanzentransformation beschrieben worden. Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pflanzenmaterial (z. B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin, Methotrexat, Glyphosat, Streptomycin, Sulfonylharnstoff, Gentamycin oder Phosphinotricin u. a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten. Hierzu sind auch alternative Marker geeignet, wie nutritive Marker, Screeningmarker. Selbstverständlich kann auch vollkommen auf Selektionsmarker verzichtet werden, was allerdings mit einem ziemlich hohen Screeningbedarf einhergeht. Falls markerfreie transgene Pflanzen erwünscht sind, stehen dem Fachmann auch Strategien zur Verfügung, die eine nachträgliche Entfernung des Markergens erlauben, z. B. Cotransformation, Sequenz-spezifische Rekombinasen.
Die Regeneration der transgenen Pflanzen aus transgenen Pflanzenzellen erfolgt nach üblichen Regenerationsmethoden unter Verwendung bekannter Nährmedien. Die so erhaltenen Pflanzen können dann mittels üblicher Verfahren, einschließlich molekularbiologischer Methoden, wie PCR, Blot- Analysen, auf Anwesenheit der eingeführten Nukleinsäure, die für das Fusionsprotein, bestehend aus Verankerungskomponente und Abschirmungskomponente, kodiert, untersucht werden.
Bei der transgenen Pflanze bzw. den transgenen Pflanzenzellen kann es sich um jede beliebige monokotyle oder dikotyle Pflanze bzw. deren Pflanzenzelle handeln. Vorzugsweise handelt es sich um Nutzpflanzen bzw. Zellen von Nutzpflanzen. Besonders bevorzugt handelt es sich um Mais, Reis, Weizen, Gerste, Hafer, Roggen, Soja, Raps, Kartoffel, Tomate, Tabak, Zuckerrübe, Erbse, Banane, Ananas, Paprika, Yams, Maniok, Baumwolle.
Die mit dem für das Fusionsprotein kodierenden Fusionsgenkonstrukt transformierten Pflanzenzellen zeigen das erfindungsgemäße Phänomen der Bildung von Mitochondrien-Konglomeraten, bedingt durch eine Hemmung der natürlicherweise stattfindenden Mitochondrien-Teilung. Diese Hemmung wird durch Verankerung des Fusionsproteins in der äußeren Mitochondrienmembran, bewirkt durch die Verankerungskomponente des Fusionsproteins, und Abschirmung von Determinanten auf der Mitochondrien-Oberfläche, bewirkt durch die sterische Komponente des Fusionsproteins, vermittelt.
Die Mitochondrien-Konglomerate der transformierten Pflanzenzellen können aufgrund ihrer Größe mittels bekannter Transformationsmethoden genetisch verändert werden.
Als Transformationsmethode eignet sich hier besonders das „Particle Bombardment" oder die Mikroinjektion, aber auch andere Methoden sind denkbar, wenn sie sich beispielsweise für die Transformation von Piastiden oder Protoplasten eignen bzw. für diese Objekte bewährt haben.
Die Methode des „Particle Bombardment" wurde 1987 (Klein et al., Nature 327:70- 73) veröffentlicht und hat mittlerweile als Standardmethode Eingang in die einschlägigen Fachbücher gefunden. Die Methode wurde inzwischen auch angewandt, um Mitochondrien von Saccharomyces cerevisiae und Chlamydomonas reinhardtii zu transformieren (siehe z.B. Johnston et al. (1988) Science 240:1538- 1541; Boynton et al. (1996) Methods Enzymol. 264 :279-296 ; Butow and Fox (1990) Trends Biochem. Sei. 15:465-468).
Tierische Mitochondrien wurden bereits durch Elektroporation erfolgreich transformiert (Collombet et al. (1997) J. Biol. Chem. 272:5342-5347).
Eine alternative Selektion auf transgene Mitochondrien wurde von Ortega et al. vorgestellt (Ortega et al. (2000) Curr. Genet. 37:315-321). Diese basiert auf Mutationen im mitochondriell kodierten Gen cob, durch welche Resistenz gegen die Antibiotika Antimycin A (AA) bzw. Myxothiazol (Myx) erlangt werden könnte. Beide Antibiotika verringerten das Wachstum einer Tabak-Zellkultur auf 11,4 ± 10% (AA) bzw. 1,7 + 4 % (Myx) bei einer Konzentration von 100 μM. 1 μM AA in Kombination mit 1 mM SHAM (Salicylhydroxamsäure) erwies sich als tödlich.
Es sind bei Säugetieren, Pilzen und Algen Mutationen in hochkonservierten Aminosäuren bekannt, welche Resistenz gegen AA und Myx verleihen (Eposti et al. (1993) Biochim Biophys Acta 1143:243-271). Analog dazu verleiht bei Pflanzen der Austausch von Aminosäure Glycin-43 durch Valin eine Resistenz gegen AA und der Austausch von Aminosäure Phenylalanin-135 durch Leucin Resistenz gegen Myx. Die hemmende Wirkung von Myxothiazol bzw. Antimycin A auf die mitochondriale Atmungskette bietet sich somit als Selektionsmarker für die mitochondrielle Transformation an (siehe auch untenstehende Beispiele). Gegenstand der Erfindung ist somit auch die Verwendung von cob-Genen als Selektionsmarker, wie sie in den nachfolgenden Beispielen im Detail erläutert wird.
Bereits seit Jahren als Mittel zur Kerntransformation bekannt (Crossway et al. (1986) Mol. Gen. Genet. 202:79-85), wurde die Methode der Injektion von DNA mittels einer feinen Kapillare inzwischen so weit verfeinert, daß auch Chloroplasten transformiert werden können. (Knoblauch et al. (1999) Nat. Biotechnol. 17:906-909.) Die erfindungsgemäßen Mitochondrien-Konglomerate übertreffen teilweise die Größe von Chloroplasten, so daß auch deren Transformation mittels Mikroinjektion durchführ sein dürfte.
Nach erfolgreicher Transformation der Mitochondrien müssen diese, analog zu transgenen Chloroplasten, durch Rückkreuzungen selektiert werden. Ein Rückkreuzung deηenigen Pflanzen mit transformierten Mitochondrien ist notwendig, um den Phänotyp der Mitochondrien-Konglomerate zu eliminieren. Die Rückkreuzung kann erleichtert werden, indem das zu den Konglomeraten führende Gen mit einem negativen Selektionsmarker cotransformiert wird. Dieser negative Selektionsmarker tötet unter geeigneten Bedingungen alle im Kern transformierten Pflanzen ab. Zusammen mit Bedingungen, die eine positive Selektion von transformierten Mitochondrien ermöglichen, können nur Pflanzen überleben, die transformierte Mitochondrien besitzen und deren zu Konglomeraten führendes Gen samt negativem Selektionsmarker ausgekreuzt wurde. Beispiele für negative Selektionsmarker sind z.B. codA (Cytosin-Deaminase; Stougaard (1993) Plant J. 3:755-761) und dhlA (Haloalkan-Dehalogenase; Naested et al. (1999) Plant J. 18:571-576).
Die Erfindung betrifft somit auch Pflanzenzellen und Pflanzen, die Mitochondrien aufweisen, die mittels des erfindungsgemäßen Verfahrens transformiert wurden, sowie Vermehrungsmaterial und Emteprodukte dieser Pflanzenzellen bzw. Pflanzen, beispielsweise Früchte, Samen, Knollen, Wurzelstöcke, Sämlinge, Stecklinge usw.
Die vorliegende Erfindung wird in den nachfolgenden Beispielen, die nur der
Veranschaulichung der Erfindung dienen und in keiner Weise als Einschränkung zu verstehen sind, erläutert.
Beispiele
Allgemeine Klonierungsverfahren
Klonierungsverfahren wie z.B. Restriktionsspaltungen, DNA-Isolierung, Agarose- Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrocellulose und Nylon-Membranen, Verknüpfen von DNA-Fragmenten, Transformation von E. cob'-Zellen, Anzucht von Bakterien, Sequenzanalyse rekombinanter DNA, wurden nach Sambrook et al. (1989, vide supra) durchgeführt.
Die Transformation von Agrobacterium tumefaciens wurde entsprechend der
Methode von Höfgen und Willmitzer (Nucl. Acids Res. (1988) 16, 9877) ausgeführt. Die Anzucht der Agrobakterien erfolgte in YEB-Medium (Vervliet et al. (1975) J. Gen. Virol. 26, 33). Bakterienstämme und Plasmide
E. coli (XL-1 Blue)-Bakterien wurden von der Firma Stratagene (La Jolla, Californien, USA) bezogen. Der für die Pflanzentransformation eingesetzte Agrobacterium-Stamm (C58C1 mit dem Plasmid pGV 3850kan) wurde von Debleare et al. (1985, Nucl. Acids Res. 13, 4777) beschrieben. Zur Klonierung wurden die Vektoren pCR-Blunt (Invitrogen, Carlsbad, Californien, USA), pBluescript SK- (Stratagene) und pBinAR (Höfgen und Willmitze (1990) Plant Sei. 66: 221 - 230) verwendet.
Tabaktransformation
Zur Tabaktransformation von Tabakpflanzen (Nicotiana tabacum L.cv. Samsun NN) wurden 10 ml einer unter Selektion gewachsenen Übernachtkultur von Agrobacterium tumefaciens abzentrifugiert, der Überstand verworfen, und die Bakterien im gleichen Volumen Antibiotika-freien Mediums resuspendiert. In einer sterilen Petrischale wurden Blattscheiben steriler Pflanzen (Durchmesser ca. 1 cm) in dieser Bakterienlösung gebadet. Anschließend wurden die Blattscheiben in Petrischalen auf MS-Medium (Murashige und Skoog (1962) Physiol. Plant 15, 473) mit 2% Saccharose und 0,85 Bacto-Agar aus gelegt. Nach 2-tägiger Inkubation im Dunkeln bei 25°C wurden die Blattscheiben auf MS-Medium mit 100 mg/1 Kanamycin, 500 mg/1 Claforan, 1 mg/1 Benzylaminopurin (BAP), 0,2 mg/1 Naphthyl- essigsäure (NAA), 1,6% Glukose und 0,85 Bacto-Agar übertragen und die Kultivierung (16 h Licht / 8 h Dunkelheit) fortgesetzt. Wachsende Sprosse wurden auf hormonfreies MS-Medium mit 2% Saccharose, 215 mg/1 Claforan und 0,8% Bacto-Agar überführt.
Klonierung der chimären Transgene
Es wurden zwei Fusionskonstrukte von Hexokinase 1 (Hxkl, siehe oben) mit dem Green Fluorescent Protein (GFP) erzeugt, in denen der Hxkl -Anteil unterschiedlich groß war. Die Fusionskonstrukte von Hxkl und GFP sind in Abb. 1 dargestellt. In dem kürzeren Konstrukt HxklN: :GFP (N steht für N-Terminus) wurde nur der N- Terminus von Hxkl, umfassend das putative Signalpeptid, mit GFP fusioniert. Bei dem größeren Konstrukt Hxkl::GFP wurde die gesamte für Hxkl kodierende Sequenz mit der für GFP zusammengefügt.
Die Fusionspartner GFP und Hxkl bzw. HxklN wurden mit Hilfe der
Polymerasekettenreaktion (polymerase chain reaction, PCR) kloniert. Die Polymerisierungsschritte wurden in einem automatisierten T3-Thermocycler (Biometra, Göttingen, Deutschland) nach den unten angegebenen Programmen durchgeführt. Die PCR-Konstrukte wurden in dem Vektor pCR-Blunt (Invitrogen) vermehrt. Die Hxkl-Subfragmente wurden dann als BamHI/EcoRI-
Restriktionsfragmente in den Vektor pBluescript SK- (Stragagene) ligiert. Das GFP- Fragment wurde als EcoRI/Sall-Restriktionsfragment angeschlossen. Das gesamte Konstrukt wurde dann als BamHI/Sall-Fragment ausgeschnitten und in den binären Vektor pBinAR ligiert. Für die PCR-Amplifikationen wurden folgende Oligonukleotide und Templates eingesetzt.
HK9GFP3 : GAA TTC GGA CTT ATC TTC AAG GTA HK9GFP5 : GGA TCC C AA CTT TTA GCC AAC CTC C
HK9LGFP3 : GAA TTC ACG AAG AAT AGC CAT AGC
K75 : AT GAA TTC AGT AAA GGA GAA GAA CTT
K76: AT GTC GAC TTA TTT GTA TAG TTC ATC CAT GC
(Die Restriktionsschnittstellen für die Enzyme EcoRI, BamHI und Sall sind unterlegt).
Als Matrize für Hxkl wurde ein HKl-cDNA-Klon verwendet, der aus einer cDNA- Bank isoliert wurde, die mit deηenigen identisch ist, aus welcher der von Wiese et al. veröffentlichte Klon Hxkl isoliert wurde (Wiese et al. (1999) FEBS Lett. 461:13-8.).
Als Matrize für GFP wurde der Vektor pBin-mGFP5-ER eingesetzt (Siemering K.R. et al. (1996), Curr. Biol. 6: 1653 - 1663).
Die Zusammensetzung der PCR-Reaktionsansätze und das jeweils verwendete PCR- Programm sind im folgenden angegeben.
Für HxklN:
Figure imgf000031_0001
Programm:
Figure imgf000031_0002
Für Hxkl
Figure imgf000031_0003
Programm:
Figure imgf000032_0001
Für GFP
Figure imgf000032_0002
Programm:
Figure imgf000032_0003
Die Nukleinsäuresequenzen der oben beschriebenen Fusionskonstrukte sind zusammen mit den Aminosäuresequenzen der von den Fusionskonstrukten kodierten Fusionsproteine unten angegeben. Nukleinsäuresequenz des Fusionskonstrukts HxklN:: GFP
GGATCCCAACTTTTAGCCAACCTCCAATTCCTCTGCCGTGACAAAAAGAAAG GATGAAGAAAGCGACGGTGGGAGCCGCCGTAATTGGCGCCGCTACGGTATGT GCAGTGGCGGCATTAATAGTGAACCACCGTATGCGCAAATCTAGCAAATGGG CACGTGCTATGGCTATTCTTCGTGAAΓTCAGTAAAGGAGAAGAACTTTTCAC TGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAA TTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACCC TTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGT CACTACTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATCATATG AAGCGGCACGACTTCTTCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGA GGACCATCTTCTTCAAGGACGACGGGAACTACAAGACACGTGCTGAAGTCAA GTTTGAGGGAGACACCCTCGTCAACAGGATCGAGCTTAAGGGAATCGATTTC AAGGAGGACGGAAACATCCTCGGCCACAAGTTGGAATACAACTACAACTCCC ACAACGTATACATCATGGCCGACAAGCAAAAGAACGGCATCAAAGCCAACTT CAAGACCCGCCACAACATCGAAGACGGCGGCGTGCAACTCGCTGATCATTAT CAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATT ACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCA CATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGAT GAACTATACAAATAAGTCGAC
Die ersten 25 Basen entsprechen der Sequenz des PCR-Primer HK9GFP5, einschließlich der BamHI-Restriktionsschnittstelle (kursiv). Das ATG-Startkodon von Hxkl ist unterlegt. Die EcoRI-Restriktionsschnittstelle, über die das GFP- Fragment an das Hxkl -Fragment angeschlossen wurde, ist ebenfalls kursiv dargestellt. Die letzten 29 Basen ergeben sich aus dem verwendeten PCR-Primer K76 (Gegenstrang, einschließlich Sall-Restriktionsschnittstelle).
Aminosäuresequenz des Fusionsproteins HxklN: :GFP
MKKATVGAAVIGAATVCAVAALIVNHRMRKSSKWARAAILREFSKGEE FT GWPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP PTLV TTFSYGVQCFSRYPDH KRHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVK FEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKANF KTRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDH MVLLEFVTAAGITHGMDELYK
Die EcoRI-Fusion resultiert in den Aminosäuren 43-44, EF. Die EcoRI-Schnittstelle GAATTC befindet sich bereits in dem GFP-Template pBin-mGFP5 -ER, wodurch eine Endoplasmatische Reticulum-Signalsequenz (pBin-mGFP5-ER) vorgeschaltet wurde. Diese Signalsequenz wurde allerdings im Rahmen der Erfindung nicht verwendet und die EcoRI-Nucleotide sind für die Funktion von GFP nicht notwendig (vgl. Accessionsnummern U87974 mit, und U87973 ohne diese Restriktionsstelle). Die Sequenz von Hxkl an der betreffenden Stelle lautet GAATTT, was ebenfalls zu EF translatiert wird. Die Aminosäuren EF können demnach noch zur Hexokinase- Sequenz gerechnet werden.
Nukleinsäuresequenz des Fusionskonstrukts Hxkl : :GFP
GGATCCCAACTTTTAGCCAACCTCCAATTCCTCTGCCGTGACAAAAAGAAAG GATGAAGAAAGCGACGGTGGGAGCCGCCGTAATTGGCGCCGCTACGGTATGT GCAGTGGCGGCATTAATAGTGAACCACCGTATGCGCAAATCTAGCAAATGGG CACGTGCTATGGCTATTCTTCGTGAATTTGAGGAAAAGTGTGGGACCCCTGA TGCTAAGCTCAAGCAAGTCGCTGATGCTATGACCGTCGAGATGCACGCTGGA CTTGCCTCCGAAGGTGGTAGCAAGCTCAAGATGCTTATCACTTACGTCGATA ATCTCCCCACCGGTGATGAAGCTGGCGTCTTTTATGCGTTGGATCTTGGTGG AACAAATTTTCGAGTATTGCGAGTGCAACTTGGTGGAAAAGATGGTGGTATT GTTCATCAGGAATTTGCGGAGGCATCAATTCCTCCAAATTTGATGGTTGGGA CTTCAGAAGCACTTTTTGATTATATTGCGGCAGAACTTGCAAAATTTGTCAA CGAGGAAGGGGAAAAGTTTCAACAACCTCCTGGTAAGCAGAGAGAACTAGGT TTCACCTTCTCATTCCCGGTAATGCAGACTTCAATCAACTCTGGGACTATTA TGAGGTGGACAAAGGGCTTCTCCATTGATGATGCGGTTGGCCAAGATGTTGT TGGAGAACTCGCAAAAGCTATGAAAAGAAAAGGAGTTGATATGCGGGTCTCA GCTTTGGTGAATGATACTGTTGGGACGTTGGCTGGTGGTAAATATACACACA ACGACGTAGCTGTTGCTGTTATCTTAGGTACAGGGACCAATGCAGCCTATGT GGAACGGGTGCAGGCGATTCCAAAGTGGCATGGTCCTGTGCCAAAATCTGGT GAAATGGTTATCAACATGGAATGGGGTAATTTTAGGTCATCCCATCTTCCCT TGACACAGTATGATCATGCGTTGGATACTAATAGTTTGAATCCTGGTGATCA GATATTTGAGAAGATGACTTCTGGCATGTACTTGGGAGAAATTTTACGCAGA GTTCTACTCAGGGTGGCCGAAGAAGCTGGCATTTTTGGTGATGAGGTCCCTC CAAAGCTCAAGAGTCCATTTGTATTGAGGACACCTGATATGTCTGCGATGCA TCATGACGCATCCTCTGATCTGAGAGTGGTTGGTGACAAGCTGAAGGATATT TTAGAGATATCTAATACCTCCTTGAAGACAAGGAGATTAGTCATTGAGCTGT GCAACATCGTTGCGACACGTGGGGCAAGGCTTGCAGCTGCGGGTGTATTGGG CATCTTGAAAAAGATGGGAAGGGATACTCCTCGGCAAGGTGGTCTAGAGAAG ACGGTTGTAGCCATGGATGGCGGATTGTACGAGCACTATACAGAATACAGGA TGTGCTTAGAGAACACTTTGAAGGAATTGCTTGGAGATGAATTGGCGACAAG CATTGTTTTCGAGCACTCCAATGATGGTTCTGGCATTGGTGCAGCTCTTCTT GCTGCCTCTAACTCAATGTACCTTGAAGATAAGTCCGAATTCAGTAAAGGAG AAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGT TAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATAC GGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCAT GGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCAAGATA CCCAGATCATATGAAGCGGCACGACTTCTTCAAGAGCGCCATGCCTGAGGGA TACGTGCAGGAGAGGACCATCTTCTTCAAGGACGACGGGAACTACAAGACAC GTGCTGAAGTCAAGTTTGAGGGAGACACCCTCGTCAACAGGATCGAGCTTAA GGGAATCGATTTCAAGGAGGACGGAAACATCCTCGGCCACAAGTTGGAATAC AACTACAACTCCCACAACGTATACATCATGGCCGACAAGCAAAAGAACGGCA TCAAAGCCAACTTCAAGACCCGCCACAACATCGAAGACGGCGGCGTGCAACT CGCTGATCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTA CCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACG AAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC ACATGGCATGGATGAACTATACAAATAAGTCGAC
Bei Hxkl::GFP wurde das Hxk-Stopcodon TAG in GAA von EcoRI mutiert. Die Aminosäuren EF befinden sich an Position 498-499.
Aminosäuresequenz des Fusionsproteins Hxkl ::GFP
MKKATVGAAVIGAATVCAVAALI NHRMRKSSKWARAMAILREFEEKCGTPD AKLKQVADA TVEMHAGLASEGGSKLKMLITYNDNLPTGDEAGVFYALDLGG
TNFRVLRVQLGGKDGGIVHQEFAEASIPPNLMVGTSEALFDYIAAELAKFVN
EEGEKFQQPPGKQRELGFTFSFPVMQTSINSGTIMRWTKGFSIDDAVGQDW GELAKA KRKGVDMRVSALVNDTVGTLAGGKYTHNDVAVAVILGTGTNAAYV ERVQAIPKWHGPVPKSGE VINMEWGNFRSSHLPLTQYDHALDTNSLNPGDQ IFEKMTSGMYLGEILRRVLLRVAEEAGIFGDEVPPKLKSPFVLRTPDMSAMH HDASSDLRWGDKLKDILEISNTSLKTRR VIELCNIVATRGARLAAAGVLG ILKKMGRDTPRQGGLEKTWAMDGGLYEHYTEYRMCLENTLKELLGDELATS IVFEHSNDGSGIGAALLAASNS YLEDKSEFSKGEELFTGWPILVELDGDV NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRY PDH KRHDFFKSA PEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELK GIDFKEDGNILGHKLEYNYNSHNVYI ADKQKNGIKANFKTRHNIEDGGVQL ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGIT HGMDELYK
Confocale Laserscanning-Mikroskopie
Von der Unterseite eines Blatts wurde in Stück Epidermis abgezogen und am CLSM 410 der Firma Zeiss (Jena, Deutschland) mit Licht der Wellenlängen 488 bzw. 543 nm bestrahlt. Die Emissionen wurden durch einen Bandpaß filter auf 510 bis 525 nm beschränkt. GFP-Protein wurde dabei hellgrün sichtbar.
Übertragung und Expression der Fusionsproteine Hxkl::GFP und HxklN:: GFP in Tabak
Die Fusionskonstrukte wurden wie oben angegeben auf Tabakzellen übertragen und transgene Pflanzen regeneriert. Epidermis-Proben der transgenen Pflanzen zeigten im Fluoreszenz-Mikroskop grün leuchtende Signale des GFP. Überraschend war allerdings zunächst, dass die beiden Konstrukte unterschiedliche Verteilungsmuster von GFP zeigten. Während das kleine Konstrukt mehrere kleine leuchtende GFP- Signale verursachte, wurden durch das größere Konstrukt deutlich größere leuchtende Bereiche, in der Größe vergleichbar dem Zellkern, markiert. Die elektronenmikroskopische Untersuchung des Pflanzengewebes zeigte dann, dass die großen GFP-markierten Bereiche Ansammlungen von Mitochondrien waren, die in unterschiedlichem Ausmaß aggregiert waren. Assoziiert mit diesen Aggregaten waren auch Peroxisomen. In den mit dem kleineren Konstrukt, HxklN: :GFP, transformierten Pflanzen zeigten die Mitochondrien ebenfalls eine Affinität zueinander, jedoch in schwächerem Ausmaß als bei Hxkl::GFP.
Durch die Lokalisierung von GFP an der äußeren Mitochondrien-Membran kam es zur Aggregation der Mitochondrien. Der Grad der Aggregation war dabei von der Größe des GFP -Fusionsproteins abhängig. Durch das chimäre Protein Hxkl::GFP kam es zu großen Konglomeraten von Mitochondrien und Peroxisomen, während das kleinere Fusionsprotein HxklN: :GFP nur eine Affinität beider Organelltypen erzeugte. Während der Effekt des größeren Konstrukts bereits im Lichtmikroskop nachweisbar war, war der kleine Effekt von HxklN:: GFP erst unter dem Elektronenmikroskop erkennbar.
Es wird davon ausgegangen, dass die Entstehung der Mitochondrien-Konglomerate darauf zurückzuführen ist, dass durch die große Menge in der äußeren Mitochondrien-Membran verankerter fremder Proteine die vollständige Teilung der Organellen gestört ist, die Anwesenheit des Fusionsproteins somit die Teilung der Mitochondrien durch Abschnürung be- bzw. verhindert. Hierfür sprechen auch die in Abbildung 3 gezeigten elektronenmikroskopischen Aufnahmen. Transformation der Mitochondrien-Konglomerate
Bei der ersten veröffentlichten Transformation von Hefe-Mitochondrien wurde eine Mutation im mitochondriellen Gen oxi3, kodierend für größte Untereinheit von Cytochrom Oxidase (COXI), durch homologe Rekombination mit dem WT-Gen korrigiert. Da die Zellen hierdurch die Fähigkeit zu atmen wiedererlangten, konnte man sie dadurch screenen. Die hier beschriebene Transformation der erfindungsgemäßen Mitochondrien-Konglomerate basiert auf einer durch mitochondrielle Transformation vermittelten Oligomycin-Resistenz.
Oligomycin hemmt spezifisch die mitochondrielle FoFj ATPase (daher auch die Benennung FO für Oligomycin-sensitiv; diese Bezeichnung wurde dann bei der chloroplastidären ATPase beibehalten, obwohl diese nicht sensitiv ist). Im mitochondriellen Genom Oligomycin-resistenter Hefe- und Hamsterzellen wurden im Gen für die Untereinheit 6 Mutationen gefunden, die wahrscheinlich für die
Resistenz verantwortlich sind. (Breen et al. (1986) J. Biol. Chem. 261:11680-11685; Holmans et al. (1987) Somat. Cell. Mol. Genet. 13:347-353; John and Nagley (1986) FEBS Lett. 207:79-83). Für eine weitere Form von Resistenz gegen Oligomycin, bzw. Venturicidin und Ossamycin in Hefe wurde eine Mutation im mitochondriellen Gen für die Untereinheit 9 verantortlich gemacht. (Galanis M et al. (1989) FEBS Lett. 249:333-336; Nagley et al. (1986) FEBS Lett. 195:159-163). Beide Gene sind auch in pflanzlichen Mitochondrien verbreitet, so dass auf einer dadurch vermittelten Resistenz ein Transformations-Protokoll aufgebaut werden kann.
Der erste Schritt zu einem reproduzierbaren Protokoll besteht darin, eine mutierte
Form eines der beiden benannten Gene, welche Oligomycin-Resistenz verleiht, in ein Mitochondrion einzubringen. Sei es durch Particle Bombardment oder durch Mikroinjektion. Beide Verfahren werden analog zur Plastiden-Transformation eingesetzt. Das Screening auf Oligomycin-Resistenz erbringt dabei den Beweis einer gelungenen Transformation.
Der zweite Schritt ist die Herstellung eines Gens, welches a) Oligomycin-Resistenz als Marker und b) das biotechnologisch oder physiologisch interessante Gen unter Kontrolle eines mitochondriellen Promotors enthält (zum mitochondriellen Genom von Arabidopsis thaliana siehe z.B. Unseld et al. (1997) Nat. Genet. 15:57-61). Das chimäre Gen aus Oligomycin-resistenter ATPase-Untereinheit, Promotor und Transgen, wird an beiden Enden mit mitochondrieller DNA versehen, die ihm die homologe Rekombination ins Zielgenom ermöglicht. Dabei werden evtl. größere Bereiche des Zielgenoms ausgetauscht. Hier muss der Fachmann entscheiden, welche Bereiche des ursprünglichen mitochondriellen Genoms entbehrlich sind. Dabei gibt es zwei Strategien: a) Das ursprüngliche Gen für ATPase-Untereinheit wird durch das Markergen ersetzt. Durch das ebenfalls an diese Stelle integrierende Transgen werden möglicherweise wichtige Gene ersetzt. b) Das chimäre Gen integriert an einer unwichtigen Stelle im mitochondriellen Genom, wodurch der Fortbestand der ursprünglichen Gene gesichert ist. Das Markergen für die Oligomycin-Resistenz ersetzt dabei nicht das ursprüngliche Gen für die ATPase-Untereinheit, sondern auch dieses bleibt bestehen. Somit hätte das transformierte mitochondrielle Genom zwei Gene für die ATPase- Untereinheit, wobei nur eines Oligomycin-Resistenz verleiht. Der Nachteil wäre hier möglicherweise eine verminderte Resistenz.
Thorsness und Fox gelang es, ein fremdes Gen (ura3) in das mitochondrielle Genom von Hefe zu integrieren. Dieses jedoch ohne Promotor, da nur untersucht wurde, ob dieses Gen vom mitochondriellen ins nukleare Genom gelangen kann. (Thorsness and Fox (1990) Nature 346:376-379). Analog ist nach dem oben beschriebenen Protokoll und den ebenfalls oben erwähnten Transformationsmethoden die Integration fremder DNA auch bei pflanzlichen Mitochondrien möglich.
Verwendung von GUS (ß-Glucuronidase) als Konglomerationskomponente
Es wurden unter Verwendung der oben beschriebenen bzw. zitierten Techniken und Expressionsvektoren auch transgene Tabakpflanzen hergestellt, die ein Fusionsprotein bestehend aus Hxkl und GUS (ß-Glucuronidase) exprimierten.
Hierzu wurde zunächst das nachfolgend skizzierte Fusionskonstrukt Hxkl ::GUS hergestellt.
Figure imgf000041_0001
EcoRI BamHI Spei Hind]
Mittels der Oligonucleotide GUS_SalI_5 und NOS_HindIII_3 wurde aus dem Plasmid pCambia 1304 (Cambia, Canberra) GUS und NOS-Terminator amplifiziert und über Sall / Hindlll in den Vektor pBinAR ligiert (wobei die Sequenzen für GUS und NOS, oder einen anderen Terminator, natürlich auch aus anderen gängigen
Quellen gewonnen werden können). Hierbei wurde der OCS-Terminator des BinAR- Vektors gegen die NOS-Terminationssequenzen des Cambia-Plasmids ausgetauscht. Die Multiple Cloning Site des Vektors wurde um ein Spel-Schnittstelle erweitert. Der so geschaffene neue Vektor wurde pGUS-AR benannt. Hxkl wurde mittels der Oligonucleotide HK9GFP5 und HK9-GFP-GUS_3 von entsprechender cDNA amplifiziert und über BamHI / Spei in den neuen Vektor pGUS-AR ligiert.
Die PCR wurde mit Standardbedingungen unter Verwendung der folgenden Primer durchgeführt:
Verwendete Oligonucleotide:
Figure imgf000042_0001
Durch Agrobakterium-vermittelte Transformation wurde das Konstrukt Hxkl::GUS in Tabakpflanzen der Varietät SNN eingebracht. Selektion erfolgte auf Kanamycin- haltigem Medium. Resistente Pflanzen wurden mittels qualitativer GUS-Färbung durchmustert (siehe z.B. Jefferson (1987) Plant Mol. Biol. Rep. 5:387-405; Jefferson et al. (1987) EMBO J. 6:3901-3907). Es wurden 21 GUS-positive Pflanzen ermittelt und auf die Anwesenheit von Mitochondrien-Konglomeraten analysiert.
Durch Färbung mit dem für Mitochondrien spezifischen Farbstoff CM-H2TMROS (MitoTracker® von Molecular Probes) wurden verschieden Grade von Konglomeraten nachgewiesen, die insgesamt eindeutig zeigten, dass GUS zur
Erzeugung der gewünschten Zusammenschlüsse von Mitochondrien grundsätzlich geeignet ist. Neben anderen Konglomerationskomponenten als GFP, wie z.B. GUS, wurden auch andere Verankerungskomponenten als Hexokinase 1 getestet. So wurde u.a. ein anderes pflanzliches Protein, nämlich Hexokinase 3, in Fusion mit GFP in transgenen Tabakpflanzen exprimiert. Die Proteine Hexokinase 1 und Hexokinase 3 sind zu 87,9% identisch. Auch im Fall des Fusionsproteins Hxk3::GFP zeigte sich das für Hxkl::GFP beobachtete Phänomen der Mitochondrien-Konglomeration.
Darüber hinaus wurde neben Tabak auch Arabidopsis thaliana mit Expressionsvektoren transformiert, die für erfindungsgemäße Fusionsproteine kodieren. Auch in transgenen Arabidopsis-Pü zen konnte die erwünschte Mitochondrien-Konglomeration beobachtet werden.
Sowohl die transgenen Tabak- als auch die transgenen Arabidops w-Pflanzen zeigen keinen sichtbaren Phänotyp.
Selektionsstrategie für die mitochondrielle Transformation
Die oben erwähnten Versuche von Ortega et al. (2000, Curr. Genet. 37:315-321) mit Tabak-Zellkulturen wurden mit Blattscheiben auf Kallusinduktions-Medium durchgeführt. Dabei zeigte sich, dass das Kallus- Wachstum bei 16 h Licht täglich nur gering durch die Antibiotika gehemmt wurde. Bei nur ca. 30 Minuten Licht pro Tag wirkten sich die Antibiotika deutlicher aus, jedoch ohne zu töten.
Anders als von Ortega et al. beschrieben, wirkte sich auch SHAM alleine auf das Kallus- Wachstum aus. Bei mehr als 100 μM war ein deutlicher Effekt zu sehen. Bei AA und Myx war bereits bei 50 μM Konzentration Hemmung sichtbar, wobei Myx etwas stärker wirkte.
Anhand dieser Daten dürfte eine Selektion auf Antimycin und Myxothiazol, evtl. in Kombination mit SHAM, im Dunkeln möglich sein. Die Konzentration von SHAM sollte zumindest im Anfangsstadium 100 μM nicht überschreiten. Die Konzentrationen von AA und Myx sollten mindestens 50 μM betragen.
Anhand der veröffentlichten Tabak cob Sequenz (Accessionsnummer U67396) wurden Oligonukleotide abgeleitet, mit deren Hilfe der vollständige ORF des cob- Gens aus Tabak-DNA amplifϊziert wurde. Nach Ligation in den Vektor pCR-Blunt (Invitrogen) wurden mittels PCR diejenigen Mutationen eingeführt, welche zu den Resistenzen gegen AA bzw. Myx führen sollten. Die Mutation von Nukleotid gl28 zu t führt zum Aminosäureaustausch Glycin-43 -> Valin. Mutation von Nukleotid t405 zu a führt zum Aminosäureaustausch Phenylalanin-135 -> Leucin. Zusätzlich wurde in beiden Plasmiden Nukleotid t423 zu a mutiert, wodurch eine Ncol- Schnittstelle geschaffen wurde, ohne die Aminosäuresequenz zu verändern. Die resultierenden Plasmide wurden cobG43V+NcoIbzw. cobF135L+NcoI genannt. Die Konstruktion der zur Selektion transgener Mitochondrien eingesetzten Plasmide ist in Abbildung 5 gezeigt.
Erzeugung transgener Tabakpflanzen mit Mitochondrien-Konglomeraten
Tabakpflanzen der Varietät Havanna wurden mittels Agrobakterium-vermitteltem Gentransfer mit Hxkl::GFP transformiert. Die auf Kanamycin selektierten positiven Pflanzen zeigten das bekannte Phänomen der großen Mitochondrien-Konglomerate. Die Varietät Havanna wurde verwendet, da sich diese bei Plastiden-Transformation bewährt hat.
Durchführung der biolistischen Transformation
Von den transgenen Tabakpflanzen mit Mitochondrien-Konglomeraten, sowie von Wildtypen, wurden Blattscheiben genommen. Diese wurden mittels einer Particle Gun ein- bis dreimal mit dem Plasmid cobG43V+NcoIbzw. cobF135L+NcoI beschossen.
Screening der auf selektivem Medium wachsenden Kalli
Mit cobG43 V+Ncol beschossene Blattscheiben wurden nach zwei Tagen Ruhe auf 50 μM AA ausgelegt, mit cobF135L+NcoI beschossene Blattscheiben auf 50 μM Myx. Nach einer Woche wurde die Konzentration auf jeweils 100 μM erhöht. Nach zwei Wochen auf 100 μM plus 50 μM SHAM. Nach drei Wochen wurden die vielversprechenden Kallus-Ansätze auf 200 μM AA bzw. Myx plus 100 μM SHAM umgebettet. Nach fünf Wochen wurde auch SHAM auf 200 μM erhöht.
Durch Einführung einer weiteren Mutation in die verwendeten Plasmide, wodurch eine im nativen cob-Gen vorhandene Sphl-Schnittstelle ausgeschaltet wird, könnte der Selektionsmarker zusätzlich verbessert werden, da hierdurch im Rahmen einer PCR-Reaktion zwischen nativem cob und mutiertem cob unterschieden werden kann. Die aus regeneriertem Kallus isolierte DNA kann dann mit SphI vollständig verdaut werden. Das transgene cob bleibt erhalten und kann weiterhin mittels PCR amplifϊziert werden. Ein Austausch von Nukleotid T264 gegen C würde diese Möglichkeit eröffnen. Figuren
Figur 1 zeigt die Fusionskonstrukte von Hexokinase 1 (Hxkl) mit dem Green Fluorescent Protein (GFP), in denen der Hxkl -Anteil unterschiedlich groß war. In dem kürzeren Konstrukt HxklN: :GFP wurde nur der N-Terminus von Hxkl, umfassend das putative Signalpeptid, mit GFP fusioniert. Bei dem größeren Konstrukt Hxkl::GFP wurde die gesamte für Hxkl kodierende Sequenz mit der für GFP zusammengefügt. In Figur 1 steht HK1 für Hxkl bzw. HK1N für HxklN.
Figur 2 zeigt eine elektronenmikroskopische Aufnahme von Hxkl::GFP-Organellen. Im linken Bild sind mittig aggregierte Mitochondrien zu sehen, in der oberen rechten Ecke Peroxisomen. Im rechten Bild sind aggregierte Mitochondrien und
Chloroplasten zu sehen. Die schwarzen Punkte sind goldmarkierte Antikörper gegen GFP.
Figuren 3 a und b (verschiedene Vergrößerungen) zeigen ebenfalls elektronenmikroskopische Aufnahmen von Hxkl::GFP-Organellen, wobei deutlich zu erkennen ist, dass die Bildung der Mitochondrien-Konglomerate auf eine gestörte Mitochondrien-Teilung zurückzuführen sein scheint.
Figur 4 zeigt EM- Aufnahmen von Mitochondrien-Konglomeraten. Der linke Komplex hat eine Größe von mindestens 7 μm, der rechte von mindestens 10 μm. Figur 5 zeigt die Konstruktion der zur Selektion transgener Mitochondrien eingesetzter Plasmide.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Erzeugung von Mitochondrien-Konglomeraten, umfassend die Expression einer ersten Proteinkomponente, die zu einer Verankerung in der äußeren Mitochondrien-Membran in der Lage ist, und einer zweiten Proteinkomponente, die zu einer sterischen Abschirmung von Determinanten auf der Oberfläche von Mitochondrien in der Lage ist, in Pflanzenzellen.
2. Verfahren nach Anspruch 1 , wobei die erste und zweite
Proteinkomponente in Form eines Fusionsproteins in der Pflanzenzelle exprimiert werden.
3. Verfahren nach Anspruch 1 oder 2, wobei es sich bei der zur Verankerung in der äußeren Mitochondrien-Membran befähigten Proteinkomponente um das Enzym Hexokinase oder um ein Porin bzw. Teile dieses Enzyms bzw. eines Porins handelt, die zur Verankerung in der äußeren Mitochondrien-Membran in der Lage sind.
4. Verfahren nach einem der vorangehenden Ansprüche, wobei es sich bei der zur sterischen Abschirmung von Determinanten auf der Oberfläche von Mitochondrien befähigten Proteinkomponente um das Green Fluorescent Protein bzw. Teile davon handeln, die zur sterischen Abschirmung von Determinanten auf der Oberfläche von Mitochondrien in der Lage sind.
5. Verfahren nach einem der vorangehenden Ansprüche, wobei die zur sterischen Abschirmung von Determinanten auf der Oberfläche von Mitochondrien befähigte Proteinkomponente eine Größe hat, die einem Molekulargewicht von mindestens 20 kDa, vorzugsweise von mindestens 25 kDa und besonders vorzugsweise von mindestens 28 kDa entspricht.
6. Verfahren zur Herstellung transgener Pflanzen, umfassend die Erzeugung von Mitochondrien-Konglomeraten nach dem Verfahren nach einem der Ansprüche
I bis 5.
7. Verfahren zur Herstellung transgener Pflanzen mittels Mitochondrien- Transformation, umfassend die Schritte a) Erzeugung von Mitochondrien-Konglomeraten nach einem Verfahren nach einem der vorangehenden Ansprüche, b) Transformation der Mitochondrien mit einem Nukleinsäuremolekül und ggf. c) Auskreuzen des Phänotyps der konglomerierten Mitochondrien.
8. Verfahren nach Anspruch 7, wobei die Transformation in Schritt b) mittels biolistischer Methoden, insbesondere Particle Bombardment, mittels Mikroinjektion oder mittels Elektroporation erfolgt.
9. Verwendung von Mitochondrien-Konglomeraten, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 5 zur Transformation von Mitochondrien.
1 O.Trans gene Pflanze hergestellt nach einem Verfahren nach einem der Ansprüche 6 bis 8.
11. Mitochondrien-Konglomerat mit einer Größe von mindestens 4 μm, bevorzugt mindestens 7 μm und besonders bevorzugt von mindestens 10 μm.
12. Verwendung der Mitochondrien-Konglomerate nach Anspruch 11 für die mitochondrielle Transformation.
PCT/EP2002/001737 2001-02-19 2002-02-19 Verfahren zur erzeugung und transformation von mitochondrien-konglomeraten WO2002066661A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001107677 DE10107677A1 (de) 2001-02-19 2001-02-19 Verfahren zur Erzeugung und Transformation von Mitochondrien-Konglomeraten
DE10107677.0 2001-02-19

Publications (1)

Publication Number Publication Date
WO2002066661A1 true WO2002066661A1 (de) 2002-08-29

Family

ID=7674543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001737 WO2002066661A1 (de) 2001-02-19 2002-02-19 Verfahren zur erzeugung und transformation von mitochondrien-konglomeraten

Country Status (2)

Country Link
DE (1) DE10107677A1 (de)
WO (1) WO2002066661A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465748A (en) * 2008-11-25 2010-06-02 Algentech Ltd Plant mitochondrial transformation method
KR20190124656A (ko) * 2018-04-26 2019-11-05 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032799A1 (en) * 1998-11-25 2000-06-08 Calgene Llc Methods for transforming plastids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032799A1 (en) * 1998-11-25 2000-06-08 Calgene Llc Methods for transforming plastids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOCK R.: "Transgenic Plastids in Basic Research and Plant Biotechnology", JOURNAL OF MOLECULAR BIOLOGY, vol. 321, 2001, pages 425 - 438, XP001084937 *
HERMANN G. ET AL.: "Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p", THE JOURNAL OF CELL BIOLOGY, vol. 143, no. 2, 19 October 1998 (1998-10-19), pages 359- - 373, XP002204065 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465748A (en) * 2008-11-25 2010-06-02 Algentech Ltd Plant mitochondrial transformation method
GB2465748B (en) * 2008-11-25 2012-04-25 Algentech Sas Plant cell transformation method
US9663792B2 (en) 2008-11-25 2017-05-30 Algentech Sas Plant mitochondria transformation method
KR20190124656A (ko) * 2018-04-26 2019-11-05 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도
KR102126199B1 (ko) 2018-04-26 2020-06-24 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도
KR20200077476A (ko) * 2018-04-26 2020-06-30 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도
KR102533834B1 (ko) 2018-04-26 2023-05-19 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도
KR102694089B1 (ko) * 2018-04-26 2024-08-14 주식회사 파이안바이오테크놀로지 개질된 미토콘드리아 및 이의 용도

Also Published As

Publication number Publication date
DE10107677A1 (de) 2002-09-05

Similar Documents

Publication Publication Date Title
EP0938569B1 (de) Blattspezifische expression von genen in transgenen pflanzen
DE69429012T2 (de) Transformation von musa-arten durch verwendung von agrobacterium tumefaciens
DE69636782T2 (de) Wurzelrinden spezifischer genpromoter
EP3298148B1 (de) Verfahren und konstrukte zur gezielten nukleinsäure editierung in pflanzen
DE602004004070T2 (de) Verwendung der regulatorischen sequenz des gos2-gens aus reis für die genexpression in dikotyledonen pflanzen oder pflanzenzellen
DE4420782C1 (de) DNA-Sequenz, kodierend einen 2-Oxoglutarat/Malat-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE69835209T2 (de) Regulatorische sequenzen für transgene pflanzen
DE69636225T2 (de) Stimulierung der homologen rekombination in pflanzlichen organismen mittels rekombinations fördernder enzyme
DE68925258T2 (de) Transgene pflanze mit veränderter physiologie, morphologie und hormonstoffwechsel gewebekulturen dieser pflanze sowie verfahren zu ihrer herstellung
DE3843628A1 (de) Wundinduzierbare und kartoffelknollenspezifische transkriptionale regulation
DE69834637T2 (de) Verbesserungen der spezifität der genexpression
DE102015006335A1 (de) Verfahren und Konstrukte zur gezielten Nukleinsäure Editierung in Pflanzen
DE602004011712T2 (de) Paraquat Resistenz-Gen
DE69007370T2 (de) Transgene Pflanzen der Art cucumis melo.
DE69930629T2 (de) Induzierbare promotoren
EP1207204A1 (de) Gewebespezifische Promotoren aus der Zuckerrübe
DE60024820T2 (de) FüR SIN KODIERENDES GEN UND DESSEN VERWENDUNGEN
DE60131075T2 (de) Durch freisetzung in geschlossener, zirkulärer form aus einer grösseren nukleotidsequenz charakterisiertes konstrukt, welches die ortsspezifische und/oder entwicklungsspezifische, regulierte expression selektierter, genetischer sequenzen erlaubt
DE60028388T2 (de) Auf ubiquitin basierendes modifiziertes regulatorisches system
EP1711612B1 (de) Expressionskassetten zur bidirektionalen transgenen expression von nukleinsäuren in pflanzen
DE10346611B4 (de) Promotor zur epidermisspezifischen Transgenexpression in Pflanzen
DE69730984T2 (de) Promotor aus tabak
WO2002066661A1 (de) Verfahren zur erzeugung und transformation von mitochondrien-konglomeraten
DE102015014252A1 (de) Verfahren und Konstrukte zur gezielten Nukleinsäure Editierung in Pflanzen
DE10049267B4 (de) Verfahren zur Erzeugung oder Erhöhung einer Resistenz in Organismen gegenüber biotischen Streßfaktoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载