WO2001030827A1 - Nouveau polypeptide, une proteine 56 a doigt de zinc, et polynucleotide codant pour ce polypeptide - Google Patents
Nouveau polypeptide, une proteine 56 a doigt de zinc, et polynucleotide codant pour ce polypeptide Download PDFInfo
- Publication number
- WO2001030827A1 WO2001030827A1 PCT/CN2000/000393 CN0000393W WO0130827A1 WO 2001030827 A1 WO2001030827 A1 WO 2001030827A1 CN 0000393 W CN0000393 W CN 0000393W WO 0130827 A1 WO0130827 A1 WO 0130827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- zinc finger
- polynucleotide
- finger protein
- seq
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 100
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 96
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 95
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 88
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 88
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 88
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 62
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 29
- 239000011701 zinc Substances 0.000 title claims abstract description 16
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 15
- 101710185494 Zinc finger protein Proteins 0.000 claims abstract description 121
- 102100023597 Zinc finger protein 816 Human genes 0.000 claims abstract description 118
- 238000000034 method Methods 0.000 claims abstract description 65
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 24
- 201000010099 disease Diseases 0.000 claims abstract description 21
- 239000005557 antagonist Substances 0.000 claims abstract description 14
- 208000026278 immune system disease Diseases 0.000 claims abstract description 4
- 208000031886 HIV Infections Diseases 0.000 claims abstract description 3
- 208000037357 HIV infectious disease Diseases 0.000 claims abstract description 3
- 206010061218 Inflammation Diseases 0.000 claims abstract description 3
- 201000011510 cancer Diseases 0.000 claims abstract description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims abstract description 3
- 230000004054 inflammatory process Effects 0.000 claims abstract description 3
- 239000013598 vector Substances 0.000 claims description 25
- 239000012634 fragment Substances 0.000 claims description 23
- 230000014509 gene expression Effects 0.000 claims description 20
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000002773 nucleotide Substances 0.000 claims description 16
- 125000003729 nucleotide group Chemical group 0.000 claims description 16
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 13
- 239000013604 expression vector Substances 0.000 claims description 12
- 239000013612 plasmid Substances 0.000 claims description 11
- 238000009396 hybridization Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 150000007523 nucleic acids Chemical class 0.000 claims description 9
- 238000012216 screening Methods 0.000 claims description 9
- 239000000523 sample Substances 0.000 claims description 8
- 239000000556 agonist Substances 0.000 claims description 7
- 241000700605 Viruses Species 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 230000027455 binding Effects 0.000 claims description 5
- 229940079593 drug Drugs 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 238000001727 in vivo Methods 0.000 claims description 4
- 238000005215 recombination Methods 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- 230000003278 mimic effect Effects 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 230000006798 recombination Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 238000002493 microarray Methods 0.000 claims description 2
- 230000000692 anti-sense effect Effects 0.000 claims 1
- 239000008280 blood Substances 0.000 claims 1
- 210000004369 blood Anatomy 0.000 claims 1
- 208000022602 disease susceptibility Diseases 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 9
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 238000010188 recombinant method Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 37
- 239000002299 complementary DNA Substances 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 210000000349 chromosome Anatomy 0.000 description 13
- 239000013615 primer Substances 0.000 description 12
- 108091026890 Coding region Proteins 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000035772 mutation Effects 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000008827 biological function Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 208000011580 syndromic disease Diseases 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 108090000994 Catalytic RNA Proteins 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 101000976574 Homo sapiens Zinc finger protein 131 Proteins 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 102000046786 human ZNF131 Human genes 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 108091092562 ribozyme Proteins 0.000 description 4
- 101150073128 56 gene Proteins 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 108060003552 hemocyanin Proteins 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- 210000004754 hybrid cell Anatomy 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 206010049644 Williams syndrome Diseases 0.000 description 2
- 101710180927 Zinc finger protein 1 Proteins 0.000 description 2
- 102100028610 Zinc finger protein 1 homolog Human genes 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000014107 chromosome localization Effects 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000010841 mRNA extraction Methods 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- ZPDKTVJZFVWAOC-UHFFFAOYSA-N 4-hydroxy-1,3,2,4lambda5-dioxathiaphosphetane 4-oxide Chemical compound S1OP(O1)(O)=O ZPDKTVJZFVWAOC-UHFFFAOYSA-N 0.000 description 1
- 108020005075 5S Ribosomal RNA Proteins 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- OABOXRPGTFRBFZ-IMJSIDKUSA-N Cys-Cys Chemical group SC[C@H](N)C(=O)N[C@@H](CS)C(O)=O OABOXRPGTFRBFZ-IMJSIDKUSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 101100096502 Danio rerio spring gene Proteins 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000012239 Developmental disease Diseases 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 208000014770 Foot disease Diseases 0.000 description 1
- 206010016970 Foot fracture Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000000250 Greig cephalopolysyndactyly syndrome Diseases 0.000 description 1
- 208000028769 Greig syndrome Diseases 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- SGCGMORCWLEJNZ-UWVGGRQHSA-N His-His Chemical compound C([C@H]([NH3+])C(=O)N[C@@H](CC=1NC=NC=1)C([O-])=O)C1=CN=CN1 SGCGMORCWLEJNZ-UWVGGRQHSA-N 0.000 description 1
- 208000002291 Histiocytic Sarcoma Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 101000964478 Homo sapiens Zinc finger and BTB domain-containing protein 17 Proteins 0.000 description 1
- 101000785641 Homo sapiens Zinc finger protein with KRAB and SCAN domains 1 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101100065087 Mus musculus Egr2 gene Proteins 0.000 description 1
- 101100096504 Mus musculus Spring1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 231100000742 Plant toxin Toxicity 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101100426090 Rattus norvegicus Trim9 gene Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 208000037432 Thymic tumor Diseases 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000019440 X-linked Aarskog syndrome Diseases 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 101100096505 Xenopus laevis spring1 gene Proteins 0.000 description 1
- OBZKMHQCWJWLEJ-GWPKAZDLSA-L [H+].[H+].[Zn++].N[C@@H](C[S-])C(O)=O.N[C@@H](C[S-])C(O)=O.N[C@@H](Cc1c[n-]cn1)C(O)=O.N[C@@H](Cc1c[n-]cn1)C(O)=O Chemical compound [H+].[H+].[Zn++].N[C@@H](C[S-])C(O)=O.N[C@@H](C[S-])C(O)=O.N[C@@H](Cc1c[n-]cn1)C(O)=O.N[C@@H](Cc1c[n-]cn1)C(O)=O OBZKMHQCWJWLEJ-GWPKAZDLSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 201000006491 bone marrow cancer Diseases 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- BKHZIBWEHPHYAI-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol Chemical compound ClC(Cl)Cl.CC(C)CCO BKHZIBWEHPHYAI-UHFFFAOYSA-N 0.000 description 1
- INQZDQBKBADILC-UHFFFAOYSA-N chloroform;diaminomethylideneazanium;thiocyanate Chemical compound [S-]C#N.NC([NH3+])=N.ClC(Cl)Cl INQZDQBKBADILC-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical group BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 108010004073 cysteinylcysteine Proteins 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000009025 developmental regulation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000029600 embryonic pattern specification Effects 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 208000030172 endocrine system disease Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000008825 fibrosarcoma of bone Diseases 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 125000000487 histidyl group Chemical class [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 108010028295 histidylhistidine Proteins 0.000 description 1
- 102000056870 human ZBTB17 Human genes 0.000 description 1
- 102000048784 human ZKSCAN1 Human genes 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 201000006812 malignant histiocytosis Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000003123 plant toxin Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000001202 rhombencephalon Anatomy 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 208000029277 split foot Diseases 0.000 description 1
- 208000028882 split hand Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 201000009377 thymus cancer Diseases 0.000 description 1
- 206010043688 thyroid adenoma Diseases 0.000 description 1
- 208000013076 thyroid tumor Diseases 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the present invention belongs to the field of biotechnology, and specifically, the present invention describes a novel polypeptide "referred to protein 56," and a polynucleotide sequence encoding the polypeptide.
- the present invention also relates to a method for preparing the polynucleotide and the polypeptide, and Application.
- Zinc finger protein is a DNA-binding protein, which was first discovered in the amino acid sequence of Xenopus RNA polymerase III-mediated 5S rRNA gene transcription factor TF III A protein. Since then, zinc finger proteins have been expressed in various tissues of different organisms, including hematopoietic cells, brain, nervous system, epidermal tissues, various tissues related to secretion and absorption, and tissues related to tumors and immortal cell lines Wait. It is estimated that more than 1% of the zinc finger protein genes are present in the human genome (Bellefroid et al., 1989; Pellegrino and Berg, 1991).
- the zinc finger structure of zinc finger protein mainly has the following types: C2H2 configuration, C2C2 configuration, C2HC configuration, C2HC4C configuration, C3H configuration, C3HC4 configuration (Dai KS et al., 1998).
- the zinc finger protein genes containing the C2H2 configuration constitute the largest family of genes in the human genome (Berker et al., 1995).
- the C2H2 configuration of zinc finger protein is as follows:
- the typical zinc finger structure consists of about 28 amino acid residues in length. It is a Cys-Cys ... ... His-His arrangement.
- the zinc finger unit contains a relatively conserved sequence: Cys-X 2 _ 4 -Cys- X 3 -Phe- X 5 -Leu-X 2 -His-X 2. 4 -His (Bray, p. Et al., 1993).
- two conservative Cys participate in the formation of an antiparallel ⁇ -sheet
- two conservative His participates in the cc helix.
- Such zinc finger proteins often have 1 to 37 zinc finger structures (Rhodes, D. and Klug, 1993).
- the C2H2 conformation zinc finger protein that connects two adjacent Kruppels often, but not always, contains the conserved specific amino acid sequence TGEKP (Bray, p. Et al., 1993).
- TGEKP conserved specific amino acid sequence
- Zinc finger structures are found in many proteins involved in "protein-nucleic acid” and “protein-protein” interactions. Zinc finger proteins can bind to double-stranded DNA (dsDNA) or single-stranded RNA and perform many Important role, its most important function involves the transcriptional regulation of genes, and may also have the role of signal transduction factor (EMBO J. 12: 1363-1374, 1993).
- dsDNA double-stranded DNA
- RNA single-stranded RNA
- the human gene protein of the present invention has 99% homology with human zinc finger protein 131 (homologous protein number U09410). After isolation and accurate mapping, the polypeptide has a zinc finger domain in the C2H2 configuration and belongs to human zinc.
- the finger protein Kruppel gene family was named human zinc finger protein 56, and it was inferred that its domain was similar to the Kruppel gene domain and had similar biological functions.
- Human zinc finger proteins 131-140, 142, 143, 148, 151, 154, 155 belong to the human zinc finger protein Kruppel gene family and are isolated from human islet tumor cell cDNA (Tommerup and Vissing, Genomics 27: 259-264 , 1995).
- Human zinc finger proteins 138, 139, 143 are related to Williams syndrome, split-hand and foot fracture, and Bayer's syndrome respectively; human zinc finger proteins 132, 134, 135, 137, 154, 155 can cause solid tumors such as Thyroid adenoma, human zinc finger protein 151 is closely related to neuroblastoma, colon cancer, breast cancer or other tumors; human zinc finger protein 139, 148, 151 can cause hematological malignancies such as leukemia, non-Hodgkin's lymph Tumors (Genomics 27: 259-264, 1995).
- human zinc finger protein 56 is related to the following but not limited to the following diseases: solid tumors such as thyroid adenomas, hematological malignancies such as leukemia, non-Hodgkin's lymphoma, Williams syndrome, cracked hands and feet, Weil syndrome, other tumors such as neuroblastoma, colon cancer, breast cancer and so on.
- solid tumors such as thyroid adenomas
- hematological malignancies such as leukemia, non-Hodgkin's lymphoma, Williams syndrome, cracked hands and feet
- Weil syndrome other tumors such as neuroblastoma, colon cancer, breast cancer and so on.
- Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a zinc finger protein 56.
- Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding a zinc finger protein 56.
- Another object of the present invention is to provide a method for producing zinc finger protein 56.
- Another object of the present invention is to provide an antibody against the polypeptide of the present invention.
- Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors of the prayer finger protein 56 of the polypeptide of the present invention.
- Another object of the present invention is to provide a method for diagnosing and treating diseases related to abnormalities of zinc finger protein 56. Summary of invention
- a novel isolated zinc finger protein 56 is provided.
- the polypeptide is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID NO: 2, or a conservative variant polypeptide thereof, or its activity Fragments, or their active derivatives, analogs.
- the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- a polynucleotide encoding these isolated polypeptides, the polynucleotide comprising a nucleotide sequence having at least 99 nucleotides with a nucleotide sequence selected from the group consisting of % Identity: (a) a polynucleotide encoding the aforementioned zinc finger protein 56; (b) a polynucleotide complementary to the polynucleotide (a).
- the polynucleotide encodes a polypeptide having the amino acid sequence shown in SEQ ID NO: 2.
- sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 365-1897 in SEQ ID NO: 1; and (b) a sequence having 1-3014 in SEQ ID NO: 1 Sequence of bits.
- FIG. 1 is a comparison diagram of amino acid sequence homology of zinc finger protein 56 and human zinc finger protein 131 of the present invention.
- the upper sequence is zinc finger protein 56 and the lower sequence is human zinc finger protein 131.
- Identical amino acids in two sequences Single-character amino acids are used in between, and similar amino acids are represented by "+”.
- Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the isolated zinc finger protein 56.
- 56kDa is the molecular weight of the protein.
- the arrow indicates the isolated protein band.
- isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
- polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
- isolated zinc finger protein 56 means that zinc finger protein 56 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify zinc finger protein 56 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of the zinc finger protein 56 polypeptide can be analyzed by amino acid sequence.
- the present invention provides a new polypeptide, finger protein 56, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
- the polypeptide of the present invention may be a naturally purified product, or a chemically synthesized product, or may be produced from a prokaryotic or eukaryotic host (for example, bacteria, yeast, higher plants, nymphs, and mammalian cells) using recombinant technology.
- the polypeptide of the invention may be glycosylated, or it may be non-glycosylated.
- Polypeptides of the invention may also include or exclude starting methionine residues.
- the invention also includes fragments, derivatives and analogs of zinc finger protein 56.
- fragment refers to a polypeptide that substantially retains the same biological function or activity of the zinc finger protein 56 of the present invention.
- a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution The amino acid may or may not be encoded by the genetic code; or (II) such a type in which a group on one or more amino acid residues is substituted by other groups to include a substituent; or (III) such A type in which a mature polypeptide is fused to another compound (such as a compound that extends the half-life of a polypeptide, such as polyethylene glycol); or (IV) a type of polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide (such as the leader sequence or secreted sequence or the sequence used to purify this polypeptide or protease sequence) As explained herein, such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
- the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
- the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
- the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 3014 bases in total length, and its open reading frame (365-1897) encodes 510 amino acids. According to the amino acid sequence homology comparison, it was found that this polypeptide has 99% homology with human zinc finger protein 1 31. It can be deduced that the zinc finger protein 56 has a similar structure and function to human zinc finger protein 1 31.
- the polynucleotide of the present invention may be in the form of DNA or RNA.
- DNA forms include cDNA, genomic DNA, or synthetic DNA.
- DNA can be single-stranded or double-stranded.
- DNA can be coding or non-coding.
- the coding region sequence encoding the mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
- a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
- the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
- polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
- the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
- Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
- an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
- the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
- the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
- “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% F i co ll, 42 ° C, etc .; or (3) only between the two sequences The similarity is at least 95%, and more preferably 97% or more. Pay.
- the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
- nucleic acid fragments that hybridize to the sequences described above.
- a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques such as PCR to identify and / or isolate polynucleotides encoding zinc finger protein 56.
- polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
- the specific polynucleotide sequence encoding the zinc finger protein 56 of the present invention can be obtained by various methods.
- polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
- the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
- genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
- the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
- mRNA extraction There are many mature techniques for mRNA extraction, and kits are also commercially available (Qiagene;).
- the construction of cDNA libraries is also a common method (Sarabrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
- Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
- genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of zinc finger protein 56 transcripts; (4) by Immunological techniques or assays for biological activity to detect gene-expressed protein products. The above methods can be used singly or in combination.
- the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
- the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
- the probes used here are typically the genes of the invention Sequence information is based on chemically synthesized DNA sequences. The genes or fragments of the present invention can of course be used as probes. DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
- the protein product of the zinc finger protein 56 gene expression can be detected by immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
- immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
- a method using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
- the RACE method RACE-rapid cDNA end rapid amplification method
- the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
- the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
- polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
- the present invention also relates to a vector comprising a polynucleotide of the present invention, a host cell genetically engineered using the vector of the present invention or directly using a zinc finger protein 56 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology.
- the polynucleotide sequence encoding the zinc finger protein 56 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
- vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
- Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
- any plasmid and vector can be used to construct a recombinant expression vector.
- An important feature of expression vectors is that they usually contain origins of replication, promoters, marker genes, and translational regulatory elements.
- DM sequences encoding zinc finger protein 56 and appropriate transcriptional / translational regulatory elements can be used to construct expression vectors containing DM sequences encoding zinc finger protein 56 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DM synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, ⁇ Labora tory Manua 1, Cold Spr ing Harbor Labora tory. New York, 1989).
- the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: l ac or trp promoter of E.
- the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
- the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
- GFP fluorescent protein
- tetracycline or ampicillin resistance for E. coli.
- a polynucleotide encoding a zinc finger protein 56 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
- host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell.
- Escherichia coli, Streptomyces bacterial cells such as Salmonella typhimurium
- fungal cells such as yeast
- plant cells insect cells
- fly S2 or Sf 9 animal cells
- animal cells such as CH0, COS or Bowes melanoma cells.
- Transformation of a host cell with a D sequence according to the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
- the host is a prokaryote such as E. coli
- competent cells capable of absorbing DM may be harvested after exponential growth phase, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 .
- transformation can also be performed by electroporation.
- the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
- the polynucleotide sequence of the present invention can be used for expression or production Recombinant zinc finger protein 56 (Sc ience, 1984; 224: 1431). Generally there are the following steps:
- the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
- a suitable method such as temperature conversion or chemical induction
- the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
- conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
- polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
- the human zinc finger protein 56 of the present invention can be used to treat or prevent diseases caused by abnormal expression of this protein.
- diseases include, but are not limited to, developmental disorders such as teratosis, Wi lli ams syndrome, Alag il le syndrome, split foot and foot disease, and Bayer's syndrome, etc .; canceration of various tissues, such as leukemia , Lymphoma, non-Hodgkin's lymphoma, malignant histiocytosis, melanoma, sarcoma, myeloma, teratoma, etc., adrenal cancer, bladder cancer, bone cancer, bone marrow cancer, brain cancer, breast cancer, uterine cancer , Gallbladder cancer, liver cancer, lung cancer, thyroid tumor, thymic tumor, etc .; hereditary diseases; neurological diseases, such as neuroblastoma, etc .; endocrine system diseases, such as endocrine adenoma; immune system diseases.
- the present invention also provides screening compounds to identify zinc finger proteins that increase (agonist) or repress (antagonist)
- Agonists increase biological functions such as zinc finger protein 56 stimulating cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
- mammalian cells or a membrane preparation expressing zinc finger protein 56 can be cultured with labeled zinc finger protein 56 in the presence of a drug. Raise. The ability of the drug to increase or block this interaction is then determined.
- Antagonists of zinc finger protein 56 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of zinc finger protein 56 can bind to zinc finger protein 56 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform biological functions.
- zinc finger protein 56 can be added to a bioanalytical assay to determine whether a compound is an antagonist by measuring the effect of the compound on the interaction between zinc finger protein 56 and its receptor.
- Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
- Polypeptide molecules capable of binding to zinc finger protein 56 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, the zinc finger protein 56 molecules should generally be labeled.
- the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
- the invention also provides antibodies directed against the zinc finger protein 56 epitope. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
- Polyclonal antibodies can be produced by direct injection of zinc finger protein 56 into immunized animals (such as rabbits, mice, rats, etc.).
- immunized animals such as rabbits, mice, rats, etc.
- a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
- Techniques for preparing monoclonal antibodies to zinc finger protein 56 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma Technology, EBV-hybridoma technology, etc.
- Chimeric antibodies that bind human constant regions and non-human-derived variable regions can be produced using existing techniques (Morr i son e t al, PNAS, 1985, 81: 6851).
- the existing technology for producing single chain antibodies (U.S. Pat No. 4946778) can also be used to produce single chain antibodies against zinc finger protein 56.
- Anti-zinc finger protein 56 antibodies can be used in immunohistochemical techniques to detect zinc finger protein 56 in biopsy specimens.
- Monoclonal antibodies that bind to zinc finger protein 56 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
- Antibodies can also be used to design immunotoxins that target a particular part of the body.
- zinc finger protein 56 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
- a common method is to attack the amino group of the antibody with a thiol crosslinker such as SPDP. The exchange of sulfur bonds binds toxins to antibodies.
- This hybrid antibody can be used to kill zinc finger protein 56-positive cells.
- the antibodies of the present invention can be used to treat or prevent diseases related to zinc finger protein 56.
- Administration of an appropriate amount of antibody can stimulate or block the production or activity of zinc finger protein 56.
- the invention also relates to a diagnostic test method for quantitative and localized detection of zinc finger protein 56 levels.
- tests are well known in the art and include FISH assays and radioimmunoassays.
- the level of zinc finger protein 56 detected in the test can be used to explain the importance of zinc finger protein 56 in various diseases and to diagnose diseases where zinc finger protein 56 plays a role.
- polypeptide of the present invention can also be used for peptide mapping analysis.
- the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
- the polynucleotide encoding zinc finger protein 56 can also be used for a variety of therapeutic purposes. Gene therapy techniques can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of zinc finger protein 56.
- Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated zinc finger protein 56 to inhibit endogenous zinc finger protein 56 activity.
- a variant zinc finger protein 56 may be a shortened zinc finger protein 56 that lacks a signaling domain. Although it can bind to downstream substrates, it lacks signaling activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of zinc finger protein 56.
- Virus-derived expression vectors such as retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and parvovirus can be used to transfer the polynucleotide encoding zinc finger protein 56 into cells.
- a method for constructing a recombinant viral vector carrying a polynucleotide encoding a zinc finger protein 56 can be found in the existing literature (Sambrook, et al.).
- a recombinant polynucleotide encoding zinc finger protein 56 can be packaged into liposomes and transferred into cells.
- Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
- a vector such as a virus, phage, or plasmid
- Oligonucleotides including antisense RNA and DNA
- ribozymes that inhibit zinc finger protein 56 mRNA are also within the scope of the present invention.
- a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
- Antisense RNA, DM and ribozymes can be obtained by any existing RNA or DNA synthesis technology. For example, the technology for the synthesis of oligonucleotides by solid-phase phosphoramidite chemical synthesis has been widely used.
- Antisense RNA molecules can pass through the DNA encoding the RNA
- the sequences are obtained by in vitro or in vivo transcription. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector.
- RNA polymerase promoter of the vector In order to increase the stability of a nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the ribonucleoside linkages should use phosphate thioester or peptide bonds instead of phosphodiester bonds.
- the polynucleotide encoding zinc finger protein 56 can be used for the diagnosis of diseases related to zinc finger protein 56.
- the polynucleotide encoding zinc finger protein 56 can be used to detect the expression of zinc finger protein 56 or the abnormal expression of zinc finger protein 56 in a disease state.
- the DM sequence encoding zinc finger protein 56 can be used to hybridize biopsy specimens to determine the expression of zinc finger protein 56.
- Hybridization techniques include Sout hern blotting, Nor thern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and the relevant kits are commercially available.
- a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a microarray (Microcroix) or a DNA chip (also known as a "gene chip") for analyzing differential expression analysis of genes in tissues and Genetic diagnosis.
- Zinc finger protein 56 specific primers can also be used to detect the transcription products of zinc finger protein 56 by RNA-polymerase chain reaction (RT-PCR) in vitro amplification.
- Zinc finger protein 56 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild type zinc finger protein 56 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DM sequence analysis, PCR and in situ hybridization. In addition, the mutation may affect the expression of the protein, so the Nort Hern blotting and Western blotting can be used to indirectly determine whether the gene is mutated.
- sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, the specific loci of each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) can be used to mark chromosome locations. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
- PCR primers (preferably 1-35 bp) are prepared according to cDM, and the sequences can be located on the chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those hybrid cells that contain the human gene corresponding to the primer will produce amplified fragments.
- PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
- oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
- Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct chromosome-specific CDNA library.
- Fluorescent in situ hybridization of cDNA clones to metaphase chromosomes allows precise chromosomal localization in one step.
- FISH Fluorescent in situ hybridization
- the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendelian Inheritance in Man (available online with Johns Hopkins University Welch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
- the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all of the affected individuals and the mutation is not observed in any normal individual, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
- the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
- suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
- the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
- the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
- a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
- these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
- the polypeptides of the invention can be used in combination with other therapeutic compounds.
- the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
- Zinc finger protein 56 is administered in an amount effective to treat and / or prevent a specific indication.
- the amount and dosage range of zinc finger protein 56 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
- RNA Human fetal brain total RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
- Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolat ion Kit (product of Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
- the Smart cDNA cloning kit purchased from Clontech
- Clontech was used to insert the cDNA fragment into the multicloning site of the pBSK (+) vector (Clontech) to transform DH5 cx.
- the bacteria formed a cDNA library.
- Dye terminate cycle react ion sequencing kit Perkin-Elmer
- ABI 377 automatic sequencer Perkin-Elmer
- the determined cDNA sequence was compared with the existing public DM sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0174h08 was new DNA.
- the inserted cDNA fragments contained in this clone were determined in both directions by synthesizing a series of primers.
- the sequence of the zinc finger protein 56 of the present invention and the protein sequence encoded by the same were analyzed using the Blast program (Basic local al ignment search too l) [Al schul, SF et al. J. Mol. Biol. 1990; 215: 403-10], perform homology search in databases such as Genbank Swissport.
- the gene with the highest homology to the zinc finger protein 56 of the present invention is a known human zinc finger protein 131, and its accession number to Genbank is P52739.
- the protein homology results are shown in Figure 1. The two are highly homologous, with 99% identity; 100% similarity.
- Example 3 Cloning of a gene encoding zinc finger protein 56 by RT-PCR
- CDNA was synthesized using fetal brain total RNA as a template and ol igo-dT as a primer. After purification of Qiagene's kit, PCR amplification was performed with the following primers:
- Primerl 5'- GATATAAATAAATTGGAATCCTTGC-3 '(SEQ ID NO: 3)
- Primer2 5'- GGTTTGTTATATTTTATTTTCCAAG-3 '(SEQ ID NO: 4)
- Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
- Primer2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
- Amplification reaction conditions 50 ⁇ l of KC1, 10mraol / L Tris-CI, (pH8.5), 1.5mmol / L MgCl 2 , 200 ⁇ mol / L dNTP, lOpmol primers in a reaction volume of 50 ⁇ 1 , 1U of Taq DNA polymerase (Clontech).
- the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 ° C 30sec; 55 ° C 30sec; 72. C 2min.
- RT-PCR set ⁇ -act in as a positive control and template blank as a negative control.
- the amplified product was purified using a QIAGEN kit and ligated to a PCR vector (Invitrogen product) using a TA cloning kit.
- the DNA sequence analysis results showed that the DM sequence of the PCR product was exactly the same as 1-3014bp shown in SEQ ID NO: 1.
- Example 4 Northern blot analysis of zinc finger protein 56 gene expression
- RNA extraction in one step [Anal. Biochem 1987, 162, 156-159] 0
- This method involves acid guanidinium thiocyanate-chloroform extraction. I.e. with 4M guanidinium isothiocyanate -25mM sodium citrate, 0.2M sodium acetate (P H4.0) of the tissue homogenate of phenol, 1 volume and 1/5 volume of chloroform - isoamyl alcohol (49: 1), centrifuge after mixing. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
- the 32P- labeled probes (about 2 x l0 6 cpm / ml) and RNA was transferred to a nitrocellulose membrane overnight at 42 ° C in a hybridization solution, the solution comprising 50% formamide -25raMKH 2 P0 4 ( pH7.4) -5 x SSC-5 X Denhardt's solution and 200 g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1% SDS at 55 ° C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
- Example 5 In vitro expression, isolation and purification of recombinant zinc finger protein 56
- Primer 3 5'- CCCCCATGGATGGCCTTTCGCCATTTAATTGAG-3 '(Seq ID No: 5)
- Priraer4 5,-GCCCGATCCCCTTCTAAAACTGGCAGAGCCGTTC-3, (Seq ID No: 6)
- the 5' ends of these two primers contain Ncol and BamHI restriction sites, respectively , followeded by the coding sequences of the 5 'and 3' ends of the gene of interest, respectively.
- the Ncol and BamHI restriction sites correspond to the selectivity on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Endonuclease site.
- PCR was performed using the pBS-0174h08 plasmid containing the full-length target gene as a template.
- the PCR reaction conditions were as follows: 10 pg of pBS-0174h08 plasmid was contained in a total volume of 50 ⁇ l, and Primer-3 and Primer-4 were lpmol and Advantage polymerase Mix (Clontech) 1 ⁇ i, respectively. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Ncol and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
- the ligation product was transformed into E. coli DH5C using the calcium chloride method. After being cultured overnight on LB plates containing kanamycin (final concentration 30 g / ml), positive clones were screened by colony PCR and sequenced. Positive clones with the correct sequence were selected (pET-0174h08).
- the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method. In containing kanamycin (final concentration 30 g / ml) of LB liquid medium, host strain BL21 (P ET-0174h08) at 37. C.
- a peptide synthesizer (product of PE) was used to synthesize the following zinc finger protein 56-specific peptides:
- the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
- hemocyanin and bovine serum albumin For methods, see: Avrameas, et al. Immunochemistry, 1969; 6: 43. Rabbits were immunized with 4 mg of the hemocyanin polypeptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin polypeptide complex plus incomplete Freund's adjuvant was used to boost immunity once. Titration with 15 g / ml bovine serum albumin peptide complex The plate was subjected to ELISA to measure the antibody titer in rabbit serum. Total IgG was isolated from antibody-positive rabbit serum using protein A-Sepharose.
- the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
- the immunoprecipitation method proved that the purified antibody could specifically bind to zinc finger protein 56.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU12653/01A AU1265301A (en) | 1999-10-27 | 2000-10-27 | A novel polypeptide-zinc finger protein 56 and polynucleotide encoding said polypeptide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN99119861.1 | 1999-10-27 | ||
CN 99119861 CN1303936A (zh) | 1999-10-27 | 1999-10-27 | 一种新的多肽——锌指蛋白56和编码这种多肽的多核苷酸 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001030827A1 true WO2001030827A1 (fr) | 2001-05-03 |
Family
ID=5281152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2000/000393 WO2001030827A1 (fr) | 1999-10-27 | 2000-10-27 | Nouveau polypeptide, une proteine 56 a doigt de zinc, et polynucleotide codant pour ce polypeptide |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN1303936A (fr) |
AU (1) | AU1265301A (fr) |
WO (1) | WO2001030827A1 (fr) |
-
1999
- 1999-10-27 CN CN 99119861 patent/CN1303936A/zh active Pending
-
2000
- 2000-10-27 AU AU12653/01A patent/AU1265301A/en not_active Abandoned
- 2000-10-27 WO PCT/CN2000/000393 patent/WO2001030827A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
ISHIKAWA K. ET AL.: "Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro", DNA RES., vol. 4, no. 5, 1997, pages 307 - 313 * |
TOMMERUP N. ET AL.: "Isolation and fine mapping of novel human zinc finger-encoding cDNAs identify putative candidate gene for developmental and malignant disorders", GENOMICS, vol. 27, no. 2, 1995, pages 259 - 264 * |
Also Published As
Publication number | Publication date |
---|---|
AU1265301A (en) | 2001-05-08 |
CN1303936A (zh) | 2001-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001038522A1 (fr) | Nouveau polypeptide, histone humaine h2a.21, et polynucleotide codant pour ce polypeptide | |
WO2001031030A1 (fr) | Nouveau polypeptide, phosphodiesterase 21 humaine de type acide sphingomyelinase, et polynucleotide codant pour ce polypeptide | |
WO2001030827A1 (fr) | Nouveau polypeptide, une proteine 56 a doigt de zinc, et polynucleotide codant pour ce polypeptide | |
WO2001029228A1 (fr) | Nouveau polypeptide, caseine kinase humaine 48, et polynucleotide codant pour ce polypeptide | |
WO2001038375A1 (fr) | Nouveau polypeptide, proteine a doigt de zinc 58 et polynucleotide codant pour ce polypeptide | |
WO2001030818A1 (fr) | Nouveau polypeptide, proteine de liaison 33 a l'arn, et polynucleotide codant pour ce polypeptide | |
WO2001030841A1 (fr) | Nouveau polypeptide, proteine 60 a doigt de zinc, et polynucleotide codant pour ce polypeptide | |
WO2001030837A1 (fr) | Nouveau polypeptide, galectine 15, et polynucleotide codant pour ce polypeptide | |
WO2001030840A1 (fr) | Nouveau polypeptide, une proteine 57 a doigt de zinc, et polynucleotide codant pour ce polypeptide | |
WO2001038379A1 (fr) | Nouvelle proteine ribosomique humaine l23 a base d'un polypeptide et polynucleotide codant cette proteine | |
WO2001038376A1 (fr) | Nouveau polypeptide, proteine humaine a doigt de zinc 46, et polynucleotide codant pour ce polypeptide | |
WO2001038389A1 (fr) | Nouvelle proteine ribosomique l14.22 a base d'un polypeptide et polynucleotide codant cette proteine | |
WO2001031024A1 (fr) | Nouveau polypeptide, threonine synthetase 71, et polynucleotide codant pour ce polypeptide | |
WO2001031001A1 (fr) | Nouveau polypeptide, facteur auxiliaire 28 du facteur de demarrage de la traduction, et polynucleotide codant pour ce polypeptide | |
WO2001027283A1 (fr) | Nouveau polypeptide, proteine 16 de type transcriptase humaine inverse, et polynucleotide codant pour ce polypeptide | |
WO2001030832A1 (fr) | Nouveau polypeptide, proteine a doigt de zinc hkznf-23, et un polynucleotide codant pour ce polypeptide | |
WO2001027151A1 (fr) | Nouveau membre de la famille de type kruppel de proteine humaine a doigt de zinc zfp-52 et polynucleotide codant pour le nouveau membre | |
WO2001030819A1 (fr) | Nouveau polypeptide, tropomoduline humaine 39, et polynucleotide codant pour ce polypeptide | |
WO2001030826A1 (fr) | Nouveau polypeptide, une serine/threonine kinase 29, et polynucleotide codant pour ce polypeptide | |
WO2001030839A1 (fr) | Nouveau polypeptide, proteine humaine 33 de liaison a l'arn, et polynucleotide codant pour ce polypeptide | |
WO2001029229A1 (fr) | Nouveau polypeptide, proteine humaine 20 de liaison de retinoblastome et polynucleotide le codant | |
WO2001030834A1 (fr) | Nouveau polypeptide, proteine 33 a doigt de zinc, et polynucleotide codant pour ce polypeptide | |
WO2001027148A1 (fr) | Nouveau polypeptide, facteur homo 56 riche en glutamine(q), et polynucleotide codant pour ce polypeptide | |
WO2001031022A1 (fr) | Nouveau polypeptide, arginyl arnt synthetase 44, et polynucleotide codant pour ce polypeptide | |
WO2001032698A1 (fr) | Nouveau polypeptide, proteine humaine 16 associee aux maladies auto-immunes, et polynucleotide codant pour ce polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |