WO2002050184A2 - Compositions for vibration damping - Google Patents
Compositions for vibration damping Download PDFInfo
- Publication number
- WO2002050184A2 WO2002050184A2 PCT/US2001/048718 US0148718W WO0250184A2 WO 2002050184 A2 WO2002050184 A2 WO 2002050184A2 US 0148718 W US0148718 W US 0148718W WO 0250184 A2 WO0250184 A2 WO 0250184A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- epoxy resin
- saturated
- present
- percent
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 183
- 238000013016 damping Methods 0.000 title claims abstract description 59
- 239000003822 epoxy resin Substances 0.000 claims abstract description 63
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 63
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 25
- 229920005989 resin Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 23
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 21
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 17
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 16
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 16
- 239000004711 α-olefin Substances 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 229920002635 polyurethane Polymers 0.000 claims abstract description 13
- 239000004814 polyurethane Substances 0.000 claims abstract description 13
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical compound C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000009477 glass transition Effects 0.000 claims abstract description 7
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 6
- 238000009472 formulation Methods 0.000 claims description 62
- 239000000945 filler Substances 0.000 claims description 29
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 239000003054 catalyst Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 239000004593 Epoxy Substances 0.000 claims description 12
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 12
- 229920000570 polyether Polymers 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 238000005260 corrosion Methods 0.000 claims description 10
- 230000007797 corrosion Effects 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- -1 polyoxypropylene Polymers 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 7
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 6
- 239000012948 isocyanate Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 6
- 239000004841 bisphenol A epoxy resin Substances 0.000 claims description 5
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical group NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 5
- 150000002513 isocyanates Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 239000004849 latent hardener Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920005862 polyol Polymers 0.000 claims description 4
- 150000003077 polyols Chemical class 0.000 claims description 4
- 150000002009 diols Chemical class 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 150000004072 triols Chemical class 0.000 claims description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 229920005906 polyester polyol Polymers 0.000 claims description 2
- 229920001451 polypropylene glycol Polymers 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- JIABEENURMZTTI-UHFFFAOYSA-N 1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene Chemical group O=C=NC1=CC=CC=C1CC1=CC=CC=C1N=C=O JIABEENURMZTTI-UHFFFAOYSA-N 0.000 claims 1
- KDQTUCKOAOGTLT-UHFFFAOYSA-N 3-[3-(dimethylcarbamoylamino)-4-methylphenyl]-1,1-dimethylurea Chemical group CN(C)C(=O)NC1=CC=C(C)C(NC(=O)N(C)C)=C1 KDQTUCKOAOGTLT-UHFFFAOYSA-N 0.000 claims 1
- 238000009408 flooring Methods 0.000 claims 1
- KCWDJXPPZHMEIK-UHFFFAOYSA-N isocyanic acid;toluene Chemical compound N=C=O.N=C=O.CC1=CC=CC=C1 KCWDJXPPZHMEIK-UHFFFAOYSA-N 0.000 claims 1
- 238000001723 curing Methods 0.000 description 29
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 26
- 239000003795 chemical substances by application Substances 0.000 description 20
- 239000000178 monomer Substances 0.000 description 15
- 229940106691 bisphenol a Drugs 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000004844 aliphatic epoxy resin Substances 0.000 description 9
- 239000004848 polyfunctional curative Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 231100001261 hazardous Toxicity 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 238000000518 rheometry Methods 0.000 description 4
- 231100000202 sensitizing Toxicity 0.000 description 4
- 230000001235 sensitizing effect Effects 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000002085 irritant Substances 0.000 description 3
- 231100000021 irritant Toxicity 0.000 description 3
- 239000013521 mastic Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920013701 VORANOL™ Polymers 0.000 description 2
- 241000276425 Xiphophorus maculatus Species 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 231100000344 non-irritating Toxicity 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 231100000370 skin sensitisation Toxicity 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000004636 vulcanized rubber Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical class CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical class CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical class CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 244000226021 Anacardium occidentale Species 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 208000035967 Long Term Adverse Effects Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical class [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DUVKXNKIYKAUPK-UHFFFAOYSA-N acetic acid;triphenylphosphane Chemical compound CC(O)=O.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 DUVKXNKIYKAUPK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 231100000121 skin sensitizing Toxicity 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical class CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- This invention relates to resin compositions useful for damping vibration applications, and more particularly, this invention relates to saturated thermosettable components blended with crosslinking agents and thermoplastic ⁇ -olefin/vinyl aromatic interpolymers, such as ethylene-styrene interpolymers (ESI), wherein such blends are useful for applications where damping of vibrations are required.
- ESE ethylene-styrene interpolymers
- a vibration damping material may be used including for example transportation vehicles, electronic device apparatuses and machines which contain a vibration source such as a motor.
- Various vibration damping materials have heretofore been proposed for attenuating vibrations caused by a vibration source, most typically, from an engine of a vehicle, with varying degrees of success.
- the automotive industry has been searching for vibration damping products that would provide damping factors greater than 15 percent at operating temperatures conditions typically 0 °C - 50 °C.
- a 10 percent damping factor is the minimum generally recognized level for efficient damping performance in the automotive industry.
- WO 99/16840 describes a system developed for automotive underbody coating and shows examples of damping factors, superior to 20 percent, as measured according to the method DIN 53440, Part 1 [Testing of plastics and damped laminated systems; bending vibration test; general rudiments of dynamical elastic properties of bars and strips].
- Method DIN 53440 is equivalent to SAE J1637, another often used procedure by those skilled in the art. This method allows one to determine the loss factor of a material applied to a metal bar of defined surface area (about 22 cm 2 ). The resulting loss factor is expressed as a percentage. However, the damping performance of the product described in WO
- 99/16840 is efficient only in a rather narrow range or band width of temperatures when formulated with usual fillers such as calcium carbonate (typically from 10 °C to 30 °C for a loss factor at 200 Hertz (Hz) above 10 percent, that is a band temperature width of only 20 °C). More expensive fillers with high aspect ratio such as mica are needed to expand the useful temperature range for damping. Also, relatively high level of epoxy resin (about 50 percent in the formulation) are generally used to obtain high loss factors. It is desirable to expand the temperature range in which the vibration damping performance stays above 10 percent at a lower formulation cost.
- the present invention is directed to a vibration damping composition including:
- thermosettable component such as but not limited to 15
- an epoxy resin having one or more epoxy groups or polyurethane precursor a saturated thermosettable component
- thermosettable component (b) a crosslinking agent and/or curing catalyst for the saturated thermosettable component, such that upon curing of the saturated thermosettable component, the resultant cured thermoset product has a glass transition temperature (Tg), as measured by differential scanning calorimetry (DSC), in the range of from -20 °C to 85 °C;
- Tg glass transition temperature
- thermoplastic interpolymer resin having a Tg in the range of from -20
- pastes made from the compositions of the present invention are useful in automotive applications because such compositions are resistant to automotive treatment processes and corrosion; and may replace the standard 3 o bituminous membranes currently used in the automotive industry allowing for automation in the automotive manufacturing process.
- Figure 1 is a graphical illustration showing the damping performance of a composition of the present invention with and without ethylene-styrene interpolymer (ESI).
- Figure 2 is a graphical illustration showing the effect of different ESI levels 5 on the damping performance.
- Figure 3 is a graphical illustration showing the damping performance of a composition of the present invention over 50 °C temperature width (range from 0 °C to 50 °C typical of an automotive use).
- the composition of the present invention includes a o combination or blend of (A) a mixture of (i) one or more saturated thermosettable components such as polyurethane precursors, or epoxy resins having one or more epoxy groups and (ii) a crosslinking agent for such saturated thermosettable components; and (B) one or more thermoplastic interpolymer resins such as ethylene-styrene interpolymer (ESI).
- saturated thermosettable components include all resins which crosslink via 5 any chemical reaction other than the polymerization of unsaturated carbon-carbon multiple bonds.
- composition of the present invention is advantageously used as a vibration damping material having damping performance within a temperature range of from -20 °C to 100 °C. While the automotive industry is in need of an efficient vibration o damping material at and around ambient temperature, it is contemplated that the systems of the present invention may be used for other than automotive applications such as for example lawn and garden tractors, air conditioner housings, and other end uses.
- a preferred embodiment of the present invention includes the use of at least one or more risk-label-free saturated thermosettable components and crosslinking agents in 5 which ⁇ -olefin/vinyl aromatic interpolymers are incorporated or dispersed therein, together with fillers, pigments and optionally other additives such as curing catalysts, thickeners, rheology modifiers (all well known by the formulators skilled in the art, supplying such systems), to make a composition in the form of a liquid to a high viscous paste or mastic that can be applied to a substrate to form a coating.
- compositions of the present invention offer efficient damping over a wider temperature range, more specifically between 0 °C and 50 °C, with a maximum loss factor of 22 percent, and a value that stays above 15 percent over 30 °C due to the combination of the saturated thermosettable resin and the ⁇ -olefin/vinyl aromatic interpolymers.
- the composition of the present invention can be designed to provide an efficient vibration damping performance as defined above by the loss factor over a broad temperature window of at least 30 °C wide and preferably at least 50 °C wide, centered at an elevated temperature above ambient (about 20 °C) and below 70 °C.
- both the cured thermoset component and the thermoplastic interpolymer of the composition are selected to have their glass transition temperature and/or maximum of dynamic loss modulus in the temperature range where vibration damping is required.
- Such a system is particularly suitable for applications, machines or apparatuses operating at temperatures above ambient up to 100 °C.
- the difference between the Tg of the cured thermoset component and the Tg of the thermoplastic inte ⁇ olymer does not exceed 50 °C, preferably does not exceed 30 °C, and more preferably does not exceed 20 °C.
- the coating compositions of the present invention can be applied to steel or other substrate on automotive body parts before assembling, but heat curing is generally delayed until the car body enters the paint curing ovens later on the assembly line. In this case, the coating is applied in form of a high enough viscous paste to be resistant to the typical automotive body treatment processes of the painting line, meaning not being washed away and not contaminating the treatment bath.
- Usual metal treatments include various degreasing, washing, acid or base metal treatment steps (phosphatation and passivation steps performed at up to 45 °C, by applying water solutions in form of jets or bath), followed by the electrodeposition of the cathodic electrodeposition (CED) primer, prior to the cure of the compositions of the present invention at a cure temperature of 155 °C to 200 °C for 30 minutes to 60 minutes in the CED primer curing ovens.
- the coatings of the present invention also fulfill the requirements of corrosion testing methods for the automotive industry including methods D17 15058, D17 1686 and D45 1148 (Peugeot-Renault normalized test methods).
- the cured epoxy resin and the thermoplastic interpolymer resin are such that their glass transition temperature can be between 0 °C and 60 °C, which defines the range of damping and make the materials particularly suitable and unique for this application.
- the formulations of the present invention are novel because of (i) the unique combination of a saturated thermosettable component with a thermoplastic interpolymer such as ESI, (ii) the fact that the formulations of the present invention have an effective damping performance (loss factor at 200 Hertz (Hz) is greater than 10 percent over a broad temperature range of at least 30 °C, preferably up to 50 °C, (iii) the fact that the formulations of the present invention are better performing than bituminous membranes 5 which have a maximum damping factor of 15 percent and which are currently used in the automotive industry today, and (iv) the fact that the formulations of the present invention can be "non-hazardous" (that is non-irritating/non-sensitizing by skin contact and as such are risk-label-free for classification and labeling of preparations as outlined in the European Dangerous Preparations Directive 88/379/EEC and its amendments.
- Bisphenol-A based 0 epoxy resins with a molecular weight below 700 are listed in Annex I of the European Dangerous Substance Directive 67/548/EEC and classified as irritant (hazard symbol “Xi") and dangerous to the environment (hazard symbol “N") with the risk phrases “R36/38” (irritating to eyes and skin), "R 43” (may cause sensitization by skin contact) and "R 51/53” (toxic to aquatic organisms, may cause long term adverse effects in 5 the aquatic environment).
- Bisphenol-A based epoxy resins with a molecular weight above 700 do not require classifications according to EU legislation. The automotive industry prefers risk-label-free systems.
- the composition is used in the form of a paste.
- the paste of the present invention may replace advantageously for o example, bituminous membranes currently used in the automotive industry.
- a coating paste can be applied by automated processes which is a key driver in the automotive industry.
- the paste may be applied to a substrate by robotic application eliminating the need for manual application of bituminous membranes to a substrate.
- the polyurethane precursors useful in the present invention as the saturated thermosettable component may be a resin such as a polymer and/or a blend of polymers, including for example, polyoxypropylene diols/triols, polyester polyols, polyether polyols, hydroxy functional polyurethane prepolymers and mixtures thereof.
- the formulation of the present invention further comprises a crosslinking o agent for the polyurethane precursors.
- the crosslinking agent for the polyurethane precursor includes essentially an isocyanate, a polyisocyanate, an isocyanate functional polyurethane prepolymer and mixtures thereof.
- the crosslinking agent reacted with the polyurethane precursor forms a polyurethane resin system. More particularly, the system may include the reaction product of an amine terminated polyether (selected from aminated diols or triols, well described in U.S. Patent No. 3,654,370).
- Particularly recommended amine terminated polyether products useful in the present invention are the Jeffamine brand series from Hunstman Petrochemical Corporation that is Jeffamine D-2000, D-4000, T-3000, T-5000, T-403 or T-230) or a hydroxy-terminated polyether (polyether polyol i.e NORANOL* 230, VORANOL* 220 available from The Dow Chemical Company (* VORANOL is a registered trademark of The Dow Chemical Company), or blends of the two as an active hydrogen-containing material and an isocyanate compound such as an aromatic or an aliphatic compound, widely described in U.S. Patents Nos. 4,705,814; 2,683,730; and 3,362,979.
- an isocyanate used in the present invention is methylene bis(4-phenylisocyanate or commonly called "MDI" which is used to form a polyurea, polyurethane or hybrid elastomer.
- MDI methylene bis(4-phenylisocyanate
- Another example of the isocyanate is touluene diphenyl diisocyanate.
- the total amount of polyurethane precursor and the crosslinking agent used for the precursor is from an amount of 20 percent by weight to 80 percent by weight, preferably 25 percent by weight to 60 percent by weight, and more preferably 40 weight percent or less based on the weight of the formulation.
- the crosslinking agent used for the polyurethane precursor in the present invention is generally present at a stoichiometric amount - ratio hydroxyl groups to active hardener groups - from 1.5 to 0.7, preferably from 1.2 to 0.8, and more preferably from 1.1 to 0.9.
- thermosettable component of the present invention Any epoxy resin having one or more epoxy groups known by those skilled in the art may be used in the present invention as the thermosettable component of the present invention.
- the specific epoxy resin selected can include aromatic and aliphatic types, and mixtures thereof.
- important in developing a formulation which has good vibration damping performance and which is of the risk-label-free type, is the selection of the epoxy resins used in the formulation.
- Preferred aromatic epoxy resins are epoxy resins having bisphenol moieties in the backbone of the epoxy resin.
- Representative of preferred bisphenol resins useful in this invention are those disclosed in U.S. Patent No. 5,308,895 at column 8, line 6 and represented by Formula 6.
- the most preferred aromatic epoxy resins are bisphenol-A based epoxy resins and bisphenol-F based epoxy resins.
- bisphenol-A based epoxy resins are used.
- the resins may be straight reaction products of diglycidyl ether of bisphenol-A (DGEBA) and bisphenol-A (bis- A).
- DGEBA diglycidyl ether of bisphenol-A
- bis-A bis-A
- a typical epoxy resin product used in the present invention is D.E.R.* 661E (1 -Type Bisphenol-A epoxy resin), available from The Dow Chemical Company. (* D.E.R. is a registered trademark of The Dow Chemical Company).
- the epoxy resins can be, for example, the reaction product of DGEBA, bis- A and a fatty acid and/or a dimer fatty acid derived from a natural oil such as for example linseed, tall, or castor oil fatty acids.
- a natural oil such as for example linseed, tall, or castor oil fatty acids.
- Those resins are typically high viscous to solid and the process for making these resins are described in column 8, line 6 of U.S. Patent No. 5,308,895.
- Such fatty acid modification of a bisphenol-A epoxy resin, as well as other known modifications, permit the adjustment of the temperature range of the vibration damping efficiency in the final cured product.
- the preferred aliphatic epoxy resins useful in the present invention are derived from polyether chains which are preferably prepared from one or more alkylene oxides.
- aliphatic epoxy resins are those described in U.S. Patent No. 5,308,895 at column 8, line 9 and formula 9 and the description thereof following.
- the aliphatic epoxy resin contains in its backbone ethylene oxide, propylene oxide or a mixture thereof. More preferably, aliphatic liquid epoxy resins specifically include D.E.R.*
- Preferred aliphatic epoxy resins also include, for example, D.E.R.* 736 epoxy resin available from The Dow Chemical Company. (*D.E.R. is a registered trademark of The Dow Chemical Company).
- the epoxy resin may also include a mixture of a bisphenol A type epoxy resin and an aliphatic epoxy resin.
- the epoxy resins useful in the present invention can also include, for example the epoxy resins described in PCT WO 99/16840 which are described as flexible epoxy resins and rigid epoxy resins, and may be used as a mixture in a ratio that achieves the desired results.
- the more flexible aliphatic epoxy resin is used in combination with the more rigid bisphenol-A based epoxy resin in a ratio which adjusts the temperature range of the vibration damping efficiency in the final cured product.
- the aliphatic epoxy resin can be included as a reactive partner during the manufacturing process of the bisphenol-A based 5 epoxy resin together with the DGEBA and bisphenol-A reactants. In this case aromatic- aliphatic hybrid epoxy resin structures are obtained.
- the average number molecular weight (M n ) of the bisphenol-A based epoxy resin is generally from 350 to 5000.
- the epoxy resin molecular weight is greater than 700, l o preferably greater than 800, and more preferably greater than 900.
- the range of the molecular weight of the epoxy resin is generally from 800 to 5000, preferably from 900 to 3000, and more preferably from 900 to 2000.
- the range of the molecular weight of the aliphatic liquid epoxy resin is generally from 300 to 4000, preferably from 500 to 2000, and more preferably from
- the aliphatic epoxy resins present in the composition of the present invention is preferably selected amongst liquid aliphatic resins commercially available which are recognized non-irritating and non-sensitizing by skin contact.
- DMTA Differential Scanning Calorimetry
- the epoxy resins used in the present invention should be such that the glass
- transition temperature (Tg) of the cured formulation is determined by DMTA (Tg is given by the temperature at the maximum of peak Tan delta (mechanical loss factor) which is defined as the ratio of loss to storage modulus), is -5 °C or greater, preferably 10 °C or greater, and more preferably 20 °C or greater.
- the DMTA glass transition temperature peak is at 100 °C or less and more preferably 80 °C or less. In a preferred
- the mechanical loss factor Tan delta measured at 10 Hertz (Hz) should be a broad and high peak with respect to temperature, preferably the width of the peak at half height is greater than 30 °C and more preferably 50 °C.
- the epoxy resin is present in the formulation in an amount of 20 percent by weight or greater, more preferably 25 percent by weight or greater based on the weight of the formulation.
- the epoxy resin is present in the formulation in an amount of 80 5 weight percent or less, more preferably 60 percent by weight or less and even more preferably 40 weight percent or less based on the weight of the formulation.
- the epoxy resins or blends of epoxy resins are liquid at a temperature between 20 °C and 50 °C which is a typical temperature range for manufacturing a formulation.
- the viscosity of the epoxy resin at the processing 0 temperature is lower than 60 Pa.s, preferably lower than 30 Pa.s, and even more preferably lower than 10 Pa.s.
- the formulation of the present invention further comprises a crosslinking agent for the epoxy resin.
- the crosslinking agent (which will also be interchangeably referred to herein as a "curing agent” or “hardener”) can be any curing agent useful with 5 epoxy resins and known to one skilled in the art.
- latent curing agent it is meant that the curing reaction of the composition is induced at an elevated temperature above ambient and the formulated composition can be stored for a defined period of time o (shelf-life) at low temperature, preferably at ambient temperature.
- the curing agent used will depend on the application process and curing conditions. For example, for the high temperature cure of a one-component paste, a latent hardener which cures at elevated temperature is more suited, most preferred latent hardener is dicyandiamide, optionally associated with a latent curing catalyst. 5
- a low temperature curing hardener is preferred to permit the saturated thermosettable resin to cure at ambient temperature.
- Preferred ambient cure hardeners are polyamines of the aliphatic, cycloaliphatic or aromatic types. Such two-component formulations are, for instance, particularly suited to the building and civil engineering industry. o Representative curing agents are disclosed in U.S. Patent No.
- the curing agent is an amine terminated polyether, such as Jeffamine (trademark) amine terminated polyether available from Huntsman Chemical (for example Jeffamine 230), Eurodur (trademark) from Ciba Speciality Chemicals (for example Eurodur 70, 75 or 76), anhydrides, including dianhydrides, and cyandiamides or dicyandiamides and derivatives thereof.
- amine terminated polyether such as Jeffamine (trademark) amine terminated polyether available from Huntsman Chemical (for example Jeffamine 230), Eurodur (trademark) from Ciba Speciality Chemicals (for example Eurodur 70, 75 or 76), anhydrides, including dianhydrides, and cyandiamides or dicyandiamides and derivatives thereof.
- Most preferred curing agents are the dicyandiamides and the derivatives thereof.
- the choice of the curing agent will effect the form of the composition, that is, determine whether it is a one-part or a two-part composition; shelf stability; final performance properties; and the curing temperature of the composition.
- a polyamine hardener or an amine terminated polyether or an anhydride curing agent is preferably used.
- a o dicyandiamide curing agent is preferably used.
- the curing agent used in the present invention is generally present at a stoichiometric amount - ratio epoxy groups to active hardener groups - from 1.5 to 0.7, preferably from 1.2 to 0.8, and more preferably from 1.1 to 0.9.
- thermoplastic inte ⁇ olymer resins useful in the present 5 invention are ⁇ -olefin/vinyl or vinylidene inte ⁇ olmers.
- the generic class of materials of ⁇ - olefin/vinyl or vinylidene monomer, substantially random inte ⁇ olymers, including materials such as substantially random ⁇ -olefin/vinyl aromatic monomer inte ⁇ olymers, and their preparation, are known in the art, such as described in U.S. Patent No. 5,703,187 (EP 416,815 A2), and in U.S. Patent No. 5,872,201.
- thermoplastic resins of the present invention include inte ⁇ olymers derived from ethylene and/or ⁇ -olefin monomers and vinyl or vinylidene monomers.
- Monomers that are acceptable for use in the inte ⁇ olymers of the present invention include, for example, ethylene and/or any ⁇ -olefin and any vinyl or vinylidene monomer.
- Suitable ⁇ -olefins include, for example, ⁇ -olefins containing from 3 to 20, preferably from 3 to 12, 5 more preferably from 3 to 8 carbon atoms.
- Particularly suitable ⁇ -olefins useful in the present invention are ethylene, propylene, butene-1, 4-methyl-l-pentene, hexene-1, octene-1 and mixtures thereof. These ⁇ -olefins do not contain an aromatic moiety.
- Examples of useable vinyl or vinylidene monomers include vinyl or vinylidene aromatic monomers, cycloaliphatic monomers, and any sterically hindered vinyl 0 or vinylidene monomers.
- the inte ⁇ olymers of the present invention may also include one or more additional polymerizable ethylenically unsaturated monomers.
- Suitable vinyl or vinylidene aromatic monomers which can be employed to prepare the inte ⁇ olymers used in the compositions of the present invention, include, for example, styrene, vinyl toluene, ⁇ -methylstyrene, t-butyl styrene, chlorostyrene, including all isomers of these compounds, and mixtures thereof.
- Particularly suitable monomers 5 include styrene and lower alkyl- or halogen-substituted derivatives thereof.
- Preferred monomers include styrene, ⁇ -methyl styrene, the lower alkyl- (Ci - C 4 ) or phenyl-ring substituted derivatives of styrene, such as for example, ortho-, meta-, and para-methylstyrene, the ring halogenated styrenes, para- vinyl toluene or mixtures thereof.
- a more preferred aromatic vinyl or vinylidene monomer is styrene.
- the most preferred substantially random inte ⁇ olymers for use in the present invention are the ethylene/styrene and ethylene/propylene/styrene inte ⁇ olymers.
- the thermoplastic resin is present in the formulation in an amount of 10 percent by weight or greater, more preferably 20 percent by weight or greater based on the weight of the formulation.
- the thermoplastic resin is present in the 5 formulation in an amount of 80 weight percent or less, more preferably 60 percent by weight or less and even more preferably 40 weight percent or less based on the weight of the formulation.
- the inte ⁇ olymer is preferably in a powder form.
- the size of the particles of the powder is generally 500 o microns or less, preferably 300 microns or less, and more preferably 200 microns or less.
- the inte ⁇ olymer can be cryogenically ground if needed.
- the composition of the present invention may further comprise a catalyst for the reaction of the thermosettable component and the crosslinking agent.
- a catalyst for the reaction of the thermosettable component and the crosslinking agent for example, in the system comprising an epoxy resin reacted with an epoxy curative compound; such 5 catalysts are well known to those skilled in the art, and include those described in U.S. Patent No. 5,344,856.
- the preferred classes of catalysts are the ureas, imidazoles, and boron trihalides with the ureas being the most preferred catalysts. Examples of urea type catalysts are: Dyhard 500 (TDI-uron, Cas N° 17526-94.2 from SKW Trostberg). Of the boron trihalides, boron trifluoride is the most preferred because formulations using this o catalyst demonstrate significantly better stability when compared to other boron trihalides.
- the catalysts are well known and described for example in U.S. Patent No. 3,654,370.
- the catalyst amount used may vary depending upon the desired reactivity and shelf stability.
- the catalyst is generally present in an amount of 0.05 to 5.0 weight percent, and preferably in an amount of 0.10 to 1.0 weight percent based on the weight of the formulation.
- the formulation of the present invention may further comprise one or more fillers.
- the pastes of the present invention may optionally contain, for example, inorganic fillers such as CaCO 3 , CaO; and/or rheology additives such as carbon black and silica.
- Fillers are used to control the viscosity, rheology, shelf stability, specific gravity and cured performance properties, such as vibration damping, corrosion resistance, impact resistance and abrasion resistance.
- the fillers may be spherical or platy.
- plaque means the particles have a high aspect ratio.
- High aspect ratio fillers include as talc, mica and graphite.
- Preferred high aspect ratio fillers include Phologopite mica having a median particle size of 20 to 70 microns (micrometers) and most preferably 50 microns (micrometers).
- High aspect ratio fillers are used to control vibration damping properties.
- Spherical fillers include carbonates. Spherical fillers are used to control density and rheology, viscosity and cost.
- the filler is present in an amount of 0 percent by weight or greater, and more preferably 30 percent by weight or greater. Preferably, the filler is present in an amount of 65 percent by weight or less and more preferably 55 percent by weight or less.
- the percentage of filler that can be included in the composition of the present invention on a weight basis is primarily a function of the density of the filler. Particle size and shape of the filler also will effect the properties of the composition. For example, ultra fine particle size fillers (less than 1 micron average particle size) generally have a tendency to result in higher blend viscosities and are also more expensive.
- the preferred filler useful in the present invention is calcium carbonate.
- fillers or combination thereof is, of course, possible without altering the fundamentals taught herein.
- inclusion of alumina trihydrate (ATH, Al 2 O 3 '3H 2 O) is highly desirable when flame-retardant or low-smoke-tendency blends are desired.
- Heavy fillers, such as powdered iron or lead, or oxides or shavings of them, can be employed when ultra-dense blends are desired.
- minerals having low density such as magnesium carbonate, magnesium oxide, magnesium hydroxide, calcium sulfate, silica, fly ash, and cement dust, or organic fillers such as yarns, wood flour, nut shells, rice hulls, cornmeal, and clay can be employed when light-density blends are preferable.
- organic fillers such as yarns, wood flour, nut shells, rice hulls, cornmeal, and clay can be employed when light-density blends are preferable.
- fillers with varied aspect ratios such as talc, mica, from highly acicular (wollastonite, for example) to round (glass beads, for example) can also be employed to alter relationships such as tensile strength or elongation.
- the formulation of the present invention may further contain other additives well-known to those skilled in the art of making vibration dampening formulation.
- an adhesion promoter such as epoxy functional trimethoxy silanes, a thixotrope agent such as fumed silica or carbon black, or a plasticizer may be used, in well known amounts (typically from 0 to 5 weight percent) to modify rheological properties of the o composition to a desired consistency.
- the formulation of the present invention is preferably a liquid to a high viscous paste or mastic that can be applied by all known coating techniques.
- the composition may be applied by spraying, by a tool such as a blade or a trowel, or by extrusion (for example a mastic).
- extruded herein it is meant that the application of 5 the paste onto a substrate is performed by pumping and the paste is forced to flow through a heated applicator gun under pressure. This technique can be easily automated.
- a sheet or film of the formulation may be made by well-known methods and used in such form in vibration dampening application by adhering and curing onto the substrate.
- the present invention formulations based on blends of risk-label-free (as outlined in the European Dangerous Preparations Directive 88/379/EEC and its amendments for classification and labeling of preparations that is MW above 700) bisphenol-A epoxy resins and/or aliphatic epoxy resins with ethylene-styrene inte ⁇ loymer (ESI), give a maximum loss factor above 20 percent for 3.9 kg/m 2 applied weight (DIN 53440 Test 5 method), while the bituminous membranes used widely today for damping vibrations in cars have a damping factor of maximum 15 percent (for 4.5 kg/m 2 applied weight).
- the present invention formulation is also better than another known type of paste, being commercialized, which is a rubber containing sulfur vulcanizing agents: Betaphon AV 50 (Trademark of Gurit-Essex), having a maximum loss factor of 15 percent.
- the maximum loss factor of the formulations of the present invention range from 15 percent to 25 percent. More preferably the maximum loss factor is greater than 20 percent.
- the amount of the formulation of the present invention applied to a substrate to form a coating from the formulations of the present invention range from 2 kg/m 2 to 5 kg/m 2 , and preferably from 3 kg/m 2 to 4 kg/m 2 .
- the primary application of the present invention is directed to the use of 5 formulations as vibration damping products for doors, roofs, rear panels and other non- horizontal body parts in cars.
- the use of ESI powder for the manufacture of the paste of the present invention allows for shorter cycle times in mixers useful for preparing the paste, as the needed homogeneity of the paste during the mixing is obtained 3 to 4 times faster o compared to known similar high viscous pastes (typically Betaphon AV 50 mentioned above).
- This is probably due to the rheological characteristics and interaction of the epoxy with the ESI that allows to obtain, after much shorter mixing times, a very high viscous highly filled homogenous mixture when a part of the epoxy resin is slowly inco ⁇ orated into the dry components (fillers, ESI dry powder and other solid components). This is known in 5 the industry as "hard state" of highly filled pre-mix, before of the remainder liquid epoxy is inco ⁇ orated into the mixture to reach final desired paste consistency.
- the present invention formulations contrary to sulfur- vulcanized rubber pastes, do not give any odor release, neither to the automotive plant environment during application and curing, nor to the car inside environment as the pastes usually are o applied to the internal side of the body panels being treated.
- the process of the present invention involves contacting the formulation with 5 a substrate.
- the substrate can be any substrate for which vibration damping or abatement associated with the required level of corrosion protection is desired.
- Such substrate can be metal, wood, plastic, and fiber reinforced plastic.
- the formulation can be used in a wide variety of industries including the automotive industry, the transportation industry (public transportation, rail, navy etc%), in the appliance industry, in energy production, more o generally speaking in any industry or activity where moving or rotating parts create vibrations that need to be damped or attenuated together with the noise generated. To this also belongs the construction industry and associated equipment such as air conditioning units, heaters, ventilation systems.
- the formulation is allowed to cure. For those compositions where room temperature cure occurs no further steps need to be taken. Room temperature cure generally occurs with aliphatic amines and amine terminated polyether curing agents. With cyandiamide or dicyandiamide curing 5 agents the coated substrate should be exposed to elevated temperatures to affect cure.
- Typical elevated temperature curing is effected from 60 °C to 250 °C, preferably from 100 °C to 200 °C, and more preferably from 150 °C to 180 °C.
- Another aspect to the present invention is a substrate as described hereinbefore having a coating thereon of a vibration damping coating.
- the 0 thickness of the coating is 1.5 mm or greater and more preferably the coating thickness is 5 mm or less.
- the coating of the present invention preferably provides a loss factor of about 10 percent or greater as measured using the composite loss factor test protocol given DIN 53440 (method earlier specified) for 3.9 kg/m2 applied coating.
- the loss 5 factor is 10 percent or greater, and more preferably, 15 percent or greater in the desired operating temperature range.
- the present invention is particularly useful for obtaining a risk-label-free composition in vibration damping applications where such a composition is required.
- the composition is preferably a combination of at least one saturated o thermosettable component such as for example an epoxy resin cured with at least one standard curing agent such as for example an epoxy hardener, that is designed to be risk- label-free according the EEC legislation (as specified above), or epoxy resins and hardeners which after thorough toxicological testing are classified as non-hazardous by skin contact, and blended with thermoplastic inte ⁇ olymer resins to obtain a wider range of damping over 5 temperature.
- the compositions may also contain fillers and other adjuncts.
- Vibration dampening composition which are not risk-label-free may have limited commercialization in the automotive industry by the fact that the resin formulation is potentially irritant and sensitizing by skin contact. o The automotive industry, especially in Europe, prefers "risk-label-free" systems meaning that the systems do not bear the risk symbol "Xi” nor the risk phrase "R43,” and are considered non-hazardous to the workers in case of accidental skin contact.
- the obtained pre-paste is further 5 diluted with the rest of epoxy resin and finally a rheology controlling additive such as silica or carbon black is added to the paste to adjust the application viscosity. Vacuum is applied to the paste for about 10 minutes to ensure proper degassing.
- test protocol used for measuring vibration damping performance of test o coated substrates was according to the method described in DIN 53440, Part 1. About a 2 mm thick coating of the formulation is applied with a caulking gun onto a steel beam of 0.8 mm thick x 12.7 mm wide x 225 mm long. The formulation is equalized to 2 mm with a leveling knife (200 mm coated). The coated beam is cured for 30 minutes to 60 minutes at 150 °C to 200 °C and then mounted in a massive clamp. The cured coated substrate is then 5 tested at various modes of vibration in the frequency range of approximately 100 Hz - 1500
- Table 1 is the summary of all the compositions of examples used in the present invention. Formulations including different blends of epoxy/ESI were prepared o containing the ingredients expressed in parts by weight as shown in Table 1 , and were tested to illustrate their vibration damping performance shown in Table 2 and Figures 1 to 3. Table 1
- Epoxy Resin A is the reaction product of D.E.R.* 330, D.E.R.* 732, ethyl, triphenylphosphonium acetate catalyst and bisphenol-A in a one-step reaction synthesized as follow: all components except the catalyst are charged to a stirred reactor and heated to 100 °C. The catalyst is added and heating is continued until the reaction mix reaches 160 °C. The temperature is allowed to increase to 170-190 °C by the exothermic reaction. The mixture is maintained at this temperature for about one hour, then cooled down to room temperature.
- Epoxy Resin A is a liquid with a viscosity of about 20 Pa.s measured at 35 °C and has an EEW (Epoxy Equivalent Weight) of 450.
- EEW Epoxy Equivalent Weight
- Dyhard 100s is a micronized dicyandiamide and is used as a hardener, commercially available from SKW Trostberg.
- Dyhard 500 is used as a latent catalyst, commercially available from SKW Trostberg.
- INDEX* DS 401.02 is an ethylene styrene inte ⁇ olymer (ESI)(Styrene: 70 percent, Ethylene: 30 percent) available from The Dow Chemical Company.
- the ESI is inco ⁇ orated into the formulation in a powder form (powder obtained by cryogenic grinding) having an average particle size lower than 200 microns.
- the maximum value of the damping factor for the formulation of Examples 1-6 (for 3.9 kg/m 2 ) is always superior to 15 percent (around 20 percent), as compared to standard bituminous membranes having a maximum of 15 percent (for 4.5 kg/m ).
- FIG. 1 shows that the loss factor of the formulation containing ESI is improved over the loss factor of the epoxy resin formulation per se.
- Examples 2-5 To further illustrate the effect of ESI, several formulations were made according to the procedure explained above. The formulations only differed by the amount of ESI blended into each of the formulations. ESI levels of 15 percent, 19.95 percent, 25 percent and 30 percent were used (Example 2, Example 3, Example 4 and Example 5, respectively). Epoxy Resin A was used and its amount was kept constant at 37.5 percent. The improvement effect of ESI on the loss factor is quite well illustrated in
- Figure 3 shows that the effective temperature range for a damping factor higher than 10 percent is as wide as 45 °C.
- Example 6 of the present invention was chosen to demonstrate the typical corrosion resistance of the formulations of this invention.
- Table 3 shows the typical corrosion resistance performance of a composition of the present invention. Table 3 shows the results of two different tests performed on the cured coating prepared from the formulation of Example 6. In one test, the cured coating was tested for water abso ⁇ tion after exposure of the coating in de-ionized water for 10 days at 55°C. In a second test, the cured coating was tested for corrosion resistance after exposure of the coating to 100 percent relative humidity at 70°C for 2 weeks. The main result is that, the water abso ⁇ tion is below the automotive specification. No corrosion under the coating is observed after those tests.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002230933A AU2002230933A1 (en) | 2000-12-20 | 2001-12-14 | Compositions for vibration damping |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25732100P | 2000-12-20 | 2000-12-20 | |
US60/257,321 | 2000-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002050184A2 true WO2002050184A2 (en) | 2002-06-27 |
WO2002050184A3 WO2002050184A3 (en) | 2002-12-12 |
Family
ID=22975810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/048718 WO2002050184A2 (en) | 2000-12-20 | 2001-12-14 | Compositions for vibration damping |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2002230933A1 (en) |
WO (1) | WO2002050184A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005047393A1 (en) * | 2003-11-11 | 2005-05-26 | Dow Global Technologies Inc. | Reactive hot melt adhesive |
WO2007138168A1 (en) * | 2006-05-30 | 2007-12-06 | Valtion Teknillinen Tutkimuskeskus | A vibration damping system |
US9453101B2 (en) | 2007-12-14 | 2016-09-27 | 3M Innovative Properties Company | Vibration dampening compositions |
CN116574359A (en) * | 2023-06-20 | 2023-08-11 | 深圳市辉亚新材料科技有限公司 | Impact-resistant modified epoxy resin and preparation process thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635562A (en) * | 1995-04-26 | 1997-06-03 | Lear Corporation | Expandable vibration damping materials |
US5670006A (en) * | 1992-01-22 | 1997-09-23 | Minnesota Mining And Manufacturing Company | Vibration damping constructions using acrylate-containing damping materials |
WO1999016840A1 (en) * | 1997-09-26 | 1999-04-08 | The Dow Chemical Company | Flexible epoxy sound damping coatings |
US6030701A (en) * | 1993-04-15 | 2000-02-29 | 3M Innovative Properties Company | Melt-flowable materials and method of sealing surfaces |
US6153709A (en) * | 1998-01-26 | 2000-11-28 | Essex Specialty Products, Inc. | Chip resistant, vibration damping coatings for vehicles |
-
2001
- 2001-12-14 AU AU2002230933A patent/AU2002230933A1/en not_active Abandoned
- 2001-12-14 WO PCT/US2001/048718 patent/WO2002050184A2/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670006A (en) * | 1992-01-22 | 1997-09-23 | Minnesota Mining And Manufacturing Company | Vibration damping constructions using acrylate-containing damping materials |
US6030701A (en) * | 1993-04-15 | 2000-02-29 | 3M Innovative Properties Company | Melt-flowable materials and method of sealing surfaces |
US5635562A (en) * | 1995-04-26 | 1997-06-03 | Lear Corporation | Expandable vibration damping materials |
WO1999016840A1 (en) * | 1997-09-26 | 1999-04-08 | The Dow Chemical Company | Flexible epoxy sound damping coatings |
US6153709A (en) * | 1998-01-26 | 2000-11-28 | Essex Specialty Products, Inc. | Chip resistant, vibration damping coatings for vehicles |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005047393A1 (en) * | 2003-11-11 | 2005-05-26 | Dow Global Technologies Inc. | Reactive hot melt adhesive |
WO2007138168A1 (en) * | 2006-05-30 | 2007-12-06 | Valtion Teknillinen Tutkimuskeskus | A vibration damping system |
US9453101B2 (en) | 2007-12-14 | 2016-09-27 | 3M Innovative Properties Company | Vibration dampening compositions |
CN116574359A (en) * | 2023-06-20 | 2023-08-11 | 深圳市辉亚新材料科技有限公司 | Impact-resistant modified epoxy resin and preparation process thereof |
CN116574359B (en) * | 2023-06-20 | 2024-03-26 | 深圳市辉亚新材料科技有限公司 | Impact-resistant modified epoxy resin and preparation process thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2002050184A3 (en) | 2002-12-12 |
AU2002230933A1 (en) | 2002-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69826017T2 (en) | FLEXIBLE MUFFLING COATING OF EPOXY RESIN | |
EP2137277B1 (en) | Heat-resistant structural epoxy resins | |
KR101467609B1 (en) | Crash durable epoxy adhesives with very low sensitivity to temperature variations | |
JP6297483B2 (en) | Impact resistant modified adhesive | |
US8088245B2 (en) | Structural epoxy resins containing core-shell rubbers | |
BRPI0412062B1 (en) | EPOXY ADHESIVE COMPOSITION | |
JP2884485B2 (en) | Urethane adhesive composition without primer | |
JPH0441708B2 (en) | ||
WO2009094295A1 (en) | Structural epoxy resin adhesives containing epoxide-functional, polyphenol-extended elastomeric tougheners | |
US20240093072A1 (en) | One-component toughened epoxy adhesives | |
KR20040030529A (en) | Automotive adhesive | |
DE10018637A1 (en) | Polysiloxane composition, useful for surface treatment of inorganic particles is prepared from alcohol and alkoxysilyl group containing polysiloxane | |
WO2002050184A2 (en) | Compositions for vibration damping | |
CN114008162A (en) | One-component toughened epoxy adhesives with improved moisture resistance | |
JP2001187863A (en) | Urethane-based resin composition for hard coating and coating material | |
JPH0559347A (en) | Highly strong sealing material composition | |
JPH07252402A (en) | Aqueous epoxy resin composition | |
CN111886312A (en) | Adhesive formulations | |
JPS60123524A (en) | Composition for polymer | |
WO2001040396A2 (en) | Urethane modified epoxy adhesive composition | |
KR101282624B1 (en) | Sealer Composition for body reinforcement | |
JP3569664B2 (en) | Two-part curable urethane composition for civil engineering construction | |
JPS58136668A (en) | Composition for electrodeposition coating | |
EP0510937A2 (en) | Aqueous, dry abrasion and corrosion resistant polyurethane/epoxy coatings | |
JPH07292069A (en) | Epoxy resin composition and coating composition containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |