+

WO2002066012A2 - Amphotere liposomen und verwendung dieser - Google Patents

Amphotere liposomen und verwendung dieser Download PDF

Info

Publication number
WO2002066012A2
WO2002066012A2 PCT/EP2002/001880 EP0201880W WO02066012A2 WO 2002066012 A2 WO2002066012 A2 WO 2002066012A2 EP 0201880 W EP0201880 W EP 0201880W WO 02066012 A2 WO02066012 A2 WO 02066012A2
Authority
WO
WIPO (PCT)
Prior art keywords
liposomes
amphoteric
charge carrier
popc
liposomes according
Prior art date
Application number
PCT/EP2002/001880
Other languages
English (en)
French (fr)
Other versions
WO2002066012A3 (de
Inventor
Steffen Panzner
Stefan FANKHÄNEL
Frank Essler
Cornelia Panzner
Original Assignee
Novosom Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novosom Ag filed Critical Novosom Ag
Priority to CA2438116A priority Critical patent/CA2438116C/en
Priority to EP02701290A priority patent/EP1363601B1/de
Priority to JP2002565572A priority patent/JP2004525898A/ja
Priority to AU2002234643A priority patent/AU2002234643B2/en
Priority to DE50210271T priority patent/DE50210271D1/de
Priority to BRPI0207775A priority patent/BRPI0207775B1/pt
Publication of WO2002066012A2 publication Critical patent/WO2002066012A2/de
Publication of WO2002066012A3 publication Critical patent/WO2002066012A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Definitions

  • the invention relates to amphoteric liposomes which simultaneously comprise positive and negative membrane-bound or membrane-forming charge carriers, and to the use of these liposomes.
  • lipids summarizes three classes of natural products that can be isolated from biological membranes: phospholipids, sphingolipids and cholesterol with its derivatives. This also includes synthetically produced substances with similar characteristics.
  • the diacylglycerols, dialkylglycerols, 3-amino-1, 2-propanediol esters or ethers or also the N, N-dialkylamines may be mentioned as examples.
  • liposomes can be used, among other things, as containers for active ingredients in pharmaceutical preparations. It is desirable to have efficient and stable packaging of the cargo, compatibility with body fluids and a controllable and possibly site-specific release of the content.
  • both requirements are difficult to combine: the more stable and denser the packaging, the more difficult it is to release the enclosed active ingredient.
  • liposomes have been developed that change their properties in response to an external stimulus.
  • Thermosensitive and pH-sensitive liposomes are known.
  • the pH-sensitive liposomes are of particular interest because this parameter can also change under physiological circumstances, for example when a liposome is endocytosed in cells or when the gastrointestinal tract is passed.
  • pH-sensitive liposomes include in particular cholesterol hemisuccinate (CHEMS).
  • Cholesterol hemisuccinate is used in a mixture with phosphatidylethanolamine to produce pH-sensitive liposomes (Tachibana et al. (1998); BBRC 251: 538-544, US4891208).
  • Such liposomes can be endocytosed by cells and in this way are able to transport cargo molecules into the interior of cells without violating the integrity of the cellular membrane.
  • CHEMS CHEMS anionic character.
  • the liposomes thus produced have a negative total charge and are only taken up by cells with little efficiency. Despite the transfer mechanism described above, they are therefore hardly suitable for the introduction of macromolecules into cells.
  • cationic liposomes For the transport of active substances into cells (transfection), cationic liposomes are used, which have a surface charge that is as high and constant as possible. The positive total charge of such particles leads to electrostatic attachment to cells and consequently to efficient transport.
  • the use of these compounds and the liposomes produced therewith remains limited to applications in vitro or ex vivo, since such positively charged liposomes form uncontrolled aggregates with serum components.
  • a disadvantage of the pH-sensitive liposomes available in the prior art is the restriction to very few pK values, mostly that of the carboxy group in the cholesterol hemisuccinate (approx. 4.5).
  • Another disadvantage of the connections is the limitation to negative charge carriers. These are not suitable for the efficient binding of nucleic acids and often also not for proteins.
  • Cationic liposomes show good binding of nucleic acids and proteins and are able to introduce these active substances into cells. Unfortunately, they cannot be used for in vivo applications.
  • liposomal structures which i) allow an efficient inclusion of active substances, ii) can transport these active substances into biological cells, iii) are compatible with use under in vivo conditions iv) are simple and inexpensive to produce.
  • amphoteric liposomes which comprise at least one positive and at least one different negative charge carrier, the isoelectric point of the liposomes being between 4 and 8.
  • the task is thus solved by producing liposomes with a charge that changes with the pH.
  • Liposomal structures with the desired properties arise, for example, when the amount of membrane-forming or membrane-containing ones is at a low pH cationic charge carriers that predominate over the anionic ones, and these relationships are reversed at a higher pH value. This is always the case when the ionizable components have a pKa in the range between 4 and 9. All cationic charge carriers are then more strongly charged when the pH of the medium drops, and all anionic charge carriers lose their charge.
  • the membrane-forming or membrane-bound charge carriers have the following general structure of an amphiphile:
  • membrane anchors The systems known from nature or their technically modified forms come into question as membrane anchors. These include, in particular, the diacylglycerols, diacylphosphoglycerols (phospholipids) and sterols, but also the dialkylglycerols, the dialkyl or diacyl-1-amino-2, 3-propanediols, long-chain alkyls or acyls with 8 to 25 carbon atoms, spingolipids, ceramides and others more. These membrane anchors are specialist and known in the prior art.
  • the charge groups that can be combined with these anchors can be divided into the following 6 groups:
  • Molecular fragments as they occur in biological systems e.g. 4-imidazoles (histamine), 2-, 6- or 9-purines (adenines, guanines, adenosines or guanosines), 1-, 2- or -pyrimidines (uraciles, thymines, Cytosines, uridines,
  • Nitrogen bases with preferred pKa values also result from single or multiple substitution of the nitrogen atom with lower alkane hydroxyls, for example hydroxymethyl or hydroxyethyl groups.
  • Suitable organic bases from this group are, for example, aminopropanediols, triethanolamines, tris (hydroxymethyl) methylamines, bis (hydroxymethyl) methylamines, tris (hydroxyethyl) methylamines, bis (hydroxyethyl) methylamines or the correspondingly substituted ethylamines.
  • Neutral or in the pH range between 4 and 9 zwitterionic Due to their chemical nature, these are neutral groups such as hydroxyls, amides, thiols or zwitterions from a strong cationic and a strong anionic group such as for example the phosphocholine or amino carboxylic acids, aminosulfonic acids, betaines or other structures.
  • anionic groups are dissociable hydroxyls or thiols, as they occur in ascorbic acid, the N-substituted alloxan, the N-substituted barbituric acid, in the veronal, the phenol or as a thiol group.
  • Strongly cationic, pKa ⁇ 4, negative net charge their chemical nature means that they are functional groups such as sulfonic acid esters or phosphoric acid esters.
  • Strongly cationic compounds are, for example: DC-chol 3- ⁇ - [N- (N “, N” -dimethylethane) carbamoyl] cholesterol TC-Chol 3-ß- [N- (N ' ', ⁇ ", N” -trimethylaminoethane) carbamoyl] cholesterol
  • DOTMA 1-dioleyloxypropyl
  • N, N-trimethylammonium chloride Lipofectin®
  • DOSC (1,2-dioleoyl-3-succinyl-sn-glycerol choline ester
  • DOGSDSO (1,2-dioleoyl-sn-glycero-3-succinyl-2-hydroxyethyl disulfide ornithine),
  • DOEPC 1 2-dioleoyl-sn-glycero-3-ethylphosphocholine or other O-alkylphosphatidylcholine or ethanolamine,
  • Examples of neutral compounds are: cholesterol, ceramides, phosphatidylcholines, phosphatidylethanolamines, tetraether lipids or diacylglycerols.
  • Examples of weakly anionic compounds are: CHEMS cholesterol hemisuccinate, alkyl carboxylic acids with 8 to 25 carbon atoms or diacylglycerol hemisuccinate.
  • Other weakly anionic compounds are the amides from aspartic acid or glutamic acid and PE, and the PS and its amides with glycine, alanine, glutamine, asparagine, serine, cysteine, threonine, tyrosine, glutamic acid, aspartic acid or other amino acids or aminodicarboxylic acids.
  • the esters from hydroxycarboxylic acids or hydroxydicarboxylic acids and PS are weakly anionic compounds.
  • Strongly anionic compounds are, for example: SDS sodium dodecyl sulfate, cholesterol sulfate, cholesterol phosphate, cholesterylphosphocholine, phosphatidylglycerols, phosphate id acids, phosphytidylinositols,
  • Diacylglycerol phosphates Diacylglycerol phosphates, diacylglycerol sulfates, cetyl phosphate or lysophospholipids.
  • Amphoteric compounds are e.g. : Hist-Chol N ⁇ -histidinyl cholesterol hemisuccinate,
  • Hist-PS N ⁇ -histidinyl-phosphatidylserine or N-alkylcarnosine.
  • the liposomes according to the invention contain variable proportions of such membrane-forming or membrane-bound amphiphiles that they acquire an amphoteric character. This means that the liposomes can completely change their charge sign.
  • the amount of liposome charge carriers present at a given pH of the medium can be calculated using the following formula:
  • the net charge of the liposome is 0.
  • the structures can be constructed in such a way that, as the pH value falls, the entire molecule is actually reloaded from negative to positive.
  • a transfer is particularly advantageous if the liposomes produced with the structures are to be used in physiological contexts. Only liposomes with a negative total charge are compatible with blood and serum components. A positive charge leads to aggregations. Liposomes with a positive charge are very well fusogenic and can transport active substances in cells. A pH-dependent transhipment therefore allows the construction of serum-compatible, because negatively charged compounds that recharge after endocytotic uptake and are therefore only fusogenic in the cell.
  • amphoteric liposomes have an isoelectric point between 5 and 7.
  • the invention also relates to amphoteric liposomes which comprise at least one amphoteric charge carrier, the amphoteric charge carrier having an isoelectric point between 4 and 8.
  • the amphoteric charge carrier of the liposomes has an isoelectric point between 5 and 7.
  • the invention also relates to amphoteric liposomes, the liposomes comprising at least one amphoteric charge carrier and one anionic and / or cationic charge carrier.
  • amphoteric liposomes have an isoelectric point between 5 and 7.
  • Embodiment variants of the invention include the liposomes according to the invention, phosphatidylcholine, phosphatidylethanolamine, diacylglycerol, cholesterol, tetraether lipid, ceramide, sphingolipid and / or diacylglycerol.
  • the production of the liposomes can of course be carried out with many lipid combinations according to the teaching of the invention.
  • liposomes can be produced using a high amount of CHEMS (approx. 40%) and a smaller amount of DOTAP (approx. 30%).
  • Charge carriers ii) the steepness of the charge-reversal curve due to the ratio of the two charge carriers, their absolute amounts and possibly a synergistic effect of two complementary pH-sensitive lipids, and iii) the zero crossing of the zeta potential by the ratio of the two charge carriers as well as by the Location of the pK value or pK values.
  • the liposomes have an average size between 50 and 1000 nm, preferably between 70 and 250 nm, particularly preferably between 60 and 130 nm.
  • the amphoteric liposomes are produced by the methods known in the prior art, for example by ethanol injection of a lipid solution into aqueous buffers, by hydration of dry lipid films or by detergent dialysis.
  • the size of the liposomes can generally vary between 50 nm and 10000 nm. Homogeneous populations can be produced by high pressure homogenization or extrusion.
  • the liposomes comprise an active ingredient.
  • the active substance is expediently a protein, a peptide, a DNA, an RNA, an antisense nucleotide and / or a decoy nucleotide.
  • At least 80% of the active ingredient is inside the liposome.
  • the invention also relates to a method for loading the active substance into the liposomes, a defined pH value being used for encapsulation and a second pH value being set for separating the unbound material.
  • the invention also relates to a method for loading the active substance into the liposomes, the liposomes being permeabilized and sealed at a defined pH.
  • the invention also relates to the use of the liopsomes for the production of nanocapsules by depositing polymers or polyelectrolytes on the lipid layer. Single or multiple deposition of such substances can take place on the surface. A multiple deposition, which may be carried out in the presence of a crosslinking agent, results in liposomal nano-capsules, as described in WO 00/28972 or in WO / 64330.
  • An advantage of using the substances described here is the fact that the electrostatic interaction with the polyelectrolyte can be interrupted. It is known that the interaction of a polyelectrolyte with charge carriers of the liposomal membrane for the segregation of membrane components and for the formation of Lipid clusters can result.
  • this segregation is accompanied by permeabilization of the liposome.
  • the substances according to the invention enable this interaction to be switched off after the coating process. If the pH is increased at this point in time, the liposomes are only sterically enclosed in the nanocapsules, and the membrane no longer interacts with the polyelectrolytes. Clustering of the lipids and the associated permeabilization of the membrane can thus be avoided.
  • the invention also relates to the use of the liposomes according to the invention for packaging and releasing active substances.
  • the liposomes serve in particular for the efficient packaging of active substances; for example nucleic acids. Nucleic acids are incubated with the lipids mentioned, in particular at a low pH (approx. 3 to 6). After formation of the liposomes, nucleic acids adhering to the outside can be washed off by changing to a high pH value (approx. 7 ... 9).
  • An analogous procedure can be chosen for the packaging of proteins. It is advantageous to set a pH in the medium which is between the p1 of the liposome and that of the protein. It proves to be particularly advantageous if the two pI values are more than one unit apart.
  • the liposomes are used for the production of release systems in diagnostics.
  • the liposomes are used as a transfection system, that is to say for introducing active substances into cells.
  • the liposomes are used for the controlled release of their content by fusion or permeabilization of the membrane.
  • Liposomes made from a non-membrane-forming lipid, such as PE can be stabilized by incorporating charge carriers. If the charge carrier is transferred to a neutral, uncharged or zwitterionic state, this increases. the permeability of the membrane.
  • Known liposomes according to the prior art PE / CHEMS, Tachibana et al.
  • Amphoteric liposomes can be prepared according to the measures outlined above so that their neutral point is between 4 and 9 at any desired pH. Under these conditions, the liposomes are permeable and can release a cargo into the medium.
  • the liposomal formulations can be prepared, processed and stored under conditions of low permeability.
  • liposomes are produced in such a way that they release their cargo under conditions of a physiological pH, but securely enclose their cargo at a low pH.
  • Such liposomes are particularly suitable for the production of formulations with slow release kinetics, the release only through the Contact with body fluids is initiated, but not during storage or transport.
  • a preferred embodiment of the teaching according to the invention therefore consists in the use of such liposomes for therapeutic purposes, in particular for those applications which use specific targeting of the liposomes.
  • the low non-specific binding is a prerequisite for transporting the liposomes to the target site.
  • a high non-specific binding would prevent the transport of the liposomes to their destination.
  • Specific binding can be achieved by further measures according to the prior art, that is to say by size selection of the liposomes or also the binding of ligands to the liposomal surface which binds to a target receptor of the cell surface.
  • Ligands can, for example, antibodies or their fragments, sugar substances, hormones, vitamins, peptides such as. the Arg-Gly-Asp (RGD), growth factors, bilirubin, or other components.
  • a preferred embodiment of the teaching according to the invention relates to the use of the liposomes for therapeutic or diagnostic applications under in vivo conditions.
  • Those liposomes are preferred which show a low non-specific binding and thus a tendency to fuse under physiological conditions, but which have a strong binding and high fusion competence under modified conditions.
  • Such liposomes are amphoteric liposomes that have an overall anionic charge of the particle under physiological conditions, but show an increasing cationic charge at a pH ⁇ 6.5.
  • Such pH values occur in the endocytosis of the liposomes in cells.
  • Such pH values also occur inside tumors. This pH Values can also be found in the outer layers of the skin.
  • Low pH values can also be set ex vivo when an organ is perfused for a certain period of time.
  • a high level of binding strength and fusion competence is therefore limited to those liposomes that have already been absorbed by cells or special tissues. Binding strength and increasing fusion competence support the fusion of the liposomal membrane with the cell membrane. This event leads to a direct release of the cargo into the interior of the cell without releasing lytic components of the endosome and thus endangering the cargo or cell components.
  • the liposomes are used as a depot formulation and / or as a circulating depot.
  • the liposomes can also advantageously be used with intravenous or peritoneal application.
  • the liposomes are used as vectors for the transfection of cells in vivo, in vitro and ex vivo.
  • the liposomes according to the invention have several advantages. Cationically chargeable liposomes made of 40% HisChol and PC bind nucleic acids such as e.g. under conditions of neutral pH. DNA on their membrane. Surprisingly, this binding is completely suppressed if the above-mentioned liposomes are produced using 5% PG and then have amphoteric properties. The binding of nucleic acids to the membrane can, however, be restored by reducing the pH. Liposomes according to the teaching according to the invention are therefore very well suited for pH-dependent binding of nucleic acids.
  • liposomes according to the present invention in contrast to the known constitutive cationic liposomes, are serum compatible. The teaching according to the invention is therefore expediently carried out when such liposomes are used for therapeutic purposes.
  • the liposomes have a much lower non-specific binding to cells than is the case with known constitutive cationic liposomes. It is also surprising that the fusion competence of the liposomes according to the invention depends on the pH of the medium. The fusion competence against biological membranes of cells is determined by the choice of the lipid, but also by the charge of the liposomes. The actual fusion is usually preceded by a binding step. However, strong binding of the liposomes to cell membranes is not always desirable, but, as described above, should only take place under controlled conditions in certain cells or tissues.
  • the liposomes can therefore be used to construct liposomal vectors for the transport of active substances in cells. All substances that are not micelle-forming can be used as active substances. Water-soluble substances are particularly suitable active substances. These are many proteins and peptides, especially antibodies or enzymes or antigens, all nucleic acids, regardless of their molecular weight and their lineage from RNA or DNA. But these are also other biological macromolecules such as complex sugars, natural products and other compounds. These are also low molecular weight active ingredients of synthetic or natural origin, which otherwise cannot penetrate the cell membrane as a barrier. Such substances can then be transported into the interior of cells using the vectors and trigger effects which would not be possible without this transport.
  • liposomes can thus be produced whose fusion and binding properties differ at different pH values. It is therefore possible to produce serum-compatible liposomes in this way, which are loaded with a large amount of active substances and transport them into the interior of cells. It is possible for a person skilled in the art to combine elements of the teaching according to the invention with one another and thus to produce liposomes which are optimally suitable for a specific purpose.
  • POPC, DOTAP and CHEMS are dissolved in the molar ratios given below in 4 mL chloroform / methanol (1: 1 v / v) and completely dried in a rotary evaporator.
  • the lipid film is treated with 4.3 ml of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5) in a total lipid concentration of 5 mM over 5 min Ultrasound treatment hydrated. Finally, the suspension is frozen and extruded several times after thawing (Avestin LiposoFast, polycarbonate filter 200nm pore size).
  • the table below shows the zeta potential as a function of pH.
  • the ⁇ height of the zeta potential and its steepness can be selected within wide limits by a suitable composition.
  • Lipid films are produced as in Example 1. A lipid mixture that does not contain DPPG serves as a comparison sample. The lipid films are hydrated in buffer (10mM phosphate, 150mM NaCl, pH 7.4) and extruded as above. Human serum is diluted with an equal amount of buffer (10mmM phosphate, 150mM NaCl, pH 7.4), particulate matter and fat are separated by centrifugation ( 20min, 13,000rpm, 4 ° C) removed, the clear serum is sterile filtered with a filter with a pore size of 0.2 ⁇ m.
  • the liposomes prepared above are added to the serum in a concentration of lirtM and incubated for 15 min at 37 ° C. After the incubation, the suspension of the DPPG-containing liposomes is uniformly cloudy without flocculation being observed can be .
  • the diameter of the liposomes is determined by means of dynamic light scattering and is changed by less than 10% compared to the original sample.
  • the suspension of the DPPG-free liposomes shows clear flocculation.
  • POPC 100% (as a control), POPC / DOTAP / CHEMS 60:30:10, 60:20:20 and 60:10:30 (data in mol%).
  • CF that was not trapped was separated by gel filtration.
  • the liposomes were diluted to 0.1 mM in serum and incubated at 37 ° C. At certain times, a sample of 30 ⁇ l was taken and diluted to 300 ⁇ l with 100 mM TRIS buffer, pH 8.2, and the fluorescence was measured. The 100% values were obtained by dissolving the liposomes with 10 ⁇ l Triton X-100 (10% in water). The time course of the included CF is shown in the table below.
  • Liposomes with the following compositions are prepared as in Example 1: (all data in mol%)
  • the liposomes are suspended in a concentration of 0.2mM in buffer (10mM potassium acetate, 10mM HEPES, pH 4.2 or 7.5). 45 ⁇ l of a DNA solution (1 mg DNA (Hering sperm, SIGMA D3159) in 1 ml water) are added to 1 ml of the different liposome samples and mixed quickly. After 15 minutes of incubation, the sample is filled with 6 ml of the appropriate buffer and the zeta potential of the liposomes is measured (Table 4).
  • Liposomes of the compositions POPC / DOTAP / CHEMS 60:15:25 and POPC / DCChol / CHEMS 60:15:25 were prepared according to Example 2.
  • the binding of DNA was carried out according to the above example at pH 4.2 and the zeta potentials were determined. The samples were then adjusted to a pH of 7.5 and the zeta potential measured again.
  • Two liposome formulations of the composition POPC60 / DOTAP15 / CHEMS25 or POPC85 / DOTAP15 are produced as dry lipid films as described above. The total amount of the lipid was 4 ⁇ mol in each case.
  • Herring DNA was dissolved in 10mM Kac, 10mM HEPES and 100mM NaCl pH4.0. 4 mg of the DNA was added directly to the lipid films.
  • the resulting liposomes were frozen and thawed several times and then extruded through a 200nm filter. 500 ⁇ l each of the particles were mixed with 2.5 ml of a sucrose solution (0.8M sucrose in buffer as above, pH 4.0 or 7.5) and with 1.5ml of a 0.5M sucrose solution and 0.5ml of Buffer overlaid.
  • Liposomes were then separated from unbound DNA by flotation. The liposomes were removed from the buffer / 0.5M sucrose interface after flotation.
  • the amount of bound DNA is determined by intercalation of propidium iodide; the Stewart assay was used to determine the amount of lipid. Only the PC used responds in the Stewart assay, the other lipids were calculated on the basis of this value. The results are shown in the table below (Table 5).
  • DNA cannot be detached from constitutive cationic liposomes by changing the pH or by additionally increasing the ionic strength and always remains on the outside.
  • the facultative cationic liposomes A or B are incubated with the neutral liposomes X or the anionic liposomes Y in the buffer (lOiriM HEPES, lOmM potassium acetate, pH 4.2 or 7.5).
  • the possible fusion of liposomes is analyzed by means of size measurement using dynamic light scattering (Table 6).
  • the initial sizes of the liposomes at pH 4.2 were 161.8 nm and 165.9 nm at pH 7.5 A) 183, 2 nm X) 199, 2 nm Y) 183, 2 nm
  • the size of the complementarily charged pairs differs significantly from the size of the mixed suspensions with the neutral liposome X.
  • the extent of the interaction is determined by the degree of charging of the optional cationic liposomes. Fusion to larger units is not dependent on the fusogenic lipid PE.
  • the liposomes formed are extruded through a 400nm membrane. Not included
  • Proteinase is obtained by flotating the liposomes in the
  • the liposomes thus produced are incubated with 7.5 ml of buffer at pH .2 and pH7.2 (buffer as above, starting pH 4.2 and 8.0). After the incubation, released proteinase K is separated off by ultrafiltration with a 0.1 ⁇ m membrane. The liposomes remaining in the filter are then treated with 7.5 ml of a solution of Triton X-100 in buffer (as above, pH 8.0).
  • Liposomes with the composition POPC50 / DOTAP10 / CHEMS40 (all data in mol% are prepared as in the previous examples.
  • the liposomes are then homogenized using ultrasound and extruded through a 200 nm filter.
  • the liposome suspension thus prepared is adjusted to a pH of 4.0 by adding acetic acid.
  • the liposomes are then separated from unincorporated protein by flotation.
  • the proportion of the included protein is shown in the table below (Table 8).
  • Liposomes of the composition used show a pl of 5, the lysozyme is a basic protein with a pl of 11.35. In the pH range between 6 and 8, both partners are therefore charged in opposite directions. The electrostatic attraction causes an efficient inclusion in the liposomes. Unencapsulated protein was pH 4 away. At this pH, the interaction between the partners is eliminated.
  • HeLa cells or CHO cells (3 * 10 ⁇ 5) were plated into each well of a 6-well titer plate and cultured for three days.
  • Liposomes (POPC / DOTAP / CHEMS 60/30/10) were prepared in the presence of fluorescent-labeled dextran (TRITC-dextran, 10 mg / ml in the hydration buffer). Non-incorporated TRITC-dextran was removed by gel filtration. The liposomes thus produced were added to the cells and incubated at 37 ° C. for 6 hours. The cells were then washed twice with buffer. The uptake of the dextran was followed in the microscopic image. The results are shown in FIG. 1.
  • Liposomes with the composition POPC / DOTAP / Chems / N-glutaryl-DPPE (50: 10: 30: 10 (mol%)) are produced according to Example 2, during which they are treated with a solution of 3 mg / ml TRITC-dextran (Mw approx. 4400) in Hepes 10 mM, 150 mM NaCl, pH 7.5. TRITC dextran that is not trapped is separated by gel filtration on a Sephadex G-75 column. The cyclic peptide RCDCRGDCFC was bound to the liposomal surface by activation of the N-glutaryl-DPPE
  • H-inulin was obtained by gel filtration on a G-75 Sephadex column and subsequent concentration via CENTRIPREP (Millipore) centrifugation units. 4 test animals per formulation were given 0.5 mL liposome suspension and blood samples were taken after 5 min, 15 min, 60 min, 3 h, 12 h, 24 h. The radioactivity of the membrane fraction and the soluble cargo was measured by scintillation and gave the following values:
  • the liposomes according to the invention meet the basic requirements for a vector system. They are not acutely toxic and are not immediately absorbed by the reticuloendothelial system. The ratio of the 3 [H] and 14 [C] radioactivity of the blood samples was constant until the end of the experiment. There is therefore no release of the cargo by complement lysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Es werden amphotere Liposomen vorgeschlagen, die positive und negative membranständige oder membranbildende Ladungsträger umfassen sowie die Verwendung dieser Liposomen.

Description

Amphotere Liposomen und Verwendung dieser
Die Erfindung betrifft amphotere Liposomen, die zugleich positive und negative membranständige oder membranbildende Ladungsträger umfassen sowie die Verwendung dieser Liposomen.
Unter dem Begriff der Lipide werden drei Klassen von Naturstoffen zusammengefasst , die sich aus biologischen Membranen isolieren lassen: Phospholipide, Sphingolipide und Cholesterol mit seinen Derivaten. Dazu gehören aber auch synthetisch erzeugte Stoffe mit ähnlicher Charakteristik. Hier seien die Diacylglycerole, Dialkylglycerole, 3-Amino- 1, 2-Propandiolester oder -ether oder auch die N,N- Dialkylamine stellvertretend genannt .
Von technischem Interesse sind diese Substanzen bei der Herstellung von Liposomen. Diese Liposomen lassen sich unter anderem als Container für Wirkstoffe bei pharmazeutischen Zubereitungen einsetzen.. Wünschenswert ist dabei eine effiziente und stabile Verpackung des Cargos, Verträglichkeit mit Körperflüssigkeiten und eine kontrollierbare und gegebenenfalls ortsspezifische Freisetzung des Inhalts.
Beide Anforderungen sind nachteilhafterweise schwer zu vereinen: Je stabiler und dichter die Verpackung ist, desto schwerer gibt sie den eingeschlossenen Wirkstoff wieder frei. Aus diesem Grund wurden Liposomen entwickelt, die ihre Eigenschaften als Reaktion auf einen äußeren Reiz verändern. Bekannt sind thermosensible und pH-sensitive Liposomen. Die pH-sensitiven Liposomen sind von besonderem Interesse, da dieser Parameter sich auch unter physiologischen Umständen, etwa bei der endozytotischen Aufnahme eines Liposoms in Zellen oder bei der Passage des Magen-Darm-Trakts, ändern kann. Nach dem Stand der Technik umfassen pH-sensitive Liposomen insbesondere Cholesterolhemisuccinat (CHEMS) .
Cholesterolhemisuccinat wird in Mischung mit Phosphatidylethanolamin zur Herstellung pH-sensitiver Liposomen verwendet (Tachibana et al.(1998); BBRC 251: 538- 544, US4891208) . Solche Liposomen können von Zellen endozytiert werden und vermögen auf diesem Weg Cargomoleküle in das Innere von Zellen zu transportieren, ohne die Integrität der zellulären Membran zu verletzen.
Ein wesentlicher Nachteil des CHEMS ist dessen anionischer Charakter. Die damit hergestellten Liposomen besitzen eine negative Gesamtladung und werden nur mit geringer Effizienz von Zellen aufgenommen. Trotz des oben beschriebenen Transfermechanismus eignen sie sich daher kaum für den Eintransport von Makromolekülen in Zellen.
Für den Eintransport von Wirkstoffen in Zellen (Transfektion) werden fachgemäß kationische Liposomen verwendet, die über eine möglichst hohe und konstante Oberflächenladung verfügen. Die positive Gesamtladung solcher Partikel führt zu einer elektrostatischen Anheftung an Zellen und in der Folge zu einem effizienten Eintransport . Der Einsatz dieser Verbindungen und der damit hergestellten Liposomen bleibt aber auf Anwendungen in vitro oder ex vivo beschränkt, da solche positiv geladenen Liposomen mit Serumbestandteilen unkontrollierte Aggregate bilden. Nachteilig bei den im Stand der Technik verfügbaren pH- sensitiven Liposomen ist die' Beschränkung auf sehr wenige pK- erte, zumeist den der Carboxygruppe im Cholesterolhemisuccinat (ca. 4,5). Ein weiterer Nachteil der Verbindungen ist die Beschränkung auf negative Ladungsträger. Diese eignen sich nicht zur effizienten Bindung von Nukleinsäuren und oft auch nicht für Proteine .
Kationische Liposomen zeigen eine gute Bindung von Nukleinsäuren und Proteinen und sind in der Lage, diese Wirkstoffe in Zellen einzubringen. Nachteilhafterweise sind sie nicht für in vivo-Applikationen einsetzbar.
Es bestand daher die Aufgabe, liposomale Strukturen herzustellen, die i) einen effizienten Einschluß von Wirkstoffen erlauben, ii) diese Wirkstoffe in biologische Zellen tranportieren können, iii) kompatibel mit dem Einsatz unter in vivo-Bedingungen sind iv) einfach und preiswert herzustellen sind.
Die erfindungsgemäße Aufgabe wird durch amphotere Liposomen gelöst, die mindestens einen positiven und mindestens einen davon verschiedenen negativen Ladungsträger umfassen, wobei der isoelektrische Punkt der Liposomen zwischen 4 und 8 liegt. Die Aufgabe wird also dadurch gelöst, dass Liposomen mit einer pH-abhängig wechselnden Ladung hergestellt werden.
Liposomale Strukturen mit den gewünschten Eigenschaften entstehen beispielsweise, wenn bei einem niedrigen pH-Wert die Menge der membranbildenden oder membranständigen kationischen Ladungsträger die der anionischen überwiegt und sich bei einem höheren pH-Wert diese Verhältnisse jedoch umkehren. Das ist immer dann der Fall, wenn die ionisierbaren Komponenten einen pKa-Wert im Bereich zwischen 4 und 9 haben. Alle kationischen Ladungsträger werden dann bei einem sinkenden pH des Mediums stärker aufgeladen, alle anionischen Ladungsträger verlieren ihre Ladung.
Im Zusammenhang mit der Erfindung sollen folgende Abkürzungen verwendet werden:
CHEMS Cholesterolhemisuccinat PC Phosphatidylcholin PE Phosphatidylethanolamin PS Phosphatidylserin
PG Phosphatidylglycerol
Hist-Chol Histidinylcholesterolhemisuccinat
Die membranbildenden oder membranständigen Ladungsträger haben die folgende allgemeine Struktur eines Amphiphils:
Ladungsgruppe - Membrananker
Als Membrananker kommen die aus der Natur bekannten Systeme oder deren technische abgewandelten Formen in Frage. Dazu gehören insbesondere die Diacylglycerole, Diacylphosphoglycerole (Phospholipide) und Sterole, aber auch die Dialkylglycerole, die Dialkyl oder Diacyl-l-Amino-2 , 3- Propandiole, langkettige Alkyle oder Acyle mit 8 bis 25 C- Atomen, Sp ingolipide, Ceramide und andere mehr. Diese Membrananker sind fachgemäß und im Stand der Technik bekannt. Die Ladungsgruppen, die sich mit diesen Ankern kombinieren lassen, können in folgende 6 Gruppen eingeteilt werden:
Stark kationisch, pKa>9, positive Nettoladung: Ihrer chemischen Natur nach sind das beispielsweise Ammonium- , Amidinium- , Guanidinium- oder Pyridiniumgruppen oder primäre, sekundäre oder tertiäre Aminofunktionen.
Schwach kationisch, pKa<9, positive Nettoladung: Ihrer chemischen Natur nach sind das insbesondere Stickstoffbasen wie beispielsweise Piperazine, Imidazole und Morpholine,
Purine oder Pyrimidine. Bevorzugt sind solche
Molekülfragmente, wie sie in biologischen Systemen vorkommen, also beispielsweise 4-Imidazole (Histamin) , 2-, 6- oder 9- Purine (Adenine, Guanine, Adenosine oder Guanosine) , 1-, 2- oder -Pyrimidine (Uracile, Thymine, Cytosine, Uridine,
Thymidine, Cytidine) oder auch Pyridin-3-carbonsäuren
(Nicotinsäureester oder -amide) .
Stickstoffbasen mit bevorzugten pKa-Werten entstehen auch durch einfache oder mehrfache Substitution des Stickstoffatoms mit Niederalkanhydroxylen, etwa Hydroxymethyl- oder Hydroxyethylgruppen. Geeignete organische Basen aus dieser Gruppe sind beispielsweise Aminopropandiole, Triethanolamine, Tris- (hydroxymethyl) met ylamine, Bis- (hydroxymethyl)methylamine, Tris- (hydroxyethyl) methylamine, Bis- (hydroxyethyl) methylamine oder die entsprechend substituierten Ethylamine .
Neutral oder im pH-Bereich zwischen 4 und 9 zwitterionisch: Ihrer chemischen Natur nach sind das neutrale Gruppen wie Hydroxyle, Amide, Thiole oder Zwitterionen aus einer starken kationischen und einer starken anionischen Gruppe wie beispielsweise das Phosphocholin oder Aminöcarbonsäuren, Aminosulfonsäuren, Betaine oder andere Strukturen.
Schwach anionisch, pKa>4, negative Nettoladung: Ihrer chemischen Natur nach sind das besonders die Carbonsäuren. Dazu gehören die aliphatischen, geradkettigen oder verzweigten Mono-, Di- oder Tricarbonsäuren mit bis zu 12 C- Atomen und 0, 1 oder 2 ethylenisc ungesättigten Bindungen. Carbonsäuren mit einem geeigneten Verhalten findet man auch als Substituenten aromatischen Systeme.
Andere anionische Gruppen sind dissoziierbare Hydroxyle oder Thiole, wie sie in der Ascorbinsäure, dem N-substituierten Alloxan, der N-substituierten Barbitursäure, im Veronal, dem Phenol oder als Thiolgruppe vorkommen.
Stark kationisch, pKa<4, negative Nettoladung: Ihrer chemischen Natur nach sind das funktioneile Gruppen wie beispielsweise die Sulfonsäureester oder Phosphorsäureester.
Amphotere Ladungsträger, pl zwischen 4,5 und 8,5, positive Nettoladung unterhalb des pl, negative Nettoladung oberhalb des pl : Ihrer chemischen Natur nach sind diese Ladungsträger aus zwei oder mehreren Fragmenten der oben genannten Gruppen zusammengesetzt. Es ist für die Ausführung der Erfindung zunächst nicht wesentlich, ob sich die geladenen Gruppen auf ein und demselben Membrananker befinden oder ob sich diese Gruppen auf verschiedenen Ankern befinden. Besonders bevorzugt für die Ausführung der Erfindung sind amphotere Ladungsträger mit einem pl zwischen 5 und 7.
Stark kationische Verbindungen sind beispielsweise: DC-Chol 3-ß- [N- (N",N"-dimethylethane) carbamoyl] cholesterol TC-Chol 3-ß- [N- (N'' , Ε" , N"-trimethylaminoethane) carbamoyl] cholesterol
BGSC Bis-guanidinium-spermidine-cholesterol
BGTC Bis-guanidinium-tren-cholesterol, DOTAP (1, 2-dioleoyloxypropyl) ^N,N,N-trimethylammonium chlorid
DOSPER (1, 3-dioleoyloxy-2- (6-Carboxy-spermyl) -propylamid)
DOTMA (1, 2-dioleyloxypropyl) -N,N,N-trimethylammonium chlorid) (Lipofectin®)
DORIE (1, 2-dioleyloxypropyl) -3 dimethylhydroxyethyl ammoniumbromid)
DOSC (1, 2-dioleoyl-3-succinyl-sn-glycerl cholinester)
DOGSDSO (l,2-dioleoyl-sn-glycero-3-succinyl-2hydroxyethyl disulfide ornithin) ,
DDAB Dimethyldioctadecylammonium bromid DOGS ( (C18) 2GlySper3+) N,N-dioctadecylamido-glycyl-spermin (Transfectam®) (C18)2Gly+ N,N-dioctadecylamido-glycin
CTAB Cetyl-trimethylammoniumbromid
CPyC Cetyl-pyridiniumchlorid DOEPC 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholin oder andere O-Alkyl-Phosphatidylcholin oder-ethanolamine,
Amide aus Lysin, Arginin oder Ornithin und
Phosphatidylethanolamin
Beispiele für schwach kationische Verbindungen sind:
His-Chol Histaminyl-Cholesterolhemisuccinat , Mo-Chol Morpholin-N-ethylamino-cholesterolhemisuccinat oder
Histidinyl-PE.
Beispielhafte für neutrale Verbindungen sind: Cholesterol, Ceramide, Phosphatidylcholine, Phosphatidylethanolamine, Tetraetherlipide oder Diacylglycerole . Beispielhafte schwach anionische Verbindunge sind: CHEMS Cholesterolhemisuccinat, Alkyl carbonsäuren mit 8 bis 25 C- Atomen oder Diacylglycerolhemisuccinat . Weitere schwach anionische Verbindungen sind die Amide aus Asparaginsäure, oder Glutaminsäure und PE sowie das PS und dessen Amide mit Glycin, Alanin, Glutamin, Asparagin, Serin, Cystein, Threonin, Tyrosin, Glutaminsäure, Asparaginsäure oder anderen Aminosäuren oder Aminodicarbonsäuren. Nach dem gleichen Prinzip sind auch die Ester aus Hydroxycarbonsäuren oder Hydroxydicarbonäsuren und PS schwach anionische Verbindungen.
Stark anionische Verbindungen sind beispielsweise: SDS Natriumdodecyl sulfat, Cholesterolsulfat, Cholesterolphosphat, Cholesterylphosphocholin, Phosphatidylglycerole , Phosphat idsäuren, Phosphytidylinositole,
Diacylglycerolphosphate, Diacylglycerolsulf ate, Cetylphosphat oder Lysophospholipide.
Amphotere Verbindungen sind z.B. : Hist-Chol Nα-Histidinyl -Cholesterolhemisuccinat,
EDTA-Chol Ethylendiamintetraessigsäure-Cholesterolester,
Hist-PS Nα-Histidinyl-Phosphatidylserin oder N-Alkylcarnosin.
Die erfindungsgemäßen Liposomen enthalten variable Anteile solcher membranbildender oder membranständiger Amphiphile, dass sie einen amphoteren Charakter erhalten. Das heißt, dass die Liposomen ihr Ladungsvorzeichen vollständig wechseln können. Die Menge der bei einem gegebenen pH-Wert des Mediums vorliegenden Ladungsträger eines Liposoms kann nach der folgenden Formel berechnet werden:
z= ∑ni * ((qi-l) + (10(pK-pH)/(l+10(pK-pH>))) qi absolute Ladung der einzelnen ionischen Gruppe unterhalb ihres pK (Bsp. Carboxyl =0, einfache Stickstof base = 1, Phosphatgruppe der zweiten Dissoziationsstufe = -1 etc.) ni Anzahl dieser Gruppen im Liposom.
Am isoelektrischen Punkt ist die Nettoladung des Liposomes 0. Durch Mischung anionischer und kationischer Anteile können Strukturen mit weitgehend wählbarem isoelektrischen Punkt erzeugt werden.
Die Strukturen können also insbesondere so konstruiert werden, dass mit fallendem pH-Wert eine wirkliche Umladung des Gesamtmoleküls von negativ auf positiv erfolgt. Eine solche Umladung ist insbesondere vorteilhaft, wenn die mit den Strukturen hergestellten Liposomen in physiologischen Zusammenhängen eingesetzt werden sollen.. Nur Liposomen mit einer negativen Gesamtladung sind mit Blut- und Serumbestandteilen verträglich. Eine positive Ladung führt zu Aggregationen. Liposomen mit positiver Ladung sind aber sehr gut fusogen und können Wirkstoffe in Zellen transportieren. Eine pH-abhängige Umladung erlaubt daher die Konstruktion von serumkompatiblen, weil negativ geladenen Verbindungen, die sich nach endozytotischer Aufnahme umladen und somit erst in der Zelle fusogen werden.
In einer bevorzugten Ausführungsvariante der Erfindung weisen die amphoteren Liposomen einen isoelektrischen Punkt zwischen 5 und 7 auf .
Die Erfindung betrifft auch amphotere Liposomen, die mindestens einen amphoteren Ladungsträger umfassen, wobei der amphotere Ladungsträger einen isoelektrischen Punkt zwischen 4 und 8 aufweist. In einer bevorzugten Ausführungs ariante weist der amphotere Ladungsträger der Liposomen einen isoelektrischen Punkt zwischen 5 und 7 auf .
Die Erfindung betrifft auch amphotere Liposomen, wobei die Liposomen mindestens einen amphoteren Ladungsträger und einen anionischen und/oder kationischen Ladungsträger umfassen.
Zweckmäßig ist es, dass in einer bevorzugten Ausführungsvariante die amphoteren Liposomen einen isoelektrischen Punkt zwischen 5 und 7 aufweisen.
In einer besonderen. Ausführungsvariante der Erfindung umfassen die erfindungsgemäßen Liposomen Phospatidylcholin, Phosphatidylethanolamin, Diacylglycerol, Cholesterol, Tetraetherlipid, Ceramid, Sphingolipid und/oder Diacylglycerol . Die Herstellung der Liposomen kann aber selbstverständlich mit vielen Lipidkombinationen entsprechend der erfindungsgemäßen Lehre ausgeführt werden. So können beispielsweise Liposomen unter Verwendung einer hohen Menge CHEMS (ca. 40%) und einer kleineren Menge DOTAP (ca. 30%) hergestellt werden. Beim pK-Wert der Carboxylgruppe des CHEMS ist die negative Ladung dieser Komponente bereits soweit zurückgedrängt, das der positive Ladungsträger in der Summe überwiegt. Eine alternative Formulierung ist die Mischung von CHEMS mit HisChol, wobei hier die stärkere Aufladung des positiven Ladungsträgers HisChol mit der Entladung des negativen CHEMS synergistisch einhergeht.
Wird die von sich aus amphotere Verbindung Hist-Chol in eine neutrale Membran, beispielsweise aus einem Phosphatidylcholin, eingebaut, so resultiert ebenfalls ein amphoteres Liposom mit einem isoelektrischen Punkt, der dem des Hist-Chol weitgehend entspricht.
Dem Fachmann ist bekannt, wie durch vielfältige Variationen der erfindungsgemäßen Lehre die wichtige Parameter anzupassen sind: i) die Ladungsdichte der Liposomen an den Endpunkten der
Umladungen durch die Menge und die pKa-Werte der verwendeten
Ladungsträger, ii) die Steilheit der Umladungskurve durch das Verhältnis der beiden Ladungsträger, durch deren absolute Mengen und durch eine ggf. synergistische Wirkung von zwei komplementären pH-sensitiven Lipiden und iii) der Nulldurchgang des Zetapotentials durch das Verhältnis der beiden Ladungsträger wie auch durch die Lage des pK-Wertes oder der pK-Werte .
In einer weiteren Ausführungsvariante der Erfindung weisen die Liposomen eine mittlere Größe zwischen 50 und 1000 nm, bevorzugt zwischen 70 und 250 nm, besonders bevorzugt zwischen 60 und 130 nm auf. Die Herstellung der amphoteren Liposomen erfolgt nach den im Stand der Technik bekannten Methoden, also beispielsweise durch Ethanolinjektion einer Lipidlösung in wäßrige Puffer, durch Hydratisierung von trockenen Lipidfilmen oder durch Detergenzdialyse . Die Größe der Liposomen kann generell zwischen 50 nm und 10000 nm variieren. Homogene Populationen können durch Hochdruckhomogenisation oder Extrusion hergestellt werden.
In einer bevorzugten Ausführungsvariante der Erfindung umfassen die Liposomen einen Wirkstoff. Zweckmäßig in einer bevorzugten Ausführungsvariante ist der Wirkstoff ein Protein, ein Peptid, eine DNA, eine RNA, ein antisense-Nukleotid und/oder ein Decoy-Nukleotid.
In einer weiteren bevorzugten Ausführungsvariante der Erfindung befinden sich mindestens 80% des Wirkstoffes im Innern des Liposoms .
Die Erfindung betrifft auch ein Verfahren zur Wirkstoffbeladung der Liposomen, wobei ein definierter pH- Wert zur Verkapselung benutzt wird und ein zweiter pH-Wert zur Abtrennung des nicht gebundenen Materials eingestellt wird.
Weiterhin betrifft die Erfindung auch ein Verfahren zur Wirkstoffbeladung der Liposomen, wobei die Liposomen bei einem definierten pH-Wert permeabilisiert und verschlossen werde .
Die Erfindung betrifft auch die Verwendung der Liopsomen zur Herstellung von Nanokapseln durch Abscheidung von Polymeren oder Polyelektrolyten auf der Lipidschicht . Dabei kann eine einfache oder mehrfache Abscheidung solcher Substanzen auf der Oberfläche erfolgen. Bei einer mehrfachen Abscheidung, die gegebenenfalls unter Anwesenheit von Vernetzer durchgeführt wird, entstehen liposomale Nanoakapseln, wie sie in der WO 00/28972 oder in der WOOl/64330 beschrieben sind. Vorteilhaft bei der Verwendung der hier beschriebenen Substanzen ist die Tatsache, dass die elektrostatische Interaktion mit dem Polyelektrolyten unterbrochen werden kann. Es ist bekannt, dass die Wechselwirkung eines Polyelektrolyten mit Ladungsträgern der liposomalen Membran zur Entmischung von Membranbestandteilen und zur Bildung von Lipidclustern führen kann. In vielen Fällen geht diese Entmischung mit einer Permeabilisierung des Liposoms einher. Die erfindungsgemäßen Substanzen ermöglichen eine Abschaltung dieser Wechselwirkung nach dem Beschichtungsprozess. Wird der pH-Wert zu diesem Zeitpunkt erhöht, so sind die Liposomen nur noch sterisch in der Nanokapseln eingeschlossen, eine Wechselwirkung der Membran mit den Polyelektrolyten besteht dann nicht mehr. Clusterbildung der Lipide und damit verbundene Permeabilisierung der Membran können so umgangen werden.
Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Liposomen zur Verpackung und Freisetzung von Wirkstoffen. In dieser Ausführungsvariante dienen die Liposomen insbesondere der effizienten Verpackung von Wirkstoffen; beispielsweise Nukleinsäuren. Nukleinsäuren werden mit den genannten Lipiden insbesondere bei einem niedrigen pH-Wert (ca. 3 bis 6) inkubiert. Nach Bildung der Liposomen können außen anhaftende Nukleinsäuren durch den Wechsel zu einem hohen pH-Wert (ca. 7...9) abgewaschen werden.
Ein analoges Vorgehen kann für die Verpackung von Proteinen gewählt werden. Hier wird mit Vorteil ein pH im Medium eingestellt, der zwischen dem pl des Liposoms und dem des Proteins liegt. Als besonders vorteilhaft erweist es sich, wenn die beiden pl-Werte mehr als eine Einheit auseinandere liegen.
In einer weiteren Ausführungsvariante der Erfindung werden die Liposomen zur Herstellung von Freisetzungssystemen in der Diagnostik verwendet. In einer weiteren bevorzugten Ausführungsvariante der Erfindung werden die Liposomen als Transfektionssystem verwendet, das heißt zum Einbringen von Wirkstoffen in Zellen.
In einer weiteren Ausführungs ariante der Erfindung werden die Liposomen zur gesteuerten Freisetzung ihres Inhalts durch Fusion oder Permeabilisierung der Membran verwendet. So können Liposomen aus einem allein nicht membranbildenden Lipid, etwa PE durch den Einbau von Ladungsträgern stabilisiert werden. Wird der Ladungsträger in einen neutralen ungeladenen oder zwitterionischen Zustand überführt, so erhöht sich . die Permeabilität der Membran. Bekannte Liposomen nach dem Stand der Technik erlauben (PE/ CHEMS, Tachibana et al . ) eine solche Permeabilisierung bei niedrigen pH-Werten, wie sie unter physiologischen Bedingungen nur im Inneren von Endosomen oder bei einer Magenpassage erreicht werden. Amphotere Liposomen können nach den oben ausgeführten Maßnahmen so hergestellt werden, dass ihr Neutralpunkt bei jedem gewünschten pH-Wert zwischen 4 und 9 liegt. Unter diesen Bedingungen sind die Liposomen permeabel und können ein Cargo ins Medium abgeben.
Die liposomalen Formulierungen können jedoch unter Bedingungen geringer Permeabilität hergestellt, prozessiert und gelagert werden. In einer bevorzugten Ausführungsform der Erfindung werden Liposomen so hergestellt, dass sie unter Bedingungen eines physiologischen pH-Wertes ihre Cargo freisetzen, bei einem niedrigen pH-Wert jedoch ihr Cargo sicher einschließen. Solche Liposomen eignen sich besonders zur Herstellung von Formulierungen mit einer langsamen Freisetzungskinetik, wobei die Freisetzung erst durch den Kontakt mit Körperflüssigkeiten initiiert wird, nicht jedoch schon bei der Lagerung oder beim Transport .
Eine bevorzugte Ausführung der erfindungsgemäßen Lehre besteht daher im dem Einsatz solcher Liposomen zu therapeutischen Zwecken, insbesondere für solche Anwendungen, die ein spezifisches Targeting der Liposomen benutzen. Die geringe unspezifische Bindung ist hier Voraussetzung für einen Transport der Liposomen bis zum Zielort . Eine hohe unspezifische Bindung würde im Gegensatz dazu den Transport der Liposomen zu ihrem Zielort verhindern. Eine spezifische Bindung kann durch weitere Maßnahmen nach dem Stand der Technik erreicht werden, also durch eine Größenselektion der Liposomen oder auch die Bindung von Liganden an die liposomale Oberfläche, der an einen Zielrezeptor der Zelloberfläche bindet. Liganden können beispielsweise Antikörper oder deren Fragmente, Zuckerstoffe, Hormone, Vitamine, Peptide wie zB. das Arg-Gly-Asp (RGD) , Wachstumsfaktoren, Bilirubin, oder anderen Komponenten sein.
Eine bevorzugte Ausführungsvariante der erfindungsgemäßen Lehre betrifft die Verwendung der Liposomen für therapeutische oder diagnostische Anwendungen unter in vivo- Bedingungen. Bevorzugt sind solche Liposomen, die eine geringe unspezifische Bindung und damit Fusionsneigung unter physiologischen Bedingungen zeigen, aber eine starke Bindung und hohe Fusionskompetenz unter veränderten Bedingungen aufweisen. Solche Liposomen sind amphotere Liposomen, die unter physiologischen Bedingungen eine anionische Gesamtladung des Partikels besitzen, bei einem pH<6,5 jedoch eine zunehmende kationische Aufladung zeigen. Solche pH-Werte kommen bei der Endozytose der Liposomen in Zellen vor. Solche pH-Werte kommen auch im Innern von Tumoren vor. Diese pH- Werte findet man auch in den äußeren Schichten der Haut . Niedrige pH-Werte können auch ex vivo bei der Perfundierung eines Organs für einen gewissen Zeitraum eingestellt werden. Eine hohe Bindungsstärke und Fusionskompetenz ist daher auf solche Liposomen beschränkt, die bereits von Zellen oder speziellen Geweben aufgenommen wurden. Bindungsstärke und zunehmende Fusionskompetenz unterstützen die Verschmelzung der liposomalen Membran mit der Zellmembran. Dieses Ereignis führt zu einer direkten Freisetzung des Cargos in das Zellinnere, ohne lytische Komponenten des Endosoms freizusetzen und damit das Cargo oder Zellbestandteile zu gefährden.
Zweckmäßig ist weiterhin die Verwendung der Liposomen als Depotformulierung und/oder als zirkulierendes Depot. Mit Vorteil können die Liposomen auch bei intravenöser oder peritonealer Applikation verwendet werden. In einer besonders bevorzugten Ausführungsvariante der Erfindung werden die Liposomen als Vektor zur Transfektion von Zellen in vivo, in vitro und ex vivo eingesetzt.
Die erfindungsgemäßen Liposomen weisen mehrere Vorteile auf . Kationisch aufladbare Liposomen aus 40% HisChol und PC binden auch unter Bedingungen eines neutralen pH-Wertes Nukleinsäuren, wie z.B. DNA an ihrer Membran. Überraschenderweise wird diese Bindung vollständig unterdrückt, wenn die oben angegebenen Liposomen unter zusätzlicher Verwendung von 5% PG hergestellt werden und dann amphotere Eigenschaften haben. Die Bindung von Nukleinsäuren an die Membran ist jedoch durch Verringerung des pH-Wertes wieder herstellbar. Liposomen nach der erfindungsgemäßen Lehre sind daher sehr gut zur pH-abhängigen Bindung von Nukleinsäuren geeignet.
Es wurde weiterhin überraschend gefunden, dass auch eine Reihe von Proteinen sich in der für die Nukleinsäuren beschriebenen Art verhalten. So binden Antikörper nicht bei neutralen pH-Wert, wohl aber unter leicht sauren Bedingungen effektiv an die Membran der erfindungsgemäßen Liposomen. Ein solches Verhalten kann weder bei pH-sensitiven Liposomen aus einem Neutrallipid und CHEMS noch bei solchen aus einem Neutrallipid und HisChol beobachtet werden. Es ist daher eine besondere Eigenschaft der amphoteren Liposomen. Es überraschenderweise auch gefunden, dass Liposomen gemäß der vorliegenden Erfindung im Gegensatz zu den bekannten konstitutiv kationischen Liposomen serumkompatibel sind. Eine zweckmäßige Ausführung der erfindungsgemäßen Lehre besteht daher beim Einsatz solcher Liposomen zu therapeutischen Zwecken. Ein Vorteil der Liposomen ist, dass sie eine wesentlich geringere unspezifische Bindung an Zellen aufweisen, als dies bei bekannten konstitutiv kationischen Liposomen der Fall ist . Überraschend ist auch, dass die Fusionskompetenz der erfindungsgemäßen Liposomen vom pH-Wert des Mediums abhängig ist. Die Fusionskompetenz gegenüber biologischen Membranen von Zellen wird durch die Wahl des Lipids, aber auch durch die Aufladung der Liposomen bestimmt . Der eigentlichen Fusion geht für gewöhnlich ein Bindungsschritt voraus. Eine starke Bindung der Liposomen an Zellmembranen aber nicht immer wünschenswert, sondern soll wie oben beschrieben nur unter kontrollierten Bedingungen in bestimmten Zellen oder Geweben erfolgen.
Die Liposomen können daher zur Konstruktion von liposomalen Vektoren für den Transport von Wirkstoffen in Zellen genutzt werden. Als Wirkstoffe kommen alle Stoffe in Frage, die nicht mizellbildend sind. Besonders geeignete Wirkstoffe sind wasserlösliche Stoffe. Das sind viele Proteine und Peptide, insbesondere Antikörper oder Enzyme oder Antigene, alle Nukleinsäuren, unabhängig von ihrem Molekulargewicht und ihrer Abstammung von RNA oder DNA. Das sind aber auch andere biologische Makromoleküle wie etwa komplexe Zucker, Naturstoffe und weitere Verbindungen. Das sind ebenfalls niedermolekulare Wirkstoffe synthetischen oder natürlichen Ursprungs, die sonst nicht die Zellmembran als Barriere durchdringen können. Solche Stoffe können dann mit Hilfe der Vektoren in das Innere von Zellen transportiert werden und Wirkungen auslösen, die ohne diesen Transport nicht möglich wären.
Mit Hilfe der erfinderischen Lehre können somit Liposomen hergestellt werden, deren Fusions- und Bindungseigenschaften sich bei verschiedenen pH-Werten unterscheiden. Es können daher auf diesem Wege serumkompatible Liposomen hergestellt werden, die mit einer großen Menge von Wirkstoffen beladen sind und diese in das Innere von Zellen transportieren. Es ist dem Fachmann möglich, Elemente der erfindungsgemäßen Lehre miteinander zu kombinieren und damit Liposomen herzustellen, die optimal für einen bestimmten Zweck geeignet sind.
Die Erfindung soll im folgenden anhand von Beispielen näher erläutert werden, ohne dass die Erfindung auf diese Beispiele zu beschränken ist .
Beispiel 1
Herstellung und Ladungseigenschaften amphoterer Liposomen mit positiv aufladbarem und konstant negativ geladenem Ladungsträger
5 mg His-Chol und 7.8 mg POPC und 2 mg DPPG werden in 4 mL Chloroform/Methanol (1:1 v/v) gelöst und im Rotationsverdampfer vollständig getrocknet. Der Lipidfilm wird mit 4.3 mL des entsprechenden Puffers (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7,5 in einer Lipidkonzentration von 5 mM durch 5 min Ultraschallbehandlung hydratisiert . Abschließend wird die Suspension eingefroren und nach dem Auftauen mehrfach extrudiert (Avestin LiposoFast, Polycarbonatfilter 200nm Porenweite) . Zur Messung des Zetapotentials wird eine Endkonzentration der Liposomen von 0,2 mM eingestellt. Zur Verdünnung wird das oben genannte Puffersystem bei einem pH von 7,5 bzw. 4,2 benutzt. Die gemessenen Zetapotentiale liegen bei -18mV (pH7.5) bzw. bei +35mV (pH4.2) .
Beispiel 2
Herstellung und Ladungseigenschaften amphoterer Liposomen mit konstant positivem und veränderlich negativem Ladungsträger
POPC, DOTAP und CHEMS werden in den unten angegebenen molaren Verhältnissen in 4 mL Chloroform/Methanol (1 : 1 v/v) gelöst und im Rotationsverdampfer vollständig getrocknet . Der Lipidfilm wird mit 4 .3 mL des entsprechenden Puffers (10 mM KAc , 10 mM HEPES , 150 mM NaCl , pH 7 , 5 ) in einer Gesamtlipidkonzentration von 5 mM durch 5 min Ultraschallbehandlung hydratisiert . Abschließend wird die Suspension eingefroren und nach dem Auftauen mehrfach extrudiert (Avestin LiposoFast, Polycarbonatfilter 200nm Porenweite) . Die untenstehende Tabelle zeigt die Zetapotenziale in Abhängigkeit vom pH.
Zusammensetzung der Liposomen in mol-
Liposom 1 POPC 50 DOTAP 40 Chems 10 Liposom 2 POPC 50 DOTAP 30 Chems 20 Liposom 3 POPC 50 DOTAP 25 Chems 25 Liposom 4 POPC 50 DOTAP 20 Chems 30 Liposom 5 POPC 50 DOTAP 40 Chems 10
Tabelle 1. Zetapotenziale in mV pH-Wert Liposoml Liposom2 Liposom3 Liposom4 Liposom5
4 44,2 38,4 34,7 31,7 16,2
5 39,9 25,6 27,2 22,1 3,3
6 37 21,4 ' 16,4 2,5 -7,3
7,5 29,2 1,8 -7,9 -18,9 -34,6 Durch geeignete Zusammensetzung ist die ~ Höhe des Zetapotenzials und dessen Steilheit in weiten Grenzen wählbar .
Beispiel 3
Herstellung und Ladungseigenschaften amphoterer Liposomen mit kompletter Schaltbarkeit in einer Verbindung
5 mg Hist-Chol und 9.8 mg POPC werden in 4 mL Chloroform/Methanol ( 1:1 v/v) gelöst und im Rotationsverdampfer vollständig getrocknet. Der Lipidfilm wird mit 4.3 mL des entsprechenden Puffers (10 mM Kac, 10 mM HEPES , 150 mM NaCl , pH 7 , 5 in einer Lipidkonzentration von 5 mM durch 5 min Ultraschallbehandlung hydratisiert .
Abschließend wird die Suspension eingefroren und nach dem
Auftauen mehrfach extrudiert (Avestin LiposoFast ,
Polycarbonatfilter 200nm Porenweite) . Der Verlauf des Zetapotentials bei verschiedenen pH-Werten und Ionenstärken ist in der untenstehenden Tabelle dargestellt (Tabelle 2) .
Tabelle 2 pH_Wert ohne Salz 100 mM NaCl
_ _____ ___
5 26,9 2,2
6 -4,1 -5,2
7 -31,4 -15,3
8 -45,7 -25,4
Beispiel 4
Serumaggregation
Lipidfilme werden wie in Beispiel 1 hergestellt. Als Vergleichprobe dient eine Lipidmischung, die kein DPPG enthält. Die Lipidfilme werden in Puffer (lOmM Phosphat, 150mM NaCl, pH7.4) hydratisiert und wie oben extrudiert .Humanes Serum wird mit einer gleichen Menge Puffer (lOmM Phophat, 150mM NaCl, pH 7.4) verdünnt, partikuläre Bestandteile und Fett werden durch Zentrifugation (20min, 13.000rpm, 4°C) entfernt, das klare Serum wird mit einem Filter der Porenweite 0.2μm steril filtriert.
Die oben präparierten Liposomen werden in einer Konzentration von lirtM zum Serum gegeben und für 15min bei 37°C inkubiert. Nach der Inkubation ist die Suspension der DPPG-haltigen Liposomen gleichmäßig trüb, ohne das eine Flockung beobachtet werden kann . Der Durchmesser der Liposomen wird mittels dynamischer Lichtstreuung bestimmt und ist um weniger als 10% gegenüber der Ausgangsprobe verändert . Die Suspension der DPPG- freien Liposomen zeigt deutliche Flockung .
Beispiel 5
Serumstabilität der Membran
Neben der Serumaggregation wurde auch das Austreten eines Wirkstoffes (Carboxy luorescein, CF) in Gegenwart von Humanserum untersucht . Dazu wurden POPC/DOTAP/CHEMS Liposomen unterschiedlicher Zusammensetzung nach Beispiel 2 hergestellt:
POPC 100% (als Kontrolle), POPC/DOTAP/CHEMS 60:30:10, 60:20:20 und 60:10:30 (Angaben in Mol%) . Nicht eingeschlossenes CF wurde durch Gelfiltration abgetrennt. Zur Messung wurden die Liposomen auf 0.1 mM in Serum verdünnt und bei 37°C inkubiert. Zu bestimmten Zeitpunkten wurde eine Probe von 30 μl entnommen und mit 100 mM TRIS Puffer, pH 8.2 auf 300 μl verdünnt und die Fluoreszenz gemessen. Die 100% Werte wurden durch Auflösen der Liposomen mit 10 μl Triton X- 100 (10% in Wasser) gewonnen. Der Zeitverlauf des eingeschlossenen CF ist in der untenstehenden Tabelle dargestellt .
Die Liposomen verlieren nur wenig CF in Serum über den gemessenen Zeitraum von 4 h. POPC/DOTAP/CHEMS 60:30:10 und 60:20:20 besitzen nach 4 h noch circa 75%, POPC und POPC/DOTAP/CHEMS 60:10:30 sogar an die 100% ihres ursprünglichen CF-Gehalts (siehe Tabelle 3) . Tabelle 3
Zeit POPC POPC/DOTAP/CHEMS POPC/DOTAP/CHEMS POPC/DOTAP/CHEMS in min 60:30:10 60:20:20 60:10:30
0 100% 100% 100% 100%
15 91% 84% 95% 107%
60 94% 81% 87% 110%
120 96% 80% 76% 105%
240 96% 80% 77% 107%
Beispiel 6 Bindung von DNA
Liposomen mit folgenden Zusammensetzungen werden wie in Beispiel 1 hergestellt: (alle Angaben in Mol%)
Ar 60 POPC 40 HisChol
B: 55 POPC 40 HisChol 5 CHEMS
C: 60 POPC 20 HisChol 20 CHEMS
Die Liposomen werden in einer Konzentration von 0.2mM in Puffer (10 mM Kaliumacetat, 10 mM HEPES, pH 4.2 bzw. 7.5) suspendiert. 45 μl einer DNA-Lösung (1mg DNA (Hering sperm, SIGMA D3159)in 1 ml Wasser) werden zu jeweils 1 ml der unterschiedlichen Liposomenproben gegeben und schnell gemischt. Nach 15min Inkubation wird die Probe mit 6 ml des entsprechenden Puffers aufgefüllt und das Zetapotential der Liposomen vermessen (Tabelle 4) .
Tabelle 4
Lipid pH 4.2 pH 7.5
-DNA +DNA -DNA +DNA
A + 47.6 - 32.0 + 2.4 - 44.4 B + 47.8 - 28.1 + 0.1 - 38.4 C + 34.0 - 28.6 - 10.1 - 24.7 Unter den Bedingungen eines Überschusses kationischer
Ladungen (pH 4.2) findet eine starke Umladung der Partikel statt . Beim neutralen pH von 7.5 kann das CHEMS in hoher
Konzentration (Liposom C)die Ladung des HisCHol überkompensieren, die Partikel haben ein negatives
Zetapotential . An solche Partikel binden nur noch geringe Mengen DNA.
Beispiel 7
Bindung und Ablösung von DNA
Liposomen der Zusammensetzungen POPC/DOTAP/CHEMS 60:15:25 und POPC/DCChol/CHEMS 60:15:25 (alle Angaben in Mol%) wurden nach Beispiel 2 hergestellt . Die Bindung von DNA wurde nach obigem Beispiel bei pH4,2 durchgeführt und die Zetapotentiale bestimmt. Anschließend wurden die Proben auf einen pH von 7,5 eingestellt und wiederum das Zetapotential gemessen.
Mischung Zeta [mV] a) POPC/DCChol/CHEMS 60:15:25 (pH 4,2) -43,5 (Aggregate) b) POPC/DOTAP/CHEMS 60:15:25 (pH 4,2) -43,7 c) POPC/DCChol/CHEMS 60:15:25 (pH 7,5) -18,5 d) POPC/DOTAP/CHEMS 60:15:25 (pH 7,5) -14,5
In Gegenwart von DNA wird bei niedrigem pH ein negatives Zetapotential gemessen, die ursprünglichen Partikel waren jedoch positiv geladen. Nach dem Wechsel zum neutral-pH verringert sich diese durch DNA bedingte Aufladung. Die Zetapotentiale nähern sich dem der unbehandelten Liposomen (- 11mV bei pH 7,5) Beispiel 8
DNA-Einschluß und Ablösung nicht verkapselten Materials Zwei Liposomenformulierungen der Zusammensetzung POPC60/DOTAP15/CHEMS25 bzw. POPC85/DOTAP15 werden als trockene Lipidfilme wie oben beschrieben hergestellt . Die Gesamtmenge des Lipids betrug jeweils 4μMol. Zur Hydratisierung wurde Herings-DNA in lOmM Kac, lOmM HEPES und lOOmM NaCl pH4,0 gelöst. 4mg der DNA wurde direkt zu den Lipidfilmen gegeben. Die entstandenen Liposomen wurden mehrfach eingefroren und getaut und anschließend durch ein 200nm -Filter extrudiert. Je 500μl der Partikel wurden mit 2,5 ml einer Sucroselösung gemischt (0,8M Sucrose in Puffer wie oben, pH-Wert 4,0 oder 7,5) und mit 1,5ml einer 0, 5M-Sucroselösung sowie 0,5ml des Puffers überschichtet .
Liposomen wurden dann von nicht gebundener DNA durch Flotation getrennt . Die Liposomen wurden nach der Flotation von der Grenzfläche Puffer / 0,5M Sucrose abgenommen.
Die Bestimmung der gebundenen DNA-Menge erfolgt durch Interkalation von Propidiumiodid, für die Bestimmung der Lipidmenge wurde der Stewart-Assay verwendet. Im Stewart- Assay spricht nur das verwendete PC an, die anderen Lipide wurden anhand dieses Wertes berechnet. Die Ergebnisse sind in der untenstehenden Tabelle dargestellt (Tabelle 5) .
Tabelle 5.
Liposom pH 4, 0 pH 7,5
POPC/DOTAP/CHEMS 2μg DNA/μg DOTAP l,2μg DNA/μg DOTAP
60/15/25
POPC/DOTAP 85/15 2,3μg DNA/μg DOTAP 2,3μg DNA/μg DOTAP Mit den amphoteren Liposomen flotiert nach dem pH-Wechsel auf 7,5 nur noch etwa die Hälfte der gebundenen DNA nach oben. Dieses Material ist das wirklich eingeschlossene Material. Analoge Ergebnisse wurden bei einem Verdau mit DNAse erhalten.
Von konstitutiv kationischen Liposomen lässt sich DNA durch pH-Wechsel und auch durch eine zusätzliche Erhöhung der Ionenstärke nicht wieder ablösen und verbleibt immer an der Aussenseite.
Beispiel 9
Fusionseigenschaften Liposomen mit folgenden Zusammensetzungen werden wie in Beispiel 1 hergestellt (alle Angaben in Mol-%) :
A) POPC 60 HisChol 40
B) POPC 55 HisChol 40 CHEMS 5 X) POPC 100
Y) POPC 60 DPPG 40
Die fakulativ kationischen Liposomen A oder B werden mit den neutralen Liposomen X oder den anionischen Liposomen Y im Puffer (lOiriM HEPES, lOmM Kaliumacetat , pH4.2 bzw. 7.5) inkubiert . Die eventuelle Fusion von Liposomen wird mittels Größenmessung durch dynamische Lichtstreuung analysiert (Tabelle 6) .
Tabelle 6.
Liposom 1 X X Y Y Liposom 2 A B A B pH 4.2 181, 6 nm 191,9 nm 1689,3 nm 2373,2 nm pH 7.5 191,8 nm 202,4 nm 250, 0 nm 206,3 nm
Die Ausgangsgrößen der Liposomen betrugen bei pH 4.2 161,8 nm und 165,9 nm bei pH 7.5 A) 183, 2nm X) 199, 2nm Y) 183, 2nm
Die Größe der komplementär geladenen Paare (YA und YB) unterscheidet sich deutlich von der Größe der Mischsuspensionen mit dem Neutralliposom X. Das Ausmaß der Wechselwirkung ist durch das Maß der Aufladung der fakultativ kationischen Liposomen bestimmt . Eine Fusion zu größeren Einheiten ist nicht von dem fusogenen Lipid PE abhängig.
Beispiel 10
Permeabilität gegenüber Makromolekülen
13.75μmol DOPE, 2.5μmol CHEMS und lOμmol HisChol werden in Isopropanol gelöst und das Lösungsmittel wird unter Vakuum abgezogen. Zu dem getrockneten Lipidfilm gibt man 2.5ml einer
Lösung von Proteinase K in Puffer (lmg/ml Proteinase K, lOmM
Kaliumacetat, lOmM HEPES, 150mM NaCl, pH4.2). Nach der
Hydratisierung des Films werden die gebildeten Liposomen durch eine 400nm-Membran extrudiert. Nicht eingeschlossene
Proteinase wird durch Flotation der Liposomen im
Sucrosegradienten abgetrennt . Die so hergestellten Liposomen werden mit 7.5ml Puffer bei pH .2 und pH7.2 inkubiert (Puffer wie oben, Ausgangs-pH 4.2 und 8.0). Nach der Inkubation wird freigesetzte Proteinase K durch Ultrafiltration mit einer 0.1 μm-Membran abgetrennt . Die im Filter verbleibenden Liposomen werden dann mit 7.5ml einer Lösung von Triton X-100 in Puffer (wie oben, pH 8.0) behandelt.
Alle Filtrate werden auf die Anwesenheit von Proteinase K getestet. Dazu wird eine Lösung von Azocasein (6 mg/ml Azocasein in 1 M Harnstoff, 200 mM Tris-Sulfat pH 8.5) verwendet. 500μl dieser Lösung werden mit lOOμl Filtrat oder Puffer gemischt und für 30min bei 37°C inkubiert. Die Reaktion wird durch Zugabe von 10% Trichloressigsäure gestoppt . Prazipitierte Proteine werden durch Zentrifugation abgetrennt. Die Färbung im Überstand wird bei 390nm gemessen (Tabelle 7) .
Tabelle 7. pH Inkubation Triton XI00 Absorption bei 390nm
Blank
4.2 0,0192
4.2 + 0,2345
7.2 0,2210
7.2 + 0,0307
Erfolgt die Inkubation der Liposomen bei einem pH-Wert von 4.2, so wird keine oder nur sehr wenig Proteinase K freigesetzt. Erst die Auflösung der Liposomen mit Triton X100 führt zur Freisetzung des Enzyms. Wenn die Liposomen bei einem pH-Wert von 7.2 inkubiert' werden, so wird bereits ohne Zugabe von Triton der Großteil des Enzyms freigesetzt und findet isch im ersten Filtrat . Die Zugabe von Triton kann dann kaum noch weiteres Enzym aus den Liposomen herauslösen. Beispiel 11
Proteinbindung
Liposomen der Zusammensetzung POPC50/ DOTAP10/ CHEMS40 (alle Angaben in mol-% werden wie in den vorhergehenden Beispielen hergestellt . Zur Hydratisierung der Lipidfilme wird eine Lösung von 0,26 mg/ml Lysozym in Puffer (10 mM MES pH 5,0 oder pH 6,0 bzw. 10 mM HEPES pH 7,0 oder pH8,0) verwendet .Alle Proben werden nach der Hydratisierung mehrfach eingefroren und getaut . Anschließend werden die Liposomen mittels Ultraschall homogenisiert und durch ein 200nm-Filter extrudiert .
Die so hergestellte Liposomensuspension werden durch Zugabe von Essigsäure auf einen pH-Wert von 4,0 eingestellt. Anschließend werden die Liposomen von nicht eingebautem Protein durch Flotation getrennt . In der untenstehenden Tabelle ist der Anteil des eingeschlossenen Proteins wiedergegeben (Tabelle 8) .
Tabelle 8. pH-Wert beim Einschluss eingeschlossenes Material
5,0 4 6,0 21 7,0 75 8,0 80
Liposomen der verwendeten Zusammensetzung zeigen einen pl von 5, das Lysozym ist ein basisches Protein mit einem pl von 11,35 . Im pH-Bereich zwischen 6 und 8 sind daher beide Partner entgegengesetzt geladen. Durch die elektrostatische Anziehung wird ein effizienter Einschluß in die Liposomen bewirkt. Nicht verkapseltes Protein wurde einem pH von 4 entfernt. Bei diesem pH wird die Wechselwirkung zwischen den Partnern aufgehoben.
Beispiel 12
Transfektion in Zellen
HeLa-Zellen oder CHO-Zellen (3*10Λ5) wurden in jede Kavität einer 6-well Titerplatte ausplattiert und für drei Tage kultviert. Liposomen (POPC/DOTAP/CHEMS 60/30/10) wurden in Gegenwart von fluoreszensmarkierte Dextran ( TRITC-Dextran, lOmg/ml im Hydratisierungspuffer) hergestellt .Nicht eingebautes TRITC-Dextran wurde durch Gelfiltration entfernt . Die so hergestellten Liposomen wurden zu den Zellen gegeben und für 6h bei 37°C inkubiert. Anschließend wurden die Zellen zweimal mit Puffer gewaschen. Die Aufnahme des Dextrans wurde im mikroskopischen Bild verfolgt. Die Ergebnisse sind in der Figur 1 dargestellt .
Beispiel 13
Ligandenbindung und Transfektion
Liposomen der Zusammensetzung POPC/DOTAP/Chems/N-glutaryl- DPPE (50:10:30:10 (mol%) ) werden nach Beispiel 2 hergestellt, dabei werden sie mit einer Lösung von 3mg/ml TRITC-Dextran (Mw ca. 4400) in Hepes 10 mM, 150 mM NaCl, pH 7,5 hydratisiert. Nichteingeschlossenes TRITC-Dextran wird durch Gelfiltration über eine Sephadex G-75 Säule abgetrennt. Die Bindung des cyclischen Peptides RCDCRGDCFC an die liposomale Oberfläche wurde durch Aktivierung des N-glutaryl-DPPEs mit
EDC (l-Ethyl-3- (3-dimethylaminopropyl carbodiimid) erreicht
(3.5 mg EDC zu 400μl Liposomensuspension) und anschließendes Rühren im Dunkeln über 5 h. Dann wurde das RGD-Peptid (250μg in 150μl Puffer) zugegeben und über Nacht gerührt. Die Liposomen wurden durch Gelfiltration vom nichtgebundenen Peptid abgetrennt. Humane Endothelzellen (HUVEC) wurden in Spezialmediu kultiviert . Die mit Ligand modifizierten Liposomen und Kontrollliposomen ohne RGD-Ligand werden als 0.5 mM Suspension auf die Zellen gegeben. Nach 2 Stunden werden die Liposomen abgenommen und die Zellkammern 3 mal mit PBS-Puffer gespült und unter dem Fluoreszenzmikroskop betrachtet. Zellen, die mit RGD-Liposomen behandelt wurden zeigten eine erheblich höhere rote TRITC- Fluoreszenz als die Kontrollliposomen .
Beispiel 14
Pharmakokinetik (Blutspiegel und Organverteilung) von pH- schaltbaren Liposomen
Je 500 μL Liposomen aus POPC/Chol (60:40), POPC/Hist- Chol/Chol (60:20:20) und POPC/DOTAP/Chems (60:10:30) wurden männlichen Wistar-Ratten per Injektion in die Schwanzvene verabreicht .
50 mM Liposomen-Suspensionen wurden hergestellt durch
Hydratisieren eines Lipidfilms der entsprechenden
Formulierung ( Addition von 0,03 mol% [14]C-DPPC) mit 2 mL einer Lösung von 1 mg [3]H-Inulin in HEPES 10 mM, NaCL 150 mM, pH 7.5). Nach 3 Einfrier/Auftau- zyklen wurden die
Suspensionen durch eine 400 nm-Membran mehrfach extrudiert
(LiposoFast, Avestin) . Abtrennung von nichteingeschlossenem
[3]H-Inulin erfolgte durch Gelfitration über eine G-75 Sephadex-Säule und anschließende Konzentrierung über CENTRIPREP (Millipore) Zentrifugationseinheiten. 4 Versuchstieren je Formulierung wurden 0.5 mL Liposomensuspension verabreicht und Blutproben nach 5 min, 15 min, 60 min, 3 h, 12 h, 24 h genommen. Die Radioaktivität der Membranfraktion und des löslichen Cargos wurden per Szintillation vermessen und ergaben folgende Werte:
Eliminationshalbwertszeiten aus dem Blut: POPC/Chol größer 120 min
POPC/DOTAP/Chems größer 120 min POPC/Hist-Chol größer 120 min
Mit ihrer relativ langen Halbwertszeit im Blut erfüllen die erfindungsgemäßen Liposomen die Grundvoraussetzungen für ein Vektorsystem. Sie sind nicht akut toxisch und werden nicht sofort vom retikuloendothelialen System aufgenommen. Das Verhältnis der 3 [H] und der 14 [C] -Radioaktivität der Blutproben war bis zum Ende des Experiments konstant . Es findet daher in keinem Fall eine Freisetzung des Cargos durch Complementlyse statt .

Claims

Patentansprüche
Amphotere Liposomen, dadurch gekennzeichnet, dass die Liposomen mindestens einen positiven und mindestens einen davon verschiedenen negativen Ladungsträger umfassen, wobei die Liposomen einen isoelektrischen Punkt zwischen 4 und 8 aufweisen.
Amphotere Liposomen nach Anspruch 1, dadurch gekennzeichnet, dass die Liposomen einen isoelektrischen Punkt zwischen 5 und 7 aufweisen.
3. Amphotere Liposomen, dadurch gekennzeichnet, dass die Liposomen mindestens einen amphoteren Ladungsträger umfassen, wobei der amphotere Ladungsträger einen isoelektrischen Punkt zwischen 4 und 8 aufweist.
4. Amphotere Liposomen dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der amphotere Ladungsträger einen isoelektrischen Punkt zwischen 5 und 7 aufweist.
5. Amphotere Liposomen, dadurch gekennzeichnet, dass die Liposomen mindestens einen amphoteren Ladungsträger und einen anionischen und/oder kationischen Ladungsträger umfassen.
6. Amphotere Liposomen nach Anspruch 5, dadurch gekennzeichnet, dass die Liposomen einen isoelektrischen Punkt zwischen 5 und 7 aufweisen.
7. Amphotere Liposomen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Liposomen ein neutrales Lipid umfassen, ausgewählt aus der Gruppe bestehend aus Phospatidylcholin, Phosphatidylethanolamin, Cholesterol, Tetraetherlipid, Ceramid, Sphingolipid und/oder Diacylglycerol.
8. Amphotere Liposomen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Liposomen eine mittlere Größe zwischen 50 und 1000 nm, bevorzugt zwischen 70 und 250 nm, besonders bevorzugt zwischen 60 und 130 nm aufweisen.
9. Amphotere Liposomen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Liposomen einen Wirkstoff umfassen.
10. Amphotere Liposomen nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Wirkstoff ein Protein, ein Peptid, eine DNA, eine RNA, ein antisense-Nukleotid und/oder ein Decoy-Nukleotid ist .
11. Amphotere Liposomen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich mindestens 80% des Wirkstoffes im Innern des Liposoms befinden.
12. Verfahren zur Wirkstoffbeladung von Liposomen gemäß der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein definierter pH-Wert zur Verkapselung benutzt wird und ein zweiter pH-Wert zur Abtrennung des nicht gebundenen Materials eingestellt wird.
13. Verfahren zur Wirkstoffbeladung von Liposomen gemäß der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Liposomen bei einem definierten pH-Wert permeabilisiert
und verschlossen werden.
14. Verwendung von Liopsomen nach einem der Ansprüche 1 bis 11 zur Herstellung von Nanokapseln.
15. Verwendung von Liposomen nach einem der Ansprüche 1 bis 11 zur Herstellung von Freisetzungssystemen in der
Diagnostik.
16. Verwendung von Liposomen nach einem der Ansprüche 1 bis 11 zum Transport und/oder zur Freisetzung von Wirkstoffen.
17. Verwendung von Liposomen nach einem der Ansprüche 1 bis 11 als Depotformulierung und/oder als . zirkulierendes Depot .
18. Verwendung von Liposomen nach einem der Ansprüche 1 bis 11 bei intravenöser oder peritonealer Applikation.
19. Verwendung von Liposomen nach einem der Ansprüche 1 bis 11 als Vektor zur Transfektion von Zellen in vivo, in vitro und ex vivo.
PCT/EP2002/001880 2001-02-21 2002-02-21 Amphotere liposomen und verwendung dieser WO2002066012A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2438116A CA2438116C (en) 2001-02-21 2002-02-21 Amphoteric liposomes and the use thereof
EP02701290A EP1363601B1 (de) 2001-02-21 2002-02-21 Amphotere liposomen und verwendung dieser
JP2002565572A JP2004525898A (ja) 2001-02-21 2002-02-21 両性リポソーム及びその使用
AU2002234643A AU2002234643B2 (en) 2001-02-21 2002-02-21 Amphoteric liposomes and the use thereof
DE50210271T DE50210271D1 (de) 2001-02-21 2002-02-21 Amphotere liposomen und verwendung dieser
BRPI0207775A BRPI0207775B1 (pt) 2001-02-21 2002-02-21 lipossomos anfotéricos, método para carregamento dos mesmos com ingredientes ativos e sua utilização

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10109897A DE10109897A1 (de) 2001-02-21 2001-02-21 Fakultativ kationische Liposomen und Verwendung dieser
DE10109897.9 2001-02-21

Publications (2)

Publication Number Publication Date
WO2002066012A2 true WO2002066012A2 (de) 2002-08-29
WO2002066012A3 WO2002066012A3 (de) 2002-12-19

Family

ID=7675950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001880 WO2002066012A2 (de) 2001-02-21 2002-02-21 Amphotere liposomen und verwendung dieser

Country Status (11)

Country Link
US (4) US7371404B2 (de)
EP (1) EP1363601B1 (de)
JP (5) JP2004525898A (de)
CN (1) CN1241549C (de)
AT (1) ATE363893T1 (de)
AU (1) AU2002234643B2 (de)
BR (1) BRPI0207775B1 (de)
CA (1) CA2438116C (de)
DE (2) DE10109897A1 (de)
ES (1) ES2289079T3 (de)
WO (1) WO2002066012A2 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549352A2 (de) * 2002-05-06 2005-07-06 Nucleonics, Inc Verfahren zur abgabe von nukleinsäuren
WO2005063210A2 (en) * 2003-12-23 2005-07-14 Medigene Ag Loading of a camptothecin drug into colloidal nanoparticles
WO2005094783A2 (de) * 2004-03-28 2005-10-13 Novosom Ag Serumstabile amphotere liposomen
JP2006509750A (ja) * 2002-11-24 2006-03-23 ノヴォソム アクチェンゲゼルシャフト リポソームグルココルチコイド
WO2006048329A1 (en) * 2004-11-05 2006-05-11 Novosom Ag Improvements in or relating to pharmaceutical compositions comprising an oligonucleotide as an active agent
WO2006053646A3 (en) * 2004-11-19 2006-08-17 Novosom Ag Improvements in or relating to pharmaceutical compositions for local administration
EP1764090A1 (de) * 2005-09-15 2007-03-21 Novosom AG Amphotere Liposomen zur lokalen Verabreichung von Arzneistoffen
EP1764089A1 (de) * 2005-09-15 2007-03-21 Novosom AG Serumstabile liposomale Formulierungen enthaltend amphotere II Lipidmischungen
WO2007064857A2 (en) * 2005-12-01 2007-06-07 Pronai Therapeutics, Inc. Amphoteric liposome formulation
EP1764091A3 (de) * 2005-09-15 2007-06-13 Novosom AG Verbesserungen für, oder in Bezug auf amphotere Liposomen
EP1911443A1 (de) * 2006-10-13 2008-04-16 Novosom AG Amphoterische Liposomen, Verfahren zur Herstellung von amphoterische lLiposomen, und Laden von amphotersichen Liposomen
WO2008043575A2 (en) * 2006-10-13 2008-04-17 Novosom Ag Improvements in or relating to amphoteric liposomes
WO2008074487A2 (en) * 2006-12-19 2008-06-26 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements
DE102007029471A1 (de) 2007-06-20 2008-12-24 Novosom Ag Neue fakultativ kationische Sterole
WO2008154700A1 (en) 2007-06-20 2008-12-24 Phylogica Limited Compositions and uses thereof for the treatment of acute respiratory distress syndrome (ards) and clinical disorders associated with therewith
WO2011003834A1 (en) 2009-07-09 2011-01-13 Marina Biotech, Inc. Amphoteric liposomes comprising imino lipids
EP2277508A1 (de) * 2009-07-09 2011-01-26 Marina Biotech, Inc. Nachahmung von Lipoproteinstrukturen
EP2308514A2 (de) 2007-03-23 2011-04-13 to-BBB Holding B.V. Konjugate zum Arzneimitteltransport über die Blut-Hirn-Schranke
WO2012109495A1 (en) 2011-02-09 2012-08-16 Metabolic Solutions Development Company, Llc Cellular targets of thiazolidinediones
WO2014071406A1 (en) 2012-11-05 2014-05-08 Pronai Therapeutics, Inc. Methods of using biomarkers for the treatment of cancer by modulation of bcl2|expression
US20140178462A1 (en) * 2006-10-13 2014-06-26 Marina Biotech, Inc. Amphoteric liposomes comprising neutral lipids
WO2016125163A1 (en) 2015-02-04 2016-08-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. LIPID ASSEMBLIES AND USES THEREOF AND SOME pH AND ELECTROSTATIC MODULATING LIPIDS TO BE USED IN SAID ASSEMBLIES
US9880151B2 (en) 2011-05-23 2018-01-30 Phylogica Limited Method of determining, identifying or isolating cell-penetrating peptides
WO2021255262A1 (en) 2020-06-19 2021-12-23 Sylentis Sau siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES
EP4015634A1 (de) 2020-12-15 2022-06-22 Sylentis, S.A.U. Sirna und zusammensetzungen zur prophylaktischen und therapeutischen behandlung von viruskrankheiten
US11395799B2 (en) 2017-10-20 2022-07-26 BioNTech SE Preparation and storage of liposomal RNA formulations suitable for therapy
WO2024133635A1 (en) 2022-12-23 2024-06-27 Biontech Delivery Technologies Gmbh Composition
WO2025046121A1 (en) 2023-09-01 2025-03-06 Novoarc Gmbh Lipid nanoparticle with nucleic acid cargo and ionizable lipid

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109897A1 (de) * 2001-02-21 2002-11-07 Novosom Ag Fakultativ kationische Liposomen und Verwendung dieser
DE10207177A1 (de) * 2002-02-19 2003-09-04 Novosom Ag Fakultativ kationische Lipide
US7858117B2 (en) * 2002-02-21 2010-12-28 Novosom Ag Amphoteric liposomes and their use
US7718189B2 (en) 2002-10-29 2010-05-18 Transave, Inc. Sustained release of antiinfectives
US8815599B2 (en) 2004-06-01 2014-08-26 Pronai Therapeutics, Inc. Methods and compositions for the inhibition of gene expression
EP1676569A1 (de) * 2004-12-30 2006-07-05 Pevion Biotech Ltd. Gefriertrocknung von Virosomen
US20120021042A1 (en) * 2005-09-15 2012-01-26 Steffen Panzner Efficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances
US20080088046A1 (en) * 2006-10-13 2008-04-17 Steffen Panzner Amphoteric liposomes, a method of formulating an amphoteric liposome and a method of loading an amphoteric liposome
WO2007043049A1 (en) * 2005-10-11 2007-04-19 Ben-Gurion University Of The Negev Research And Development Authority Compositions for silencing the expression of vdac1 and uses thereof
ES2548240T3 (es) 2005-12-01 2015-10-15 Pronai Therapeutics, Inc. Terapias para el cáncer y composiciones farmacéuticas usadas en las mismas
EP3718532A1 (de) 2005-12-08 2020-10-07 Insmed Incorporated Antiinfektive zusammensetzungen auf lipidbasis zur behandlung von lungeninfekten
EP2012750B1 (de) * 2006-04-06 2018-02-21 Insmed Incorporated Verfahren für koazervationsinduzierte liposomale verkapselung und formulierungen daraus
US20080260895A1 (en) * 2007-04-17 2008-10-23 Vermeire Drew A Milk replacer composition and product and method for producing the same
WO2008137717A1 (en) 2007-05-04 2008-11-13 Transave, Inc. Compositions of multicationic drugs for reducing interactions with polyanionic biomolecules and methods and uses thereof
EP2494993B1 (de) 2007-05-04 2018-08-01 Marina Biotech, Inc. Aminosäure-Lipide und ihre Verwendungen
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
US9114081B2 (en) 2007-05-07 2015-08-25 Insmed Incorporated Methods of treating pulmonary disorders with liposomal amikacin formulations
CA2699671C (en) * 2007-09-07 2015-07-14 Synvolux Ip B.V. Liposomes comprising amphiphiles with pyridinium head groups and uses thereof
EP2211840B1 (de) * 2007-10-12 2019-12-04 Novosom Verwaltungs GmbH Amphotere liposome mit neutralen lipiden
US8900627B2 (en) * 2008-06-06 2014-12-02 Mirna Therapeutics, Inc. Compositions for the in vivo delivery of RNAi agents
US20100112042A1 (en) 2008-10-16 2010-05-06 Mdrna, Inc. Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics
US20120107389A1 (en) * 2009-03-31 2012-05-03 Jayanta Bhattacharyya Amphoteric liposomal compositions for cellular delivery of small rna molecules for use in rna interference
JP5392707B2 (ja) * 2009-03-31 2014-01-22 株式会社Nttドコモ 膜小胞分裂システム
WO2010135714A2 (en) 2009-05-22 2010-11-25 The Methodist Hospital Research Institute Methods for modulating adipocyte expression using microrna compositions
DK3338765T3 (en) 2009-12-01 2019-03-04 Translate Bio Inc STEROID DERIVATIVE FOR THE SUPPLY OF MRNA IN HUMANGENETIC DISEASES
WO2011120023A1 (en) 2010-03-26 2011-09-29 Marina Biotech, Inc. Nucleic acid compounds for inhibiting survivin gene expression uses thereof
WO2011133584A2 (en) 2010-04-19 2011-10-27 Marina Biotech, Inc. Nucleic acid compounds for inhibiting hras gene expression and uses thereof
WO2011139842A2 (en) 2010-04-28 2011-11-10 Marina Biotech, Inc. Nucleic acid compounds for inhibiting fgfr3 gene expression and uses thereof
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3431485B2 (de) 2010-10-01 2024-09-04 ModernaTX, Inc. Manipulierte nukleinsäuren und verfahren zur verwendung davon
WO2012075040A2 (en) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
SI2717893T1 (sl) 2011-06-08 2019-10-30 Translate Bio Inc Sestavki lipidnih nanodelcev in postopki za dostavo mRNA
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
SMT202200229T1 (it) 2011-10-03 2022-07-21 Modernatx Inc Nucleosidi, nucleotidi e acidi nucleici modificati e loro usi
US20130156849A1 (en) 2011-12-16 2013-06-20 modeRNA Therapeutics Modified nucleoside, nucleotide, and nucleic acid compositions
CN102532259A (zh) * 2012-03-09 2012-07-04 中国药科大学 基于寡肽的阳离子脂质衍生物及在药剂制剂中的应用
CN102603866B (zh) * 2012-03-15 2014-01-15 中国药科大学 基于寡肽的pH敏感型两性离子及其在药剂中的应用
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
EP2833894A4 (de) 2012-04-02 2016-08-17 Moderna Therapeutics Inc Modifizierte polynukleotide zur herstellung von kosmetischen proteinen und peptiden
LT2852391T (lt) 2012-05-21 2022-03-10 Insmed Incorporated Plaučių infekcijų gydymo būdai
US20150267192A1 (en) 2012-06-08 2015-09-24 Shire Human Genetic Therapies, Inc. Nuclease resistant polynucleotides and uses thereof
IN2012DE01792A (de) * 2012-06-11 2015-10-16 Council Scient Ind Res
CN105452466A (zh) 2012-10-23 2016-03-30 卡里斯生命科学瑞士控股有限责任公司 适体及其用途
US10942184B2 (en) 2012-10-23 2021-03-09 Caris Science, Inc. Aptamers and uses thereof
RS63237B1 (sr) 2012-11-26 2022-06-30 Modernatx Inc Terminalno modifikovana rnk
US10124066B2 (en) 2012-11-29 2018-11-13 Insmed Incorporated Stabilized vancomycin formulations
EP2935628B1 (de) 2012-12-19 2018-03-21 Caris Life Sciences Switzerland Holdings GmbH Zusammensetzungen und verfahren für aptamer-screening
BR112015022660A2 (pt) 2013-03-14 2017-10-31 Shire Human Genetic Therapies métodos para a purificação de rna mensageiro
LT2968586T (lt) 2013-03-14 2018-11-26 Translate Bio, Inc. Cft mrnr kompozicijos bei su jomis susiję būdai ir panaudojimai
WO2014143855A2 (en) 2013-03-15 2014-09-18 Mirna Therapeutics, Inc. Combination cancer treatments utilizing micrornas and egfr-tki inhibitors
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
EP3013975A1 (de) 2013-06-24 2016-05-04 Mirna Therapeutics, Inc. Biomarker für mir-34-aktivität
JP5914418B2 (ja) 2013-06-26 2016-05-11 富士フイルム株式会社 脂質粒子、核酸送達キャリア、核酸送達キャリア製造用組成物、脂質粒子の製造方法及び遺伝子導入方法
EP3052106A4 (de) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynukleotide zur codierung immunmodulierender polypeptide
JP2016538829A (ja) 2013-10-03 2016-12-15 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 低密度リポタンパク質受容体をコードするポリヌクレオチド
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
EP3574923A1 (de) 2013-10-22 2019-12-04 Translate Bio, Inc. Mrna-therapie für phenylketonurie
WO2015153757A1 (en) 2014-04-01 2015-10-08 Mirna Therapeutics, Inc. Microrna dosing regimens
CN106659803A (zh) 2014-04-23 2017-05-10 摩登纳特斯有限公司 核酸疫苗
PT3134506T (pt) 2014-04-25 2019-10-31 Translate Bio Inc Métodos de purificação de rna mensageiro
PL3466432T3 (pl) 2014-05-15 2021-02-08 Insmed Incorporated Sposoby leczenia zakażeń płuc niegruźliczymi mykobakteriami
JP6240570B2 (ja) 2014-07-17 2017-11-29 富士フイルム株式会社 脂質粒子および核酸送達キャリア
WO2017031232A1 (en) 2015-08-17 2017-02-23 Modernatx, Inc. Methods for preparing particles and related compositions
CA2998810A1 (en) 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
EP3964200A1 (de) 2015-12-10 2022-03-09 ModernaTX, Inc. Zusammensetzungen und verfahren zur abgabe von therapeutischen wirkstoffen
CA3007297A1 (en) 2015-12-22 2017-06-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
EP3585417B1 (de) 2017-02-27 2023-02-22 Translate Bio, Inc. Methode der herstellung von codon-optimierter cftr-mrna
AU2018234828A1 (en) 2017-03-15 2019-09-19 Modernatx, Inc. Lipid nanoparticle formulation
SI3596042T1 (sl) 2017-03-15 2022-04-29 Modernatx, Inc. Kristalne oblike amino lipidov
PT3596041T (pt) 2017-03-15 2023-02-28 Modernatx Inc Compostos e composições para entrega intracelular de agentes terapêuticos
CA3063531A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
JP7275111B2 (ja) 2017-08-31 2023-05-17 モデルナティエックス インコーポレイテッド 脂質ナノ粒子の生成方法
WO2019045097A1 (ja) * 2017-09-04 2019-03-07 一丸ファルコス株式会社 pH感受性リポソームおよびその製造方法
EP4219715A3 (de) 2017-09-08 2023-09-06 MiNA Therapeutics Limited Stabilisierte cebpa-sarna-zusammensetzungen und verfahren zur verwendung
TW201936201A (zh) 2017-12-14 2019-09-16 美商堅固生物科技公司 基因之非病毒生產及遞送
WO2019191627A1 (en) 2018-03-30 2019-10-03 Insmed Incorporated Methods for continuous manufacture of liposomal drug products
EP3775211B1 (de) 2018-04-12 2023-04-05 MiNA Therapeutics Limited Sirt1-sarna kompositionen und methoden zu deren verwendung
US20190381034A1 (en) * 2018-06-14 2019-12-19 Ming Fang Pharmaceutical composition and method for acute on chronic liver failure and related liver diseases
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
US12281308B2 (en) 2018-08-29 2025-04-22 University Of Massachusetts Inhibition of protein kinases to treat Friedreich ataxia
MA53650A (fr) 2018-09-19 2021-07-28 Modernatx Inc Lipides peg et leurs utilisations
US12263248B2 (en) 2018-09-19 2025-04-01 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
CA3113651A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
US20200157157A1 (en) 2018-11-21 2020-05-21 Translate Bio, Inc. TREATMENT OF CYSTIC FIBROSIS BY DELIVERY OF NEBULIZED mRNA ENCODING CFTR
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
JP7638972B2 (ja) 2019-09-19 2025-03-04 モデルナティエックス インコーポレイテッド 治療薬の細胞内送達のための分岐状尾部脂質化合物及び組成物
PH12022553033A1 (en) 2020-04-09 2023-06-14 Verve Therapeutics Inc Base editing of angptl3 and methods of using same for treatment of disease
EP4213882A4 (de) 2020-09-15 2025-02-26 Verve Therapeutics Inc Lipidformulierungen zur geneditierung
GB2603454A (en) 2020-12-09 2022-08-10 Ucl Business Ltd Novel therapeutics for the treatment of neurodegenerative disorders
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
TW202305133A (zh) 2021-03-26 2023-02-01 英商米納治療有限公司 Tmem173 sarna組合物及其使用方法
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
GB202117758D0 (en) 2021-12-09 2022-01-26 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599227A (en) * 1983-11-07 1986-07-08 Wisconsin Alumni Research Foundation Injectable pharmaceutical preparation for the induction of multiple follicular growth
US4891208A (en) 1985-04-10 1990-01-02 The Liposome Company, Inc. Steroidal liposomes
US5283122A (en) * 1984-04-19 1994-02-01 University Of Tennessee Research Corporation Fused liposome and acid induced method for liposome fusion
ATE45744T1 (de) 1984-07-25 1989-09-15 Ciba Geigy Ag Phosphatidylverbindungen, verfahren zu ihrer herstellung und ihre verwendung.
US5077211A (en) * 1988-07-06 1991-12-31 Applied Genetics, Inc. Purification and administration of dna repair enzymes
US5290563A (en) * 1989-07-27 1994-03-01 Laboratoire Des Stallergenes Method for combining a mixture of heterogeneous substances with liposomes
US5165994A (en) 1990-06-05 1992-11-24 University Of Delaware Spontaneous equilbrium surfactant vesicles
US5302389A (en) * 1992-08-17 1994-04-12 Board Of Regents, The University Of Texas System Method for treating UV-induced suppression of contact hypersensitivity by administration of T4 endonuclease
EP0692972B2 (de) * 1993-04-02 2012-03-21 AntiCancer, Inc. Verfahren zur verabreichung von förderlichen zusammensetzungen auf die haarfollikel
US5993850A (en) * 1994-09-13 1999-11-30 Skyepharma Inc. Preparation of multivesicular liposomes for controlled release of encapsulated biologically active substances
US5981501A (en) * 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US6258792B1 (en) * 1996-04-12 2001-07-10 University Of Pittsburgh Cationic cholesteryl derivatives containing cyclic polar groups
CA2251543A1 (en) * 1996-04-12 1997-10-23 University Of Pittsburgh Novel cationic cholesteryl derivatives containing cyclic polar groups
CA2271388C (en) * 1996-09-13 2007-11-06 The School Of Pharmacy, University Of London Liposomes encapsulating polynucleotides operatively coding for immunogenic polypeptides
US7384923B2 (en) * 1999-05-14 2008-06-10 Lipoxen Technologies Limited Liposomes
US5962015A (en) * 1997-05-02 1999-10-05 Kobo Products S.A.R.L. Stabilized liposomes
US6287591B1 (en) * 1997-05-14 2001-09-11 Inex Pharmaceuticals Corp. Charged therapeutic agents encapsulated in lipid particles containing four lipid components
CA2301166A1 (en) * 1997-07-24 1999-02-04 Yuan-Peng Zhang Liposomal compositions for the delivery of nucleic acid catalysts
FR2766706B1 (fr) * 1997-07-30 2001-05-25 Biovector Therapeutics Sa Complexes particulaires stables de charge globale neutre ou negative de structure multilamellaire composes par au moins une substance biologiquement active globalement anionique et un constituant cationique, leur preparation et utilisation
US6106858A (en) * 1997-09-08 2000-08-22 Skyepharma, Inc. Modulation of drug loading in multivescular liposomes
JPH11302199A (ja) * 1998-04-16 1999-11-02 Sankyo Co Ltd 薬物運搬体を構成するグラフト共重合体
JP2000198731A (ja) * 1998-10-29 2000-07-18 Sankyo Co Ltd 毒性の低減されたリポソ―ム
DE19852928C1 (de) * 1998-11-17 2000-08-03 Steffen Panzner Strukturen in Form von Hohlkugeln
US6379698B1 (en) * 1999-04-06 2002-04-30 Isis Pharmaceuticals, Inc. Fusogenic lipids and vesicles
DE10010264A1 (de) 2000-03-02 2001-09-13 Novosom Gmbh Stabilisierte Liposomen und Hüllstrukturen
DE10109897A1 (de) * 2001-02-21 2002-11-07 Novosom Ag Fakultativ kationische Liposomen und Verwendung dieser
US7858117B2 (en) * 2002-02-21 2010-12-28 Novosom Ag Amphoteric liposomes and their use
EP1764091B1 (de) * 2005-09-15 2017-08-30 Marina Biotech, Inc. Verbesserungen für, oder in Bezug auf amphotere Liposomen

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2298358A1 (de) * 2002-05-06 2011-03-23 Alnylam Pharmaceuticals Inc. Methoden zum Nukleinsäuren-Transfer
EP1549352A4 (de) * 2002-05-06 2005-07-27 Nucleonics Inc Verfahren zur abgabe von nukleinsäuren
EP1549352A2 (de) * 2002-05-06 2005-07-06 Nucleonics, Inc Verfahren zur abgabe von nukleinsäuren
JP2006509750A (ja) * 2002-11-24 2006-03-23 ノヴォソム アクチェンゲゼルシャフト リポソームグルココルチコイド
WO2005063210A2 (en) * 2003-12-23 2005-07-14 Medigene Ag Loading of a camptothecin drug into colloidal nanoparticles
WO2005063210A3 (en) * 2003-12-23 2006-05-26 Medigene Oncology Gmbh Loading of a camptothecin drug into colloidal nanoparticles
WO2005094783A2 (de) * 2004-03-28 2005-10-13 Novosom Ag Serumstabile amphotere liposomen
WO2005094783A3 (de) * 2004-03-28 2006-03-02 Novosom Ag Serumstabile amphotere liposomen
JP2007530462A (ja) * 2004-03-28 2007-11-01 ノボソム アーゲー 血清に安定な両性リポソーム
US8236770B2 (en) 2004-03-28 2012-08-07 Marina Biotech, Inc. Serum-stable amphoteric liposomes
WO2006048329A1 (en) * 2004-11-05 2006-05-11 Novosom Ag Improvements in or relating to pharmaceutical compositions comprising an oligonucleotide as an active agent
EP1658839A1 (de) * 2004-11-05 2006-05-24 Novosom AG Kombinationen von Oligonukleotid und Träger, die auf den CD40 zielgerichtet sind
WO2006053646A3 (en) * 2004-11-19 2006-08-17 Novosom Ag Improvements in or relating to pharmaceutical compositions for local administration
EP1764090A1 (de) * 2005-09-15 2007-03-21 Novosom AG Amphotere Liposomen zur lokalen Verabreichung von Arzneistoffen
WO2007031333A3 (en) * 2005-09-15 2007-07-19 Novosom Ag Improvements in or relating to amphoteric liposomes
EP1764091A3 (de) * 2005-09-15 2007-06-13 Novosom AG Verbesserungen für, oder in Bezug auf amphotere Liposomen
US9737484B2 (en) 2005-09-15 2017-08-22 Marina Biotech, Inc. Amphoteric liposomes
US9066867B2 (en) 2005-09-15 2015-06-30 Marina Biotech, Inc. Amphoteric liposomes
EP1764089A1 (de) * 2005-09-15 2007-03-21 Novosom AG Serumstabile liposomale Formulierungen enthaltend amphotere II Lipidmischungen
WO2007064857A3 (en) * 2005-12-01 2007-08-30 Pronai Therapeutics Inc Amphoteric liposome formulation
WO2007064857A2 (en) * 2005-12-01 2007-06-07 Pronai Therapeutics, Inc. Amphoteric liposome formulation
AU2014203387B2 (en) * 2006-10-13 2016-07-07 Marina Biotech, Inc. Improvements in or relating to amphoteric liposomes
US20160151282A1 (en) * 2006-10-13 2016-06-02 Marina Biotech, Inc. Amphoteric liposome formulations
EP1911443A1 (de) * 2006-10-13 2008-04-16 Novosom AG Amphoterische Liposomen, Verfahren zur Herstellung von amphoterische lLiposomen, und Laden von amphotersichen Liposomen
WO2008043575A2 (en) * 2006-10-13 2008-04-17 Novosom Ag Improvements in or relating to amphoteric liposomes
US9283186B2 (en) 2006-10-13 2016-03-15 Marina Biotech, Inc. Amphoteric liposomes, a method of formulating an amphoteric liposome and a method of loading an amphoteric liposome
US20140178462A1 (en) * 2006-10-13 2014-06-26 Marina Biotech, Inc. Amphoteric liposomes comprising neutral lipids
AU2007306556B2 (en) * 2006-10-13 2014-04-10 Marina Biotech, Inc. Improvements in or relating to amphoteric liposomes
WO2008043575A3 (en) * 2006-10-13 2008-09-04 Novosom Ag Improvements in or relating to amphoteric liposomes
EP2462924A2 (de) 2006-10-13 2012-06-13 Marina Biotech, Inc. Verbesserungen an oder im Zusammenhang mit amphoteren Liposomen
WO2008074487A2 (en) * 2006-12-19 2008-06-26 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements
WO2008074487A3 (en) * 2006-12-19 2009-04-23 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements
EP2308514A2 (de) 2007-03-23 2011-04-13 to-BBB Holding B.V. Konjugate zum Arzneimitteltransport über die Blut-Hirn-Schranke
DE102007029471A1 (de) 2007-06-20 2008-12-24 Novosom Ag Neue fakultativ kationische Sterole
WO2008154700A1 (en) 2007-06-20 2008-12-24 Phylogica Limited Compositions and uses thereof for the treatment of acute respiratory distress syndrome (ards) and clinical disorders associated with therewith
CN102481256A (zh) * 2009-07-09 2012-05-30 玛瑞纳生物技术有限公司 包含亚氨基脂质的两性脂质体
US11541010B2 (en) 2009-07-09 2023-01-03 Biontech Delivery Technologies Gmbh Amphoteric liposomes comprising imino lipids
EP2823810A1 (de) 2009-07-09 2015-01-14 Marina Biotech, Inc. Nachahmung von Lipoproteinstrukturen
EP2277508A1 (de) * 2009-07-09 2011-01-26 Marina Biotech, Inc. Nachahmung von Lipoproteinstrukturen
WO2011003834A1 (en) 2009-07-09 2011-01-13 Marina Biotech, Inc. Amphoteric liposomes comprising imino lipids
EP2451440B2 (de) 2009-07-09 2018-03-14 Marina Biotech, Inc. Amphotere liposomen mit iminolipiden
WO2012109495A1 (en) 2011-02-09 2012-08-16 Metabolic Solutions Development Company, Llc Cellular targets of thiazolidinediones
US9880151B2 (en) 2011-05-23 2018-01-30 Phylogica Limited Method of determining, identifying or isolating cell-penetrating peptides
US10288601B2 (en) 2011-05-23 2019-05-14 Phylogica Limited Method of determining, identifying or isolating cell-penetrating peptides
WO2014071406A1 (en) 2012-11-05 2014-05-08 Pronai Therapeutics, Inc. Methods of using biomarkers for the treatment of cancer by modulation of bcl2|expression
WO2016125163A1 (en) 2015-02-04 2016-08-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. LIPID ASSEMBLIES AND USES THEREOF AND SOME pH AND ELECTROSTATIC MODULATING LIPIDS TO BE USED IN SAID ASSEMBLIES
US10722599B2 (en) 2015-02-04 2020-07-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Lipid assemblies and uses thereof and some pH and electrostatic modulating lipids to be used in said assemblies
US11395799B2 (en) 2017-10-20 2022-07-26 BioNTech SE Preparation and storage of liposomal RNA formulations suitable for therapy
US12059498B2 (en) 2017-10-20 2024-08-13 BioNTech SE Preparation and storage of liposomal RNA formulations suitable for therapy
WO2021255262A1 (en) 2020-06-19 2021-12-23 Sylentis Sau siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES
EP4015634A1 (de) 2020-12-15 2022-06-22 Sylentis, S.A.U. Sirna und zusammensetzungen zur prophylaktischen und therapeutischen behandlung von viruskrankheiten
WO2022129097A2 (en) 2020-12-15 2022-06-23 Sylentis Sau Sirna and compositions for prophylactic and therapeutic treatment of virus diseases
WO2024133635A1 (en) 2022-12-23 2024-06-27 Biontech Delivery Technologies Gmbh Composition
WO2025046121A1 (en) 2023-09-01 2025-03-06 Novoarc Gmbh Lipid nanoparticle with nucleic acid cargo and ionizable lipid

Also Published As

Publication number Publication date
JP2014218520A (ja) 2014-11-20
EP1363601B1 (de) 2007-06-06
US20070269504A1 (en) 2007-11-22
US7780983B2 (en) 2010-08-24
JP2004525898A (ja) 2004-08-26
CA2438116C (en) 2011-10-11
US20030099697A1 (en) 2003-05-29
ES2289079T3 (es) 2008-02-01
JP5480764B2 (ja) 2014-04-23
US7371404B2 (en) 2008-05-13
DE50210271D1 (de) 2007-07-19
CN1241549C (zh) 2006-02-15
CN1492756A (zh) 2004-04-28
BR0207775A (pt) 2004-03-30
CA2438116A1 (en) 2002-08-29
US20110293695A1 (en) 2011-12-01
JP2014031383A (ja) 2014-02-20
WO2002066012A3 (de) 2002-12-19
EP1363601A2 (de) 2003-11-26
DE10109897A1 (de) 2002-11-07
JP2016104786A (ja) 2016-06-09
ATE363893T1 (de) 2007-06-15
BRPI0207775B1 (pt) 2015-10-20
AU2002234643B2 (en) 2007-06-21
US20070252295A1 (en) 2007-11-01
JP2011021026A (ja) 2011-02-03

Similar Documents

Publication Publication Date Title
EP1363601B1 (de) Amphotere liposomen und verwendung dieser
EP1363932B1 (de) Amphotere sterole und deren verwendung
US7858117B2 (en) Amphoteric liposomes and their use
EP1478652B1 (de) Komponenten fur die herstellung amphoterer liposomen
EP1289642B1 (de) Nanokapseln mit einer polyelektrolythülle
EP1397200B1 (de) Auflösbare nano- und mikrokapseln, verfahren zu ihrer herstellung sowie ihre verwendung
DE10207177A1 (de) Fakultativ kationische Lipide
DE3610873A1 (de) Phospholipid-vesikel und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 028052137

Country of ref document: CN

Ref document number: 2002565572

Country of ref document: JP

Ref document number: 2438116

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002234643

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002701290

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002701290

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002701290

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002234643

Country of ref document: AU

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载