+

WO2001007167A1 - Hochgradienten-magnetabscheider - Google Patents

Hochgradienten-magnetabscheider Download PDF

Info

Publication number
WO2001007167A1
WO2001007167A1 PCT/EP2000/006498 EP0006498W WO0107167A1 WO 2001007167 A1 WO2001007167 A1 WO 2001007167A1 EP 0006498 W EP0006498 W EP 0006498W WO 0107167 A1 WO0107167 A1 WO 0107167A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
wires
gradient magnetic
fluid
magnetic separator
Prior art date
Application number
PCT/EP2000/006498
Other languages
English (en)
French (fr)
Inventor
Matthias Franzreb
Wolfgang HÖLL
Christian Hoffmann
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Priority to EP00944019A priority Critical patent/EP1198296B1/de
Priority to AT00944019T priority patent/ATE248024T1/de
Priority to DE50003468T priority patent/DE50003468D1/de
Publication of WO2001007167A1 publication Critical patent/WO2001007167A1/de
Priority to US10/056,799 priority patent/US6688473B2/en
Priority to US10/078,097 priority patent/US20020074266A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Definitions

  • the invention relates to a high gradient magnetic separator according to the preamble of the first claim.
  • the elements of the matrix structure are magnetized by the external field and in turn form magnetic poles that strengthen or weaken the external field in places.
  • the resulting high field strength gradients result in a strong magnetic force on para or ferromagnetic particles in the direction of higher field strength.
  • the particles attach to the induced magnetic poles of the matrix and are thus separated from the fluid.
  • [2] describes a further high-gradient magnetic separator for the continuous separation of a fluid stream enriched with magnetizable particles (in the example: ore sludge) into partial fluid streams, enriched with unmagnetizable and magnetizable particles.
  • the previously prepared particle-containing fluid is introduced into a non-magnetizable cladding tube. This leads into the separation zone, in which magnetic wires which can flow freely around as a matrix structure are arranged at regular intervals from one another parallel to the cladding tube.
  • the wires are magnetized against an external magnetic field, which can be generated by a permanent magnet, electromagnet, superconducting magnet or a cryotechnical magnet, whereby magnetic force gradients inevitably form around the wires. Consequently, in this field the magnetic particles in the fluid flow are concentrated in the area of the highest magnetic field strength, directly at the magnetic poles of the wires. During continuous operation, the separator can be expected to clog due to particles deposited on the magnetic poles of the wires.
  • the fluid is introduced into the channel structure shortly before leaving the external magnetic field, the inlets of which are arranged in such a way that the fluid flow is divided into one that is enriched with magnetizable particles and the remaining flow is divided and discharged separately from the device.
  • a device for a continuous magnetic separation possibility with a significantly lower tendency to clog in continuous operation is described in [3]. It is crucial here that the separation zone with an elongated cross section, into which the particle-containing fluid is introduced, has a non-magnetizable wall.
  • a magnetic field is applied to the separator, the field lines of which ideally run perpendicular to the flow direction and perpendicular to the longest axis of symmetry of the flow cross section in the separation zone.
  • a single magnetizable wire is arranged parallel to the flow direction on an end face of the elongated cross section of the separation zone.
  • the separation zone is divided into several channels, which divide the fluid into different fractions, which differ in the proportion of magnetizable particles.
  • the device is also described in [4], with the arrangement of two magnetizable wires (instead of one wire) on the end faces of the elongated cross section of the separation zone as an additional exemplary embodiment. lel is shown to the direction of flow. Due to the design, a certain size is to be expected in the embodiment described, which limits the possible uses of this embodiment, in particular for larger fluid throughputs.
  • larger fluid flows are described in [5]. It is proposed to arrange magnetizable wires alternately with rectangular channels arranged parallel to them, the individual lines being separated from one another by paramagnetic intermediate plates. A magnetic field is applied perpendicular to the rows and the intermediate plates for the separation process. A practical test of the concept is not described in [5] any more than a technical solution for the supply and discharge of the fluid to be separated.
  • the object of the invention is to design the channels in the region of the separation zone in such a way that a further increase in efficiency compared to the prior art is achieved. Furthermore, a technically feasible derivation for the partial fluid flows, which is precisely matched to the partial flows of the separated fluid, is to be provided.
  • freely movable magnetizable particles in a solution basically strive to accumulate in the area of the greatest magnetic field strengths. Not only do the portions of the magnetic forces oriented radially to the magnetizable wires act on these particles, but also forces oriented tangentially to the wires. These tangential magnetic force components were created in the design of the channel cross sections in the separation zone of the high gradient magnetic separator according to the invention.
  • the invention brings about the realization of magnetic force gradients with radial and tangential alignment in the flow cross-section in such a way that the magnetizable particles contained in the fluid stream can be concentrated as completely as possible in a small partial fluid stream during the passage through the separation zone. Consequently, the high-gradient magnetic separator according to the invention has an elliptical or circular cross section of the channels in the separation zone compared to the last-mentioned prior art.
  • the enrichment of magnetizable particles takes place in the separation zone in segments of the elliptical or circular channels rotated by 90 ° with respect to the row structure.
  • the dividing walls dividing the flow are provided according to the invention parallel to the row structures in these channels, which divides the fluid flow into partial flows with and without magnetizable particles.
  • Fig. 1 shows schematically the side view of the high gradient magnetic separator with inlet, separation zone in the form of a separator block, the separate processes of two fluid fractions and the magnetization device.
  • Fig. 2 shows the section through the separator block perpendicular to the ferromagnetic wires and the flow channels.
  • FIG. 3 shows the section through the splitter block near the separator block (ie still under the influence of a magnetic field) perpendicular to the ferromagnetic wires and the flow channels, which are already equipped in this area, the dividing walls dividing the flow.
  • FIG. 4 shows the section through the splinter block at the level of and parallel to the discharge bores for the partial fluid stream depleted in magnetizable particles.
  • Fig. 5 shows the view of the splinter plate.
  • FIG 6 shows an alternative design option for the separate derivation of the individual partial fluid streams.
  • FIG. 7 shows an alternative embodiment of a separator block 3 composed of shaped elements perpendicular to the ferromagnetic wires and the flow channels.
  • Fig. 1 shows the structure with all modules of the high gradient repulsion separator according to the invention.
  • the fluid stream a Via the inlet 1 and the distributor 2, the fluid stream a reaches the separation zone, contained in the separator block 3.
  • the division of the fluid stream a ideally into a partial stream with and without magnetizable particles b and c takes place in the so-called splitter block 4, which also contains the processes 5 of the Fluidteistromes c (without magnetizable particles).
  • the partial fluid flow b (with magnetizable particles) passes through the splitter plate 6 to the collector 7, which finds its constructive conclusion with the end plate 8 and opens into the outlet 9 for the partial fluid flow b.
  • the separator block 3 and part of the splitter block 4 are located between the pole pieces 10 of a permanent magnet system, which generates a magnetic field H in these areas.
  • the aforementioned components of the high-gradient repulsion separator are braced and sealed against one another by a tensioning device 11 (for example by threaded rods with tension nuts).
  • lines A, B, C and D are shown in FIG. 1, which define the position of the sectional planes shown in FIGS. 2 to 4, 6 and 7 through the described high gradient repulsion separator.
  • the section through the separator block 3 according to the plane A in Fig.
  • the separator block 3 consists of a non-magnetic material and is provided with continuous, mat ⁇ xform in several lines parallel to each other and perpendicular to the cutting plane, in which ferromagnetic wires 13 are used. With the exception of the first and last lines, a flow channel 14 with a circular cross-section running through the entire separator block 3 is arranged in parallel between these two wires 13 in each case between two wires 13, whereby flow channels 14 and wires 13 are separated from one another by the non-magnetic material of the separator block 3 are.
  • the direction of the magnetic field H required during continuous operation (arrow in FIG. 2) is perpendicular to the planes which are formed by the ferromagnetic wires 13 and channels 14 arranged in the rows.
  • the bores 12 in the separator block are also in FIG. 2
  • the arrangement of the wires 13 and the channels 14 in the external magnetic field H ensures that the areas in which the magnetizable particles are concentrated, i. H. in which the repelling magnetic force is as small as possible, are rotated by 90 ° relative to the contact points of each channel 13 with the wire 14.
  • the risk of clogging of the channels 14 due to particle deposits in continuous operation is largely avoided.
  • Fig. 3 shows the cross section of the splinter block 4 along the section line B in Fig. 1, i. H. immediately after the Separatoblock 3 and still in the influence of the magnetic field H. Consequently, the cross section corresponds to the fragment block
  • the separator block 3 largely in this area that of the separator block 3 and differs only in that the channels 14 for dividing the fluid flow a into the two partial fluid streams b and c are each divided by two partition walls 17 arranged perpendicular to the magnetic field H into a central channel 16 and two side channels 15 are.
  • the larger partial fluid stream c which is depleted of magnetizable particles, is diverted via the central channels 16 to the outlet 5
  • the partial fluid stream b enriched with magnetizable particles whose volume flow in the present embodiment makes up approximately 5 to 30% of that of the fluid stream a, flows through the side channels 15 through the splitter plate 6 into the collector 7.
  • the partial fluid flow c depleted in magnetizable particles is led out of the central channels 16 through the collecting channels 18 designed as lateral bores and the outlets 5 out of the high-gradient magnetic separator, while the partial fluid stream b (with the magnetizable particles) is derived from the fragment block via the side channels 15.
  • the central channels 16 end in the area between the collecting channels 18 and the transition to the splitter plate 6 or at this, the side channels 15 run through the entire splitter block 4.
  • the splitter block 4 is closed by a splitter plate 6 (see FIG. 5). This has slot openings 19 at the points at which the side channels 15 end. As a result, the partial fluid flow b can reach the collector 7 from the side channels 15 and leave the high-gradient magnetic separator via the outlet 9.
  • the central channels 16, however, are sealed by the splitter plate 6.
  • FIG. 6 shows an alternative design of the splitter block 4 with the subsequent components for diverting the partial fluid flows b and c as a section along the line D drawn in FIG. 1.
  • the basic structure of the splitter block differs in the above-mentioned embodiment in that the collecting channels 18 are closed at their exits from the splinter block by plugs 20 and the derivation of the partial fluid flow c depleted of magnetizable particles via the central channels 16 via the collecting channels 18 initially takes place in connecting pipes, which in the extension of the through holes in this embodiment through the entire splitter block 4 are used for the ferromagnetic wires 13, bridge the correspondingly structurally adapted splitter plate 25 as well as the collector 7 and the plate 26 for the partial fluid flow b and open into a downstream common solution collector 22.
  • FIG. 7 shows a schematic diagram of a further, alternative embodiment of the separator block 3, consisting of a non-magnetic housing 28, which contains a stack of likewise non-magnetic shaped elements 27 as guide elements for the ferromagnetic wires 13.
  • the channels 14 of the separator block 3 are incorporated into the shaped elements 27 as recesses.
  • the design of the shaped elements 27 are designed so that the matrix around each line, consisting of ferromagnetic wires 13 and channels 14, can be assembled with two shaped elements 27, each rotated by 180 °.
  • the arrangement within the stack requires the matrix to be filled with non-magnetic material, which in principle corresponds to the aforementioned monolithic embodiment according to FIG. 2, but consists of components that are much easier to manufacture.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hard Magnetic Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Die Erfindung betrifft einen Hochgradienten-Magnetabscheider mit Separierungszone, bestehend aus einer Matrix aus mehreren in parallel in Ebenen angeordneten parallel zueinander stehenden magnetisierbaren Drähten, wobei in jeder Ebene zwischen jeweils zwei Drähten ein parallel zu diesem angeordneten Kanal mit einer nicht-magnetischen Wandung verläuft, durch die ein Fluid mit magnetisierbaren Partikeln geleitet wird und im Einfluß eines magnetischen Feldes steht, welches senkrecht zu den Ebenen, die die in den Zeilen angeordneten Drähte und Kanäle bilden, verläuft. Aufgabe der Erfindung ist es, die Kanäle im Bereich der Separierungszone derart zu gestalten, daß eine weitere Effizienzsteigerung gegenüber dem Stand der Technik realisiert wird. Die Aufgabe wird dadurch gelöst, daß die Kanäle im Querschnitt rund oder elyptisch sind und bereichsweise mit Trennwänden versehen sind, welche in Strömungsrichtung des Fluids vor dem Austritt des Fluids aus dem Magnetfeld in die Kanäle parallel zu den Ebenen und senkrecht zu dem äußeren magnetischen Feld, eingesetzt sind und so gestaltet sind.

Description

Hochgradienten-Magnetabscheider
Die Erfindung betrifft einen Hochgradienten-Magnetabscheider gemäß dem Oberbegriff des ersten Patentanspruchs.
Einen generellen Überblick über verschiedene Bautypen von Mag- netscheidern sowie deren Einsatzvbereiche findet sich in [1]. Danach lassen sich grobe stark magnetische Partikel, wie z. B. Magnetiterze mit Partikelgrößen > 75 μm, stark magnetische feinere Partikel aus wäßrigen Suspensionen sogar bis zu einer Größe von ca. 10-20 μm bereits mit einfachen Trommel- oder Bandschei- dern abtrennen. Für noch feinere Partikel im Mikrometerbereich kommt dagegen bisher nur die sogenannte Hochgradienten-Magnetseparation zum Einsatz, deren Funktionsprinzip auf der Generierung starker Feldstärkegradienten durch das Einbringen einer ferro- magnetischen Matrixstruktur in ein äußeres Magnetfeld beruht. Die Matrixstruktur besteht in der Regel aus ungeordneter Stahlwolle bzw. geordneten Drahtnetzen oder profilierten Metallplatten. Die Elemente der Matrixstruktur werden durch das äußere Feld aufmagnetisiert und bilden ihrerseits Magnetpole aus, die das äußere Feld stellenweise verstärken oder auch abschwächen. Durch die entstehenden, hohen Feldstärkegradienten resultiert eine starke Magnetkraft auf para- bzw. ferromagnetische Partikel in Richtung höherer Feldstärke. Die Partikel lagern sich an den induzierten Magnetpolen der Matrix an und sind damit aus dem Fluid abgeschieden.
In [2] wird ein weiterer Hochgradienten-Magnetseparator für die kontinuierliche Separierung von einem mit magnetisierbaren Partikeln angereicherten Fluidstrom (im Beispiel: Erzschlämme) in Fluidteilströme, angereichert mit jeweils unmagnetisierbarer und magnetisierbarer Partikel beschrieben. Mit diesem Hochgradienten-Magnetabscheider wird das zuvor aufbereitete partikelhaltige Fluid in ein nicht magnetisierbares Hüllrohr eingeleitet. Dieses führt in die Separierungszone, in der als matrixstruktur frei umströmbare magnetische Drähte in regelmäßigen Abständen zueinander parallel zu dem Hüllrohr angeordnet sind. Durch ein Anle- gen eines äußeren magnetischen Feldes, welches durch ein Permanentmagnet, Elektromagnet, supraleitenden Magnet oder ein kryo- technisches Magneten generiert werden kann, werden die Drähte magnetisiert, wobei sich zwangsläufig um die Drähte magnetische Kraftgradienten ausbilden. Konsequenterweise konzentrieren sich in diesem Feld die magnetischen Partikel im Fluidstrom im Bereich der höchsten magnetischen Feldstärke, und zwar direkt an den magnetischen Polen der Drähte. Dabei ist bei Dauerbetrieb ein Zusetzen des Separators aufgrund von an den magnetischen Polen der Drähte abgelagerten Partikeln zu erwarten. Direkt im Anschluß an die Separierungszone wird das Fluid kurz vor Verlassen des äußeren Magnetfeldes in Kanalstruktur eingeleitet, deren Einlasse so angeordnet sind, daß der Fluidstrom in einen mit magnetisierbaren Partikeln angereicherten und den Reststrom unterteilt und separat aus der Vorrichtung ausgeleitet wird.
Eine Vorrichtung für eine kontinuierliche magnetische Separationsmöglichkeit mit deutlich geringerer Zusetzungsneigung im Dauerbetrieb ist in [3] beschrieben. Entscheidend ist dabei, daß die Separierungszone mit länglichen Querschnitt, in die das par- tikelhaltige Fluid eingeleitet wird, eine nicht magnetisierbare Wandung aufweist. Am Separator wird ein magnetisches Feld angelegt, dessen Feldlinien idealerweise senkrecht zu der Durchströmrichtung und senkrecht zu der längsten Symmetrieachse des Strömungsquerschnittes in der Separierungszone verlaufen. Um die für die magnetische Separarierung von ferro-, para- und diamagnetischer Partikel erforderliche Magnetfeldgradienten zu generieren, ist parallel zu der Durchströmrichtung an einer Stirnseite des länglichen Querschnitts der Separierungszone ein einzelner magnetisierbarer Draht angeordnet. Noch unter Einfluß des Magnetfeldes teilt sich die Separierungszone in mehrere Kanäle auf, die das Fluid in verschiedene Fraktionen, welche sich im Anteil an magnetisierbaren Partikeln unterscheiden aufteilt. Die Vorrichtung wird ferner in [4] beschrieben, wobei als ein zusätzliches Ausführungsbeispiel die Anordnung von zwei magnetisierbaren Drähten (anstatt eines Drahtes) jeweils an den Stirnseiten des länglichen Querschnittes der Separierungszone paral- lel zu der Stromungsrichtung dargestellt ist. Konstruktiv bedingt ist bei der beschriebenen Ausfuhrung mit einer gewissen Baugroße zu rechnen, welche die Einsatzmoglichkeiten dieser Ausfuhrung insbesondere für größere Fluiddurchsatze begrenzt.
Ein Hochgradienten-Magnetseparator der eingangs genannten Art mit einer sehr kompakten matπxformigen Querschnittgestaltung der Separierungszone, welcher sich für real auftretende, d. h. größere Fluidstrome eignet, ist dagegen in [5] beschrieben. Es wird vorgeschlagen, magnetisierbare Drahten im Wechsel mit parallel zu diesen angeordneten rechteckigen Kanälen zellenförmig anzuordnen, wobei die einzelnen Zeilen durch paramagnetische Zwischenplatten voneinander getrennt sind. Für den Vorgang der Separierung wird ein Magnetfeld senkrecht zu den Zeilen und den Zwischenplatten angelegt. Eine praktische Erprobung des Konzeptes wird in [5] ebenso wenig beschrieben wie eine technische Losung für die Zu- und Ableitung des zu separierenden Fluides.
Aufgabe der Erfindung ist es, die Kanäle im Bereich der Separierungszone derart zu gestalten, daß eine weitere Effizienzsteigerung gegenüber dem Stand der Technik realisiert wird. Ferner soll eine technisch realisierbare und auf die Teilstrome des separierten Fluides genau abgestimmte Ableitung für die Fluidteilströme vorgesehen werden.
Die Aufgabe wird durch die kennzeichnenden Merkmale in Anspruch 1 gelost; die hierauf bezogenen Unteranspruche beinhalten vorteilhafte Ausfuhrungsformen dieser Losung.
Im Bereich von Magnetfeldgradienten sind frei bewegliche magnetisierbare Partikel in einer Losung grundsatzlich bestrebt, sich im Bereich der größten magnetischen Feldstarke anzureichern. Dabei wirken nicht nur die radial zu den magnetisierbaren Drahten ausgerichtete Anteile der magnetischen Kräfte auf diese Partikel, sondern auch tangential zu den Drahten orientierte Kräfte. Diese tangentialen Magnetkraftkomponenten wurden bei der Gestaltung der Kanalquerschnitte m der Separierungszone des erfm- dungsgemäßen Hochgradienten-Magnetabscheider berücksichtigt. Die
Erfindung bewirkt die Realisierung von magnetischen Kraftgradienten mit radialer und tangentialer Ausrichtung im Strömungsquerschnitt derart, daß die im Fluidstrom enthaltenen magnetisierbaren Partikel während des Durchlaufs durch die Separierungszone möglichst vollständig in einem kleinen Fluidteilstrom konzentriert werden können. Konsequenterweise weist der erfindungsgemäße Hochgradienten-Magnetabscheider gegenüber dem zuletzt genannten Stand der Technik einen elliptischen oder kreisförmigen Querschnitt der Kanäle in der Separierungszone auf.
Ausgehend von einem Blick in Strömungsrichtung erfolgt die Anreicherung magnetisierbarer Partikel in der Separierungszone in gegenüber der Zeilenstruktur um 90° gedrehten Segmenten der elliptischen oder kreisförmigen Kanäle. Noch vor Verlassen der Separierungszone, d. h. des Magnetfeldes, werden in diesen Kanälen die Strömung unterteilende Trennwände erfindungsgemäß parallel zu den Zeilenstrukturen vorgesehen, welche den Fluidstrom in Teilströme mit und ohne magnetisierbare Partikel aufteilt.
Ein Ausführungsbeispiel des erfindungsgemäßen Hochgradienten-Ab- stoßungsscheider wird im folgenden anhand von Figuren erläutert:
Fig. 1 zeigt schematisch die Seitenansicht des Hochgradienten- Magnetabscheider mit Zulauf, Separierunszone in Form eines Separatorblocks, der getrennten Abläufe von zwei Fluidfraktionen sowie der Magnetisierungsvorrichtung.
Fig. 2 zeigt den Schnitt durch den Separatorblock senkrecht zu den ferromagnetischen Drähten und den Strömungskanälen.
Fig. 3 zeigt den Schnitt durch den Splitterblock nahe dem Separatorblock (d. h. noch unter Magnetfeldeinfluß) senkrecht zu den ferromagnetischen Drähten und den Strömungskanälen, welche in diesem Bereich bereits die Strömungsunterteilenden Trennwänden ausgestattet sind. Fig. 4 zeigt den Schnitt durch den Splitterblock in Höhe der und parallel zu den Ableitungsbohrungen für den an magnetisierbaren Partikeln verarmten Fluidteilstrom.
Fig. 5 zeigt die Ansicht der Splitterplatte.
Fig. 6 zeigt eine alternative Gestaltungsmöglichkeit für die getrennte Ableitung der einzelnen Fluidteilströme.
Fig. 7 zeigt eine alternative Ausführungsform eines aus Formelementen zusammengesetzten Separatorblocks 3 senkrecht zu den ferromagnetischen Drähten und den Strömungskanälen.
Fig. 1 zeigt den Aufbau mit allen Baugruppen des erfindungsgemäßen Hochgradienten-Abstoßungsscheiders . Über den Zulauf 1 und den Vertreiler 2 gelangt der Fluidstrom a in die Separierungszone, enthalten in dem Separatorblock 3. Die Aufteilung des Fluidstromes a idealerweise in je einen Teilstrom mit und ohne magnetisierbare Partikeln b bzw. c erfolgt im sog. Splitterblock 4, welcher auch die Abläufe 5 des Fluidteistromes c (ohne magnetisierbaren Partikeln) enthält. Der Fluidteilstrom b (mit magnetisierbaren Partikeln) gelangt durch die Splitterplatte 6 zum Sammler 7, welcher mit der Endplatte 8 seinen konstruktiven Abschluß findet und in den Ablauf 9 für den Fluidteilstrom b mündet. Der Separatorblock 3 sowie ein Teil des Splitterblocks 4 befindet sich zwischen den Polschuhen 10 eines Permanetmagnet- systems, welcher in diesen Bereichen ein Magnetfeld H erzeugt. Die zuvor genannten Komponenten des Hochgradienten-Abstoßungs- scheiders werden in der in Fig. 1 gezeigten Ausführungsform durch eine Spannvorrichtung 11 (beispielsweise durch Gewindestangen mit Spannmuttern) gegeneinander verspannt und abgedichtet werden. Ferner sind in Fig. 1 die Linien A, B, C und D dargestellt, die die Lage der in den Figuren 2 bis 4, 6 und 7 dargestellten Schnittebenen durch den beschriebenen Hochgradienten- Abstoßungsscheider definieren. Den Schnitt durch den Separatorblock 3 gemäß der Ebene A in Fig.
1 zeigt Fig. 2. Der Separatorblock 3 besteht dabei aus einem un- magnet schen Material und ist mit durchgangigen , matπxformig in mehreren Zeilen parallel zueinander und senkrecht zur Schnittebene angeordneten Bohrungen versehen, in denen ferromag- netische Drahte 13 eingesetzt sind. Mit Ausnahme der ersten und letzten Zeile sind in jeder Zeile zwischen jeweils zwei Drahten 13 parallel zu diesen e ein durch den gesamten Separatorblock 3 durchgangig verlaufender Stromungskanal 14 mit kreisförmigen Querschnitt angeordnet, wobei Stromungskanale 14 und Drahte 13 durch das unmagnetische Material des Separatorblocks 3 voneinander getrennt sind. Die Richtung des wahrend des kontinuierlichen Betriebes erforderlichen Magnetfelds H (Pfeil in Fig. 2) verlauft senkrecht zu den Ebenen, welche durch die in den Zeilen angeordneten ferromagnetischen Drahten 13 und Kanälen 14 gebildet werden. Ebenfalls in Fig. 2 sind die Bohrungen 12 im Separatorblock
3 für die Spannvorrichtung 11 zu erkennen.
Durch die Anordnung der Drahte 13 und der Kanäle 14 im äußeren magnetischen Feld H wird erreicht, daß die Bereiche in denen sich die magnetisierbaren Partikel konzentrieren, d. h. in denen die abstoßende Magnetkraft möglichst gering ist, relativ zu den Beruhrpunkten eines jeden Kanals 13 mit dem Draht 14 um 90° verdreht liegen. Bei der beschriebenen Anordnung von Kanälen 14 und Drahten 13 zueinander im Magnetfeld H wird die Gefahr eines Zu- setzens der Kanäle 14 durch Partikelanlagerungen im kontinuierlichen Betrieb weitgehend vermieden.
Fig. 3 zeigt den Querschnitt des Splitterblock 4 entlang der Schnittlinie B in Fig. 1, d. h. unmittelbar im Anschluß an den Separatoblock 3 und noch im Einfluß des magnetischen Feldes H. Konsequenterweise entspricht der Querschnitt des Splitterblocks
4 in diesem Bereich weitgehend dem des Separatorblocks 3 und unterscheidet sich nur dadurch, daß die Kanäle 14 zur Aufteilung des Fluidstromes a in die beiden Fluidteilströme b und c jeweils durch zwei senkrecht zum Magnetfeld H angeordnete Trennwände 17 in einen Zentralkanal 16 und zwei Seitenkanale 15 aufgeteilt sind. Während der von magnetisierbaren Partikeln verarmte größere Fluidteilstrom c über die Zentralkanäle 16 zum Ablauf 5 abgeleitet werden, fließt der mit magnetisierbaren Partikeln angereicherte Fluidteilstrom b, dessen Volumenstrom in der vorliegenden Ausführung ca. 5 bis 30 % dem des Fluidstromes a ausmacht, durch die Seitenkanäle 15 durch die Splitterplatte 6 in den Sammler 7. Die Drähte 13, welche auch durch den Separatorblock 3 verlaufen, enden etwa in der Mitte im Splitterblock 4, d. h. bereits außerhalb des Magnetfeldes H. Entsprechend sind auch die die Drähte beherbergenden Bohrungen als Sacklochbohrungen im Splitterblock 4 nur bis zu dieser Tiefe ausgeführt.
Den Querschnitt des Splitterblocks 4 in Höhe der Abläufe 5 entlang der Schnittlinie C (siehe Fig. 1), d. h. außerhalb des Magnetfeldes H, zeigt Fig. 4. In diesem Bereich wird der an magnetisierbaren Partikeln verarmte Fluidteilstrom c aus den Zentralkanälen 16 durch die als seitliche Bohrungen ausgeführten Sammelkanälen 18 und die Abläufe 5 aus dem Hochgradienten-Magnetabscheider herausgeleitet, während der Fluidteilstrom b (mit den magnetisierbaren Partikeln) über die Seitenkanäle 15 aus dem Splitterblock abgeleitet wird. Während die Zentralkanäle 16 im Bereich zwischen den Sammelkanälen 18 und dem Übergang zu der Splitterplatte 6 oder an dieser enden, verlaufen die Seitenkanäle 15 durch den gesamten Splitterblock 4.
Der Splitterblock 4 wird durch eine Splitter-Platte 6 (siehe Fig. 5) abgeschlossen. Diese weist an den Stellen, an denen die Seitenkanäle 15 enden, Schlitzöffnungen 19 auf. Hierdurch kann der Fluidteilstrom b von den Seitenkanälen 15 in den Sammler 7 gelangen und den Hochgradienten-Magnetabscheider über den Ablauf 9 verlassen. Die Zentralkanäle 16 werden dagegen durch die Splitterplatte 6 dicht verschlossen.
Fig. 6 zeigt eine alternative Gestaltung der Splitterblocks 4 mit den anschließenden Komponenten zur Ableitung der Fluidteilströme b und c als Schnitt entlang der in Fig. 1 eingezeichneten Linie D. Der Grundaufbau des Splitterblocks unterscheidet sich in der zuvor genannten Ausführung darin, daß die Sammelkanäle 18 an deren Austritten aus dem Splitterblock durch Stopfen 20 verschlossen sind und die Ableitung des mit den an magnetisierbaren Partikeln verarmten Fluidteilstromes c über von den Zentralkanälen 16 über die Sammelkanäle 18 zunächst in Verbindungsrohre erfolgt, welche in die Verlängerung der in dieser Ausführung durch den gesamten Splitterblock 4 durchgehenden Bohrungen für die ferromagnetischen Drähte 13 eingesetzt sind, die entsprechend konstruktiv angepaßte Splitterplatte 25 sowie den Sammler 7 und die Platte 26 für den Fluidteilstrom b überbrücken und in einen nachgeschalteten gemeinsamen Lösungssammler 22 einmünden. Durch die Ableitung des Fluidteilstromes c über das Volumen des Lösungssammlers 22 anstelle der Sammelkanäle 18 der in Fig. 4 dargestellten Ausführung wird erreicht, daß in allen parallel geschalteten Strömungskanälen 14 identische Strömungs- und Druckverhältnisse auftreten und damit die Optimierbarkeit von Auslegung und Betrieb des Hochgradienten-Magnetabscheiders erheblich verbessert wird. Konstruktive Randbedingungen der genannten Ausführung veranlassen eine seitliche Anordnung der Abläufe 23 für den Fluidteilstrom b aus den Sammler 7.
Fig. 7 zeigt eine Prinzipskizze einer weiteren, alternativen Ausführungsform des Separatorblocks 3, bestehend aus einem unmagnetischem Gehäuse 28, welches einen Stapel ebenfalls unmagnetischer Formelemente 27 als Führungselemente für die ferromagnetischen Drähte 13 enthält. Dabei werden die Kanäle 14 des Separatorblocks 3 in die Formelemente 27 als Aussparungen eingearbeitet. Die Ausführung der Formelemente 27 sind so konstruktiv so gestaltet, daß die Matrix um jede Zeile, bestehend aus ferromagnetischen Dähten 13 und Kanälen 14, mit zwei um jeweils um 180° Grad gedreht Formelementen 27 zusammengesetzt werden kann. Die Anordnung innerhalb des Stapels bedingt eine Raumerfüllung der Matrix mit unmagnetischem Material, die prinzipiell der zuvor genannten monolithischen Ausführungsform gemäß Fig. 2 entspricht, jedoch aus wesentlich einfacher zu fertigenden Komponenten besteht. Literatur :
[1] J. Svoboda: Magnetic for the Treatment of Minerals, Elsevier
Science Publishers, Amsterdam 1987, 325ff [2] US-4,261,815 [3] US-4,663,029 [4] M. Takayasu, E. Maxwell, D. R. Kelland: Continous Selective
HGMS in the Repulsive Force Mode, IEEE Trans. Magn. MAG-20
(1983) 1186-1188 [5] C. deLatour, G. Schmitz, E. Maxwell, D. Kelland: Designing
HGMS Matrix Arrays for Selective Filtration, IEEE Trans.
Magn. MAG-19 (1983) 2127-2129

Claims

Patentansprüche :
1. Hochgradienten-Magnetabscheider mit Separierungszone, bestehend aus einer Matrix aus mehreren in parallel in Ebenen angeordneter parallel zueinander stehender magnetisierbarer Drähte (13), wobei in jeder Ebene zwischen jeweils zwei Drähten ein parallel zu den Drähten angeordneter Kanal (14) mit einer nicht-magnetischen Wandung verläuft, durch die ein Fluid mit magnetisierbaren Partikeln geleitet werden kann, mit einer Einrichtung (10), die in der Matrix ein magnetisches Feld (H) derart erzeugt, daß das Feld senkrecht zu den Ebenen, die die in den Zeilen angeordneten Drähte (13) und Kanäle (14) bilden, verläuft, dadurch gekennzeichnet, daß die Kanäle (13) bereichsweise mit Trennwänden (17) versehen sind, wobei die Trennwände
- in Strömungsrichtung des Fluids vor dem Austritt des Fluids aus dem Magnetfeld (H) in die Kanäle (13) parallel zu den Ebenen und senkrecht zu dem äußeren magnetischen Feld, eingesetzt sind und
- so gestaltet sind, daß Ableitungen für partikelreiche und partikelarme Fluidteilströme entstehen.
2. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Kanäle (13) im Querschnitt rund oder elliptisch sind.
3. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß zur Bildung der Matrix ein massiver Block vorgesehen ist, der die Bohrungen enthält, die die Drähte (13) enthalten und die Kanäle (14) bilden.
4. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Matrix durch Formteile erzeugt ist.
5. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Ableitungen für den partikelarmen Fluidteilstrom (c) in Sammelkanäle (18) einmünden, welche aus den Hochgradienten-Magnetabscheider ausmünden.
6. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Ableitungen für den mit magnetisierbaren Partikeln angereicherten Fluidteilstrom (b) in einen gemeinsamen Sammler (7) ausmünden von dem eine Abflußleitung ausgeht .
7. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Ableitungen für den partikelarmen Fluidteilstrom (c) in einen gemeinsamen Lösungssammler (22) ausmünden von dem eine Abflußleitung ausgeht.
8. Hochgradienten-Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, daß die Drähte (13) aus einem hartmagnetischen Material bestehen, die durch ein einmaliges Anlegen eines magnetischen Feldes (H) permanent magnetisiert worden sind.
PCT/EP2000/006498 1999-07-22 2000-07-08 Hochgradienten-magnetabscheider WO2001007167A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00944019A EP1198296B1 (de) 1999-07-22 2000-07-08 Hochgradienten-magnetabscheider
AT00944019T ATE248024T1 (de) 1999-07-22 2000-07-08 Hochgradienten-magnetabscheider
DE50003468T DE50003468D1 (de) 1999-07-22 2000-07-08 Hochgradienten-magnetabscheider
US10/056,799 US6688473B2 (en) 1999-07-22 2002-01-18 High gradient magnetic separator
US10/078,097 US20020074266A1 (en) 1999-07-22 2002-02-19 High gradient magnetic separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934427A DE19934427C1 (de) 1999-07-22 1999-07-22 Hochgradienten-Magnetabscheider
DE19934427.2 1999-07-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/056,799 Continuation-In-Part US6688473B2 (en) 1999-07-22 2002-01-18 High gradient magnetic separator
US10/078,097 Continuation-In-Part US20020074266A1 (en) 1999-07-22 2002-02-19 High gradient magnetic separator

Publications (1)

Publication Number Publication Date
WO2001007167A1 true WO2001007167A1 (de) 2001-02-01

Family

ID=7915697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006498 WO2001007167A1 (de) 1999-07-22 2000-07-08 Hochgradienten-magnetabscheider

Country Status (5)

Country Link
US (2) US6688473B2 (de)
EP (1) EP1198296B1 (de)
AT (1) ATE248024T1 (de)
DE (2) DE19934427C1 (de)
WO (1) WO2001007167A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117659A1 (de) * 2001-04-09 2002-10-17 Steinert Gmbh Elektromagnetbau Hochgradienten-Magnetfilter und Verfahren zum Abtrennen von schwach magnetisierbaren Partikeln aus flüssigen Medien
CN106391300A (zh) * 2016-11-03 2017-02-15 鞍山鑫盛矿山自控设备有限公司 一种磁振式高效磁选机矿液方向控制装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052232A1 (en) * 2000-06-28 2002-05-02 Kaminkow James E. Apparatus and method for modifying generated values to determine an award in a gaming device
CA2422110A1 (en) * 2000-09-18 2002-03-21 President And Fellows Of Harvard College Method and apparatus for gradient generation
DE10127069A1 (de) * 2001-05-23 2002-11-28 Bio Medical Apherese Systeme G Magnetfilter zur Abtrennung von strömenden magnetischen Objekten
US20050274650A1 (en) * 2004-06-09 2005-12-15 Georgia Tech Research Corporation Blood separation systems in micro device format and fabrication methods
US7253671B2 (en) * 2004-06-28 2007-08-07 Intelliserv, Inc. Apparatus and method for compensating for clock drift in downhole drilling components
US20060073874A1 (en) * 2004-10-01 2006-04-06 Cregan Karen M Gaming device having random generation of values and mathematical operations performed on the values
US7404490B2 (en) * 2005-06-15 2008-07-29 Shot, Inc. Continuous particle separation apparatus
US8556843B2 (en) 2008-02-02 2013-10-15 AccelDx Blood purification method and apparatus for the treatment of malaria
US8083069B2 (en) * 2009-07-31 2011-12-27 General Electric Company High throughput magnetic isolation technique and device for biological materials
BR112012005618B1 (pt) * 2009-10-28 2020-03-10 Magglobal, Llc Dispositivo de separação magnética
US8708152B2 (en) 2011-04-20 2014-04-29 Magnetation, Inc. Iron ore separation device
CN102513205B (zh) * 2011-12-12 2014-06-18 安徽省阜阳沪千人造板制造有限公司 格栅脉冲喷吹除铁器
CN102773157B (zh) * 2012-08-14 2015-07-29 连云港宝相机械有限公司 一种高场强磁辊
US9968943B2 (en) * 2016-06-30 2018-05-15 United Arab Emirates University Magnetic particle separator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163676A (en) * 1984-08-14 1986-03-05 Int Research & Dev Co Ltd Magnetic filter
US4941969A (en) * 1986-03-26 1990-07-17 Klaus Schonert Method of and an apparatus for the separation of paramagnetic particles in the fine and finest particle size ranges in a high-intensity magnetic field

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261815A (en) * 1979-12-31 1981-04-14 Massachusetts Institute Of Technology Magnetic separator and method
US4663029A (en) * 1985-04-08 1987-05-05 Massachusetts Institute Of Technology Method and apparatus for continuous magnetic separation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163676A (en) * 1984-08-14 1986-03-05 Int Research & Dev Co Ltd Magnetic filter
US4941969A (en) * 1986-03-26 1990-07-17 Klaus Schonert Method of and an apparatus for the separation of paramagnetic particles in the fine and finest particle size ranges in a high-intensity magnetic field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117659A1 (de) * 2001-04-09 2002-10-17 Steinert Gmbh Elektromagnetbau Hochgradienten-Magnetfilter und Verfahren zum Abtrennen von schwach magnetisierbaren Partikeln aus flüssigen Medien
DE10117659C2 (de) * 2001-04-09 2003-07-17 Steinert Gmbh Elektromagnetbau Hochgradienten-Magnetfilter und Verfahren zum Abtrennen von schwach magnetisierbaren Partikeln aus flüssigen Medien
CN106391300A (zh) * 2016-11-03 2017-02-15 鞍山鑫盛矿山自控设备有限公司 一种磁振式高效磁选机矿液方向控制装置

Also Published As

Publication number Publication date
EP1198296B1 (de) 2003-08-27
US20020088741A1 (en) 2002-07-11
DE50003468D1 (de) 2003-10-02
US6688473B2 (en) 2004-02-10
ATE248024T1 (de) 2003-09-15
EP1198296A1 (de) 2002-04-24
US20020074266A1 (en) 2002-06-20
DE19934427C1 (de) 2000-12-14

Similar Documents

Publication Publication Date Title
EP1198296B1 (de) Hochgradienten-magnetabscheider
DE3610303C1 (de) Verfahren und Vorrichtungen zur Sortierung paramagnetischer Partikeln im Fein- und Feinstkornbereich in einem magnetischen Starkfeld
DE3039171C2 (de) Vorrichtung zum Abscheiden von magnetisierbaren Teilchen nach dem Prinzip der Hochgradienten-Magnettrenntechnik
DE2628095C3 (de) Magnetische Abscheidevorrichtung
DE69017401T2 (de) Magnetische Nassabscheider mit hoher Intensität.
DE102004034541B3 (de) Hochgradienten-Magnetabscheider
EP0111825B1 (de) Vorrichtung der Hochgradienten-Magnettrenntechnik zum Abscheiden magnetisierbarer Teilchen
EP0242773B1 (de) Verfahren zur kontinuierlichen Separation magnetisierbarer Partikel und Einrichtung zu seiner Durchführung
DE102014013459A1 (de) Starkfeldmagnetscheider
WO2010031714A1 (de) Vorrichtung und verfahren zum abscheiden ferromagnetischer partikel aus einer suspension
DE3827252C2 (de)
DE2612834A1 (de) Magnetscheider
DE19626999C1 (de) Hochgradienten-Magnetabscheider
DE2321281A1 (de) Verfahren zur abtrennung magnetisierbarer teilchen aus einem feinkoernigen feststoff und vorrichtung zur durchfuehrung des verfahrens
DE4124990A1 (de) Magnetfeld-trenneinrichtung zum abschneiden ferromagnetischer metallteile aus suspensionen, insbesondere aus bei der wiederverarbeitung von altpapier anfallenden suspensionen
WO1979000085A1 (en) Crossing conveyor-belts magnetic separator
DE2501858A1 (de) Verfahren und vorrichtung zum abscheiden magnetisierbarer teilchen, die in einer fluessigkeit suspendiert sind
EP0277581B1 (de) Vorrichtung zur Trennung geladener Partikel von einem Strömungsmittel
DE2916634A1 (de) Verfahren und einrichtung zum abscheiden von sinter o.dgl. magnetisch artverwandten teilchen aus brauch- oder abwasser
DE916821C (de) Permanentmagnetischer Magnetrost-Scheider
DE977427C (de) Kombiniert magnet-mechanisch wirkendes Fluessigkeitssiebfilter
DE1166714B (de) Nassmagnetscheider
DE2428273C3 (de) Magnetschneider zum Sortieren von Stoff gemischen
DE3404216A1 (de) Matrixring-magnetscheider
DE8608353U1 (de) Vorrichtung zur Sortierung paramagnetischer Partikeln im Fein- und Feinstkornbereich in einem magnetischen Starkfeld

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000944019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10056799

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 10078097

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000944019

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000944019

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载