WO2002064773A2 - Procede de selection a haut rendement de composes candidats par synthese directe a haut rendement de polypeptides recombinants - Google Patents
Procede de selection a haut rendement de composes candidats par synthese directe a haut rendement de polypeptides recombinants Download PDFInfo
- Publication number
- WO2002064773A2 WO2002064773A2 PCT/DE2002/000459 DE0200459W WO02064773A2 WO 2002064773 A2 WO2002064773 A2 WO 2002064773A2 DE 0200459 W DE0200459 W DE 0200459W WO 02064773 A2 WO02064773 A2 WO 02064773A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- dna
- tag
- protein
- high throughput
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 37
- 150000001875 compounds Chemical class 0.000 title claims abstract description 31
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 30
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 17
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 16
- 238000013537 high throughput screening Methods 0.000 title claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 108090000623 proteins and genes Proteins 0.000 claims description 75
- 102000004169 proteins and genes Human genes 0.000 claims description 44
- 108020004414 DNA Proteins 0.000 claims description 27
- 238000000338 in vitro Methods 0.000 claims description 27
- 230000027455 binding Effects 0.000 claims description 25
- 238000013519 translation Methods 0.000 claims description 19
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 11
- QSHGUCSTWRSQAF-FJSLEGQWSA-N s-peptide Chemical group C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C1=CC=C(OS(O)(=O)=O)C=C1 QSHGUCSTWRSQAF-FJSLEGQWSA-N 0.000 claims description 11
- 238000010367 cloning Methods 0.000 claims description 10
- 238000013518 transcription Methods 0.000 claims description 10
- 230000035897 transcription Effects 0.000 claims description 10
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 150000007523 nucleic acids Chemical class 0.000 claims description 7
- 238000000018 DNA microarray Methods 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 238000000386 microscopy Methods 0.000 claims description 2
- 230000002285 radioactive effect Effects 0.000 claims description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 2
- 108091026890 Coding region Proteins 0.000 claims 2
- 239000012634 fragment Substances 0.000 description 45
- 108091034117 Oligonucleotide Proteins 0.000 description 34
- 230000014616 translation Effects 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 102100031673 Corneodesmosin Human genes 0.000 description 16
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 15
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 101710139375 Corneodesmosin Proteins 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 239000011535 reaction buffer Substances 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 6
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 6
- 229940096437 Protein S Drugs 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 108010031318 Vitronectin Proteins 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 5
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 5
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 238000003757 reverse transcription PCR Methods 0.000 description 5
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 4
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 4
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 239000012148 binding buffer Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 229960005190 phenylalanine Drugs 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 3
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 3
- 101710185494 Zinc finger protein Proteins 0.000 description 3
- 102100023597 Zinc finger protein 816 Human genes 0.000 description 3
- -1 antibodies Chemical class 0.000 description 3
- 239000003596 drug target Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229940126586 small molecule drug Drugs 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108010019653 Pwo polymerase Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000012921 fluorescence analysis Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000012482 interaction analysis Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000000742 single-metal deposition Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101001106957 Bos taurus Ribonuclease pancreatic Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- 101800000135 N-terminal protein Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 101800001452 P1 proteinase Proteins 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1086—Preparation or screening of expression libraries, e.g. reporter assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present connection relates to a method for high-throughput direct synthesis of recombinant polypeptides which, after coupling to a carrier matrix, can be used directly for high-throughput screening of candidate compounds.
- the method according to the invention permits the in vitro synthesis of more than 5,000 recombinant Proteins per day.
- HTE High Throughput Expression
- the interaction between proteins and their potential binding partners can be carried out fully automatically in a high throughput expression process ("High Throughput Expression” (HTE)) with subsequent high throughput screening.
- HTE High Throughput Expression
- the necessary gene segments are reversely transcribed and amplified via (RT-) PCR.
- the derived recombinant proteins are then expressed in vitro by the method according to the invention and fixed on a carrier matrix (for example biochips): tedious and time-consuming cloning is eliminated.
- a carrier matrix for example biochips
- the bound proteins are exposed to potential binding partners (pharmaceuticals, etc.) and their affinity for one another is then measured.
- the free interaction partners can be labeled with a fluorescent dye, for example, which ensures a reliable statement about the binding affinity of both partners by fully automated spectroscopic methods.
- biochips can also be used repeatedly for drug target screening.
- the present invention thus relates to a method for the high-throughput direct synthesis of recombinant polypeptides and their coupling to a carrier matrix, which is characterized by the following steps: (a) Preparation of DNA constructs which have the following sections:
- Partial sequences e.g. exon regions of genomic DNA
- the specific gene sequences are duplicated using suitable molecular biological methods (e.g. PCR, RT-PCR etc.). These DNA amplificates are then rewritten into RNA using RNA polymerases and then translated into polypeptides by in vitro translation. The polypeptides obtained can then be used for interaction or activity analyzes.
- genomic DNA A specific genomic sequence consisting of an entire operon, different exon / intron sequences or individual exon regions (eg exons containing SNP ("single nucleotide polymorphism")) is used (eg as a data file ) determined. According to the wishes / requirements, the specific gene sequences are amplified and used for the method according to the invention.
- the necessary and species-specific template (genomic DNA) can also be provided by the client as well as by other sources.
- cDNA and mRNA The sequence data and possibly the template (eg PCR fragments, vectors, syn- Theoretical genes etc.) with details of the gene segment to be processed by the client.
- the template is in turn amplified via PCR and used for the method according to the invention. If, for example, only the cDNA sequence is communicated, then the required cDNA can be produced by isolating and reverse transcribing species-specific mRNA using RT-PCR.
- Protein sequences Starting from an isolated and possibly provided protein, its N-terminal protein sequence is determined by sequencing and degenerate oligonucleotides are derived and synthesized from the protein sequence obtained. This, in turn, for example, be used in combination with poly (A) 15 _ 20 oligonucleotides for RT-PCR from the required biological starting materials (eg. As a piece of fabric) was used. If the protein sequences can be provided, the protein sequencing is omitted. After receiving the gene-specific amplificate, the protein sequence derived therefrom is verified by DNA sequencing. General methods known in the art can be used to prepare the DNA constructs of the invention.
- the method according to the invention for high-throughput direct synthesis of recombinant proteins is further characterized in that the DNA constructs additionally have the following sections: a multiple cloning site located 5 'to the promoter sequence, one between the coding for an affinity tag DNA sequence and the DNA sequence encoding the desired recombinant polypeptide, an amino acid linker encoding sequence, and / or a 3 'to the polypeptide encoding DNA sequence, a poly (dA) encoding DNA sequence, the length of the poly (dA) tail encoded by this DNA sequence is preferably 15 to 50 dA, and the DNA sequence preferably also has a multiple cloning site.
- a multiple cloning site located 5 'to the promoter sequence, one between the coding for an affinity tag DNA sequence and the DNA sequence encoding the desired recombinant polypeptide, an amino acid linker encoding sequence, and / or a 3 'to the polypeptide encoding DNA sequence
- the amino acid linker preferably consists of 5 to 20 glycine and / or serine residues.
- the DNA constructs according to the invention are preferably produced by PCR, with e.g. can be carried out according to the schemes described in Example 1 below.
- the DNA constructs are particularly preferably produced using megaprime PCR, which, for example, in the following examples from Barik and Galinsky, BioTechniques 10. (1991), 489-490.
- Any promoter which leads to strong gene expression in the transcription / translation system used is suitable for the transcription of the DNA constructs used in the method according to the invention.
- Suitable promoters are known to the person skilled in the art.
- the T7, T3 or SP6 promoter is particularly preferred, although other promoters such as the E.coli S30, the SV40 or the HCMV promoter can also be used.
- Affinity tags suitable for the method according to the invention and the corresponding binding partners as well as conditions for the covalent or non-covalent coupling of the binding partner to a carrier matrix are known to the person skilled in the art.
- suitable affinity systems are the Strep-Tag-System, (Institute for Bioanalytics, Göttingen, Germany), or the T7-Tag-System, (Novagen, Madison, USA), which are a Strep-Tag affinity protein or binding partner contain a T7 tag antibody.
- the S-peptide / S-protein system described in the examples below is preferably used for the process according to the invention.
- the present invention further relates to a method for high throughput screening, which is characterized by the following steps: (a) contacting those according to that described above Procedure obtained polypeptides bound to a support matrix with one or more candidate compounds; and (b) determining the binding of a candidate compound to a polypeptide.
- the candidate compounds can be very different compounds, both naturally occurring and synthetic, organic and inorganic compounds, as well as polymers (eg oligopeptides, polypeptides, oligonucleotides and polynucleotides) as well as small molecules, antibodies, sugars, Fatty acids, nucleotides and nucleotide analogs, analogs of naturally occurring structures (eg peptide "imitators", nucleic acid analogs etc.) and numerous other compounds.
- polymers eg oligopeptides, polypeptides, oligonucleotides and polynucleotides
- small molecules antibodies, sugars, Fatty acids, nucleotides and nucleotide analogs, analogs of naturally occurring structures (eg peptide "imitators", nucleic acid analogs etc.) and numerous other compounds.
- the search for suitable compounds can also be carried out on a large scale, for example by screening a very large number of candidate compounds in substance libraries, where the substance libraries can contain synthetic or natural molecules.
- the candidate compound is part of a substance library.
- a large number of potentially useful molecules can be screened in a single test. For example, if a field of 1000 compounds is to be screened, in principle all 1000 compounds can be placed in a microtiter plate well and tested at the same time. If a binding is discovered, the pool of 1000 can then be divided into 10 pools of 100 and the process repeated until an individual connection is identified. is adorned. In any event, the production and simultaneous screening of large banks of synthetic molecules can be carried out using well known combinatorial chemistry techniques, see for example van Breemen, Anal. Chem. 69. (1997), 2159-2164 and Lam, Anticancer Drug Des. 12: 145-167 (1997).
- extracts from natural products as a starting material can come from a large number of sources, for example the species fungi, actinomycetes, algae, insects, protozoa, plants and bacteria.
- the extracts that indicate binding can then be analyzed to isolate the active molecule. See, for example, Turner, J. Ethnopharmacol. 51 (1-3) (1996), 39-43 and Suh, Anticancer Res. 15 (1995) 233-239.
- Preferred candidate compounds are SMDs, peptides, hormones, proteins and nucleic acids.
- the candidate compounds preferably carry a detectable label, which is preferably a radioisotope, a bioluminescent compound, a chemiluminescent compound, a fluorescent compound, a metal chelate or an enzyme.
- a detectable label which is preferably a radioisotope, a bioluminescent compound, a chemiluminescent compound, a fluorescent compound, a metal chelate or an enzyme.
- the person skilled in the art is familiar with methods for detecting whether the candidate compound has bound to the recombinant polypeptide as a function of the label chosen for the candidate compound.
- Preferred methods for determining the binding of a candidate compound are radioactive, fluorescence-dependent, magnetic, spectroscopic, mass spectrometric, biosensory, photometric methods or confocal laser microscopy. Conditions for carrying out these processes are known to the person skilled in the art.
- Suitable carrier matrices are also known to the person skilled in the art, a microtiter plate, a glass slide, a reaction vessel, a membrane, a biochip (The Chipping Forecast 1999, Nature Genetics 21: Supplement) or a gel matrix are preferred as carrier matrices.
- Gel matrices eg gel filtration or ion exchange matrices
- suitable gel matrices are streptavidin-coupled column materials (eg Sephadex TM, DE ⁇ E etc., Pharmacia, Freiburg, Germany), for example for the binding of biotinylated S protein (Novagen, Madison, USA).
- FIG. 1 Amplification of the specific gene or ORF
- fragment A Schematic representation of the gene-specific PCR fragment (fragment A). Fragment A is extended by the two oligonucleotides by approximately 80 to 100 nucleotides. The area marked in bold represents the gene-specific sequence of the oligonucleotides.
- FIG. 1 Schematic representation of the gene-specific 5'-01igonucleotide (A).
- the gene-specific area is italicized and bold.
- the white arrow indicates the direction of synthesis.
- the initiation signal "ATG" of the specific gene is in the ORF of the upstream linker sequence.
- (C) Schematic representation of the gene-specific 3'-01igonucleotide (A). The gene-specific area is italicized and bold. The sequence of this 3-oligonucleotide must be shown as a complementary strand. The gray arrow indicates the direction of synthesis. The stop codon is underlined. A poly (A) tail of 15 adenines is inserted as a translation-promoting sequence.
- the length of the fragment is approximately 90 nucleotides. Hatched rich: multiple cloning site; gray area: promoter sequence for RNA polymerases; black area: S-peptide sequence; white area: complementary linker sequence.
- Promoter sequence is underlined.
- the white arrow indicates the direction of synthesis.
- (C) Schematic representation of the 3 'oligonucleotide (B) of fragment B.
- the 5' S peptide region is marked in bold.
- the sequence of this 3 'oligonucleotide must be shown as a complementary strand.
- the gray arrow indicates the direction of synthesis.
- Figure 3 Schematic representation of hybridization between the ssDNA 3 'region of fragment B and the ssDNA 5' region of fragment A
- the polymerase extends the 3 'ends in the direction of the fragment B and fragment A region (gray arrows).
- MCS multiple cloning site
- Prom RNA promoter
- SPS S-peptide sequence
- GSS-T gene-specific sequence with poly (dA) tail.
- FIG. 4 Schematic representation of the megaprime product.
- the length of the megaprime product depends on the length of the gene-specific fragment (GSS).
- GSS gene-specific fragment
- the length of the upstream and downstream DNA sequences is uniform.
- MCS multiple cloning site;
- Prom RNA promoter;
- SPS S-peptide sequence;
- Gly (n) glycine linker sequence;
- poly (dA) ls _ 50 poly (dA) tail.
- the length of the total protein depends on the length of the gene-specific protein sequence (GSPS).
- S-peptide S-peptide sequence
- Gly (n) glycine linker sequence
- ⁇ H 2 amino-terminal protein end
- COOH carboxy-terminal protein end.
- the linker between S-protein (hatched) and carrier matrix is marked as a gray wave.
- the S protein bound to the carrier matrix black bar
- GSP recombinant protein
- Example 1 Preparation of the DNA constructs that can be used for the method according to the invention via PCR (a) Amplification of the specific gene
- fragment A 1 (FIG. 1 a ).
- the 5 'oligonucleotide (A) used for the preparation of fragment A has the gene-specific sequence at the 3' end (15-20 nucleotides for the zinc finger gene pATl33 (Müller et al., PNAS USA 88. (1991), 10079- 10083; 5 'ATG CTC CAC CTT AGC-3') (FIG. 1b).
- a "linker sequence" of 12-24 bp (eg 5 '-GGG GGG GGG GGG GGG-3') is added upstream of this sequence, which results in a sequence of 4-8 glycine side chains after translation
- the 3 'oligonucleotide (A) used for the preparation of fragment A likewise has the gene-specific sequence with 15 to 25 nucleotides at its 3' end (the stop codon End of the pAT133 gene containing CTA: 5 '-CTA TTC ACT GGG TGG-3'), the 5 'end of the 3' oligonucleotide (A) additionally being a sequence of translation-promoting sequences (for example poly (A) 10 _ 50 ) includes ( Figure lc).
- thermostable DNA polymerase (Hybaid GmbH, Heidelberg, Germany), (2 U / ⁇ l), lOx reaction buffer complete (200mM Tris-HCC1, pH 8.5, 160mM (NH 4 ) 2 S0 4 , 15mM MgCl 2 ), 5 'Oligonucleotide (A) (50 pmol / ⁇ l), 3' oligonucleotide (A) (50 pmol / ⁇ l), dNTP mix (40 mM), gene-specific template (total amount 0.1-10 ng); e.g. pATl33 plasmid, H 2 0 bidist., sterile reaction vessels (0.5 ml / 0.2 ml)
- PCR fragment B Amplification of the PCR fragment B
- a further "PCR fragment B" is amplified, which contains the sequences shown in FIG. 2a.
- the 5′-ligonucleotide used for the PCR is composed of three sequence elements (FIG. 2b): At the 5 ′ end, various interfaces for restriction enzymes are contained (eg 5 ′ -GGA TCC GAA TTC CCC GGG-3 ′; for Ba HI , EcoRI, Smal etc.).
- a promoter sequence of strong viral, bacterial or eukaryotic RNA polymerase is inserted downstream thereof (15-30 nucleotides: eg T7 RNA pol promoter: 5'-ATA TAACACAC TCA CTA TAGGGC GA-3 ') and on 3' - The end of this 5 'oligonucleotide (B) closes the 5' sequence for the S peptide of bovine RNase A from the bovine pancreas (Richards and Wyckoff, The Enzymes Vol. IV (1971), 647-806, Academic Press) with 21 nucleotides (e.g. 5 'ATG GAA ACT GCA GCA GCC AAG-3').
- the ATG initiation signal opens the ORF of the entire fusion product.
- the 3 'oligonucleotide (B) for the PCR of the fragment B has at its 5' end the complementary sequence (5 '-CCC CCC CCC CCC-3') of the linker sequence of the gene-specific 5 'oligonucleotide (see figure lb) on.
- the last 15-30 nucleotides e.g. 5 '-GTC CAT GAG CTG CCG CTC AAA CTT-3'
- Reaction conditions for the amplification of the q-specific fragment B materials thermostable DNA polymerase (2 U / ⁇ l), lOx reaction buffer complete, 5 'oligonucleotide (B) (50 pmol / ⁇ l), 3' oligonucleotide (B) (50 pmol / ⁇ l), dNTP mix (40 mM), RNase A template (Schmidt et al., Biochemistry 25 (20), 1986, 5955-5961; 1245825 (GenBank)) (total amount 1 ng / ⁇ ), H 2 0 bidist., Sterile reaction tubes (0.5 ml / 0.2 ml)
- Execution (pipetting scheme for 50 ⁇ l final volume): add 50 ⁇ l H 2 0 bidist .: 5.0 ⁇ l lOx reaction buffer complete, 1.0 ⁇ l 5 'oligonucleotide (B), 1.0 ⁇ l 3' oligonucleotide (B) , 1 ul RNase A template, 2.0 ul dNTP mix, 0.5 ul thermostable DNA polymerase
- RNA or mRNA must be used as the starting material for the gene-specific fragment A, then the oligonucleotides (A) are used in the RT-PCR as follows.
- RT-PCR program / fragment A 1st step: 6 min 70 ° C, 2nd step: 5 min / 48 or 58 ° C (depending on the 3 'oligonucleotide), 3rd step: 30 min / 60 ° C, 4th step 2 min / 94 ° C, 5.
- the PCR fragments are purified using standard methods (silica beads, spin preps) in accordance with the manufacturer's instructions.
- the purified fragments A and B are then used for the megaprime PCR.
- the so-called megaprime PCR (Barik and Galinsky, BioTechniques 10. (1991), 489-490) allows overlapping DNA fragments to be ligated together directly during the PCR cycles.
- the denatured single DNA strands serve as primers and bind the complementary sequence of the overlap partner.
- the 3 'oligonucleotide (B) and the 5' oligonucleotide (A) have a complementary sequence ("linker sequence"), so that after denaturation of the two fragments, hybridization between the complementary ends of the fragments A and B can take place ,
- the hybridized single strands can now act as "megaprimer" so that the polymerase elongates the free 3 'ends of these strands (FIG. 3).
- both the 5'-oligonucleotide (B) and the 3'-oligonucleotide (A) are pipetted into the PCR mixture.
- Execution (pipetting scheme for 100 ul final volume): 10 ul 10 x reaction buffer complete, 76 ul H 2 0 bidist., 2.0 ul 5 'oligonucleotide B, 3.0 ul 3' oligonucleotide A, 3.0 ul Fragment A, 3.0 ul fragment B, 2.0 ul dNTP mix, 1.0 ul Taq / Pwo DNA polymerase mix.
- the fragment obtained can be used directly for the combined in vitro transcription / translation.
- Example 2 Cell-free in vitro transcription / translation
- Example 1 The fragment produced in Example 1 is used for this.
- A the eukaryotic (reticulocyte lysate or wheat germ lysate) or bacterial "TNT TM Coupled" transcription / translation systems from Promega, Mannheim, Germany are used.
- Example 1 "TNT-Coupled” transcription / translation system, TNT reaction buffer, TNT RNA polymerase, amino acid mixture including [ 35 S] labeled amino acids (Promega, Mannheim, Germany), RNAsin inhibitor (Promega, Mannheim, Germany) (40 U / ⁇ l), H 2 0 bidist. (DEPC-treated, nuclease-free).
- the procedure is adapted to the volumes required for the process according to the invention (approx. 5-20 ⁇ l) in accordance with the manufacturer's instructions.
- Pipetting scheme for 10 ul final volume in "384well" microtiter plates xx ul TNT lysate, 0.4 ul TNT reaction buffer, 0.2 ul TNT RNA polymerase, 0.2 ul amino acid mixture, 0.8 ul [ 35 S] - labeled Amino acid (1000 Ci / mmol, lOmCi / ml), 0.2 ⁇ l RNasin inhibitor, xx ⁇ l megaprime PCR fragment (0.1 to 0.5 ⁇ g), add 10.0 ⁇ l H 2 0 bidest.
- the individual components (apart from the Megaprime PCR fragment) are pipetted as a master mix and placed in the corresponding microtiter wells.
- the Megaprime PCR fragment is added directly to the microtiter wells.
- the reaction is carried out at 30 ° C for 30-120 min.
- Example 3 Binding of the recombinant proteins via the affinity tag to a carrier matrix
- the proteins obtained from Example 2 are then bound to the required carrier matrices.
- Appropriately pretreated materials can be used as the carrier matrix, preferably "384well” polystyrene or polypropylene microtiter plates or glass slides being used.
- the S protein is non-covalently bound to the carrier matrix to be used, (a) microtiter plates and (b) glass slide carriers being used.
- the recombinant proteins are then coupled via the S-peptide to the carriers pretreated in this way.
- Couple proteins and e.g. for high-throughput screening with the addition of potential interaction partners SMDs
- the recombinant proteins obtained in Example 2 (5-20 ⁇ l translation batch) are pipetted directly into the corresponding microtiter wells of the prepared microtiter plates without prior purification.
- the recombinant proteins (0.2 - 1.0 ⁇ l translation batch) are pipetted directly into the corresponding microtiter wells of the prepared microtiter plates without prior purification.
- Example 4 Interaction analysis of the proteins coupled to the carrier After being fixed to the carrier matrices (Example 3), the proteins translated in vitro were used to screen potential interaction partners.
- the variability in the screening system according to the invention is given by the fact that a large number of different proteins or mutants can be applied per glass slide surface / microtiter plate and that the slide is incubated with only one molecule to be examined, for example in a slide wash bowl (FIG. 7A ).
- various molecules to be examined can be transferred to the different protein spots / wells of the glass slides or microtiter wells using pipetting or spotting robots (FIG. 7B).
- the zinc finger protein of the pATl33 gene and its binding partner (dsDNA sequence. 5 '-GGGGCGGGG-3') was used as an example for an interaction analysis between a protein which was translated in vitro according to Example 2 and locally fixed according to Example 3 and a free labeled ligand.
- dsDNA sequence. 5 '-GGGGCGGGG-3' was used as an example for an interaction analysis between a protein which was translated in vitro according to Example 2 and locally fixed according to Example 3 and a free labeled ligand.
- Gel retardation Gibresl. Vol. 2, Greene Publ. Assoc., Inc. J. Wiley & Sons, NY , USA
- footprint analyzes Schomitz and Galsa, Nucl. Acids. Res. 6 (1978), 111).
- the master mixes (Ix gel shift binding buffer) prepared, then pipetted 10 ul master mix per well of the "384well" plate.
- unlabeled Competitor DNA was pipetted in a five-fold molar excess to the expected amount of protein, after which it was incubated at room temperature for 5-10 min.
- a five-fold molar excess was added to the expected amount of protein Cy3-labeled dsDNA and it was incubated for 5-10 min at room temperature.
- the supernatant was removed and washed twice with 1 x gel shift binding buffer. Subsequently, the whole was left in 10 ⁇ l of 1 x gel shift binding buffer, evaluated with the aid of a microtiter plate fluorescence reader, and the binding between the zinc finger protein and its binding partner was detected.
- the proteins in vitro translated according to Example 2 and bound to the carrier matrix according to Example 3 can also be used to find potential medicaments for or for certain proteins in the high-throughput method.
- Human phenylalanine hydroxylase which has a natural affinity for L-phenylalanine, was used.
- SNP point mutation
- L-DOPA L-DOPA
- the interaction between L Phenylalanine and the human phenylalanine hydroxylase have been demonstrated several times with in vitro translated proteins (Knappsog et al., Hum.
- the slide was preincubated in PBS and then the excess liquid was removed by draining and wiping gently. This was followed by transferring 0.2 ⁇ l (for “384well” plates) or 1.0 ⁇ l (for “96well” plates) of the L-phenylalanine solution (50 ⁇ M-500 ⁇ M) to a corresponding slide spot. The incubation was carried out for 30 min at room temperature. The slide was then washed twice in PBS. Finally, the excess liquid was removed by draining and wiping gently. Bound L-phenylalanine molecules were analyzed by glass slide fluorescence readers (chip leader, Virtek Inc., Waterloo, Canada).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Computational Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002247594A AU2002247594A1 (en) | 2001-02-09 | 2002-02-07 | Method for high throughput screening of candidate compounds by high throughput direct synthesis of recombinant polypeptides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10106339.3 | 2001-02-09 | ||
DE2001106339 DE10106339A1 (de) | 2001-02-09 | 2001-02-09 | Verfahren zum Hochdurchsatz-Screening von Kandidaten-Verbindungen über die Hochdurchsatz-Direktsynthese von rekombinanten Polypeptiden |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002064773A2 true WO2002064773A2 (fr) | 2002-08-22 |
WO2002064773A3 WO2002064773A3 (fr) | 2003-05-08 |
Family
ID=7673681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2002/000459 WO2002064773A2 (fr) | 2001-02-09 | 2002-02-07 | Procede de selection a haut rendement de composes candidats par synthese directe a haut rendement de polypeptides recombinants |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2002247594A1 (fr) |
DE (1) | DE10106339A1 (fr) |
WO (1) | WO2002064773A2 (fr) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650489A (en) * | 1990-07-02 | 1997-07-22 | The Arizona Board Of Regents | Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof |
AU1322692A (en) * | 1990-11-05 | 1992-05-26 | United States Of America, As Represented By The Secretary Of The Army, The | Method for the in vitro production of protein from a dna sequence without cloning |
EP0542422A1 (fr) * | 1991-11-12 | 1993-05-19 | General Atomics | Plaque de microtitrage à puits multiples |
US5801233A (en) * | 1992-10-02 | 1998-09-01 | Arch Development Corporation | Nucleic acid compositions encoding acetyl-coa carboxylase and uses therefor |
DK0705279T3 (da) * | 1993-05-27 | 2003-06-10 | Selectide Corp | Topologisk adskilte, kodende fastfase-biblioteker |
WO1996014428A1 (fr) * | 1994-11-08 | 1996-05-17 | Novagen, Inc. | Procede de synthese in vitro de proteines |
US5962641A (en) * | 1996-08-16 | 1999-10-05 | Clontech Laboratories, Inc. | Method for purification of recombinant proteins |
WO1998011249A1 (fr) * | 1996-09-13 | 1998-03-19 | Garvin Alex M | Detection de mutations a l'aide de proteines synthetisees in vitro marquees a l'aide de peptides |
US6207370B1 (en) * | 1997-09-02 | 2001-03-27 | Sequenom, Inc. | Diagnostics based on mass spectrometric detection of translated target polypeptides |
-
2001
- 2001-02-09 DE DE2001106339 patent/DE10106339A1/de not_active Withdrawn
-
2002
- 2002-02-07 WO PCT/DE2002/000459 patent/WO2002064773A2/fr not_active Application Discontinuation
- 2002-02-07 AU AU2002247594A patent/AU2002247594A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE10106339A1 (de) | 2002-08-22 |
WO2002064773A3 (fr) | 2003-05-08 |
AU2002247594A1 (en) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2057176B1 (fr) | Synthèse programmable d'oligonucléotides | |
EP1153127B1 (fr) | Procede de production de polymeres | |
EP1181395B1 (fr) | Procede pour la synthese de fragments d'adn | |
EP1685261B1 (fr) | Synthetiseur d'adn a parallelisme eleve sur une base matricielle | |
DE602004010273T2 (de) | Amplifikationsmethode | |
AU783689B2 (en) | Sensitive, multiplexed diagnostic assays for protein analysis | |
DE60223276T2 (de) | Verfahren zur Blockierung von unspezifischen Hybridisierungen von Nukleinsäuresequenzen | |
DE60034878T2 (de) | Verfahren zur Amplifizierung einer Nukleinsäuresequenz unter Verwendung eines chimären Primers | |
RU2220204C2 (ru) | Молекула каталитической днк, обладающая сайтспецифической эндонуклеазной активностью (варианты), композиция, расщепляющая нуклеиновую кислоту, способ расщепления фосфоэфирной связи в субстрате, способ селекции каталитической днк (варианты), молекула энзиматической днк (варианты) | |
US20050019793A1 (en) | Global amplification using a randomly primed composite primer | |
JP2007525151A (ja) | 一本鎖dnaライブラリーの調製方法 | |
JP2005519641A (ja) | 標的ポリペプチドをコードするポリヌクレオチドの構築方法 | |
EP2065702B1 (fr) | Procédé d'extraction microfluidique | |
EP1135527B1 (fr) | Clonage et copie sur des surfaces | |
JP2002505087A (ja) | 核酸の非特異的増幅法 | |
WO2007136833A2 (fr) | Procédés et compositions pour la production d'aptamères et utilisations de ces procédés et de ces compositions | |
CN114317684B (zh) | 一种基于tna分子的细胞内镁离子成像的方法 | |
DE102008013715B4 (de) | Verfahren zur DNA-Analyse | |
WO2002064773A2 (fr) | Procede de selection a haut rendement de composes candidats par synthese directe a haut rendement de polypeptides recombinants | |
CA2374438A1 (fr) | Systeme de detection pour l'analyse d'interactions moleculaires, sa production et son utilisation | |
EP1797198B1 (fr) | Procede ameliore de separation par electrophorese pour l'analyse de l'expression genique | |
DE102007056398A1 (de) | Flexibles Extraktionsverfahren für die Herstellung sequenzspezifischer Molekülbibliotheken | |
KR101079250B1 (ko) | 카바릴 노출 여부 확인용 바이오마커 및 이를 이용한 확인 방법 | |
KR20110093129A (ko) | 잔류성 유기오염물질류 특이적 노출 여부 확인용 바이오마커 및 이를 이용한 확인 방법 | |
DE10033091A1 (de) | Polymer-Chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |